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Abstract
Model-based reinforcement learning (MBRL) has
been a primary approach to ameliorating the sam-
ple efficiency issue as well as to make a generalist
agent. However, there has not been much effort
toward enhancing the strategy of dreaming itself.
Therefore, it is a question whether and how an
agent can “dream better” in a more structured and
strategic way. In this paper, inspired by the obser-
vation from cognitive science suggesting that hu-
mans use a spatial divide-and-conquer strategy in
planning, we propose a new MBRL agent, called
Dr. Strategy, which is equipped with a novel
Dreaming Strategy. The proposed agent realizes
a version of divide-and-conquer-like strategy in
dreaming. This is achieved by learning a set of
latent landmarks and then utilizing these to learn
a landmark-conditioned highway policy. With the
highway policy, the agent can first learn in the
dream to move to a landmark, and from there it
tackles the exploration and achievement task in a
more focused way. In experiments, we show that
the proposed model outperforms prior pixel-based
MBRL methods in various visually complex and
partially observable navigation tasks.

1. Introduction
A crucial capability of generalist agents, such as humans,
is to explore environments and acquire the skills needed to
achieve various goals, continuously and in an open-ended
way. It is particularly important for these agents to become
efficient explorers and achievers in an unsupervised or self-
supervised manner. It enables them to survive and become
more competent in a more scalable way as well as in more
flexible open-ended environments, where future tasks aren’t
predefined but can evolve over time.

This capability is equally important for artificial generalist
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Figure 1. (Left) In the real world, humans maintain a hierarchical
spatial structure for easy navigation. (Right) Trying to memorize
all the streets on the map can lead to an overwhelming amount
of information, making it difficult to retain the information effec-
tively. (Middle) In contrast, choosing to travel by train to move
between cities and transfer to a taxi at the terminal minimizes the
complexity, allowing one to concentrate on local routes starting
from the terminal near the destination.

agents, such as Reinforcement Learning (RL) agents (Sutton
& Barto, 2018), including robots and virtual agents in games
like Minecraft (Guss et al., 2019). However, these artificial
agents currently have a significant limitation compared to
humans: low sample efficiency. They require much more
experience data than humans (Mnih et al., 2015; 2016). Con-
sidering these agents could operate in a real-time physical
world and are susceptible to physical damage, improving
sample efficiency is of top priority. It is particularly more
challenging in more realistic settings where observations
are high-dimensional (e.g., images) and partially observable
(Berner et al., 2019; Vinyals et al., 2019).

Currently, a primary approach in RL to improving sam-
ple efficiency is via model-based reinforcement learning
(MBRL) (Sutton, 1991; Ha & Schmidhuber, 2018; Hafner
et al., 2020). In this approach, the agent uses experience
data to learn both the representation of the observations and
states as well as the transition dynamics of the environment,
known as a world model. This enables the agent to learn its
policy within an internal model of the world instead of the
real world via planning (or, simulation or dreaming). An
example of such an unsupervised model-based generalist
agent is LEXA (Mendonca et al., 2021).

On the other hand, research in cognitive science suggests
that humans use structured and strategic planning, such as
spatial divide-and-conquer, when tackling complex prob-
lems (Chun & Jiang, 1998). For example, when navigating
to a specific location, humans typically break down the task
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into two stages: first, they plan to reach a familiar land-
mark near the destination, then they use a local and focused
strategy to get from that landmark to the target, as shown
in Figure 1. This divide-and-conquer-like approach is ef-
fective as it reduces the space to learn. Without this, it
would require to learn all point-to-point navigation paths
separately, requiring a lot of experience data. However, in
current MBRL agents like LEXA, the process of dreaming
or imagination is guided by a rather naive strategy such as
random i.i.d. sampling from the replay buffer.

In this paper, we raise the following questions: “Is more
structured and strategic dreaming possible?”, if so, “how
could we implement this idea in the modern MBRL frame-
works?” and “how could this improve generalist agents?”
To this end, we propose a strategic model-based generalist
agent, Dr. Strategy (short for “Dream Strategy”). Our key
idea is that a divide-and-conquer approach leveraging the
structure of latent landmarks can enhance the efficiency
of dreaming in MBRL and promote better exploration and
achievement quality of a generalist agent.

The proposed model consists of four main modules. First,
to obtain landmarks, we map each state from the replay
buffer to a discrete representation called landmarks through
VQ-VAE (Razavi et al., 2019). Second, we train a landmark-
conditioned policy called highway policy, specialized to
move only to landmarks instead of arbitrary position, unlike
goal-conditioned policy. Thirdly, we train an exploration
policy (Explorer) and a goal-conditioned policy (Achiever)
through dreaming. However, unlike LEXA, the two poli-
cies take advantage of starting from beneficial landmarks
selected from strategic dreaming and planning. Thus, they
solve the problem locally in a focused way, following the
highway policy to bring the agent to the selected landmark.
This realizes the divide-and-conquer-like approach. In ex-
periments, we show that the proposed model outperforms
prior pixel-based MBRL methods in various visually com-
plex and partially observable navigation tasks, while also
showing comparative results in robot manipulation tasks.

The main contributions of this paper are as follows. We
propose the concept of “strategic dreaming" in pixel-based
MBRL in the sense that the agent can leverage the structure
of the state space such as landmarks to enable a divide-and-
conquer-like strategy during dreaming, and then propose the
first MBRL agent to realize and demonstrate the benefits
of this concept. We also provide empirical evidence that
this approach can enhance the accuracy and efficiency of
MBRL agents in the generalist setting similar to LEXA.
Additionally, we also introduce a set of benchmarks for
visually complex navigation tasks.

2. Dr. Strategy Agent
To enable a structured divide-and-conquer approach and
thus enhance the efficiency of dreaming in world models
for goal-conditioned agents, we introduce our proposed
model, Dr. Strategy. A key change to prior model-based
goal-conditioned approaches is the use of latent landmarks.
Latent landmarks are a set of latent states representing the
experience of the agent, which enables the agent to strategi-
cally focus on essential information and thus dream struc-
turally. In our proposed model, we divide our experience
via landmarks and conquer by starting from the landmarks,
thereby guiding the agent to explore and achieve goals ef-
ficiently and with precision. We call the overall process
of training and planning to exploit the divide-and-conquer
strategy “Strategic Dreaming”.

Dr. Strategy consists of three policies: the Highway pol-
icy, which helps reach landmarks; Explorer, which explores
distant points using the world model; and Achiever, which
reaches specified goals in divided areas. Additionally, we
incorporate Focused Sampling during Achiever training to
increase accuracy. As illustrated in Figure 2, our approach
consists of two phases: (1) We construct latent landmarks
from the explored states (Section 2.2), train the three policies
in imagination through Strategic Dreaming (Section 2.3),
and then explore through curious landmark-guided explo-
ration (Section 2.4). (2) We then achieve downstream tasks
in the real environment exploiting the Highway policy and
Achiever (Section 2.5).

2.1. World Model

To enhance the accurate prediction by high-dimensional
pixel-level inputs, we employ a Recurrent State Space
Model (RSSM) (Hafner et al., 2019b). The world model
works as a virtual simulator, predicting the transition dynam-
ics of the real environment. The policy interacts with the
imagined trajectories generated in parallel by sampling from
the world model. We refer to this as “Dreaming". Thus,
we can train policies using the imagined trajectories instead
of interacting directly with the real environment (refer to
Appendix B for more details). The components comprising
the world model include:

Dynamics : ŝt = dyn�(st�1; at�1) (1)
Representation : st = repr�(st�1; at�1; xt) (2)

Encoder : et = enc�(xt) (3)
Decoder : x̂t = dec�(st); (4)

where st is the model state which is constructed as a con-
catenation of a deterministic state from GRU (Cho et al.,
2014) and a discrete stochastic state (Hafner et al., 2020). at
and xt are action and observation, respectively. The world
model is trained by optimizing the evidence lower bound
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Figure 2. Comparison between Dr. Strategy and LEXA. a. We construct latent landmarks and train Highway policy πl(at|st, l),
Explorer πe(at|st), and Achiever πg(at|st, eg) in imagination. The Achiever is trained by Focused Sampling, which is conditioning
goals within a small number of steps instead of random sampling. All three policies are purely trained with imagined trajectories from
the world model. b. During exploration, we only evaluate the landmarks, and call the landmark with the highest exploration potential
“Curious Landmark" (C-Landmark). In a real environment, the Highway policy moves to the curious landmark, and the Explorer resumes
exploration. The agent iterates training and exploration with a certain frequency TF . c. During test time, we find the landmark that is
nearest to the given pixel-level goal (G-Landmark). The Highway policy reaches G-Landmark, and the Achiever proceeds to achieve the
goal immediately after. The blue boxes in the bottom half of the figure indicate the modules of LEXA, which are Explorer and Achiever
without focused sampling and landmarks.

(ELBO) through stochastic backpropagation (Kingma &
Welling, 2013; Rezende et al., 2014) using the Adam opti-
mizer (Kingma & Ba, 2014).

2.2. Building Latent Landmarks

We project the model states onto discrete N codes in
the codebook we call landmarks using the VQ-VAE (Van
Den Oord et al., 2017). Landmarks can be seen as cluster
centers partitioning the state space into a number of codes in
the codebook. To exploit these landmarks, we train the latent
landmark-conditioned policy Highway policy that works as
an express train for the agent to go to the landmarks.

To find landmarks that can represent an area of the given
distribution over states, we learn the landmark encoder
enc�(s) and decoder dec�(l) through VQ-VAE. We aim
to encode model states s into the N learnable codes which
we call landmark l of a codebook, and vice versa.

We encode the model states into embeddings using land-
mark encoder enc�(s). For quantization, the embedding
enc�(s) is assigned to the closest code in the codebook lk
where k = arg minj kenc�(s) � ljk2; k 2 1 � � �N . With
the landmark decoder dec�(lk) , lk can be decoded back to
state s. The training objective is

Ll = ks� dec�(lk)k2
2 + �ksg(lk)� enc�(s)k2

2; (5)

where sg(·) denotes stop gradient. The loss is composed
of reconstruction error of the decoder and commitment loss,
which is the difference between embedded vectors and the
codes in the codebook. The balance in the loss is managed
by the hyperparameter �. We assign only a single code in
the codebook to each model state. Thus, landmarks can be
seen as cluster centers partitioning the model states into the
number of codes in the codebook (Mazzaglia et al., 2022b;
Campos et al., 2020).

3



Dr. Strategy: Model-Based Generalist Agents with Strategic Dreaming

2.3. Building Blocks for Strategy

Highway policy. We train a landmark-conditioned policy
�l(atjst; l) called Highway policy through imagined trajec-
tories. Given a target landmark l, the objective of this policy
is to reach the state of the target landmark ŝl = dec�(l).
To train the Highway policy, we design the reward with two
terms:

rl(st; l) = �kdec�(l)� stk2
2 +

K∑
i=1

logkst � sK-NN
i k2 (6)

The first term calculates the distance in the state space
between the visited state st and the decoded state from the
conditioned landmark code l. This encourages the agent to
reach the decoded state of l. The second term is estimated
using a K-NN particle-based estimator (Singh et al., 2003),
which motivates the agent to visit diverse states within one
trajectory.

Explorer and Achiever. We follow prior approaches based
on goal-conditioned MBRL framework (Mendonca et al.,
2021). Explorer is an exploration policy �e(atjst) trained
by receiving exploration reward re(st). re(st) encourages
the policy to maximize the disagreement among an ensem-
ble of 1-step dynamics models (Pathak et al., 2019; Sekar
et al., 2020). As the explorer trains in imagination, we
start the imagined trajectories not only from sampled data
from the replay buffer but also from landmarks. We call the
goal-conditioned policy �g(atjst; eg) Achiever that receives
current model state and goal embedding eg = enc�(xg) as
inputs, where xg is the goal image. The reward for reaching
a goal rg(êt; eg) is based on a self-supervised objective that
focuses on the temporal distance that follows prior works
(Mendonca et al., 2021), where it encourages the policy
to reduce the number of actions needed to move from the
current state to the goal state. êt = emb(st) � et is the
predicted image embedding at step t (refer to Appendix D
for more details).

2.4. Strategy to Explore

How can the generalist agent strategically dream to explore
during training time so that it can achieve diverse goals?
Prior works leverage the world model for planning from
randomly sampled candidate states (Mendonca et al., 2021).
However, in large or complex search spaces, chances of
stumbling upon good solutions by random sampling are
typically low (Ecoffet et al., 2021). This leads to a lot of
computational resources wasted on exploring sub-optimal
areas. Instead, we propose to plan strategically through
dreaming by only evaluating the landmarks. By constructing
the landmarks to represent the agent’s experience (divide)
and evaluating (conquer) only the representations of the
explored space, we can gain a comprehensive approximation
with efficiency. We also refer to this strategy as “strategic
exploration."

We call the landmark with the highest exploration potential
“Curious Landmark". We then move to the curious landmark
via Highway policy, then resume to explore immediately
with Explorer.

Curious landmark should lead us to effective exploration
in the future, entailing high future exploration reward po-
tential. To select a curious landmark, we get the decoded
model state s(i)

0 � dec�(li); i 2 1 : : : N of each landmark
via landmark decoder. We then imagine H steps trajectories
with the Explorer through world model from each landmark,
�i = fs(i)

0 ; s
(i)
1 ; : : : ; s

(i)
H g. We calculate the curiosity Ci of

landmark li as the expected exploration reward of �i:

Ci = E�i [re(s
(i)
t )]; �i = fs(i)

0 ; s
(i)
1 ; : : : ; s

(i)
H g (7)

Such that re represents the exploration reward, as previously
mentioned. We then sample the Curious Landmark lC with
the probability of Ci. The curiosities of the landmarks are
updated during the explorer’s training.

Note that we are evaluating discrete states (landmarks), each
playing a role as cluster centers dividing the model states
into N partitions. This enables us to have a comprehen-
sive evaluation of the covered space efficiently, and Dream
Strategically takes advantage of the divide-and-conquer-like
approach.

Landmark-guided Exploration. During exploration, we
iterate over three phases: Every iteration starts with select-
ing a Curious Landmark lC . Then, we exploit the Highway
policy �l(atjst; lC) in the environment to reach lC . If the
Highway policy has been running for more than TL steps,
Explorer takes over immediately and starts to explore. How-
ever, if the current state st is near enough slC � dec�(lC)
where the difference is under a certain threshold before TL,
the agent switches to Explorer as well.

Explorer can start from a position with high exploration
potential right away, reducing the time to visit previously
well-known places and collecting high exploration value
trajectories. The iteration is repeated every TF step, main-
taining a hierarchical structure.

2.5. Strategy to Achieve

How can the agent efficiently train to reach numerous user-
defined goals at test time? Is there a way to exploit the
divide-and-conquer manner of strategically dreaming at
test time? We introduce the divide-and-conquer strategy
once again, by finding the landmark that is nearest to the
given goal and utilizing the Highway policy to reach the
area closest to the goal (divide). Only then we exploit
a local goal-conditioned policy trained to reach between
close states (conquer). We call this goal-conditioned policy
“Achiever with Focused Sampling", where it is trained to
move between nearby states, thereby precisely mastering
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local areas. We demonstrate that by leveraging the divide-
and-conquer strategy, we can achieve increased accuracy.
We also refer to this strategy as “strategic achievement."

Focused Sampling.Through the divide-and-conquer strat-
egy, the Achiever� g(at jst ; eg) is expected to be positioned
very close to the goal when the policy is triggered. Thus,
it only needs to cover a very short distance to reach its
destination. Instead of sampling random states from past
trajectories like prior work (Mendonca et al., 2021), we sam-
ple two different observationsx t , x t + k within the rangeTS

in the same trajectory from the replay buffer. We use them
as a starting state and goal state to train the Achiever, where
st is estimated through the world model fromx t andeg is
computed through the world model encoderenc � (x t + k ).

Through this sampling, the policy is trained for the agent to
navigate between states that are in close proximity, thereby
improved sample ef�ciency is expected while exploiting the
divide-and-conquer strategy to the full extent. We empiri-
cally investigate the ef�cacy of the focused sampling in our
ablation study in Section 3.5.

Landmark-guided Achievement.At test time, we receive
the user-de�ned pixel-level goalxg and estimatesg through
the world model. The agent estimates the landmarklG near-
est to the goal statesg, wherelG = arg min j kenc � (sg) �
l j k2. We then utilize Highway policy� g(at jst ; lG ) condi-
tioned onlG . We switch to the Achiever� g(at jst ; eg) to
reach the �nal goal when the highway policy has been run-
ning for more thanTL steps, or when the current state is
near enough to the landmark similar to landmark-guided
exploration in Section 2.4).

We exploit Highway policy to move long distances condi-
tioned on a small number of discrete landmarks, then utilize
Achiever specialized to achieve nearby destinations, thereby
achieving precision and scalability at the same time.

3. Experiments

This section aims to evaluate the proposed agent by address-
ing the following questions: (1) Does Dr. Strategy demon-
strate improved performance than prior goal-conditioned
MBRL works in zero-shot adaptation? (2) What is the role
of the “Strategy to Explore” in enhancing exploration? (3)
How does “Strategy to Achieve” contribute to improving
zero-shot performance? (4) Does “focused sampling” for
training the Achiever improve zero-shot performance?

3.1. Environments and Tasks

To empirically investigate the proposed agent, we evaluate it
in two types of navigation environments and a robot manip-
ulation environment. One type of navigation environment
is 2D navigation, in which the agent observes a partially

Figure 3.Environments. We evaluate our agent across three dif-
ferent environments: 2D Navigation, 3D-Maze Navigation, and
RoboKitchen. In these navigation environments, the agent's views
are partially observable and visualized on the left. The top-left
and bottom-left images represent the agent's initial view in the 2D
and 3D Navigation settings, respectively. The second and third
columns depict the top-down views of the 2D and 3D Navigation
environments, respectively.

observable limited top-down view as shown in Figure 3.
We introduce three layouts: 9-room, 25-room, and spiral
9-room. The �rst two intend to test the agent's exploration
capabilities in large spaces (Pertsch et al., 2020). The spi-
ral 9-room layout (illustrated in Figure 7) is speci�cally
designed to challenge our agent's strategic exploration. It
provides such a scenario where the exploration from the
starting point can be inef�cient due to the longer path to the
farthest room (Ecoffet et al., 2021).

We have designed a 3D-Maze navigation to evaluate the
agent in a visually more complex environment, by modify-
ing the Memory Maze environment (Pasukonis et al., 2022).
This provides the �rst-person view observation. We evaluate
the agent's performance on two maze sizes: Maze-7x7 and
Maze-15x15.

Additionally, our evaluation extends to a robot manipulation
environment, the RoboKitchen benchmark introduced in
a prior work (Mendonca et al., 2021). It features a third-
person view of a 7-DoF Franka Emika Panda robotic arm
equipped with a gripper. We note that it is a fully observable
environment. The RoboKitchen environment requires the
agent to interact with various objects, including microwave,
kettle, light switch, burner, sliding cabinet, and hinge cabi-
net. More details are discussed in Appendix A.

3.2. Baselines

We mainly compare Dr. Strategy withLEXA (Mendonca
et al., 2021) because it is the closest model to ours but
without the concept of strategic dreaming. It is also the
state-of-the-art unsupervised model-based generalist agent
for pixel-based observation tasks. In LEXA, the dreaming or
imagination is guided by a rather naive strategy, i.e., random
sampling from the replay buffer.

Regarding LEXA, it has been shown that only using the
Explorer for the interaction can be better in a prior work
(Hu et al., 2023). Thus, we also test this baseline named
LEXA-Explore . LEXA, LEXA-Explore, and our model
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