
UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Xi Han 1 Fei Hou 2 3 Hong Qin 1

Abstract

Numerical solvers of Partial Differential Equa-
tions (PDEs) are of fundamental significance to
science and engineering. To date, the historical
reliance on legacy techniques has circumscribed
possible integration of big data knowledge and
exhibits sub-optimal efficiency for certain PDE
formulations, while data-driven neural methods
typically lack mathematical guarantee of conver-
gence and correctness. This paper articulates a
mathematically rigorous neural solver for linear
PDEs. The proposed UGrid solver, built upon the
principled integration of U-Net and MultiGrid,
manifests a mathematically rigorous proof of both
convergence and correctness, and showcases high
numerical accuracy, as well as strong generaliza-
tion power to various input geometry/values and
multiple PDE formulations. In addition, we de-
vise a new residual loss metric, which enables
self-supervised training and affords more stability
and a larger solution space over the legacy losses.

1. Introduction
Background and Major Challenges. PDEs are quintessen-
tial to various computational problems in science, engineer-
ing, and relevant applications in simulation, modeling, and
scientific computing. Numerical solutions play an irreplace-
able role in common practice because in rare cases do PDEs
have analytic solutions, and many general-purpose numer-
ical methods have been made available. Iterative solvers
(Saad, 2003) are one of the most-frequently-used methods to
obtain a numerical solution of a PDE. Combining iterative

1Department of Computer Science, Stony Brook University
(SUNY), Stony Brook, NY 11794, USA. 2Key Laboratory of
System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, 100190, China. 3University of
Chinese Academy of Sciences, Beijing, 100049, China. Corre-
spondence to: Xi Han <xihan1@cs.stonybrook.edu>, Fei Hou
<houfei@ios.ac.cn>, Hong Qin <qin@cs.stonybrook.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

solvers with the multigrid method (Briggs & McCormick,
2000) significantly enhances the performance for large-scale
problems. Yet, the historical reliance on legacy generic nu-
merical solvers has circumscribed possible integration of
big data knowledge and exhibits sub-optimal efficiency for
certain PDE formulations. In contrast, recent deep neural
methods have the potential to learn such knowledge from big
data and endow numerical solvers with compact structures
and high efficiency, and have achieved impressive results
(Marwah et al., 2021). However, many currently available
neural methods treat deep networks as black boxes. Other
neural methods are typically trained in a fully supervised
manner on loss functions that directly compare the predic-
tion and the ground truth solution, confining the solution
space and resulting in numerical oscillations in the relative
residual error even after convergence. These methods gener-
ally have challenges unconquered including, a lack of sound
mathematical backbone, no guarantee of correctness or con-
vergence, and low accuracy, thus unable to handle complex,
unseen scenarios.

Motivation and Method Overview. Inspired by (Hsieh
et al., 2019)’s prior work on integrating the structure of
multigrid V-cycles (Briggs & McCormick, 2000) and U-
Net (Ronneberger et al., 2015) with convergence guarantee,
and to achieve high efficiency and strong robustness, we
aim to fully realize neural methods’ modeling and computa-
tional potential by implanting the legacy numerical methods’
mathematical backbone into neural methods in this paper. In
order to make our new framework fully explainable, we pro-
pose the UGrid framework (illustrated in Fig. 1) based on the
structure of multigrid V-cycles for learning the functionality
of multigrid solvers. We also improve the convolutional
operators originating from (Hsieh et al., 2019) to incorpo-
rate arbitrary boundary conditions and multiple differential
stencils without modifying the overall structure of the key
iteration process, and transform the iterative update rules
and the multigrid V-cycles into a concrete Convolutional
Neural Network (CNN) structure.

Key Contributions. The salient contributions of this pa-
per comprise: (1) Theoretical insight. We introduce a novel
explainable neural PDE solver founded on a solid mathemat-
ical background, affording high efficiency, high accuracy,
and strong generalization power to linear PDEs; (2) New
loss metric. We propose a residual error metric as the loss

1

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Boundary Condition b
Boundary Mask M

Laplacian value f (optional)

Current Solution u

UGrid
Submodule

Pre-Smoothing
Layer(s)

Residual
LayerPre-smoothed u

Residual r

Correction
Term δ

+

Post-Smoothing
Layer(s)

Convergence?

Updated u

N

Y

Numerical
Solution u

Output

Inputs

Iteration

Initial Guess u0
1st iteration only

Figure 1. Overview of our novel method. Given PDE parameters
and its current numerical estimation, the smoothing operations
are applied multiple times first. Then, the current residual is fed
into our UGrid submodule (together with the boundary mask).
Next, the solution is corrected by the correction term and post-
smoothed. Collectively, it comprises one iteration of the neural
solver. The UGrid submodule (detailed in Fig. 2) aims to mimic
the multigrid V-cycle, and its parameters are learnable, so as to
endow our framework with the ability to learn from data.

function, which optimizes the residual of the prediction.
Our newly-proposed error metric enables self-supervised
learning and facilitates the unrestricted exploration of the
solution space. Meanwhile, it eliminates the numerical oscil-
lation on the relative residual error upon convergence, which
has been frequently observed on the legacy mean-relative-
error-based loss metrics; and (3) Extensive experiments. We
demonstrate our method’s capability to numerically solve
PDEs by learning multigrid operators of various linear PDEs
subject to arbitrary boundary conditions of complex geome-
tries and topology, whose patterns are unseen during the
training phase. Extensive experiments and comprehensive
evaluations have verified all of our claimed advantages, and
confirmed that our proposed method outperforms the SOTA.

2. Related Work
Black-box-like Neural PDE Solvers. Much research effort
has been devoted to numerically solve PDEs with neural
networks and deep learning techniques. However, most of
the previous work treats neural networks as black boxes
and thus come with no mathematical proof of convergence
and correctness. As early as the 1990s, (Wang & Mendel,
1990a;b; 1991) applied simple neural networks to solve
linear equations. Later, more effective neural-network-based
methods like (Polycarpou & Ioannou, 1991; Cichocki &
Unbehauen, 1992; Lagaris et al., 1998) were proposed to
solve the Poisson equations. On the other hand, (Wu et al.,
1994; Xia et al., 1999; Takala et al., 2003; Liao et al., 2010;
Li et al., 2017) used Recurrent Neural Networks (RNNs) in
solving systems of linear matrix equations. Most recently,
the potential of CNNs and Generative Adversarial Networks
(GANs) on solving PDEs was further explored by (Tompson
et al., 2017; Tang et al., 2017; Farimani et al., 2017; Sharma
et al., 2018; Özbay et al., 2021). Utilities used for neural
PDE solvers also include backward stochastic differential
equations (Han et al., 2018) and PN junctions (Zhang et al.,
2019). On the contrary, the proposed UGrid mimics the
multigrid solver, and all its contents are explainable and
have corresponding counterparts in an MG hierarchy.

Physics-informed Neural PDE Solvers. Physics-informed
Neural Network (PINN)-based solvers effectively optimize
the residual of the solution. Physical properties, including
pressure, velocity (Yang et al., 2016) and non-locality (Pang
et al., 2020) are also used to articulate neural solvers. Math-
ematical proofs on the minimax optimal bounds (Lu et al.,
2022) and structural improvements (Lu et al., 2021a;b) are
also made on the PINN architecture itself, endowing physics-
informed neural PDE solvers with higher efficiency and
interpretability. Hinted by these, we propose the residual
loss metric, which enables self-supervised training, enlarges
the solution space and enhances numerical stability.

Neural PDE Solvers with Mathematical Backbones.
(Zhou et al., 2009) proposed a NN-based linear system
and its solving algorithm with a convergence guarantee.
(Hsieh et al., 2019) modified the Jacobi iterative solver by
predicting an additional correction term with a multigrid-
inspired linear operator, and proposed a linear neural solver
with guarantee on correctness upon convergence. (Green-
feld et al., 2019) proposed to learn a mapping from a fam-
ily of PDEs to the optimal prolongation operator used in
the multigrid method, which is then extended to Algebraic
Multigrids (AMGs) on non-square meshes via Graph Neu-
ral Networks (GNNs) by (Luz et al., 2020). On the other
hand, (Li et al., 2021) proposed a Fourier neural operator
that learns mappings between function spaces by parameter-
izing the integral kernel directly in Fourier space. In theory,
(Marwah et al., 2021) proved that when a PDE’s coefficients

2

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

are representable by small NNs, the number of parameters
needed will increase in a polynomial fashion with the input
dimension.

3. Mathematical Preliminary
For mathematical completeness, we provide readers with a
brief introduction to the concepts that are frequently seen in
this paper.

Discretization of 2D Linear PDEs. A linear PDE with
Dirichlet boundary condition could be discretized with fi-
nite differencing techniques (Saad, 2003), and could be
expressed in the following form:{

Du(x, y) = f(x, y), (x, y) ∈ I
u(x, y) = b(x, y), (x, y) ∈ B

, (1)

where D is a 2D discrete linear differential operator, S is the
set of all points on the discrete grid, B is the set of boundary
points in the PDE, I = S \ B is the set of interior points in
the PDE, ∂S ⊆ B is the set of trivial boundary points of the
grid.

Using D’s corresponding finite difference stencil, Eq. 1 can
be formulated into a sparse linear system of size n2 × n2:{

(I−M)Au = (I−M)f

Mu = Mb
, (2)

where A ∈ Rn2×n2

is the 2D discrete differential operator,
u ∈ Rn2

encodes the function values of the interior points
and the non-trivial boundary points; f ∈ Rn2

encodes the
corresponding partial derivatives of the interior points; b ∈
Rn2

encodes the non-trivial boundary values; I denotes the
n2 × n2 identity matrix; M ∈ {0, 1}n2×n2

is a diagonal
binary boundary mask defined as

Mk,k =

{
1, (i, j) ∈ B \ ∂S
0, (i, j) ∈ I

, k = in+j, 0 ≤ i, j < n.

(3)
On the contrary of Eq. 1, both equations in Eq. 2 hold for
all grid points.

Error Metric And Ground-truth Solution. When us-
ing numerical solvers, researchers typically substitute the
boundary mask M into the discrete differential matrix A
and the partial derivative vector f , and re-formulate Eq. 2
into the following generic sparse linear system:

Ã u = f̃ . (4)

The residual of a numerical solution u is defined as

r(u) = f̃ − Ã u. (5)

In the ideal case, the absolute residual error of an exact
solution u∗ should be ru∗ = ∥r(u∗)∥ = 0. However, in

practice, a numerical solution u could only be an approxima-
tion of the exact solution u∗. The precision of u is evaluated
by its relative residual error, which is defined as

εu =
∥∥∥f̃ − Ã u

∥∥∥/∥∥∥f̃∥∥∥. (6)

Typically, the ultimate goal of a numerical PDE solver is
to seek the optimization of the relative residual error. If we
have εu ≤ εmax for some small εmax, we would consider u
to be a ground-truth solution.

Linear Iterator. A linear iterator (also called an iterative
solver or a smoother) for generic linear systems like Eq. 4
could be expressed as

uk+1 =
(
I− P̃−1Ã

)
uk + P̃−1f̃ , (7)

where P̃ is an easily invertible approximation to the system
matrix Ã.

4. Novel Approach
The proposed UGrid neural solver is built upon the princi-
pled integration of the U-Net architecture and the multigrid
method. We observe that linear differential operators, as
well as their approximate inverse in legacy iterative solvers,
are analogous to convolution operators. E.g., the discrete
Laplacian operator is a 3× 3 convolution kernel. Further-
more, the multigrid V-cycle is also analogous to the U-
Net architecture, with grid transfer operators mapped to
up/downsampling layers. Moreover, the fine-tuning process
of multigrid’s critical components on specific PDE formula-
tions could be completed by learning from big data. These
technical observations lead to our neural implementation
and optimization of the multigrid routine.

In spite of high efficiency, generalization power remains a
major challenge for neural methods. Many SOTA neural
solvers, e.g., (Hsieh et al., 2019), fail to generalize to new
scenarios unobserved during the training phase. Such new
scenarios include: (1) New problem sizes; and (2) New,
complex boundary conditions and right-hand sides, which
includes geometries, topology, and values (noisy inputs).
Moreover, some of these methods are tested on Poisson
equations only; neither mathematical reasoning nor empiri-
cal results show that they could trivially generalize to other
PDEs (with or without retraining). UGrid resolves all prob-
lems above.

UGrid is comprised of the following components: (1) The
fixed neural smoother, which consists of our proposed convo-
lutional operators (Sec. 4.1); (2) The learnable neural multi-
grid, which consists of our UGrid submodule (Sec. 4.2);
(3) A residual loss metric (Sec. 4.3) which enables the self-
supervised training process.

3

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

4.1. Convolutional Operators

This subsection is organized as follows: Sec. 4.1.1 intro-
duces the masked operators, which mimic the smoothers
in a legacy multigrid routine; and Sec. 4.1.2 introduces the
masked residual operators for residual calculation.

4.1.1. MASKED CONVOLUTIONAL ITERATOR

A trivial linear iterator in the form of Eq. 7 does not fit in
a neural routine. This is because in practice, the system
matrix A for its corresponding differential operator encodes
the boundary geometry and turns into matrix Ã in Eq. 4.
Ã’s elements are input-dependent, and is thus impossible to
be expressed as a fix-valued convolution kernel.

We make use of the masked version of PDEs (Eq. 2) and
their masked convolutional iterators, which are natural ex-
tensions of Eq. 7:

uk+1 = (I−M)
((
I−P−1A

)
uk +P−1f

)
+Mb, (8)

where P is an easily-invertible approximation on the dis-
crete differential operator A. The correctness of Eq. 8
is guaranteed by the following Theorem (proved as Theo-
rem A.3 in the appendix):

Theorem 4.1. For a PDE in the form of Eq. 2, the masked
iterator Eq. 8 converges to its ground-truth solution when
its prototype Jacobi iterator converges and P is full-rank
diagonal.

Matrix A has different formulations for different linear
PDEs. Without loss of generality, we consider the following
problem formulations. Other possible PDE formulations
are essentially combinations of differential primitives avail-
able in the three problems below, and our convolutional
operators could be trivially extended to higher orders of
differentiation.

2D Poisson Problem. Under Dirichlet boundary condition,
a Poisson problem could be expressed as follows:{

∇2u(x, y) = f(x, y), (x, y) ∈ I
u(x, y) = b(x, y), (x, y) ∈ B

, (9)

where u is the unknown scalar field, f is the Laplacian field,
and b is the Dirichlet boundary condition.

Matrix A could be assembled by the five-point finite dif-
ference stencil for 2D Laplace operators (Saad, 2003), and
we could simply let P = −4I, where I denotes the identity
matrix. The update rule specified in Eq. 8 thus becomes

uk+1(i, j) =
1

4
(I−M)(uk(i− 1, j) + uk(i+ 1, j)

+ uk(i, j − 1) + uk(i, j + 1)− f) +Mb.

(10)

To transform the masked iterator into a convolution layer,
we reorganize the column vectors u, b, M and f into n× n
matrices with their semantic meanings untouched. Then,
the neural smoother could be expressed as

(11)

uk+1 = smooth(uk)

= (1−M)(uk ∗ J− 0.25f) +Mb ,

J =

 0 0.25 0
0.25 0 0.25
0 0.25 0

 ,

where 1 is an n× n matrix whose elements are all equal to
1, and ∗ denotes 2D convolution.

2D Helmholtz Problem. Under Dirichlet boundary condi-
tion, an inhomogeneous Helmholtz equation with spatially-
varying wavenumber may be expressed as follows:{

∇2u(x, y) + k2(x, y)u(x, y) = f(x, y), (x, y) ∈ I
u(x, y) = b(x, y), (x, y) ∈ B

,

(12)
where u is the unknown scalar field, k2 is the spatially-
varying wavenumber, f is the (non-zero) right hand side,
and b is the Dirichlet boundary condition.

For our proposed UGrid solver, we could naturally extend
Eq. 11 into the following form to incorporate Eq. 12:

(13)uk+1 =
1

4− k2
(1−M)(uk ∗ 4J− f) +Mb ,

where all notations retain their meanings as in Eq. 11.

2D Steady-state Convection-diffusion-reaction Problem.
Under Dirichlet boundary condition, an inhomogeneous
steady-state convection-diffusion-reaction equation may be
expressed as follows:
v(x, y) ·∇u(x, y)− α∇2u(x, y) + βu(x, y) = f(x, y),

(x, y) ∈ I
u(x, y) = b(x, y),

(x, y) ∈ B

,

(14)
where u is the unknown scalar field, v = (vx, vy)

⊤ is the
vector velocity field, α, β are constants, f is the (non-zero)
right-hand side, and b is the Dirichlet boundary condition.

For our proposed UGrid solver, we could naturally extend
Eq. 11 into the following form to incorporate Eq. 14:

uk+1 =
1

4α+ β
(1−M)

(αuk ∗ 4J+ vx(uk ∗ Jx) + vy(uk ∗ Jy) + f)

+Mb ,

(15)

4

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Jx =

 0 0 0
0.5 0 −0.5
0 0 0

 , Jy =

0 −0.5 0
0 0 0
0 0.5 0

 ,

where Jx and Jy are two convolution kernels introduced
for the gradient operator in Eq. 14, and all notations retain
their meanings as in Eq. 11.

4.1.2. CONVOLUTIONAL RESIDUAL OPERATOR

Except for the smoother, the multigrid method also requires
the calculation of the residual in each iteration step. In
practice, the residual operator (Eq. 5) can also be seamlessly
implemented as a convolution layer. Because our masked
iterator (Eq. 8) guarantees that u satisfies Mu = Mb at any
iteration step, the residual operator for Poisson problems
could be simplified into

r(u) = (1−M) (f − u ∗ L) , L =

0 1 0
1 −4 1
0 1 0

 .

(16)

For Helmholtz problems, Eq. 16 could be naturally extended
into

r(u) = (1−M)
(
f − u ∗ L− k2u

)
, (17)

where all notations retain their meanings as in Eq. 16.

For steady-state convection-diffusion-reaction problems, we
could extend Eq. 16 into

r(u) = (1−M)

(f + vx(u ∗ Jx) + vy(u ∗ Jy) + αu ∗ L− βu) ,

(18)

where all notations retain their meanings as in Eq. 16.

4.2. Neural Network Design

UGrid Iteration. We design the iteration step of our neural
iterator as a sequence of operations as follows (which is
illustrated in Fig. 1):

u = smoothν1(u) (Pre-smooth for ν1 times);
r = r(u) (Calculate the current residual);
δ = UGrid(r,1−M) (UGrid submodule recursion);
u = u+ δ (Apply the correction term);
u = smoothν2(u) (Post-smooth for ν2 times).

(19)
The entire iteration process is specifically designed to em-
ulate the multigrid iteration (Saad, 2003): We use the pre-
smoothing and post-smoothing layers (as specified in Eq. 11)
to eliminate the high-frequency modes in the residual r, and
invoke the UGrid submodule to eliminate the low-frequency
modes.

Unbiased

Convolution

Layer

Residual r Interior Mask 𝐌𝐈

Inputs

2x

Downsampling

Layer

Updated r

(Fine)

2x

Downsampling

Layer

Recursive

UGrid

Submodule

Updated r

(Coarse)

2x

Upsampling

Layer

Updated r

(Fine)

Unbiased

Convolution

Layer

+

×

Correction

Term δ

Output

UGrid

Submodule

Figure 2. An overview of our recursive UGrid submodule. The
residual is smoothed by unbiased convolution layers, downsampled
to be recursively updated by a 2x-coarser UGrid submodule (note
the orange recursive invocation of UGrid submodule in the middle),
then upsampled back to the fine grid, smoothed, and added with the
initial residual by skip-connection. Boundary values are enforced
by interior mask via element-wise multiplication. The convolution
layers (shown in orange) are learnable; other layers (shown in blue)
are the fixed mathematical backbone.

UGrid Submodule. Our UGrid submodule is also imple-
mented as a fully-convolutional network, whose structure is
highlighted in Fig. 2. The overall structure of UGrid is built
upon the principled combination of U-Net (Ronneberger
et al., 2015) and multigrid V-cycle, and could be considered
a “V-cycle” with skip connections. Just like the multigrid
method, our UGrid submodule is also invoked recursively,
where each level of recursion would coarsen the mesh grid
by 2x.

To approximate the linearity of the multigrid iteration (note
that we are learning to invert a system matrix), we imple-
ment the smoothing layers in the legacy multigrid V-cycle
(not to be confused with the pre-smoother and the post-

5

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

smoother in Eq. 19, which are outside of the V-cycle hier-
archy) as learnable 2D convolution layers without any bias.
For the same reason, and inspired by (Hsieh et al., 2019), we
also drop many commonly seen neural layers which would
introduce non-linearity, such as normalization layers and
activation layers.

4.3. Loss Function Design

Legacy Loss Metric. We refer the equivalents of the mean
relative error between the prediction and a ground-truth
solution as the legacy loss metric. The following Theorem
(proved in Sec. A.5) shows that though intuitive, the legacy
loss is unstable:

Theorem 4.2. When a neural network converges on a
legacy loss metric such that its prediction x satisfies
Llegacy(x,y) = mean (|x− y|/|y|) ≤ lmax, where y de-
notes the ground truth value, the upper and lower bounds of
x’s relative residual error are still dependent on the input.

Theorem 4.2 explains our experimental observations that:
(1) Optimizing the legacy loss metric does not increase
the precision in terms of the relative residual error; and (2)
The legacy loss metric restricts the solution space: A valid
numerical solution with low relative residual error may have
a large relative difference from another valid solution (the
one selected as the ground truth value). As a result, many
valid solutions are unnecessarily rejected by the legacy loss
metric.

Proposed Residual Loss Metric. To overcome the short-
comings of the legacy loss metric, we propose to optimize
the neural solver directly to the residual in a self-supervised
manner:

Lrabs
(x) = Ex[∥(1−M)(f −Ax)∥2] . (20)

We have conducted ablation studies on our relative loss met-
ric and the legacy loss (Sec. 5 and Sec. A.6). The results
showcase that the proposed residual loss performs better
than the legacy loss in terms of both efficiency and accuracy.
Heuristically, the proposed residual loss metric is closer
to the fundamental definition of the precision of a PDE’s
solution, and is more robust and stable, because upon con-
vergence, it guarantees an input-independent final accuracy.

Moreover, the self-supervised training process endows our
method with the following merits: (1) Easier data genera-
tion (compared to other neural routines which are trained
on the legacy loss), and thus achieve better numerical per-
formance; (2) For a specific PDE formulation, we could
easily get a decent neural multigrid solver optimized for that
specific formulation (which outperforms existing general-
purpose legacy routines), simply by training UGrid on the
data generated. On the contrary, fine-tuning legacy solvers is

a non-trivial task requiring a solid mathematical background
as well as non-trivial programming effort.

5. Experiments and Evaluations
Experiments Overview. For each of the three PDEs men-
tioned in Sec. 4.1: (i) Poisson problem, (ii) inhomogeneous
Helmholtz problem with varying wave numbers, and (iii)
inhomogeneous steady-state diffusion-convection-reaction
problem, we train one UGrid model specialized for its for-
mulation. We apply our model and the baselines to the
task of 2.5D freeform surface modeling. These surfaces are
modeled by the three types of PDEs as 2D height fields,
with non-trivial geometry/topology. Each surface is dis-
cretized into: (1) Small-scale problem: A linear system
of size 66, 049 × 66, 049; (2) Large-scale problem: A lin-
ear system of size 1, 050, 625 × 1, 050, 625; (3) XL-scale
problem: A linear system of size 4, 198, 401× 4, 198, 401;
and (4) XXL-scale problem: A linear system of size
16, 785, 409× 16, 785, 409. UGrid is trained on the large
scale only. Other problem sizes are designed to evaluate
UGrid’s generalization power and scalability.

In addition, we have conducted an ablation study on the
residual loss metric (v.s. legacy loss) as well as the UGrid
architecture itself (v.s. vanilla U-Net).

Data Generation and Implementation Details. Our new
neural PDE solver is trained in a self-supervised manner
on the residual loss. Before training, we synthesized a
dataset with 16000 (M,b, f) pairs. For Helmholtz and dif-
fusion problems, we further random-sample their unique
coefficient fields (more details available in Sec. A.8 and
Sec. A.9.) To examine the generalization power of UGrid,
the geometries of boundary conditions in our training data
are limited to “Donuts-like” shapes as shown in Fig. 3 (h).
Moreover, all training data are restricted to zero f -fields
only, i.e., f ≡ 0. Our UGrid model has 6 recursive Multi-
grid submodules. We train our model and perform all ex-
periments on a personal computer with 64GB RAM, AMD
Ryzen 9 3950x 16-core processor, and NVIDIA GeForce
RTX 2080 Ti GPU. We train our model for 300 epochs
with the Adam optimizer. The learning rate is initially set
to 0.001, and decays by 0.1 for every 50 epochs. We ini-
tialize all learnable parameters with PyTorch’s default ini-
tialization policy. Our code is available as open-source at
https://github.com/AXIHIXA/UGrid.

Experimental Results. We compare our model with two
state-of-the-art legacy solvers, AMGCL (Demidov, 2019),
and NVIDIA AmgX (NVIDIA Developer, 2022), as well as
one SOTA neural solver proposed by (Hsieh et al., 2019).

Our testcases as shown in Fig. 3. These are all with complex
geometry and topology, and none of which are present in the
training data, except the geometry of Fig. 3 (h). Testcase(s)

6

https://github.com/AXIHIXA/UGrid

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

(a) L-Shape

0.006

0.005

0.004

0.003

0.002

0.001

0.000

(b) Star

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

(c) Lock

8

6

4

2

01e 5

(d) Cat

0.008

0.006

0.004

0.002

0.000

(e) Bag

8

6

4

2

01e 5

(f) Note

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

(g) Sharp Feature

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

(h) Noisy Input

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(i) Lap. Square

0.0004

0.0002

0.0000

0.0002

0.0004

(j) Poisson Square

60

40

20

0

20

40

60

80

(k) Boundary value for (h) (l) Ground truth (2D Heatmap) for (g) (m) Ground truth (3D surface) for (g)

Figure 3. (a-j) illustrates the f field distributions of our testcases. The boundaries are shown in bold red lines for a better view. (k-m) are
self-explanatory. The complete illustration of boundary values is available in Sec. A.2.

Table 1. Qualitative results for large-scale Poisson problems. “Time” denotes the total time (ms) to reach relative residual errors ≤ 10−4,
and “Assembly” and “Iteration” denotes time (ms) for the two phases for AMG solvers; “Error” denotes the final relative residual errors,
divided by 10−5. Convergence maps are also available in the appendix.

Testcase UGrid AMGCL AmgX Hsieh et al.
Poisson (L) Time / Error Time / Assembly / Iteration / Error Time / Assembly / Iteration / Error Time / Error

Bag 18.66 / 2.66 202.95 / 192.89 / 10.06 / 4.80 92.14 / 23.55 / 68.59 / 4.26 58.09 / 420
Cat 10.09 / 2.70 270.33 / 261.75 / 8.58 / 6.63 113.92 / 25.58 / 88.35 / 6.60 49.79 / 14.6

Lock 10.55 / 9.88 140.13 / 133.06 / 7.07 / 4.05 67.60 / 17.90 / 49.69 / 4.87 49.92 / 55.78
N. Input 10.16 / 2.64 260.92 / 254.36 / 6.55 / 3.52 116.11 / 24.38 / 91.72 / 9.22 51.07 / 2654

Note 10.31 / 4.06 128.96 / 121.81 / 7.16 / 3.00 64.44 / 16.55 / 47.89 / 4.80 20.26 / 8.67
S. Feat. 20.01 / 3.80 424.41 / 413.66 / 10.75 / 4.13 174.76 / 38.85 / 135.92 / 3.87 51.22 / 24883
L-shape 15.26 / 8.43 224.23 / 216.57 / 7.66 / 6.75 110.52 / 24.52 / 86.00 / 4.92 50.53 / 96.1

Lap. Squ. 15.10 / 3.88 420.35 / 407.60 / 12.75 / 3.63 164.71 / 40.14 / 124.57 / 0.01 31.43 / 9.03
P. Squ. 15.07 / 9.37 420.93 / 407.60 / 12.74 / 5.24 161.40 / 39.57 / 121.83 / 0.01 50.57 / 974

Star 15.18 / 7.50 154.29 / 146.03 / 8.26 / 6.65 71.35 / 19.01 / 52.35 / 5.17 50.45 / 384

(a-f) examines the strong generation power and robustness
of UGrid for irregular boundaries with complex geometries
and topology unobserved during the training phase; (g) is
designed to showcase UGrid’s power to handle both sharp

and smooth features in one scene (note that there are two
sharp-feature circles on the top-left and bottom-right cor-
ners, as well as two smooth-feature circles on the opposite
corners); (h) examines UGrid’s robustness against noisy

7

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Table 2. Qualitative results for large-scale Helmholtz problems.

Testcase UGrid AMGCL AmgX
Helmholtz (L) Time / Error Time / Assembly / Iteration / Error Time / Assembly / Iteration / Error

Bag 20.03 / 8.08 199.34 / 191.97 / 7.37 / 4.80 93.67 / 24.01 / 69.67 / 6.12
Cat 16.85 / 0.51 274.12 / 266.14 / 7.98 / 6.63 116.02 / 26.48 / 89.64 / 4.54

Lock 12.83 / 6.82 140.21 / 133.48 / 6.73 / 4.05 68.32 / 18.02 / 50.30 / 4.99
N. Input 11.98 / 6.79 247.65 / 241.00 / 6.65 / 3.51 116.98 / 24.71 / 92.28 / 9.16

Note 12.18 / 6.48 128.56 / 121.93 / 6.63 / 3.00 65.91 / 16.89 / 49.02 / 8.22
S. Feat. 57.68 / 9.86 412.93 / 403.02 / 9.92 / 4.13 Diverge
L-shape 23.14 / 4.68 211.86 / 204.38 / 7.49 / 6.75 111.80 / 24.54 / 87.26 / 5.37

Lap. Squ. 44.91 / 9.98 401.24 / 388.40 / 12.84 / 3.63 165.90 / 41.32 / 124.58 / 6.91
P. Squ. 43.55 / 8.31 402.97 / 389.34 / 13.62 / 5.24 167.35 / 40.93 / 126.42 / 9.14

Star 15.18 / 7.50 150.84 / 142.86 / 7.98 / 6.65 72.69 / 19.53 / 53.16 / 5.78

Table 3. Qualitative results for large-scale steady-state diffusion-convection-reaction problems.

Testcase UGrid AMGCL AmgX
Diffusion (L) Time / Error Time / Assembly / Iteration / Error Time / Assembly / Iteration / Error

Bag 41.89 / 4.77 197.55 / 190.33 / 7.22 / 5.29 104.53 / 23.83 / 80.71 / 5.12
Cat 100.68 / 9.06 273.65 / 265.80 / 7.85 / 9.21 124.11 / 26.43 / 97.69 / 5.63

Lock 58.79 / 4.78 141.53 / 134.62/ 6.91 / 4.78 141.53 / 134.62/ 6.91 / 4.78
N. Input 84.29 / 8.75 260.69 / 253.78 / 6.90 / 4.40 127.31 / 25.77 / 101.54 / 0.08

Note 25.24 / 7.42 127.19 / 121.74 / 5.45 / 6.73 61.26 / 16.73 / 44.53 / 4.78
S. Feat. 33.80 / 7.90 412.85 / 402.80 / 10.05 / 4.26 182.50 / 40.38 / 142.12 / 0.46
L-shape 30.09 / 4.70 223.98 / 216.29 / 7.69 / 6.29 111.92 / 24.76 / 87.16 / 4.57

Lap. Squ. 60.31 / 6.62 422.53 / 409.46 / 13.07 / 4.56 196.37 / 43.44 / 152.93 / 7.83
P. Squ. 48.60 / 7.89 418.10 / 405.11 / 12.99 / 5.11 210.96 / 48.09 / 162.86 / 5.63

Star 25.59 / 9.38 158.00 / 150.00 / 8.02 / 6.02 75.57 / 19.92 / 55.65 / 4.09

Table 4. Qualitative results for XL-scale Poisson problems.

Testcase UGrid AMGCL AmgX
Poisson (XL) Time / Error Time / Assembly / Iteration / Error Time / Assembly / Iteration / Error

Bag 36.52 / 6.95 893.28 / 869.92 / 23.35 / 4.64 280.91 / 86.22 / 194.69 / 2.80
Cat 36.41 / 7.06 1224.02 / 1198.05 / 25.97 / 6.54 339.78 / 94.98 / 244.80 / 2.65

Lock 36.18 / 3.09 642.52 / 622.94 / 19.58 / 4.47 191.26 / 54.01 / 137.24 / 1.99
N. Input 36.29 / 6.16 1142.47 / 1120.98 / 21.49 / 3.61 322.05 / 93.25 / 228.80 / 0.04

Note 36.23 / 2.70 568.23 / 550.23 / 18.00 / 2.62 168.90 / 48.42 / 120.48 / 3.17
S. Feat. 89.50 / 7.32 1781.23 / 1748.57 / 32.67 / 5.18 Diverge
L-shape 108.06 / 8.07 997.72 / 973.48 / 24.23 / 9.64 282.22 / 83.25 / 198.97 / 3.34

Lap. Squ. 58.23 / 6.57 1782.50 / 1745.55 / 36.95 / 7.29 495.05 / 146.40 / 348.64 / 70.8
P. Squ. 215.16 / 9.46 1791.26 / 1750.34 / 40.92 / 5.60 498.01 / 146.22 / 351.78 / 71.3

Star 90.25 / 4.55 679.37 / 657.72 / 21.66 / 8.34 204.33 / 56.80 / 147.53 / 2.72

input (boundary values, boundary geometries/topology, and
Laplacian distribution); (i-j) are two baseline surfaces.

In Table 1, for Poisson problems, UGrid reaches the de-
sirable precision 10-20x faster than AMGCL, 5-10x faster
than NVIDIA AmgX, and 2-5x faster than (Hsieh et al.,
2019) (note that (Hsieh et al., 2019) diverged for most of

the testcases, those cases are not counted). This shows
the efficiency and accuracy of our method. Moreover, the
testcase “Noisy Input” showcases UGrid’s robustness. Fur-
thermore, among all the ten testcases, only (the geometry
of) the “Noisy Input” case is observed in the training phase
of UGrid. This shows that UGrid converges to unseen sce-
narios whose boundary conditions are of complex geome-

8

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Table 5. Qualitative results for XXL-scale Poisson problems.

Testcase UGrid AMGCL AmgX
Poisson (XXL) Time / Error Time / Assembly / Iteration / Error Time / Assembly / Iteration / Error

Bag 214.16 / 6.71 3646.92 / 3570.03 / 76.88 / 7.66 828.96 / 269.75 / 559.20 / 1.15
Cat 210.52 / 7.56 4970.15 / 4881.97 / 88.18 / 8.77 1063.20 / 359.20 / 704.00 / 1.72

Lock 142.23 / 4.36 2466.58 / 2399.21 / 67.36 / 4.89 617.33 / 203.30 / 414.03 / 1.28
N. Input 145.77 / 7.62 4469.40 / 4396.84 / 72.55 / 4.91 Diverge

Note 142.67 / 2.06 2267.48 / 2211.69 / 55.78 / 6.01 538.91 / 180.52 / 358.38 / 1.23
S. Feat. 1131.88 / 11.2 7107.18 / 6960.41 / 146.76 / 4.46 Diverge
L-shape 1131.77 / 14.7 4055.08 / 3959.96 / 95.11 / 4.17 Diverge

Lap. Squ. 243.03 / 7.44 7194.95 / 7049.11 / 145.84 / 6.77 1746.84 / 598.24 / 1148.60 / 38.8
P. Squ. 1137.95 / 13.9 7376.67 / 7183.54 / 193.13 / 5.65 1813.83 / 603.60 / 1210.23 / 52.3

Star 1118.97 / 9.36 2862.27 / 2771.75 / 90.51 / 6.05 Diverge

try (e.g., “Cat”, “Star”, and “L-shape”) and topology (e.g.,
“Note”, “Bag”, and “Cat”). On the contrary, (Hsieh et al.,
2019) failed to converge in most of our testcases, which
verifies one of their claimed limitations (i.e., no guarantee
of convergence to unseen cases), and showcases the strong
generalization power of our method. In addition, even for
those converged cases, our method is still faster than (Hsieh
et al., 2019).

In Table 2, for large-scale Helmholtz problems, UGrid
reaches the desirable precision 7-20x faster than AMGCL
and 5-10x faster than NVIDIA AmgX.

In Table 3, for large-scale steady-state diffusion-convection-
reaction problems, UGrid reaches the desirable precision
2-12x faster than AMGCL and on average 2-6x faster than
NVIDIA AmgX.

Scalability. We further conducted two more sets of experi-
ments on XL and XXL Poisson problems without retraining
UGrid. The results are available in Tables 4 and 5. UGrid
still delivers a performance boost similar to that observed in
large-scale Poisson problems. These experimental results
collectively validate the strong scalability of UGrid (without
the need for retraining). Due to the page limit, results for
“small-scale” problems are available in the appendix.

Ablation Study. The results are available in Table 6 (more
details are available in Sec. A.6). The residual loss en-
dows our UGrid model with as much as 2x speed up versus
the legacy loss. The residual loss also endows UGrid to
converge to the failure cases of its counterpart trained on
legacy loss. These results demonstrate the claimed merits
of the residual loss. On the other hand, it will diverge if
we naively apply the vanilla U-Net architecture directly to
Poisson’s equations. This showcases the significance of
UGrid’s mathematically-rigorous network architecture.

Limitations. UGrid is currently designed for linear PDEs
only, as Theorem. 4.1 does not hold for non-linear PDEs.

Table 6. Ablation study on large-scale Poisson problems. Columns
from left to right: UGrid trained with residual loss, UGrid trained
with legacy loss, and vanilla U-Net trained with residual loss.

Testcase UGrid UGrid (L) U-Net
Poi. (L) Time / Error Time / Error Time / Error

Bag 18.66 / 2.66 28.81 / 4.86 Diverge
Cat 10.09 / 2.70 23.80 / 1.43 Diverge

Lock 10.55 / 9.88 Diverge Diverge
N. Input 10.16 / 2.64 20.65 / 2.42 Diverge

Note 10.31 / 4.06 Diverge Diverge
S. Feat. 20.01 / 3.80 31.34 / 5.14 Diverge
L-shape 15.26 / 8.43 Diverge Diverge

Lap. Squ. 15.10 / 3.88 30.72 / 2.76 Diverge
P. Squ. 15.07 / 9.37 31.52 / 3.33 Diverge

Star 15.18 / 7.50 Diverge Diverge

Another limitation lies in the fact that there is no mathe-
matical guarantee on how fast UGrid will converge. As a
consequence, UGrid does not necessarily converge faster on
small-scale testcases.

6. Conclusion and Future Work
This paper has articulated a novel efficient-and-rigorous
neural PDE solver built upon the U-Net and the Multigrid
method, naturally combining the mathematical backbone
of correctness and convergence as well as the knowledge
gained from data observations. Extensive experiments vali-
date all the claimed advantages of our proposed approach.
Our future research efforts will be extending the current
work to non-linear PDEs. The critical algorithmic barrier
between our approach and non-linear PDEs is the limited
expressiveness of the convolution semantics. We would like
to explore more alternatives with stronger expressive power.

9

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Acknowledgements. This work was partially supported
by: (1) USA NSF IIS-1715985 and USA NSF IIS-1812606
(awarded to Hong QIN); and (2) The National Key R&D Pro-
gram of China under Grant 2023YFB3002901, and the Ba-
sic Research Project of ISCAS under Grant ISCAS-JCMS-
202303.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Briggs, W. L. and McCormick, S. F. A Multigrid Tutorial.

Society for Industrial and Applied Mathematics (SIAM),
2000.

Cichocki, A. and Unbehauen, R. Neural Networks for Solv-
ing Systems of Linear Equations and Related Problems.
IEEE Transactions on Circuits and Systems I: Fundamen-
tal Theory and Applications, 39(2):124–138, 1992.

Demidov, D. AMGCL: An Efficient, Flexible, and Extensi-
ble Algebraic Multigrid Implementation. Lobachevskii
Journal of Mathematics, 40(5):535–546, 2019.

Demmel, J. W. Applied Numerical Linear Algebra. Society
for Industrial and Applied Mathematics (SIAM), 1997.

Farimani, A. B., Gomes, J., and Pande, V. S. Deep
Learning the Physics of Transport Phenomena. CoRR,
abs/1709.02432, 2017.

Greenfeld, D., Galun, M., Kimmel, R., Yavneh, I., and Basri,
R. Learning to Optimize Multigrid PDE Solvers. In Pro-
ceedings of Machine Learning Research: International
Conference on Machine Learning (ICML), volume 97, pp.
2415–2423, 2019.

Han, J., Jentzen, A., and E, W. Solving High-dimensional
Partial Differential Equations using Deep Learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018. doi: 10.1073/pnas.1718942115.

Hsieh, J.-T., Zhao, S., Eismann, S., Mirabella, L., and Er-
mon, S. Learning Neural PDE Solvers with Convergence
Guarantees. In International Conference on Learning
Representations (ICLR), 2019.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. Artificial Neural
Networks for Solving Ordinary and Partial Differential
Equations. IEEE Transactions on Neural Networks and
Learning Systems, 9(5):987–1000, 1998.

Li, Z., Cheng, H., and Guo, H. General Recurrent Neural
Network for Solving Generalized Linear Matrix Equation.
Complexity, 2017:545–548, 2017.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
Neural Operator for Parametric Partial Differential Equa-
tions. In International Conference on Learning Represen-
tations (ICLR), 2021.

Liao, W., Wang, J., and Wang, J. A Discrete-time Recurrent
Neural Network for Solving Systems of Complex-valued
Linear Equations. International Conference in Swarm
Intelligence (LCSI), 1(2):315–320, 2010.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning Nonlinear Operators via DeepONet Based on
The Universal Approximation Theorem of Operators. Na-
ture Machine Intelligence, 3(3):218–229, 2021a.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. Deep-
XDE: A deep learning library for solving differential
equations. SIAM Review (SIREV), 63(1):208–228, 2021b.
doi: 10.1137/19M1274067.

Lu, Y., Chen, H., Lu, J., Ying, L., and Blanchet, J. Machine
Learning For Elliptic PDEs: Fast Rate Generalization
Bound, Neural Scaling Law and Minimax Optimality. In
International Conference on Learning Representations
(ICLR), 2022.

Luz, I., Galun, M., Maron, H., Basri, R., and Yavneh, I.
Learning Algebraic Multigrid Using Graph Neural Net-
works. In Proceedings of the 37th International Confer-
ence on Machine Learning (ICML), 2020.

Marwah, T., Lipton, Z., and Risteski, A. Parametric Com-
plexity Bounds for Approximating PDEs with Neural
Networks. In Advances in Neural Information Processing
Systems (NeurIPS), volume 34, pp. 15044–15055, 2021.

NVIDIA Developer. AmgX. https://developer.
nvidia.com/amgx, 2022.

Pang, G., D’Elia, M., Parks, M., and Karniadakis, G.
nPINNs: Nonlocal Physics-informed Neural Networks
for a Parametrized Nonlocal Universal Laplacian Opera-
tor. Algorithms and Applications. Journal of Computa-
tional Physics, 422(5):109760, 2020.

Polycarpou, M. M. and Ioannou, P. A. A Neural-type Paral-
lel Algorithm for Fast Matrix Inversion. Proceedings of
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 5:108–113, 1991.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. In
Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), volume 9351, pp. 234–241, 2015.

10

https://developer.nvidia.com/amgx
https://developer.nvidia.com/amgx

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Saad, Y. Iterative Methods for Sparse Linear Systems. So-
ciety for Industrial and Applied Mathematics (SIAM),
second edition, 2003.

Sharma, R., Farimani, A. B., Gomes, J., Eastman, P. K.,
and Pande, V. S. Weakly-Supervised Deep Learning
of Heat Transport via Physics Informed Loss. CoRR,
abs/1807.11374, 2018.

Takala, J., Burian, A., and Ylinen, M. A Comparison of
Recurrent Neural Networks for Inverting Matrices. Pro-
ceedings of IEEE International Symposium on Signals,
Circuits and Systems (ISSCS), 2:545–548, 2003.

Tang, W., Shan, T., Dang, X., Li, M., Yang, F., Xu, S., and
Wu, J. Study on a Poisson’s Equation Solver based on
Deep Learning Technique. In IEEE Electrical Design of
Advanced Packaging and Systems Symposium (EDAPS),
volume 16, pp. 1–3, 2017.

Tompson, J., Schlachter, K., Sprechmann, P., and Perlin,
K. Accelerating Eulerian Fluid Simulation with Con-
volutional Networks. Computer Animation and Virtual
Worlds, 70(3/4):3424–3433, 2017.

Wang, L. and Mendel, J. M. Structured Trainable Networks
for Matrix Algebra. Proceedings of International Joint
Conference on Neural Networks (IJCNN), 2:125–132,
1990a.

Wang, L. and Mendel, J. M. Three-Dimensional Structured
Networks for Matrix Equation Solving. IEEE Transac-
tions on Computers, 40(12):1337–1346, 1991.

Wang, L. X. and Mendel, J. M. Matrix Computations and
Equation Solving using Structured Networks and Train-
ing. IEEE Conference on Decision and Control (CDC),
40(12):1747–1750, 1990b.

Wu, G., Wang, J., and Hootman, J. A Recurrent Neural
Network for Computing Pseudo-inverse Matrices. Math-
ematical and Computer Modelling, 20(1):13–21, 1994.

Xia, Y., Wang, J., and Hung, D. L. Recurrent Neural
Networks for Solving Linear Inequalities and Equations.
IEEE Transactions on Circuits and Systems I: Fundamen-
tal Theory and Applications, 46(4):452–462, 1999.

Yang, C., Yang, X., and Xiao, X. A Comparison of Recur-
rent Neural Networks for Inverting Matrices. Computer
Animation and Virtual Worlds, 27(3/4):415–424, 2016.

Zhang, Z., Zhang, L., Sun, Z., Erickson, N., From, R., and
Fan, J. Solving Poisson’s Equation using Deep Learn-
ing in Particle Simulation of PN Junction. In 2019 Joint
International Symposium on Electromagnetic Compat-
ibility, Sapporo and Asia-Pacific International Sympo-
sium on Electromagnetic Compatibility (EMC Sapporo &
APEMC), pp. 305–308, 2019.

Zhou, Z., Chen, L., and Wan, L. Neural Network Algorithm
for Solving System of Linear Equations. Proceedings of
International Conference on Computational Intelligence
and Natural Computing (ICCIC), 1:7–10, 2009.

Özbay, A. G., Hamzehloo, A., Laizet, S., Tzirakis, P., Rizos,
G., and Schuller, B. Poisson CNN: Convolutional Neural
Networks for The Solution of The Poisson Equation on A
Cartesian Mesh. Data-Centric Engineering, 2:e6, 2021.

11

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

A. Appendix
This supplemental material is provided to readers in the interest of our paper’s theoretical and experimental completeness.

A.1. More Specifications on Our Training Data

UGrid is trained only with pairs of boundary masks and boundary values as shown in Fig. 4 (h). To be specific, throughout
the whole training phase, UGrid is exposed only to zero f -fields and piecewise-constant Dirichlet boundary conditions with
the “Donut-like” geometries. UGrid is unaware of all other complex geometries, topology, as well as the irregular/noisy
distribution of boundary values/Laplacians observed in our testcases. This showcases the strong generalization power of our
UGrid neural solver.

A.2. More Specifications on Our Testcases

0.0

0.2

0.4

0.6

0.8

1.0

(a) L-Shape

0.0

0.2

0.4

0.6

0.8

(b) Star

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Lock

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Cat

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e) Bag

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(f) Note

0

25

50

75

100

125

150

175

200

(g) Sharp Feature

60

40

20

0

20

40

60

80

(h) Noisy Input

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(i) Lap. Square

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(j) Poisson Square

Figure 4. Illustration of the Dirichlet boundary values of our ten testcases. Again, all boundaries are shown in bold for a better view. Note
that these boundaries are not required to be constant and could have discontinuities, which could be observed in testcases (g-j).

A.3. More Specifications on Our Qualitative Evaluations

Baseline Specifications. AMGCL is a C++ multigrid library with multiple GPU backends, we are comparing with its
CUDA backend, with CG solver at the coarsest level. AmgX is part of NVIDIA’s CUDA-X GPU-Accelerated Library,
and we adopt its official AMGX LEGACY CG configuration. (Hsieh et al., 2019)’s code is available at https://github.
com/ermongroup/Neural-PDE-Solver. They did not release a pre-trained model, so we train their model with
configurations as-is in their training and data-generation scripts, with minimal changes to make the program run.

Testing. All of our testcases are tested for 100 times and the results are averaged. For UGrid and (Hsieh et al., 2019), we set
the maximum number of iterations as 64, and the iteration is terminated immediately upon reaching this threshold, no matter
whether the current numerical solution has reached the desirable precision. AmgX has no direct support for relative residual
errors, so we set tolerance on absolute residual errors case-by-case to achieve similar precision.

In our qualitative results, the “time” columns for AMGCL and AmgX include MG hierarchy building time and do not
include training time for UGrid. This is because: (1) Training is required only once for one type of PDEs, and could be
ignored over the solver’s lifespan; and (2) AMGCL/AmgX must reconstruct their MG hierarchy when input grid or boundary
geometry changes; UGrid doesn’t need retraining for these cases. When MG hierarchy is constructed already, and only RHS
changes, AMGCL/AmgX performs better. However, in fields like PDE-based CAD, grid and boundary-geometry changes as
frequently as RHS, and UGrid will be a better choice.

12

https://github.com/ermongroup/Neural-PDE-Solver
https://github.com/ermongroup/Neural-PDE-Solver

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

For experimental completeness, for AMGCL and AMGX, we also separately report the MG hierachy building time as well
as iteration time in Tables 1, 2 and 3. The results validate that AMGX is slower than UGrid even without assembly time,
and compared to UGrid, AMGCL has slightly better efficiency (without the assembly phase), yet its assembly phase takes
10-20x time compared to UGrid’s overall time consumption.

Convergence Maps. For the experimental completeness of this paper, we also provide readers with the convergence maps
of UGrid and the three SOTA solvers we compare with. The convergence maps are plotted for all of our ten testcases, each
for its two different scales. We further plot these convergence maps as functions of time, and functions of iterations.

The convergence maps for large-scale problems are as follows:

0 50 100 150 200
Time (ms)

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(a) L-Shape

0 20 40 60 80 100 120 140 160
Time (ms)

0

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(b) Star

0 20 40 60 80 100 120 140
Time (ms)

0

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(c) Lock

0 50 100 150 200 250
Time (ms)

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(d) Cat

0 25 50 75 100 125 150 175 200
Time (ms)

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(e) Bag

0 20 40 60 80 100 120
Time (ms)

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(f) Note

0 100 200 300 400
Time (ms)

0

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(g) Sharp Feature

0 50 100 150 200 250
Time (ms)

2

0

2

4

6

8

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(h) Noisy Input

0 100 200 300 400
Time (ms)

2

4

6

8

10

12

14

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(i) Lap. Square

0 100 200 300 400
Time (ms)

2

4

6

8

10

12

14

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(j) Poisson Square

Figure 5. Convergence map on large-scale Poisson problem. The x coordinates are time(s), shown in ms; the y coordinates are the relative
residual errors, shown in logarithm (log

(
r × 105

)
) for a better view.

0 10 20 30 40 50 60
Iteration Step

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(a) L-Shape

0 10 20 30 40 50 60
Iteration Step

0

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(b) Star

0 10 20 30 40 50 60
Iteration Step

0

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(c) Lock

0 10 20 30 40 50 60
Iteration Step

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(d) Cat

0 10 20 30 40 50 60
Iteration Step

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(e) Bag

0 5 10 15 20 25
Iteration Step

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(f) Note

0 10 20 30 40 50 60
Iteration Step

0

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(g) Sharp Feature

0 10 20 30 40 50 60
Iteration Step

2

0

2

4

6

8

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(h) Noisy Input

0 5 10 15 20 25 30 35 40
Iteration Step

2

4

6

8

10

12

14

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(i) Lap. Square

0 10 20 30 40 50 60
Iteration Step

2

4

6

8

10

12

14

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(j) Poisson Square

Figure 6. Convergence map on large-scale Poisson problem. The x coordinates are the iteration steps; the y coordinates are the relative
residual errors, shown in logarithm (log

(
r × 105

)
) for a better view.

13

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

We also provide the convergence maps for small-scale problems as follows:

0 10 20 30 40 50
Time (ms)

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(a) L-Shape

0 10 20 30 40 50
Time (ms)

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(b) Star

0 10 20 30 40 50
Time (ms)

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(c) Lock

0 10 20 30 40 50
Time (ms)

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(d) Cat

0 10 20 30 40 50
Time (ms)

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(e) Bag

0 5 10 15 20 25 30 35
Time (ms)

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(f) Note

0 10 20 30 40 50
Time (ms)

0

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(g) Sharp Feature

0 10 20 30 40 50
Time (ms)

0

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(h) Noisy Input

0 10 20 30 40 50
Time (ms)

2

4

6

8

10

12

14

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(i) Lap. Square

0 10 20 30 40 50
Time (ms)

2

4

6

8

10

12

14

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(j) Poisson Square

Figure 7. Convergence map on small-scale Poisson problem. The x coordinates are time(s), shown in ms; the y coordinates are the relative
residual errors, shown in logarithm (log

(
r × 105

)
) for a better view.

0 10 20 30 40 50 60
Iteration Step

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(a) L-Shape

0 10 20 30 40 50 60
Iteration Step

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(b) Star

0 10 20 30 40 50 60
Iteration Step

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(c) Lock

0 10 20 30 40 50
Iteration Step

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(d) Cat

0 10 20 30 40 50 60
Iteration Step

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(e) Bag

0 10 20 30 40 50
Iteration Step

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(f) Note

0 10 20 30 40 50 60
Iteration Step

0

2

4

6

8

10

12

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(g) Sharp Feature

0 10 20 30 40 50 60
Iteration Step

0

2

4

6

8

10

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(h) Noisy Input

0 5 10 15 20 25 30
Iteration Step

2

4

6

8

10

12

14

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)

UGrid
AMGCL
AmgX
Hsieh

(i) Lap. Square

0 10 20 30 40 50 60
Iteration Step

2

4

6

8

10

12

14

Re
la

tiv
e

Re
sid

ue
 (l

og
(r

×
10

5)
UGrid
AMGCL
AmgX
Hsieh

(j) Poisson Square

Figure 8. Convergence map on small-scale Poisson problem. The x coordinates are the iteration steps; the y coordinates are the relative
residual errors, shown in logarithm (log

(
r × 105

)
) for a better view.

A.4. Proof of Correntness of Eq. 8

The proof of correctness of Eq. 8 originates from (Hsieh et al., 2019). For the completeness of this paper, we will also go
through the mathematical proof. We start with the following Lemmas and Theorems:

Lemma A.1. For a fixed linear iterator in the form of

uk+1 = G · uk + c , (21)

with a square update matrice G having a spectral radius ρ(G) < 1, I−G is non-singular, and Eq. 21 converges for any
constant c and initial guess u0. Conversely, if Eq. 21 converges for any c and u0, then ρ(G) < 1.

14

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Proof. Proved as Theorem 4.1 in (Saad, 2003).

Lemma A.2. For all operator norms ∥·∥k, k = 1, 2, . . . ,∞, the spectral radius of a matrix G satisfies ρ(G) ≤ ∥G∥k.

Proof. Proved as Lemma 6.5 in (Demmel, 1997).

Theorem A.3. For a PDE in the form of Eq. 2, the masked iterator Eq. 8 converges to its ground-truth solution when its
prototype Jacobi iterator converges and P is full-rank diagonal.

Proof. To prove this Theorem, we only need to prove: (1) Eq. 8 converges to a fixed point u; and (2) The fixed point u
satisfies Eq. 2.

To prove (1), we only need to prove that for the update matrix

G = (I−M)
(
I−P−1A

)
,

its spectral radius ρ(G) < 1. Given that the prototype Jacobi iterator converges, we have ρ
(
I−P−1A

)
< 1. From

Lemma A.2, taking the spectral norm ∥·∥2 (i.e., k = 2), we have

ρ(G) ≤
∥∥(I−M)

(
I−P−1A

)∥∥
2
≤ ∥I−M∥2

∥∥I−P−1A
∥∥
2
.

Furthermore, because I − P−1A is symmetric, we have ρ
(
I−P−1A

)
=

∥∥I−P−1A
∥∥
2
. On the other hand, because

I−M ∈ {0, 1}n2×n2

is a binary diagonal matrix, we have ∥I−M∥2 = 1. This yields ρ(G) < 1.

To prove (2), we first notice that the fixed point u = uk+1 = uk of Eq. 8 satisfies

u = (I−M)
((
I−P−1A

)
u+P−1f

)
+Mb , i.e.,

(I−M)u+Mu = (I−M)
((
I−P−1A

)
u+P−1f

)
+Mb .

Again, since M ∈ {0, 1}n2×n2

is a binary diagonal matrix, we have{
(I−M)u = (I−M)

((
I−P−1A

)
u+P−1f

)
Mu = Mb

. (22)

The second equation in Eq. 22 is essentially the second equation in Eq. 2. Furthermore, the first equation in Eq. 22 could be
simplified into (I−M)P−1(Au− f) = 0. Since P is full-rank diagonal, P−1 should also be full-rank diagonal. Then we
have (I−M)(Au− f) = 0, which means that u also satisfies the first equation in Eq. 2.

A.5. Proof of Theorem. 4.2

Proof. Denote εx as x’s relative residual error, then we have:

εx =

∥∥∥f̃ − Ã x
∥∥∥∥∥∥f̃∥∥∥ ≈

∥∥∥f̃ − Ã (y ± lmax y)
∥∥∥∥∥∥f̃∥∥∥ =

∥∥∥(f̃ − Ã y
)
∓
(
lmax Ã y

)∥∥∥∥∥∥f̃∥∥∥
≤

∥∥∥f̃ − Ã y
∥∥∥∥∥∥f̃∥∥∥ +

∥∥∥lmax Ã y
∥∥∥∥∥∥f̃∥∥∥ = εy +

∥∥∥lmax Ã y
∥∥∥∥∥∥f̃∥∥∥ ,

where εy denotes the relative residual error of the “ground-truth” value y. εy ̸= 0 because in most cases, a PDE’s
ground-truth solution could only be a numerical approximation with errors. The upper bound is input-dependent because Ã

and f̃ are input-dependent.

15

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Similarly, we could prove that the lower bound of εx is also input-dependent:

εx =

∥∥∥f̃ − Ã x
∥∥∥∥∥∥f̃∥∥∥ ≈

∥∥∥f̃ − Ã (y ± lmax y)
∥∥∥∥∥∥f̃∥∥∥ =

∥∥∥(f̃ − Ã y
)
∓
(
lmax Ã y

)∥∥∥∥∥∥f̃∥∥∥
≥

∣∣∣∣∣∣
∥∥∥f̃ − Ã y

∥∥∥∥∥∥f̃∥∥∥ −

∥∥∥lmax Ã y
∥∥∥∥∥∥f̃∥∥∥
∣∣∣∣∣∣ =

∣∣∣∣∣∣εy −

∥∥∥lmax Ã y
∥∥∥∥∥∥f̃∥∥∥
∣∣∣∣∣∣ > 0 .

A.6. Ablation Study

For experimental completeness, we conduct ablation studies with respect to our residual loss and the UGrid architecture
itself. In addition to the UGrid model trained with residual loss (as proposed in the main content), we also train another
UGrid model with legacy loss, as well as one vanilla U-Net model with residual loss. This U-Net model has the same
number of layers as UGrid, and has non-linear layers as proposed in (Ronneberger et al., 2015). We let the U-Net directly
regress the solutions to Poisson’s equations. All these models are trained with the same data in the same manner (except for
the loss metric), as detailed in Section 5.

We conduct qualitative experiments on the same set of testcases as detailed in Section 5, and the results are as follows:

Table 7. Ablation study on large-scale Poisson problems.

Testcase UGrid UGrid (L) U-Net
Poisson (L) Time / Error Time / Error Time / Error

Bag 18.66 / 2.66 28.81 / 4.86 81.71 / 1384131
Cat 10.09 / 2.70 23.80 / 1.43 70.09 / 2539002

Lock 10.55 / 9.88 Diverge 70.92 / 1040837
N. Input 10.16 / 2.64 20.65 / 2.42 73.05 / 21677

Note 10.31 / 4.06 Diverge 69.97 / 614779
S. Feat. 20.01 / 3.80 31.34 / 5.14 70.08 / 222020
L-shape 15.26 / 8.43 Diverge 74.67 / 1800815

Lap. Squ. 15.10 / 3.88 30.72 / 2.76 72.24 / 30793035
P. Squ. 15.07 / 9.37 31.52 / 3.33 71.74 / 31043896

Star 15.18 / 7.50 Diverge 70.01 / 1138821

In Table 7, the residual loss endows our UGrid model with as much as 2x speed up versus the legacy loss. The residual loss
also endows UGrid to converge to the failure cases of its counterpart trained on legacy loss. These results demonstrate the
claimed merits of the residual loss. On the other hand, it will diverge if we naively apply the vanilla U-Net architecture
directly to Poisson’s equations. For experimental completeness only, we list the diverged results in the last column. (The
“time” column measures the time taken for 64 iterations; the iterators are shut down once they reach this threshold.) This
showcases the significance of UGrid’s mathematically-rigorous network architecture.

In Table 8, for small-scale problems, the residual loss still endows UGrid with as much as 2x speedup and stronger
generalization power against its counterpart trained with legacy loss. Once again, the vanilla U-Net model diverged for all
testcases, and we list its diverged results for experimental completeness only.

A.7. Qualitative Evaluations on Small-scale Poisson Problems

In Table 9, even on small-scale problems that hinder our solver with a compact multigrid-like hierarchy from delivering its
full power, the UGrid model is still faster than or exhibits comparable efficiency with respect to the three SOTA legacy/neural
solvers. Again, this shows the high efficiency as well as the strong generalization power of our new method. The testcases
“Cat” and “L-shape” showcase that the generalization power (in terms of problem size) does come with a price of potentially
downgraded efficiency. Thus, for the sake of the best efficiency, we still recommend re-training UGrid for problems of
different sizes.

16

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Table 8. Ablation study on small-scale Poisson problems.

Testcase UGrid UGrid (L) U-Net
Poisson (S) Time / Error Time / Error Time / Error

Bag 8.76 / 8.05 17.89 / 4.50 71.86 / 678141
Cat 51.96 / 6.21 Diverge 68.89 / 1317465

Lock 9.00 / 2.11 18.32 / 2.83 69.47 / 189412
Noisy Input 8.94 / 6.00 17.88 / 6.58 69.54 / 21666

Note 8.87 / 2.75 17.79 / 3.06 69.59 / 24715
Sharp Feature 13.31 / 7.52 26.64 / 1.91 70.57 / 191499

L-shape 40.60 / 7.09 Diverge 69.71 / 1011364
Laplacian Square 13.21 / 3.27 22.23 / 9.55 73.80 / 15793109
Poisson Square 13.21 / 2.88 22.13 / 9.76 71.56 / 15393069

Star 8.92 / 2.36 17.60 / 5.69 73.72 / 502993

Table 9. Comparison of UGrid and state-of-the-art on small-scale Poisson problems.

Testcase UGrid AMGCL AmgX Hsieh et al.
Poisson (S) Time / Error Time / Error Time / Error Time / Error

Bag 8.76 / 8.05 12.14 / 3.00 22.34 / 8.20 47.69 / 252
Cat 51.96 / 6.21 17.03 / 6.98 27.66 / 4.83 23.02 / 9.95

Lock 9.00 / 2.11 15.77 / 7.89 16.96 / 9.36 48.72 / 117.9
Noisy Input 8.94 / 6.00 14.00 / 9.39 26.30 / 3.14 51.79 / 5576

Note 8.87 / 2.75 8.79 / 9.02 16.68 / 7.23 36.66 / 8.28
Sharp Feature 13.31 / 7.52 21.47 / 4.15 49.59 / 6.85 49.31 / 24876

L-shape 40.60 / 7.09 12.36 / 9.97 24.08 / 9.35 50.06 / 96.44
Laplacian Square 13.21 / 3.27 22.22 / 5.60 48.60 / 3.98 24.57 / 6.54
Poisson Square 13.21 / 2.88 21.93 / 5.51 47.56 / 4.03 49.77 / 473

Star 8.92 / 2.36 18.93 / 2.17 17.96 / 9.42 48.68 / 456

A.8. Specifications on Evaluations of Inhomogeneous Helmholtz Problems with Spatially-varying Wavenumbers

We train UGrid with the same training data and residual loss as mentioned in Section 5. As one exception, we also input
randomly-sampled k2 during training, evaluation, and testing.

The randomly-sampled k2s we used are illustrated in Fig. 9. For qualitative experiments, we use the same boundary
conditions and Laplacian distributions as shown in Fig. 4 and Fig. 3, and we randomly initialize the wavenumber field k2

across the whole domain, resulting in a noisy distribution.

The qualitative results for large-scale problems are available in the main paper as Table 2. Qualitative results for small-scale
problems are available in Table 10. We could observe that even on small-scale problems that hinder our solver with a
compact multigrid-like hierarchy from delivering its full power, UGrid is still faster than or exhibits comparable efficiency
with respect to the SOTA.

17

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

0.0

0.5

1.0

1.5

2.0

2.5

1e 5

(a) L-Shape

0.0

0.5

1.0

1.5

2.0

2.5

1e 5

(b) Star

0.0

0.5

1.0

1.5

2.0

2.5

1e 5

(c) Lock

0.0

0.5

1.0

1.5

2.0

2.5

1e 5

(d) Cat

0.0

0.5

1.0

1.5

2.0

2.5

1e 5

(e) Bag

0.0

0.5

1.0

1.5

2.0

2.5

1e 5

(f) Note

0.0

0.5

1.0

1.5

2.0

2.5

1e 5

(g) Sharp Feature

0.0

0.5

1.0

1.5

2.0

2.5

1e 5

(h) Noisy Input

0.0

0.5

1.0

1.5

2.0

2.5

1e 5

(i) Lap. Square

0.0

0.5

1.0

1.5

2.0

2.5

1e 5

(j) Poisson Square

Figure 9. Illustration of the wavenumber distributions of our testcases. The boundaries are shown in bold red lines for a better view.
(Boundary values are shown in Fig. 4.)

Table 10. Qualitative results for small-scale Helmholtz problems.

Testcase UGrid AMGCL AmgX
Helmholtz (S) Time / Error Time / Error Time / Error

Bag 14.70 / 6.29 12.92 / 3.00 25.82 / 1.79
Cat 16.63 / 7.86 16.82 / 6.98 28.37 / 3.03

Lock 9.78 / 5.87 16.23 / 7.88 19.75 / 2.02
Noisy Input 14.95 / 0.76 14.34 / 9.40 28.92 / 0.04

Note 14.37 / 8.28 9.01 / 9.02 18.76 / 2.55
Sharp Feature 19.46 / 1.18 21.37 / 4.21 52.82 / 0.13

L-shape 14.64 / 0.88 12.29 / 9.99 26.90 / 2.10
Laplacian Square 14.60 / 4.60 22.43 / 5.59 43.68 / 17.8
Poisson Square 15.27 / 6.53 22.35 / 5.50 43.57 / 17.2

Star 9.77 / 5.96 19.09 / 2.16 20.89 / 2.18

A.9. Specifications on Evaluations of Inhomogeneous Steady-state Convection-diffusion-reaction Problems

We train UGrid in the same manner as for Helmholtz equations. As one exception, we input randomly-sampled vs, αs, and
βs during training, evaluation, and testing. These values are sampled using the same routine as for Helmholtz equations,
resulting in noisy velocity fields like Fig. 9 as well as randomized α, β coefficients (4α+ β ̸= 0). The qualitative results for
large-scale problems are available in the main paper as Table 3. Qualitative results for the small-scale problem are available
in Table 11.

18

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

Table 11. Qualitative results for small-scale Diffusion problems.

Testcase UGrid AMGCL AmgX
Diffusion (S) Time / Error Time / Error Time / Error

Bag 16.99 / 3.79 12.34 / 9.94 22.58 / 3.66
Cat 69.12 / 8.76 16.57 / 9.79 27.44 / 6.74

Lock 17.07 / 1.43 16.07 / 6.34 18.34 / 4.06
Noisy Input 22.84 / 6.47 15.94 / 2.74 24.35 / 0.42

Note 22.76 / 1.17 9.38 / 2.67 19.25 / 3.79
Sharp Feature 17.05 / 5.15 21.41 / 4.29 41.67 / 0.72

L-shape 35.18 / 6.25 13.02 / 2.30 25.51 / 3.97
Laplacian Square 90.73 / 64.5 22.14 / 8.17 50.49 / 3.50
Poisson Square 50.95 / 5.01 22.05 / 7.34 50.06 / 3.28

Star 17.06 / 3.69 18.70 / 7.55 18.88 / 4.71

In Table 11, again, even on small-scale problems that hinder our solver with a compact multigrid-like hierarchy from
delivering its full power, UGrid is still exhibits comparable efficiency with respect to the SOTA. This demonstrates UGrid’s
generalization power over problem sizes, though possibly at the price of relatively lower efficiency compared to the size it is
trained on.

A.10. Additional Experiments on Poisson Problems

We have conducted four additional experiments to showcase the generalization power of the proposed UGrid solver. The
four testcases are illustrated as follows:

8

6

4

2

01e 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Flower (Left: Laplacian; Right: Boundary)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

1e 5

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(b) Word (Left: Laplacian; Right: Boundary)

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

20

15

10

5

0

5

10

15

20

(c) Topo (Left: Laplacian; Right: Boundary)

8

6

4

2

01e 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Tree (Left: Laplacian; Right: Boundary)

Figure 10. Illustration of four additional testcases.

19

UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs

The qualitative results are as follows:

Table 12. Qualitative results for additional large-scale Poisson problems. “Time” denotes the total time (ms) to reach relative residual
errors ≤ 10−4, and “Assembly” and “Iteration” denotes time (ms) for the two phases for AMG solvers; “Error” denotes the final relative
residual errors, divided by 10−5.

Testcase UGrid AMGCL AmgX Hsieh et al.
Poisson (L) Time / Error Time / Assembly / Iteration / Error Time / Assembly / Iteration / Error Time / Error

Flower 18.52 / 1.60 144.91 / 138.00 / 6.91 / 3.07 69.14 / 18.11 / 51.03 / 5.41 27.23 / 7.16
Word 41.14 / 5.60 188.59 / 178.34 / 10.25 / 4.15 108.51 / 21.44 / 87.06 / 4.62 50.76 / 2612
Topo 10.30 / 4.29 210.06 / 203.86 / 6.20 / 4.86 97.22 / 24.29 / 72.93 / 2.94 52.29 / 3933
Tree 10.05 / 2.52 173.70 / 166.86 / 6.84 / 4.61 78.73 / 20.98 / 57.76 / 6.88 16.05 / 7.60

In Table 12, UGrid still delivers similar efficiency, accuracy and generalization power like the ten testcases covered in the
main contents of the paper. Note that Hsieh et al. diverged for testcases ”Word” and ”Topo”; their time for these two cases
is the time to reach the maximum number of iterations.

20

