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Abstract
We investigate model assessment and selection in
a changing environment, by synthesizing datasets
from both the current time period and historical
epochs. To tackle unknown and potentially arbi-
trary temporal distribution shift, we develop an
adaptive rolling window approach to estimate the
generalization error of a given model. This strat-
egy also facilitates the comparison between any
two candidate models by estimating the difference
of their generalization errors. We further integrate
pairwise comparisons into a single-elimination
tournament, achieving near-optimal model selec-
tion from a collection of candidates. Theoretical
analyses and empirical experiments underscore
the adaptivity of our proposed methods to the non-
stationarity in data.

1. Introduction
Traditionally, statistical learning theory assumes that mod-
els are trained and tested under the same data distribution.
However, when practitioners train a model and deploy it into
real environment, the environment often changes over time.
Such temporal distribution shift may lead to serious decline
in the model’s quality. It is important to assess the model’s
performance in real time and detect possible degradation.

Moreover, one often needs to choose among multiple candi-
date models that result from different learning algorithms
(e.g., linear regression, random forests, neural networks)
and hyperparameters (e.g., penalty parameter, step size, time
window for training). Temporal distribution shift poses a
major challenge to model selection, as past performance
may not reliably predict future outcomes. Learners usually
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have to work with limited data from the current time period
and abundant historical data, whose distributions may vary
significantly.

Main contributions. In this paper, we develop principled
approaches to model assessment and model selection under
temporal distribution shift.

• (Model assessment) We propose a rolling window strat-
egy that adaptively selects historical data to estimate a
model’s generalization error.

• (Model selection) We then use the method above to
compare any pair of models by applying it to the differ-
ence between their generalization errors. Based on this,
we develop a single-elimination tournament procedure
for selecting the best model from a pool of candidates.

Furthermore, we provide theoretical analyses and numeri-
cals experiments to show that our algorithms adapt to the
unknown temporal distribution shift.

Related works. Model assessment and selection are clas-
sical problems in statistical learning (Hastie et al., 2009).
Hold-out and cross-validation are arguably the most popular
methods in practice. However, in the presence of distribu-
tion shift, the validation data may no longer accurately repre-
sent the test cases. This challenge has attracted considerable
attention over the past two decades (Quinonero-Candela
et al., 2022). Existing works mostly focused on the static
scenario where the validation data consists of independent
samples from a fixed distribution. These methods do not
apply when the environment is continuously changing over
time. Rolling windows offer a practical solution to this issue
and have been widely adopted for learning under tempo-
ral changes (Bifet & Gavalda, 2007; Hanneke et al., 2015;
Mohri & Muñoz Medina, 2012; Mazzetto & Upfal, 2023;
Mazzetto et al., 2023; Huang & Wang, 2023). Our method
automatically selects a window tailored to the underlying
non-stationarity near a given time. The strategy is inspired
by the Goldenshluger-Lepski method for bandwidth selec-
tion in non-parametric estimation (Goldenshluger & Lepski,
2008).

Adaptation to a non-stationary environment has recently
gained popularity in online learning, where the goal is to
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attain a small cumulative error over an extended time hori-
zon (Hazan & Seshadhri, 2009; Besbes et al., 2015; Daniely
et al., 2015; Jadbabaie et al., 2015; Wei & Luo, 2021; Gibbs
& Candes, 2021; Bai et al., 2022). A classical problem in
this area is prediction from expert advice (Littlestone & War-
muth, 1994), which aims to track the best expert in the long
run. Recently, there have also been works on online model
selection for bandits and reinforcement learning (Agarwal
et al., 2017; Lee et al., 2021), with a similar goal of tracking
the best base algorithm in the long run. In contrast, our
approach focuses on evaluating a model or selecting from
multiple candidates at a specific point in time, leveraging
offline data collected from the past. Its performance is mea-
sured over the current data distribution. Consequently, our
problem can be viewed as one of transfer learning, with
source data from historical epochs and target data from the
current distribution. We point out that our algorithms for the
offline setting can be used as a sub-routine for online model
selection, where the candidate models may vary across dif-
ferent time points.

Our problem is also related to but different from change-
point detection (Niu et al., 2016; Truong et al., 2020). The
latter typically assumes that distribution shifts occur only at
a small number of times called change points. Our setting
allows changes to happen in every time period with arbitrary
magnitudes, covering a much broader range of shift patterns.

Outline. The rest of the paper is organized as follows.
Section 2 describes the problem setup. Section 3 and Sec-
tion 4 present our algorithms for model assessment and
model selection, respectively. Section 5 conducts numerical
experiments for the proposed algorithms on synthetic and
real datasets. Finally, Section 6 concludes the paper and
discusses future directions.

Notation. Let Z+ = {1, 2, ...} be the set of positive inte-
gers. For n ∈ Z+, let [n] = {1, 2, ..., n}. For x ∈ R, define
x+ = max{x, 0}. For non-negative sequences {an}∞n=1

and {bn}∞n=1, we write an = O(bn) if there exists C > 0
such that for all n ∈ Z+, an ≤ Cbn. Unless otherwise
stated, an . bn also represents an = O(bn). We write
an = o(bn) if an/bn → 0 as n→∞.

2. Problem Setup
Let Z and F be spaces of samples and models, respectively.
Denote by ` : F × Z → R a loss function. The quantity
`(f, z) measures the loss incurred by a model f ∈ F on
a sample z ∈ Z . At time t ∈ Z+, the quality of a model
f is measured by its generalization error (also called risk
or population loss) Lt(f) = Ez∼Pt

`(f, z) over the current
data distribution Pt. When the environment changes over
time, the distributions {Pt}∞t=1 can be different.

Suppose that at each time t, we receive a batch of Bt ∈ Z+

i.i.d. samples Bt = {zt,i}Bt
i=1 from Pt, independently of the

history. We seek to solve the following two questions based
on the data {Bj}tj=1:

Problem 2.1 (Model assessment). Given a model f ∈ F ,
how to estimate its population loss Lt(f)?

Problem 2.2 (Model selection). Given a collection of can-
didate models {fr}mr=1 ⊆ F , how to select one with a small
population loss? In other words, we want to choose r̂ ∈ [m]
so that Lt(fr̂) ≈ minr∈[m] Lt(fr).

3. Model Assessment
In this section we study Problem 2.1, under the assumption
that the loss ` is bounded.

Assumption 3.1 (Bounded loss). The loss function ` takes
values in a given interval [a, b].

In fact, we will consider a more general problem.

Problem 3.2 (Mean estimation). Let {Qj}tj=1 be prob-
ability distributions over [a, b] and {Dj}tj=1 be indepen-

dent datasets, where Dj = {uj,i}
Bj

i=1 consists of Bj ≥ 1
i.i.d. samples from Qj . Given {Dj}tj=1, how to estimate
the expectation µt of Qt?

Problem 2.1 is a special case of Problem 3.2 with uj,i =
`(f, zj,i) and µt = Lt(f). To tackle Problem 3.2, a natural
idea is to average data from the current period. More gener-
ally, we consider a look-back window of the k most recent
periods, and approximate µt by their sample average:

µ̂t,k =

 t∑
j=t−k+1

Bj

−1 t∑
j=t−k+1

Bj∑
i=1

uj,i. (1)

To measure the quality of µ̂t,k, we invoke the Bernstein
inequality (Boucheron et al., 2013). See Appendix A.1 for
its proof.

Lemma 3.3 (Bernstein bound). Let {xi}ni=1 be indepen-
dent random variables taking values in [a, b] almost surely.
Define the average variance σ2 = 1

n

∑n
i=1 var(xi). For

any δ ∈ (0, 1), with probability at least 1− δ,∣∣∣∣ 1n
n∑
i=1

(xi − Exi)
∣∣∣∣ ≤ σ

√
2 log(2/δ)

n
+

2(b− a) log(2/δ)

3n
.

Denote by µj and σ2
j the mean and the variance of Qj ,

respectively. Let Bt,k =
∑t
j=t−k+1Bj ,

µt,k =
1

Bt,k

t∑
j=t−k+1

Bjµj , σ2
t,k =

1

Bt,k

t∑
j=t−k+1

Bjσ
2
j .
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Using Lemma 3.3 and the triangle inequality

|µ̂t,k − µt| ≤ |µ̂t,k − µt,k|+ |µt,k − µt|,

we obtain the following bias-variance decomposition of the
approximation error of µ̂t,k.

Corollary 3.4. For t ∈ Z+, k ∈ [t] and δ ∈ (0, 1), define
M = b− a,

φ(t, k) = max
t−k+1≤j≤t

|µj − µt|,

ψ(t, k, δ) =

M, if Bt,k = 1

σt,k

√
2 log(2/δ)
Bt,k

+ 2M log(2/δ)
3Bt,k

, if Bt,k ≥ 2
.

With probability at least 1− δ,

|µ̂t,k − µt| ≤ φ(t, k) + ψ(t, k, δ).

Here φ(t, k) upper bounds the bias induced by using data
from the k most recent periods, while ψ(t, k, δ) upper
bounds the statistical uncertainty associated with µ̂t,k. Ide-
ally, we would like to choose a window k∗ that minimizes
the bias-variance decomposition φ(t, k) + ψ(t, k, δ). This
optimal window k∗ depends on the pattern of distribution
shift: it is large when the environment is near-stationary,
and is small when the environment is heavily fluctuating.
However, such structural information is generally unavail-
able in practice. This is reflected in the fact that both φ and
ψ involve unknown quantities |µj − µk| and σt,k that de-
pend on the unknown distribution shift. As a consequence,
direct minimization of φ(t, k) + ψ(t, k, δ) over k ∈ [t] is
infeasible. In the following, we will construct proxies for ψ
and φ that are computable from data.

We first construct a proxy for ψ(t, k, δ). A natural approxi-
mation of σ2

t,k is the sample variance over the k most recent
periods, given by

v̂2t,k =
1

Bt,k − 1

t∑
j=t−k+1

Bj∑
i=1

(uj,i − µ̂t,k)2. (2)

It has been used for deriving empirical versions of the Bern-
stein inequality (Audibert et al., 2007; Maurer & Pontil,
2009). Based on the estimate v̂2t,k, we define our proxy as

ψ̂(t, k, δ)

=

M, if Bt,k = 1

v̂t,k

√
2 log(2/δ)
Bt,k

+ 8M log(2/δ)
3(Bt,k−1) , if Bt,k ≥ 2

. (3)

As Lemma 3.5 shows that with high probability, ψ̂ upper
bounds ψ and their gap is not too large. Its proof is deferred
to Appendix A.2.

Lemma 3.5. For any δ ∈ (0, 1), define ξ(t, k, δ) =√
4 log(2/δ)

Bt,k
max

t−k+1≤j≤t
|µj − µt|+

13(b− a) log(2/δ)

3(Bt,k − 1)

if Bt,k ≥ 2. If Bt,k = 1, define ξ(t, k, δ) = 0. Then

P
(
ψ(t, k, δ) ≤ ψ̂(t, k, δ)

)
≥ 1− δ

P
(
ψ̂(t, k, δ) ≤ ψ(t, k, δ) + ξ(t, k, δ)

)
≥ 1− δ.

Combining Corollary 3.4 with the first bound in Lemma 3.5
immediately gives the following useful corollary.

Corollary 3.6. Let δ ∈ (0, 1). With probability at least
1− 2tδ, it holds

|µ̂t,k − µt| ≤ φ(t, k) + ψ̂(t, k, δ), ∀k ∈ [t]. (4)

To construct a proxy for φ(t, k), we borrow ideas from the
Goldenshluger-Lepski method for adaptive non-parametric
estimation (Goldenshluger & Lepski, 2008). Define

φ̂(t, k, δ) =

max
i∈[k]

(
|µ̂t,k − µ̂t,i| −

[
ψ̂ (t, k, δ) + ψ̂ (t, i, δ)

])
+

. (5)

We now give an interpretation of φ̂. In light of the bias-
variance decomposition in Corollary 3.4, the quantity

|µ̂t,k − µ̂t,i| − [ψ̂ (t, k, δ) + ψ̂ (t, i, δ)] (6)

can be viewed as a measure of the bias between the windows
k and i, where subtracting ψ̂ (t, k, δ) and ψ̂ (t, i, δ) elimi-
nates the stochastic error and teases out the bias. Indeed,
as the following lemma shows, φ̂(t, k, δ) ≤ 2φ(t, k) holds
with high probability. Its proof is given in Appendix A.3.

Lemma 3.7. When the event (4) happens,

0 ≤ φ̂(t, k, δ) ≤ 2φ(t, k).

We take the positive part in (5) so that when the quantity
(6) is negative, we regard the bias as dominated by the
stochastic error and hence negligible. Taking maximum over
all windows i ∈ [k] makes sure that we detect all possible
biases between window k and the smaller windows.

Replacing ψ and φ with their proxies ψ̂ and φ̂ gives Al-
gorithm 1. We note that the quantities µ̂t,k and v̂t,k can
be conveniently computed from summary statistics of in-
dividual datasets. Define empirical first and second mo-
mends in the j-th time period, µ̂j = B−1j

∑Bj

i=1 uj,i and
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Algorithm 1 Adaptive Rolling Window for Mean Estima-
tion (Problem 3.2)

Input: Data {Dj}tj=1, hyperparameters δ′ and M .
for k = 1, · · · , t do

Compute µ̂t,k, v̂t,k, ψ̂(t, k, δ′) and φ̂(t, k, δ′) accord-
ing to (1), (2), (3) and (5).

end for
Choose any k̂ ∈ argmink∈[t]{φ̂(t, k, δ′) + ψ̂(t, k, δ′)}.
Output: µ̂t,k̂.

ω̂j = B−1j
∑Bj

i=1 u
2
j,i. Then

µ̂t,k =
1

Bt,k

t∑
j=t−k+1

Bj µ̂j , (7)

v̂2t,k =
Bt,k

Bt,k − 1
·
(

1

Bt,k

t∑
j=t−k+1

Bjω̂j − µ̂2
t,k

)
. (8)

We now present theoretical guarantees for Algorithm 1.

Theorem 3.8 (Oracle inequality). Let Assumption 3.1 hold.
Choose δ ∈ (0, 1) and take δ′ = δ/(3t) in Algorithm 1.
With probability at least 1 − δ, the output of Algorithm 1
satisfies

|µ̂t,k̂ − µt| . min
k∈[t]
{φ(t, k) + ψ(t, k, δ)}.

Here . only hides a logarithmic factor of t and δ−1.

Theorem 3.8 states that the selected window k̂ is near-
optimal for the error bound in Corollary 3.4 derived from
bias-variance decomposition. We illustrate this oracle prop-
erty under the following distribution shift patterns.

Example 3.9 (Change point). Suppose that the environment
remained unchanged over the last K periods but had been
very different before, i.e. Qt−K 6= Qt−K+1 = · · · = Qt.
If K were known, one could take the window size K and
output µ̂t,K as an estimate of µt. By Theorem 3.8, µ̂t,k̂ is at
least comparable to µ̂t,K in terms of the estimation error:
up to a logarithmic factor,

|µ̂t,k̂ − µt| .
σt√
Bt,K

+
1

Bt,K
.

Therefore, Algorithm 1 automatically adapts to the local
stationarity and is comparable to using Bt,K i.i.d. samples.

Example 3.10 (Bounded drift). Suppose that the distribu-
tion shift between consecutive periods is bounded, i.e. there
exists ∆ > 0 such that for each j ∈ Z+, |µj+1 − µj | ≤ ∆.
This is a common assumption in the literature (Bartlett,
1992; Helmbold & Long, 1994; Barve & Long, 1997; Mohri
& Muñoz Medina, 2012). The quantity ∆ characterizes

the non-stationarity: as ∆ grows larger, the environment
is allowed to fluctuate more wildly. For simplicity, we
further assume Bj = 1 for all j ∈ Z+. In this case,
φ(t, k) ≤ (k − 1)∆, so the bias-variance decomposition in
Corollary 3.4 becomes

|µ̂t,k − µ| . (k − 1)∆ +

√
1

k

up to a logarithmic factor. If ∆ were known, then one could
pick the optimal window size k∗ � ∆−2/3, with an estima-
tion error of O(∆1/3) which is known to be optimal (Barve
& Long, 1997). Theorem 3.8 shows that without knowing ∆,
Algorithm 1 achieves the optimal order of estimation error.

We now turn to the proof of Theorem 3.8. A key ingredient
is the following lemma, which can be seen as an empirical
version of Theorem 3.8 with ψ replaced by ψ̂.

Lemma 3.11. When the event (4) happens,

|µ̂t,k̂ − µt| ≤ 3 min
k∈[t]

{
φ(t, k) + ψ̂(t, k, δ)

}
.

Proof. For any k ∈ [k̂],

|µ̂t,k̂ − µt| ≤ |µ̂t,k̂ − µ̂t,k|+ |µ̂t,k − µt|

≤
[
φ̂(t, k̂, δ) + ψ̂(t, k̂, δ) + ψ̂(t, k, δ)

]
+
[
φ(t, k) + ψ̂(t, k, δ)

]
(by (5) and (4))

=
[
φ̂(t, k̂, δ) + ψ̂(t, k̂, δ)

]
+
[
φ(t, k) + 2ψ̂(t, k, δ)

]
≤
[
φ̂(t, k, δ) + ψ̂(t, k, δ)

]
+
[
φ(t, k) + 2ψ̂(t, k, δ)

]
(by the definition of k̂)

≤
[
2φ(t, k) + ψ̂(t, k, δ)

]
+
[
φ(t, k) + 2ψ̂(t, k, δ)

]
(by Lemma 3.7)

= 3
[
φ(t, k) + ψ̂(t, k, δ)

]
.

On the other hand, for any k ∈ {k̂ + 1, · · · , t},

|µ̂t,k̂ − µt| ≤ φ(t, k̂) + ψ̂(t, k̂, δ) (by (4))

≤ φ(t, k) +
[
ψ̂(t, k̂, δ) + φ̂(t, k̂, δ)

]
(by Lemma 3.7)

≤ φ(t, k) +
[
ψ̂(t, k, δ) + φ̂(t, k, δ)

]
(by the definition of k̂)

≤ 3
[
φ(t, k) + ψ̂(t, k, δ)

]
. (by Lemma 3.7)

The proof is finished by taking the minimum over k.
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Combining Lemma 3.11 and the second bound in
Lemma 3.5 proves Theorem 3.8. We provide a full proof in
Appendix A.4, along with a more precise bound.
Remark 3.12 (Boundedness of loss). The boundedness As-
sumption 3.1 can be relaxed to a light-tailed condition. For
instance, we may assume that `(f, z) is sub-exponential for
f ∈ F and z ∼ Pj , and then apply a standard truncation
argument. Note that for any sub-exponential random vari-
ables {vi}ni=1, the bound maxi∈[n] |vi| = O(log n) holds
with high probability. Hence, we can truncate the random
variables at a logarithmic level and then apply Bernstein’s
inequality. This will only incur an extra logarithmic factor
in the oracle inequality.
Remark 3.13 (Logarithmic factor in the oracle inequality).
The O(log t) dependence in Theorem 3.8 comes from tak-
ing union bound on Corollary 3.4 over all k ∈ [t]. It is in
fact possible to improve it to a sharp bound O(log log t), by
using advanced techniques from the law of iterated loga-
rithm and martingale concentration (Jamieson et al., 2014;
Balsubramani & Ramdas, 2016).

4. Model Selection
In this section, we consider Problem 2.2. We will first study
the case of selection between two models, and then extend
the approach to the general case of m ∈ Z+ models.

4.1. Warmup: Model Comparison

We first consider the case m = 2, where the goal is to
compare two models f1 and f2, and choose the better one.
As in Section 3, using a look-back window k ∈ [t], we can
estimate Lt(f) by

L̂t,k(f) =
1

Bt,k

t∑
j=t−k+1

Bj∑
i=1

`(f, zj,i).

We will choose k ∈ [t] and return

r̂k ∈ argmin
r∈[2]

L̂t,k(fr).

Our approach is based on the following key observation,
proved in Appendix B.1.

Lemma 4.1. For every k ∈ [t], the index r̂k satisfies

Lt(fr̂k)− min
r∈[2]

Lt(fr)

≤
∣∣∣[L̂t,k(f1)− L̂t,k(f2)

]
−
[
Lt(f1)− Lt(f2)

]∣∣∣ .
Define

∆j = Lj(f1)− Lj(f2)

and ∆̂t,k = L̂t,k(f1) − L̂t,k(f2). Then, ∆j is the perfor-
mance gap between f1 and f2 at time j, and ∆̂t,k is a sample

Algorithm 2 Adaptive Rolling Window for Model Compar-
ison

Input: Models f1 and f2, data {Bj}tj=1, hyperparame-
ters δ′ and M .
Let uj,i = `(f1, zj,i)− `(f2, zj,i) and Dj = {uj,i}

Bj

i=1.
Run Algorithm 1 with inputs {Dj}tj=1, δ′ and M to ob-

tain ∆̂t,k̂. Let r̂k̂ =

{
1, if ∆̂t,k̂ ≤ 0

2, if ∆̂t,k̂ > 0
.

Output: f̂ = fr̂
k̂
.

average. By Lemma 4.1, it suffices to choose k such that
|∆̂t,k −∆t| is small. That is, an accurate estimate of the
performance gap guarantees near-optimal selection.

This reduces the problem to Problem 3.2, with uj,i =
`(f1, zj,i) − `(f2, zj,i) and thus µt = ∆t. We can then
readily apply Algorithm 1. The detailed description is given
in Algorithm 2.

Theorem 3.8 and Lemma 4.1 directly yield the following
guarantee of Algorithm 2.
Theorem 4.2 (Oracle inequality). Let Assumption 3.1 hold.
Choose δ ∈ (0, 1) and take δ′ = δ/(3t) in Algorithm 2.
With probability at least 1− δ, Algorithm 2 outputs f̂ satis-
fying

Lt(f̂)− min
r∈[2]

Lt(fr)

. min
k∈[t]

{
max

t−k+1≤j≤t
|∆j −∆t|+

σ̃t,k√
Bt,k

+
1

Bt,k

}
,

where

σ̃2
t,k =

1

Bt,k

t∑
j=t−k+1

Bj varz∼Pj
[`(f1, z)− `(f2, z)]

and . only hides a logarithmic factor of t and δ−1.

Consider again Example 3.9 where Pt−K 6= Pt−K+1 =
· · · = Pt for some K. Theorem 4.2 admits a similar inter-
pretation as Theorem 3.8: Algorithm 2 selects f̂ satisfying

Lt(f̂)− min
r∈[2]

Lt(fr) .
σ̃t√
Bt,K

+
1

Bt,K
.

1√
Bt,K

, (9)

where σ̃2
t = varz∼Pt

[`(f1, z)− `(f2, z)].

In the setting of bounded regression without covariate shift,
we may further improve the rate in (9). To state the results,
we let X be a feature space and consider the following
assumptions.
Assumption 4.3 (Bounded response). For j ∈ Z+, a sam-
ple z ∼ Pj takes the form z = (x, y), where x ∈ X is the
covariate and y ∈ R is the response. There exists M0 > 0
such that |y| ≤M0 holds for (x, y) ∼ Pj and j ∈ Z+.
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Assumption 4.4 (Bounded models). The loss ` is given by
`(f, (x, y)) = [f(x) − y]2. For all x ∈ X and f ∈ F ,
|f(x)| ≤M0.

Assumption 4.5 (No covariate shift). The distributions
{Pj}∞j=1 have the same marginal distribution of the covari-
ate, denoted by P .

Assumptions 4.3 and 4.4 imply Assumption 3.1 with a =
0 and b = 4M2

0 . In Assumption 4.5, the distribution of
the covariate xj,1 is the same for all j ∈ Z+, while the
conditional distribution of yj,1 given xj,1 may experience
shifts. The latter is commonly known as concept drift (Gama
et al., 2014).

Before we state the result, we introduce a few notations. De-
fine f∗j (·) = E(yj,1|xj,1 = ·), which minimizes the mean
square error E[f(x)− y]2 over the class of all measurable
f : X → R. For h1, h2 ∈ F , define an inner product

〈h1, h2〉P = Ex∼P [h1(x)h2(x)] ,

which induces a norm ‖h‖P =
√
〈h, h〉P . It can be readily

checked that Lt(f)− Lt(f∗t ) = ‖f − f∗t ‖2P for all f ∈ F .
Thus, we may measure the performance of a model f ∈ F
by

‖f − f∗t ‖P =
√
Lt(f)− Lt(f∗t ),

as it admits the interpretation of being both the distance
between f and f∗t under ‖ · ‖P , and the square root of
the excess risk Lt(f) − Lt(f∗t ). For j 6= t, the quantity
‖f∗j −f∗t ‖P serves as a measure of distribution shift between
time j and time t.

We are now ready to state our result. In Appendix B.2 we
provide a more precise bound and its proof.

Theorem 4.6 (Fast rate). Let Assumptions 4.3, 4.4 and 4.5
hold. Let M0 be a constant. Choose δ ∈ (0, 1) and take
δ′ = δ/(3t) in Algorithm 2. With probability at least 1− δ,
Algorithm 2 outputs f̂ satisfying

‖f̂ − f∗t ‖P − min
r∈[2]
‖fr − f∗t ‖P

. min
k∈[t]

{
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

1√
Bt,k

}
.

Here . only hides a logarithmic factor of t and δ−1.

The oracle inequality in Theorem 4.6 shares the same bias-
variance structure as that of Theorem 4.2. By squaring
both sides of the bound, we see that in Example 3.9 where
Pt−K 6= Pt−K+1 = · · · = Pt,

Lt(f̂)− Lt(f∗t ) . min
r∈[2]

Lt(fr)− Lt(f∗t ) +
1

Bt,K
. (10)

When either f1 or f2 has a small error so that
minr∈[2] Lt(fr) − Lt(f∗t ) = o(1/

√
Bt,K), (10) provides

Algorithm 3 Single-Elimination Tournament for Model Se-
lection

Input: Models {fr}mr=1, data {Bj}tj=1, hyperparameters
δ′ and M
Let S = dlog2me and F1 = {fr : r ∈ [m]}.
for s = 1, · · · , S do

Split Fs into disjoint pairs:

Fs = Gs,1 ∪ · · · ∪ Gs,ms
∪ Gs,ms+1,

where |Gs,i| = 2 for i ∈ [ms], and |Gs,ms+1| ≤ 2.
for i = 1, · · · ,ms + 1 do

Run Algorithm 2 with inputs Gs,i, {Dj}tj=1, δ′ and
M to obtain ĝs,i ∈ Gs,i.
If |Gs,ms+1| = 1, simply take ĝs,ms+1 ∈ Gs,ms+1.

end for
Let Fs+1 = {ĝs,i : i ∈ [ms + 1]}.

end for
Output: The only model f̂ ∈ FS .

a much sharper guarantee on Lt(f̂) compared to (9). As
the proof of Theorem 4.6 reveals, such an improvement
relies crucially on the structure of var [`(f1, z)− `(f2, z)]
in the Bernstein bound. In particular, it cannot be achieved
by the naïve method of applying Algorithm 1 to f1 and
f2 separately and choosing the one with a lower estimated
generalization error. We believe that in other scenarios such
as binary classification, our analysis still goes through under
commonly used noise conditions in learning theory (Bartlett
et al., 2005; Boucheron et al., 2005).

4.2. Selection from Multiple Candidates

We now consider the general case of selecting over m ∈
Z+ models {fr}mr=1. We will use a straightforward single-
elimination tournament procedure. In each round, we pair
up the remaining models, and use Algorithm 2 to perform
pairwise comparison. Within each pair, the model picked
by Algorithm 2 advances to the next round. When there is
only one model left, the procedure terminates and outputs
the model. Algorithm 3 gives the detailed description.

Here Fs+1 is the set of remaining models after round s. By
design, Algorithm 3 eliminates about half of the remaining
models in each round: |Fs+1| ≤ d|Fs|/2e. Thus, only one
model remains after dlog2me rounds. Since each call of
Algorithm 2 eliminates one model, then Algorithm 3 calls
Algorithm 2 exactly m− 1 times.

We now give the theoretical guarantee of Algorithm 3 in the
setting of bounded regression. We provide a more precise
bound and its proof in Appendix B.3.

Theorem 4.7 (Oracle inequality). Let Assumptions 4.3, 4.4
and 4.5 hold. Let M0 be a constant. Choose δ ∈ (0, 1) and

6
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Algorithm 4 Fixed-Window Model Selection Algorithm
Input: Models {fr}mr=1, data {Bj}tj=1, window size k.
Compute s = max{t, k}.
for r = 1, · · · ,m do
L̂t,k(fr) = 1

Bt,s

∑t
j=t−s+1

∑Bj

i=1 `(fr, zj,i).
end for
Compute r̂ ∈ argminr∈[m] L̂t,k(fr).
Output: f̂k = fr̂.

take δ′ = δ/(3m2t) in Algorithm 3. With probability at
least 1− δ, Algorithm 3 outputs f̂ satisfying

‖f̂ − f∗t ‖P − min
r∈[m]

‖fr − f∗t ‖P

. min
k∈[t]

{
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

1√
Bt,k

}
.

Here . hides a polylogarithmic factor of m, t and δ−1.

We remark that Theorem 4.7 takes the same form as The-
orem 4.6 up to a factor of log2m. Thus, in Example 3.9
where Pt−K 6= Pt−K+1 = · · · = Pt, the model f̂ selected
by Algorithm 3 also enjoys a fast rate similar to (10):

Lt(f̂)− Lt(f∗t ) . min
r∈[m]

Lt(fr)− Lt(f∗t ) +
1

Bt,K
.

5. Numerical Experiments
We conduct simulations to verify our theories and test our
algorithms on three real datasets. We will focus on Algo-
rithm 3 for Problem 2.2. For simplicity, the hyperparameters
δ′ and M in our algorithms are set to be 0.1 and 0 through-
out our numerical study. For notational convenience, we
denote Algorithm 3 by VARW. We compare VARW with
fixed-window model selection procedures, given by Algo-
rithm 4 and denoted by Vk, where k is the fixed window size
and takes values in a set I = {1, 4, 16, 64, 256}. Our code
is available at https://github.com/eliselyhan/
ARW.

5.1. Synthetic Data

We first train different models for a mean estimation task on
synthetic data. Then, we deploy Algorithms 3 and 4 to select
top-performing models. Finally, we assess and compare
their qualities. Throughout the simulations, we consider
100 time periods. At each time period t, we generate a
batch of Bt ∈ Z+ i.i.d. samples Bt = {zt,i}Bt

i=1. In our
setup, each sample zt,i ∼ N (µt, σ

2), where µt is the given
population mean of period t. The task of the models is to
estimate µt.

At each period t, we split Bt into a training set Btrt and a
validation setBvat . The models are trained on the training set,

(a) Example 5.1 (b) Example 5.2

Figure 1. True means {µt}100t=0 in synthetic data.

Table 1. Mean excess risks of selection methods for Example 5.1.

VARW V1 V4 V16 V64 V256
0.015 0.043 0.025 0.013 0.010 0.010
1.293 4.117 2.572 1.396 1.015 0.982

and subsequent model selection is done using the validation
set. The size of the validation set Bva

t is sampled uniformly
from {2, 3, 4}. The size of the training set is Btr

t = 3Bva
t .

In each period t, we consider 5 estimates {T (t, w)}w∈I of
the target µt, where T (t, w) is the sample average of the
data {Btrj }tj=t−w+1. We then select a model based on data
{Bvaj }tj=1. To measure its quality, we compute the excess
risk, which is the squared difference between the true mean
µt and the selected estimate. We compare VARW with the
fixed-window benchmarks {Vk}k∈I . We use the following
scenarios as testbeds.
Example 5.1. Figure 1(a) illustrates the stationary case
where the true mean stays constant. We explore both low-
variance and high-variance regimes with σ2 = 1 and
10, respectively. Table 1 records the average excess risks
over 100 periods and 20 independent trials for VARW and
{Vk}k∈I . The first and second rows correspond to σ2 = 1
and σ2 = 10. In both regimes, VARW leverages the under-
lying stationarity and yields excess risks comparable to Vk
with large k’s, whereas Vk with smaller k’s perform worse.
In Figure 2, we plot the average excess risks over 20 trials
at each time t for VARW,V1,V256 in red, orange and blue.

Example 5.2. We carry out the same experiments in a
scenario with sufficient non-stationarity. The true means
{µt}100t=1 in Figure 1(b) are generated using a randomized
mechanism; see Appendix C.1. Similar to that of Exam-
ple 5.1, Table 2 summarizes the mean excess risks. When
σ2 = 1, the non-stationarity pattern of the underlying
means is largely preserved. Our algorithm VARW outper-
forms all Vk’s, demonstrating its adaptivity. When σ2 = 10,
the larger noise makes the non-stationarity less significant,
so Vk with larger k’s are be more stable. Nevertheless,
VARW is still competitive with them. We also plot the aver-
age excess risks over 20 trials at each time t in Figure 3.
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Table 2. Mean excess risks of selection methods for Example 5.2.

VARW V1 V4 V16 V64 V256
0.139 0.157 0.171 0.539 1.034 1.067
2.052 4.425 2.934 1.920 1.771 1.784

Figure 2. Excess risks in Example 5.1: σ2 = 1 (top) and σ2 = 10
(bottom). Red: VARW. Orange: V1. Blue: V256.

5.2. Real Data: Topic Frequency Estimation

The first real dataset we use is the arXiv dataset1. It consists
of basic information of papers submitted to arXiv.org,
such as title, abstract and categories. We study the topics
of the papers in the category cs.LG from Match 1st, 2020
to December 31st, 2023. There are 118, 883 papers in to-
tal, and we would like to estimate the proportion of deep
learning papers in this category. Each week is a time period,
and there are 200 weeks in total. We regard a paper as a
deep learning paper if its abstract contains at least one of
the words “deep”, “neural”, “dnn” and “dnns”. The data in
each period is randomly split into training, validation and
test sets. The training set Btrj has 15 samples, the valida-
tion set Bvaj has 5 samples and the rest of the samples Btej
are used for testing. Typically |Btej | ∈ [300, 1200]. In Fig-
ure 6(a), we plot the frequencies over 200 weeks estimated
from {Btej }200j=1, which exhibits a slowly drifting pattern.

In each period t, we consider 5 models {T (t, w)}w∈I ,
where T (t, w) computes the average frequency from the
data {Btrj }tj=t−w+1. The selection and evaluation proce-
dures are similar to those in the synthetic data experiment.
We compare VARW with the fixed-window benchmarks
{Vk}k∈I . The average excess risks over 200 weeks and

1https://www.kaggle.com/datasets/
Cornell-University/arxiv

Figure 3. Excess risks in Example 5.2: σ2 = 1 (top) and σ2 = 10
(bottom). Red: VARW. Orange: V1. Blue: V256.

Table 3. Overall average excess risks (×10−3) of selection meth-
ods on the arXiv data.

VARW V1 V4 V16 V64 V256
2.4 6.7 4.5 2.4 1.7 1.9

20 independent runs are listed in Table 3. In Figure 4, we
also plot the excess risks in every period. We observe that
the performance of VARW is comparable to that of the large-
window benchmark V256, while the small-window model
selection algorithm V1 performs poorly.

5.3. Real Data: House Price Prediction

Finally, we test our method using a real-world dataset main-
tained by the Dubai Land Department2. We study sales of
apartments during the past 16 years (from January 1st, 2008
to December 31st, 2023). There are 211,432 samples (sales)
in total, and we want to predict the final price given charac-
teristics of an apartment (e.g., number of rooms, size, loca-
tion). Each month is treated as a time period, and there are
192 of them in total. Our goal is to build a prediction model
for each period using historical data. In Figure 6(b), we
plot the monthly average prices. Compared with the arXiv
dataset, the distribution shift in this case is more abrupt.

The data in each period is randomly split into training, val-
idation and test sets with proportions 60%, 20% and 20%,
respectively. We follow the standard practice to apply a
logarithmic transform to the price and target that in our
prediction. See Appendix C.3 for details of preprocessing.

2https://www.dubaipulse.gov.ae/data/
dld-transactions/dld_transactions-open
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Figure 4. Error curves of different model selection methods on the
arXiv data. Red: VARW. Orange: V1. Blue: V256.

Table 4. Overall MSE of different methods on the housing data.

VARW V1 V4 V16 V64 V256
0.071 0.071 0.069 0.071 0.091 0.095

For the t-th period, we use each of the 5 training windows
w ∈ I to select training data {Btrj }tj=t−w+1 for regression
with 2 algorithms: random forest (Breiman, 2001) and XG-
Boost (Chen & Guestrin, 2016). This results in 10 candidate
models. One of them is selected using validation data and
finally evaluated on the test data Btet by the mean squared
error (MSE). For each model selection method, we compute
the average MSE over all of the 192 time periods and 20
independent runs. We compare our proposed approach with
fixed-window benchmarks {Vk}k∈I . The mean values are
reported in Table 4. In addition, we also plot the test MSEs
of our method, V1 and V256 in all individual time periods,
see Figure 5. Due to the strong non-stationarity, model se-
lection based on large windows does not work well. Our
method still nicely adapts to the changes.

0 25 50 75 100 125 150 175 200
Time

0.1

0.2

0.3

M
SE

Figure 5. Error curves of different model selection methods on the
housing data. Red: VARW. Orange: V1. Blue: V256.

5.4. Summary of Experiments

The synthetic and real data experiments above show that
for different patterns of non-stationarity, the best window
can be different. It is large for stationary environments,
medium for the arXiv data, and small for the Dubai housing
data. In practice, the non-stationarity pattern is generally

unknown, so it is not clear a priori what the best window
should be, or even what candidate windows to choose from.
Our experiments show that our algorithm adaptively selects
a window that is comparable to the best one in hindsight.

6. Discussions
We developed adaptive rolling window approaches to model
assessment and selection in a changing environment. The-
oretical analyses and numerical experiments demonstrate
their adaptivity to unknown temporal distribution shift. Sev-
eral future directions are worth exploring. First, our rolling
window methodology does not assume any structures on
the non-stationarity. In practice, temporal distribution shift
often exhibits regularities such as seasonalities and trends.
It is important to develop methods that automatically detect
patterns of distribution shift and make use of data from the
more distant past. Second, our model selection algorithm
only applies to finitely many models, and it would be inter-
esting to extend it to infinite model classes. Finally, another
direction is to use our model selection algorithm to perform
hyperparameter tuning for online learning algorithms, so as
to further boost their performance.
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A. Proofs for Section 3
A.1. Proof of Lemma 3.3

Inequality (2.10) in (Boucheron et al., 2013) implies that for any t ≥ 0,

P
(

1

n

n∑
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3n

)2

⇐
(
t− (b− a) log(1/δ)

3n

)2

≥
(
σ

√
2 log(1/δ)

n
+

(b− a) log(1/δ)

3n

)2

⇐ t ≥ σ
√

2 log(1/δ)

n
+

2(b− a) log(1/δ)

3n
.

Hence,

P

(
1

n

n∑
i=1

(xi − Exi) > σ

√
2 log(1/δ)

n
+

2(b− a) log(1/δ)

3n

)
≤ δ.

Replacing each xi by −xi gives bounds on the lower tail and the absolute deviation.

A.2. Proof of Lemma 3.5

The result is trivial when Bt,k = 1 (i.e. k = Bt = 1), as ψ̂(t, k, δ) = ψ(t, k, δ). From now on, we assume that Bt,k ≥ 2.
We first present a useful lemma.
Lemma A.1. Let {xi}ni=1 be independent, [0, 1]-valued random variables. Define the sample mean µ̂ = 1

n

∑n
i=1 xi and

the sample variance v̂2 = 1
n−1

∑n
i=1(xi − µ̂)2. Let µ = 1

n

∑n
i=1 Exi and v2 = Ev̂2. We have

v2 =
1

n− 1

n∑
i=1

(Exi − µ)2 +
1

n

n∑
i=1

var(xi)

and for any δ ∈ (0, 1),

P
(
v ≤ v̂ +

√
2 log(1/δ)

n− 1

)
≥ 1− δ and P

(
v ≥ v̂ −

√
2 log(1/δ)

n− 1

)
≥ 1− δ.

Proof of Lemma A.1. Define x = (x1, · · · , xn)>, µ = Ex and Σ = diag(var(x1), · · · , var(xn)). Let 1n be the n-
dimensional all-one vector. We have µ̂ = 1>nx/n and

n∑
i=1

(xi − µ̂)2 = ‖(I − 1n1>n /n)x‖22 = x>(I − 1n1>n /n)x.

Then,

(n− 1)Ev̂2 = 〈µµ> + Σ, I − 1n1>n /n〉 = µ>(I − 1n1>n /n)µ+ 〈Σ, I − 1n1>n /n〉

=

n∑
i=1

(Exi − µ)2 +

(
1− 1

n

) n∑
i=1

var(xi).

This verifies the expression of v2. The concentration bounds come from Theorem 10 in (Maurer & Pontil, 2009).

12
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We now come back to Lemma 3.5. It suffices to consider the special case b− a = 1. From Lemma A.1 we immediately get
Ev̂2t,k = v2t,k, where

v2t,k = σ2
t,k +

1

Bt,k − 1

t∑
j=t−k+1

Bj(µj − µt,k)2. (11)

In addition, for any δ ∈ (0, 1),

P

(
vt,k ≤ v̂t,k +

√
2 log(1/δ)

Bt,k − 1

)
≥ 1− δ and P

(
vt,k ≥ v̂t,k −

√
2 log(1/δ)

Bt,k − 1

)
≥ 1− δ.

With probability at least 1− δ, we have σt,k ≤ vt,k ≤ v̂t,k +
√

2 log(1/δ)
Bt,k−1 and thus

ψ(t, k, δ) ≤

(
v̂t,k +

√
2 log(1/δ)

Bt,k − 1

)√
2 log(2/δ)

Bt,k
+

2 log(2/δ)

3(Bt,k − 1)

≤ v̂t,k

√
2 log(2/δ)

Bt,k
+

8 log(2/δ)

3(Bt,k − 1)
= ψ̂(t, k, δ).

To prove the second bound, note that

vt,k =

(
σ2
t,k +

1

Bt,k − 1

t∑
j=t−k+1

Bj(µj − µt,k)2
)1/2

≤ σt,k +

(
1

Bt,k − 1

t∑
j=t−k+1

Bj(µj − µt,k)2
)1/2

= σt,k +

√
Bt,k

Bt,k − 1
·
(

1

Bt,k

t∑
j=t−k+1

Bj(µj − µt)2
)1/2

≤ σt,k +

√
Bt,k

Bt,k − 1
· max
t−k+1≤j≤t

|µj − µt|.

By Lemma A.1, with probability at least 1− δ, we have vt,k ≥ v̂t,k −
√

2 log(1/δ)
Bt,k−1 and thus

v̂t,k ≤ vt,k +

√
2 log(1/δ)

Bt,k − 1
≤ σt,k +

√
Bt,k

Bt,k − 1
· max
t−k+1≤j≤t

|µj − µt|+

√
2 log(1/δ)

Bt,k − 1
.

13
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As a result,

ψ(t, k, δ) ≥ σt,k

√
2 log(2/δ)

Bt,k
+

log(2/δ)

3(Bt,k − 1)

≥
(
v̂t,k −

√
Bt,k

Bt,k − 1
· max
t−k+1≤j≤t

|µj − µt| −

√
2 log(1/δ)

Bt,k − 1

)√
2 log(2/δ)

Bt,k
+

log(2/δ)

3(Bt,k − 1)

≥ v̂t,k

√
2 log(2/δ)

Bt,k
−

√
2 log(2/δ)

Bt,k − 1
· max
t−k+1≤j≤t

|µj − µt| −
5 log(2/δ)

3(Bt,k − 1)

=

(
v̂t,k

√
2 log(2/δ)

Bt,k
+

8 log(2/δ)

3(Bt,k − 1)

)
−

√
2 log(2/δ)

Bt,k − 1
· max
t−k+1≤j≤t

|µj − µt| −
13 log(2/δ)

3(Bt,k − 1)

= ψ̂(t, k, δ)−

√
2 log(2/δ)

Bt,k − 1
· max
t−k+1≤j≤t

|µj − µt| −
13 log(2/δ)

3(Bt,k − 1)

≥ ψ̂(t, k, δ)− ξ(t, k, δ).

The first and last inequalities follow from the fact that Bt,k ≥ 2.

A.3. Proof of Lemma 3.7

When the event (4) happens, for every i ∈ [k],

|µ̂t,k − µ̂t,i| ≤ |µ̂t,k − µt|+ |µ̂t,i − µt| ≤
[
φ(t, k) + ψ̂(t, k, δ)

]
+
[
φ(t, i) + ψ̂(t, i, δ)

]
,

so

|µ̂t,k − µ̂t,i| −
[
ψ̂(t, k, δ) + ψ̂(t, i, δ)

]
≤ φ(t, k) + φ(t, i) ≤ 2φ(t, k),

where we used φ(t, i) ≤ φ(t, k). Taking maximum over all i ∈ [k] gives φ̂(t, k, δ) ≤ 2φ(t, k).

A.4. Proof of Theorem 3.8

We will prove that with probability at least 1− δ,

|µ̂t,k̂ − µt| ≤ 3 min
k∈[t]

{
3
√

log(6t/δ) · max
t−k+1≤j≤t

|µj − µt|+ σt,k

√
2 log(6t/δ)

Bt,k
+

10(b− a) log(6t/δ)

Bt,k

}
. (12)

By Lemma 3.11,

P
(
|µ̂t,k̂ − µt| ≤ 3 min

k∈[t]

{
φ(t, k) + ψ̂(t, k, δ′)

})
≥ 1− 2tδ′. (13)

By the second bound in Lemma 3.5,

P
(
ψ̂(t, k, δ′) ≤ ψ(t, k, δ′) + ξ(t, k, δ′), ∀k ∈ [t]

)
≥ 1− tδ′. (14)

By (13), (14) and the union bound, we obtain that

P
(
|µ̂t,k̂ − µt| ≤ 3 min

k∈[t]

{
φ(t, k) + ψ(t, k, δ′) + ξ(t, k, δ′)

})
≥ 1− 3tδ′ = 1− δ.

14
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When Bt,k ≥ 2,

φ(t, k) + ψ(t, k, δ′) + ξ(t, k, δ′)

≤ max
t−k+1≤j≤t

|µj − µt|+ σt,k

√
2 log(2/δ′)

Bt,k
+

2(b− a) log(2/δ′)

3(Bt,k − 1)

+

√
4 log(2/δ′)

Bt,k
· max
t−k+1≤j≤t

|µj − µt|+
13(b− a) log(2/δ′)

3(Bt,k − 1)

≤ 3
√

log(2/δ′) · max
t−k+1≤j≤t

|µj − µt|+ σt,k

√
2 log(2/δ′)

Bt,k
+

5(b− a) log(2/δ′)

Bt,k − 1

≤ 3
√

log(2/δ′) · max
t−k+1≤j≤t

|µj − µt|+ σt,k

√
2 log(2/δ′)

Bt,k
+

10(b− a) log(2/δ′)

Bt,k

= 3
√

log(6t/δ) · max
t−k+1≤j≤t

|µj − µt|+ σt,k

√
2 log(6t/δ)

Bt,k
+

10(b− a) log(6t/δ)

Bt,k
.

When Bt,k = 1, we have φ(t, k) + ψ(t, k, δ′) = b− a, which is dominated by the bound above.

B. Proofs for Section 4
B.1. Proof of Lemma 4.1

Fix k ∈ [t]. For every f ∈ {f1, f2},

Lt(fr̂)− Lt(f) =
[
Lt(fr̂k)− L̂t,k(fr̂k)

]
+
[
L̂t,k(fr̂k)− Lt(f)

]
≤
[
Lt(fr̂k)− L̂t,k(fr̂k)

]
+
[
L̂t,k(f)− Lt(f)

]
=
[
L̂t,k(f)− L̂t,k(fr̂k)

]
−
[
Lt(f)− Lt(fr̂k)

]
≤
∣∣∣[L̂t,k(f1)− L̂t,k(f2)

]
−
[
Lt(f1)− Lt(f2)

]∣∣∣ .
Taking minimum over f ∈ {f1, f2} yields

Lt(fr̂)− min
r∈[2]

Lt(fr) ≤
∣∣∣[L̂t,k(f1)− L̂t,k(f2)

]
−
[
Lt(f1)− Lt(f2)

]∣∣∣ .
B.2. Proof of Theorem 4.6

More precisely, we will prove that with probability at least 1− δ, Algorithm 2 outputs f̂ satisfying

‖f̂ − f∗t ‖P − min
r∈[2]
‖fr − f∗t ‖P ≤ C ′

√
log(6t/δ) min

k∈[t]

{
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

M√
Bt,k

}
,

where C ′ > 0 is a universal constant.

Following the notation in Problem 3.2 with uj,i = `(f1, zj,i)− `(f2, zj,i), we define

σ2
j = var(uj,1) = var (`(f1, zj,1)− `(f2, zj,1)) and σ2

t,k =
1

Bt,k

t∑
j=t−k+1

Bjσ
2
j .

15
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By Lemma 4.1 and Theorem 3.8, with probability at least 1− δ,

Lt(f̂)− min
r∈[2]

Lt(fr) ≤ |∆̂t,k̂ −∆t|

≤ 3 min
k∈[t]

{
3
√

log(6t/δ) · max
t−k+1≤j≤t

|∆j −∆t|+ σt,k

√
2 log(6t/δ)

Bt,k
+

40M2
0 log(6t/δ)

Bt,k

}
. (15)

From now on suppose that this event happens.

We first derive a bound for |∆j −∆t|. Since

∆j = ‖f1 − f∗j ‖2P − ‖f2 − f∗j ‖2P = 〈f1 − f2, f1 + f2 − 2f∗j 〉P ,

then for every j ∈ Z+,

|∆j −∆t| = 2|〈f1 − f2, f∗j − f∗t 〉P | ≤ 2‖f1 − f2‖P‖f∗j − f∗t ‖P .

Hence
max

t−k+1≤j≤t
|∆j −∆t| ≤ 2‖f1 − f2‖P max

t−k+1≤j≤t
‖f∗j − f∗t ‖P . (16)

Next, we bound σt,k. We have

σ2
j = var

(
[f1(xj,1)− yj,1]2 − [f2(xj,1)− yj,1]2

)
≤ E

[(
[f1(xj,1)− yj,1]2 − [f2(xj,1)− yj,1]2

)2]
= E

[(
f1(xj,1)− f2(xj,1)

)2(
f1(xj,1) + f2(xj,1)− 2yj,1

)2]
.M2

0 ‖f1 − f2‖2P ,

which implies
σt,k .M0‖f1 − f2‖P ≤M0

(
‖f1 − f∗t ‖P + ‖f2 − f∗t ‖P

)
. (17)

Substituting (16) and (17) into (15), there exist a universal constant C > 0 such that for every k ∈ [t],

Lt(f̂)− min
r∈[2]

Lt(fr) ≤ C

[√
log(6t/δ) max

t−k+1≤j≤t
‖f∗j − f∗t ‖P‖f1 − f2‖P

+M0

√
log(6t/δ)

Bt,k
(‖f1 − f∗t ‖P + ‖f2 − f∗t ‖P) +

M2
0 log(6t/δ)

Bt,k

]

= C

[
2Φ(t, k) (‖f1 − f∗t ‖P + ‖f2 − f∗t ‖P) + Ψ(t, k)

]
, (18)

where

Φ(t, k) =
1

2

√
log(6t/δ)

(
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

M0√
Bt,k

)
and Ψ(t, k) =

M2
0 log(6t/δ)

Bt,k
,

and we used the triangle inequality ‖f1 − f2‖P ≤ ‖f1 − f∗t ‖P + ‖f2 − f∗t ‖P .

Without loss of generality, assume Lt(f1) ≥ Lt(f2). When r̂k̂ = 1, we have f̂ = f1. Then (18) yields

‖f1 − f∗t ‖2P − ‖f2 − f∗t ‖2P = Lt(f̂)− min
r∈[2]

Lt(fr) ≤ C
[
2Φ(t, k) (‖f1 − f∗t ‖P + ‖f2 − f∗t ‖P) + Ψ(t, k)

]
.

Completing the squares gives[
‖f1 − f∗t ‖P − CΦ(t, k)

]2
≤
[
‖f2 − f∗t ‖P + CΦ(t, k)

]2
+ CΨ(t, k).
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Hence

‖f1 − f∗t ‖P ≤ ‖f2 − f∗t ‖P + 2CΦ(t, k) +
√
CΨ(t, k)

≤ ‖f2 − f∗t ‖P + C ′
√

log(6t/δ)

(
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

M0√
Bt,k

)
(19)

for some universal constant C ′ > 0. Since this holds for all k ∈ [t], we get

‖f̂ − f∗t ‖P − min
r∈[2]
‖fr − f∗t ‖P

= ‖f1 − f∗t ‖P − ‖f2 − f∗t ‖P

≤ C ′
√

log(6t/δ) min
k∈[t]

{
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

M0√
Bt,k

}
. (20)

We have proved this bound for the case r̂k̂ = 1. When r̂k̂ = 2, we have f̂ = f2 and hence ‖f̂−f∗t ‖P−minr∈[2] ‖fr−f∗t ‖P =
0, so the bound (20) continues to hold.

B.3. Proof of Theorem 4.7

More precisely, we will prove that with probability at least 1− δ, Algorithm 3 outputs f̂ satisfying

‖f̂ − f∗t ‖P − min
r∈[m]

‖fr − f∗t ‖P ≤ C ′
√

(logm) log(mt/δ) min
k∈[t]

{
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

M0√
Bt,k

}

for some universal constant C ′ > 0.

Denote Algorithm 2 with data {Bj}tj=1 by A, which takes as input two models f ′, f ′′ ∈ F and outputs the selected model
A({f ′, f ′′}) ∈ {f ′, f ′′}. For notational convenience, we set A({f}) = f for every f ∈ F . By Theorem 4.6 and the union
bound, with probability at least 1− δ, the following holds for all f ′, f ′′ ∈ {fr}mr=1:

‖A({f ′, f ′′})− f∗t ‖P − min
f∈{f ′,f ′′}

‖f − f∗t ‖P ≤ C
√

log(mt/δ) min
k∈[t]

{
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

M0√
Bt,k

}
, (21)

where C > 0 is a universal constant. From now on, suppose that this event happens.

For each s ∈ [S + 1], let

gs ∈ argmin
g∈Fs

Lt(g) = argmin
g∈Fs

‖g − f∗t ‖P .

Since F = F1 ⊇ · · · ⊇ FS ⊇ FS+1 = {f̂}, then

‖f̂ − f∗t ‖P − min
r∈[m]

‖fr − f∗t ‖P =

S∑
s=1

(
‖gs+1 − f∗t ‖P − ‖gs − f∗t ‖P

)
.

For each s ∈ [S], there exists is ∈ [ms + 1] such that gs ∈ Gs,is . Let ĝs = A(Gs,is) be the model selected from Gs,is in
Algorithm 3. By (21) and the definition of gs,

‖ĝs − f∗t ‖P − ‖gs − f∗t ‖P ≤ C
√

log(mt/δ) min
k∈[t]

{
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

M0√
Bt,k

}
.
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Moreover, since ĝs ∈ Fs+1, then ‖gs+1 − f∗t ‖P ≤ ‖ĝs − f∗t ‖P . Therefore,

‖f̂ − f∗t ‖P − min
r∈[m]

‖fr − f∗t ‖P =

S∑
s=1

(
‖gs+1 − f∗t ‖P − ‖gs − f∗t ‖P

)

≤
S∑
s=1

(
‖ĝs − f∗t ‖P − ‖gs − f∗t ‖P

)

≤
S∑
s=1

C
√

log(mt/δ) min
k∈[t]

{
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

M0√
Bt,k

}

≤ C ′
√

(logm) log(mt/δ) min
k∈[t]

{
max

t−k+1≤j≤t
‖f∗j − f∗t ‖P +

M0√
Bt,k

}

for some universal constant C ′ > 0.

C. Numerical Experiments: Additional Details
C.1. Example 2 of the Synthetic Data

We give an outline of how the true mean sequence {µt} in Example 5.2 is generated. The sequence is constructed by
combining 4 parts, each representing a distribution shift pattern. In the first part, the sequence experiences large shifts. Then,
it switches to a sinusoidal pattern. Following that, the environment stays stationary for some time. Finally, the sequence
drifts randomly at every period, where the drift sizes are independently sampled from {1,−1} with equal probability and
scaled with a constant.

The function for generating the sequence takes in 3 parameters N, n and seed, where N is the total number of periods, n is
the parameter determining the splitting points of the 4 parts, and seed is the random seed used for code reproducibility.
In our experiment, we set N = 100, n = 2 and seed = 2024. The exact function can be found in our code at
https://github.com/eliselyhan/ARW.

C.2. Non-Stationarity in arXiv and Housing Data

(a) arXiv data
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(b) Dubai housing data

Figure 6. Two patterns of temporal distribution shift: slow drift and abrupt changes.
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C.3. Experiments on the Housing Data

We focus on transactions of studios and apartments with 1 to 4 bedrooms, between January 1st, 2008 and December 31st,
2023. We import variables instance_date (transaction date), area_name_en (English name of the area where the
apartment is located in), rooms_en (number of bedrooms), has_parking (whether or not the apartment has a parking
spot), procedure_area (area in the apartment), actual_worth (final price) from the data.

We use instance_date (transaction date) to construct monthly datasets. The target for prediction is the logarith-
mic of actual_worth. The predictors are area_name_en, rooms_en, has_parking and procedure_area.
area_name_en has 58 possible values and encoded as an integer variable. We remove a sample when its actual_worth
or procedure_area is among the largest or smallest 2.5% of the population, whichever is true. After the trimming,
91.6% of the data remains.

For random forest regression, we use the function RandomForestRegressor in the Python library scikit-learn.
For XGBoost regression, we use the function XGBRegressor in the Python library xgboost. In both cases, we set
random_state = 0 and do not change any other default parameters. Implementation details can be found in our code
at https://github.com/eliselyhan/ARW.
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