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Abstract
Sequential importance sampling (SIS) is one
of the prominent methods for estimating high-
dimensional integrals. For example, it is empir-
ically the most efficient method known for esti-
mating the permanent of nonnegative matrices, a
notorious problem with numerous applications in
computer science, statistics, and other fields. Un-
fortunately, SIS typically fails to provide accuracy
guarantees due to difficulties in bounding the vari-
ance of the importance weights; for estimating
the permanent with accuracy guarantees, the most
efficient practical methods known are based on re-
jection sampling. Taking the best of both worlds,
we give a variant of SIS, in which sampling is
proportional to the upper bound used in rejection
sampling. We show that this method is provably
more efficient than its rejection sampling counter-
part, particularly in high accuracy regimes. On
estimating the permanent, we empirically obtain
up to two orders-of-magnitude speedups over a
state-of-the-art rejection sampling method.

1. Introduction
Importance sampling is a popular Monte Carlo method
for approximating high-dimensional integrals (Robert &
Casella, 2004, Ch. 3.3, 14). There, we draw samples from
a proposal distribution and reweight them to have the ex-
pected value match the value of the integral. The variance
of the estimator depends on the quality of the proposal dis-
tribution: the closer it is to being proportional to the weights
(unnormalized probability masses or densities), the smaller
the variance.

Many problems—like counting the number of linear exten-
sions of a given partial order (Jensen & Beichl, 2020) or
graphs with a given degree sequence (Bayati et al., 2010)—
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exhibit self-reducible nature. Essentially, the search space
can be partitioned in a way that allows solving the original
instance by solving smaller instances of the same prob-
lem. Correspondingly, sequential importance sampling
(SIS) uses a proposal distribution where some randomized
choices are made, after which the sample is completed by
drawing the rest of the sample from the smaller instance.

In numerical integration, accuracy guarantees are desir-
able. Formally, we want an approximation scheme that
computes an (ϵ, δ)-approximation (see, e.g., Ermon et al.,
2013; Chakraborty et al., 2014) for any given ϵ, δ > 0: an
estimate that has a relative error at most ϵ with probability
at least 1 − δ. The scheme thus needs a stopping rule de-
scribing the requirements for the given ϵ and δ that must be
satisfied until the algorithm can stop drawing new samples.
A weak stopping rule leads to drawing unnecessary sam-
ples whereas finding an optimal one can be difficult. The
main challenge with importance sampling is that no good
stopping rules for it are known in general.

As a special case, asymptotically optimal stopping rules are
known for random variables distributed in [0, 1] (Dagum
et al., 2000; Huber, 2006; Mnih et al., 2008). However,
applying these rules for SIS requires bounding the impor-
tance weights of the samples. Again, this is often hard as
one needs both a proposal distribution with small impor-
tance weights and a good upper bound for them that is either
obtained analytically or efficiently computable.

On the other hand, rejection sampling is an exact sampling
method that is usable for integration with accuracy guaran-
tees. It is based on upper bounds for the weights of subsets
of the sample space and has optimal stopping rules (Dagum
et al., 2000; Huber, 2017). The method repeatedly draws
samples and either accepts or rejects them to ensure that the
accepted samples come proportionally to their weights. The
algorithm stops after a certain number of accepted samples
is drawn.

Of particular interest to us is the #P-hard problem of com-
puting the permanent of a matrix (Valiant, 1979), which
has numerous applications in, for example, probability and
statistics (Bapat, 1990), multi-target tracking (Uhlmann,
2004; Kuck et al., 2019), physics (Beichl & Sullivan, 1999;
Aaronson & Arkhipov, 2011), and constraint satisfaction
problems (Bianco et al., 2019). Until now, the most ef-
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ficient known method for approximating this sum over
weighted permutations with accuracy guarantees has been
self-reducible rejection sampling (Huber, 2006; Kuck et al.,
2019; Harviainen & Koivisto, 2023). In practice, how-
ever, SIS schemes (Smith & Dawkins, 2001; Chen & Liu,
2007; Alimohammadi et al., 2023) converge much faster
empirically. While some upper bounds are known for the
number of samples needed by SIS for computing an (ϵ, δ)-
approximation (Diaconis, 2019; Diaconis & Kolesnik, 2021;
Alimohammadi et al., 2023), they are so large that applying
them directly would lead to poor performance.

Our main question is whether one can incorporate the up-
per bounds from rejection sampling into SIS to bound the
importance weights, enabling efficient stopping rules. Re-
lated ideas have shown promise in the dynamic importance
sampling method for inference in graphical models (Lou
et al., 2017), in which one iteratively expands a search tree
and uses a proposal distribution based on upper bounds for
unsolved subproblems.

The rejection sampling schemes for the permanent of a
nonnegative matrix rely on upper bounds that are nesting
(Huber, 2006; Kuck et al., 2019): a property that the bound
is monotone in a sense over a partition tree of the search
space. In this paper, we prove an upper bound for the im-
portance weights when nesting bounds are used to guide
SIS, giving a positive answer to the question. The running
time of the presented nesting importance sampling (NIS)
scheme depends on the tightness of the used bound, and
thus combining it with methods that yield tighter nesting
bounds, such as deep bounds (Harviainen et al., 2021), can
be beneficial. Note that despite the similarity of the names,
NIS is unrelated to the nested sampling method introduced
by Skilling (2004).

To demonstrate the power of the presented method, we
evaluate our novel NIS scheme against the state-of-the-art
rejection sampler (Harviainen & Koivisto, 2023) on approx-
imating the permanent. We compare the time usage for
computing estimates for both synthetic and real-world in-
stances with varying sizes and accuracies. We observe that
NIS is consistently better and obtains up to two orders-of-
magnitude speedups.

Even though we here focus on the permanent, for which
good nesting upper bounds are already known, the presented
idea is general: it is applicable to any self-reducible problem
where we have nesting bounds. Thus, we believe NIS to
become suitable for obtaining accuracy guarantees also in
other integration problems once appropriate upper bounds
are discovered. Notably, weakening a non-nesting bound
slighly can be sufficient for transforming it into a nesting
one (Huber, 2006), providing one way of obtaining such
bounds.

2. Nesting Importance Sampling
We start by covering the used terminology and notation.
Then, we introduce nesting importance sampling and bound
the number of samples required by it.

2.1. Sequential Importance Sampling

Let Ω be a countable set of objects, and associate a nonneg-
ative weight a(x) for each object x ∈ Ω. Then, a defines an
unnormalized probability distribution whose normalizing
constant is the weighted sum

a(Ω) :=
∑
x∈Ω

a(x).

In importance sampling, we draw samples x1, x2, . . . , xN

from a proposal distribution q(x) for some N . Then, each
ratio a(xi)/q(xi) is an unbiased estimator of a(Ω) and so
is their mean

1

N

N∑
i=1

a(xi)

q(xi)
.

Explicitly maintaining all probabilities q(x) becomes infea-
sible when |Ω| is large. Fortunately, sampling can often
be performed in a self-reducible fashion: We split the sam-
pling process into several parts by first drawing a part of the
sample such that completing the missing part reduces into
drawing a sample from a smaller instance. An alternative
way of thinking this is repeatedly partitioning the set of
objects and picking one of the sets until we are left with a
singleton. Denote this sequence of subsets of Ω by

Ω = Ω0 ⊇ Ω1 ⊇ · · · ⊇ Ωℓ = {x}.

Then, sequential importance sampling (SIS) is defined by a
proposal distribution that factorizes as

q(x) = q({x}) =
ℓ∏

j=1

q (Ωj | Ωj−1) ,

where q (Ωj | Ωj−1) is the probability of choosing the set
Ωj from a partition of Ωj−1. Again, this gives an unbiased
estimator a(x)/q(x). Algorithm 1 describes the method
with the initial argument being Ω0 = Ω.

The more samples we draw, the better estimates we get,
but at which rate? Suppose we want the estimate to have
a relative error at most ϵ. We say that the output of an
estimator is an (ϵ, δ)-approximation of a(Ω) if its relative
error exceeds ϵ with probability at most δ. Let Y be a
random variable equal to a(X)/q(X) for a random variable
X drawn from q. Then, computing an (ϵ, δ)-approximation
of a(Ω) requires

O

(
E[Y 2]

E[Y ]2
ϵ−2δ−1

)
2
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Algorithm 1 Sequential importance sampling
Input: A set of objects Ωj−1.
Output: Estimate a(x)/q(x) with x ∼ q.
if Ωj−1 = {x} then

return a(x)
end if
Partition Ωj−1 into Ω1

j ,Ω
2
j , . . . ,Ω

m
j

Pick k ∈ [m] with probabilities q
(
Ωk

j | Ωj−1

)
Call Algorithm 1 on Ωk

j and let w be its output
return w/q

(
Ωk

j | Ωj−1

)
samples by Chebyshev’s inequality. Applying the median
trick by computing an (ϵ, 1/4)-approximation O(log δ−1)
times and taking their median lets us replace δ−1 by log δ−1

in the total number of samples needed.

In an ideal case, we would have q(x) = a(x)/a(Ω) so
that one sample would be sufficient for computing a(Ω) ex-
actly. Unfortunately, sampling from such a distribution and
computing q(x) is hard without knowing the normalizing
constants beforehand. Thus, we instead hope to discover
a proposal distribution that approximates this ideal distri-
bution sufficiently well. Problematically, the critical ratio
E[Y 2]/E[Y ]2 of q is typically unknown and so we need a
stopping rule that decides if we have achieved the desired
accuracy and can stop drawing new samples based on the
past draws.

2.2. Nesting

For the proposal distribution q to approximate each a(Ωj)
well, it should utilize the information available about them.
In a sense, this is what upper bounds do: when given
information about a(Ωj), we compute an upper bound
U(Ωj) ≥ a(Ωj) that provides a rough approximation of
a(Ωj). Could we then show a boundable critical ratio for a
proposal distribution q where

q(Ωk
j | Ωj−1) = U(Ωk

j )
/ m∑

i=1

U(Ωi
j) (1)

for the partition Ω1
j ,Ω

2
j , . . . ,Ω

m
j of Ωj−1?

We will next answer the question in the affirmative for a
family of upper bounds that are nesting, a type of mono-
tonicity property. Before we define the nesting property,
equip Ω with a fixed hierarchical collection of partitions,
and say that Ωj is reachable if we have a sequence of sets

Ω = Ω0 ⊇ Ω1 ⊇ · · · ⊇ Ωj

where Ωi is one of the sets in the partition of Ωi−1 for all
i ∈ {1, 2, . . . , j}. We require that each set {x} is reachable.
Definition 2.1. An upper bound U is nesting (with respect
to a hierarchical collection of partitions) if for any reachable

Ωj−1 and its partition Ω1
j ,Ω

2
j , . . . ,Ω

m
j we have

U(Ωj−1) ≥
m∑
i=1

U(Ωi
j) .

The use of nesting bounds stems from self-reducible re-
jection sampling literature for the permanent, where they
ensure the correct distribution of the samples (Huber, 2006;
Huber & Law, 2008; Harviainen & Koivisto, 2023). There,
the term “nesting” was coined by Kuck et al. (2019), al-
though they present it in a more general setting than just the
permanent.

We call a SIS scheme that uses a nesting upper bound a nest-
ing importance sampling (NIS) scheme. We proceed to ana-
lyzing the properties of the samples drawn by a NIS scheme,
culminating in giving an upper bound for the number of
samples needed for obtaining an (ϵ, δ)-approximation.

2.3. Guarantees

Consider the random variable

Y := Y (x) =
a(x)

q(x)

where q is defined by Equation (1) and a nesting upper
bound U . We show an upper bound for the value of Y ,
leading to a bounded critical ratio:

Lemma 2.2. Let x ∈ Ω such that a(x) > 0. Then, we have
0 < Y (x) ≤ U(Ω).

Proof. Let a(x) > 0. Then, for the sequence of sets

Ω = Ω0 ⊇ Ω1 ⊇ · · · ⊇ Ωℓ = {x}.

for reaching {x} we have that

U(Ωj) ≥ a(Ωj) ≥ a(x) > 0 .

This guarantees that both the numerator and the denominator
in Equation (1) are positive, and thus q(Ωj | Ωj−1) > 0.

For the upper bound, we have by definition that

Y (x) = a(x)
/ ℓ∏

j=1

q(Ωj | Ωj−1)

= a(x)

ℓ∏
j=1

m∑
i=1

U(Ωi
j)/U(Ωj) ,

where m = m(Ωj−1) is a function of Ωj−1. Apply the
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nesting property to obtain the upper bound

a(x)

ℓ∏
j=1

U(Ωj−1)/U(Ωj)

= a(x) · U(Ω0)

U(Ωℓ)

≤ U(Ω) .

Consequently,

E[Y 2] ≤ U(Ω) · E[Y ] = U(Ω) · a(Ω),

resulting in the following corollary:
Corollary 2.3. The critical ratio of Y is at most
U(Ω)/a(Ω).

It should be noted that since the tightness of our upper bound
for Y depends on how small the ratios

m∑
i=1

U(Ωi
j)/U(Ωj−1)

are, the critical ratio may be significantly smaller in practice.

The key fact we apply is that asymptotically optimal stop-
ping rules are known for estimating the expected value of a
[0, 1]-valued random variable, and Y/U(Ω) is such a vari-
able.
Lemma 2.4 (Dagum et al., 2000). Let Y be a [0, 1]-valued
random variable. Then, an (ϵ, δ)-approximation of E[Y ]
can be computed using

O

((
E[Y 2]

E[Y ]2
+

ϵ

E[Y ]

)
ϵ−2 log δ−1

)
samples of Y on average.

Crucially, the asymptotic bound holds even if the critical
ratio is unknown. Huber & Jones (2019) have presented an
improved approximation scheme that has the same asymp-
totic behavior as that of Dagum et al. (2000), but requires at
least 60% fewer samples for small ϵ and even less in practice.
The implementation of the scheme is rather involved, and
so we refer the reader to their article for details. Bernstein’s
inequality gives an alternative near-optimal stopping rule
(Mnih et al., 2008). Applying either of the stopping rules of
Dagum et al. (2000) and Huber & Jones (2019) gives us a
bound for the expected number of samples:
Theorem 2.5. Let Y be a random variable obtained as
an output of Algorithm 1 with a proposal distribution
equipped with a nesting upper bound U . Then, an (ϵ, δ)-
approximation of E[Y ] = a(Ω) can be computed using

O

((
E[Y 2]

E[Y ]2
+

U(Ω) · ϵ
a(Ω)

)
ϵ−2 log δ−1

)
samples of Y on average.

Proof. Divide each Y by U(Ω) to obtain a [0, 1]-valued
random variable. The number of samples follows from the
fact that E[Y/U(Ω)] = a(Ω)/U(Ω) whereas the critical
ratio remains the same despite scaling Y .

Since the critical ratio of Y is bounded by U(Ω)/a(Ω), the
expected number of samples needed is at worst

O
(
U(Ω)/a(Ω) · ϵ−2 log δ−1

)
.

On the other hand, the term U(Ω) · ϵ/a(Ω) may dominate
the critical ratio in practice, leading to a complexity

O
(
U(Ω)/a(Ω) · ϵ−1 log δ−1

)
.

In contrast, the expected number of samples required by
rejection sampling is

O
(
U(Ω)/a(Ω) · ϵ−2 log δ−1

)
as we will discuss in Section 4.4 in the context of approxi-
mating the permanent (Huber, 2006).

3. Estimating the Permanent
We start by recalling some properties of the permanent of
a matrix and how SIS is used in estimating it. Then, we
present a NIS scheme for the problem.

3.1. The Permanent of a Matrix

One application of SIS is to approximate the permanent of
an n× n matrix A = (aij) defined as the sum

perA :=
∑
σ

a(σ), where a(σ) :=

n∏
i=1

aσ(i),i ,

over permutations of [n] := {1, 2, . . . , n}.

The exact computation of the permanent is #P-hard (Valiant,
1979), with the fastest algorithms taking exponential time in
the worst case (Ryser, 1963; Chakraborty et al., 2019). Even
though permanents of nonnegative matrices are estimable in
arbitrary precision in a fully polynomial time with rapidly
mixing Markov chains (Jerrum et al., 2004; Bezáková et al.,
2008), the polynomials have high degree and large constant
factors (Newman & Vardi, 2020), making them infeasible.
Thus, alternative methods are needed for approximation in
practice. Here, we focus on developing an approach based
on NIS—related techniques are discussed in Section 4.

The Laplace expansion enables computation of the perma-
nent in a self-reducible form: letting Aij be the submatrix
of A with the ith row and the jth column removed, we have

perA =

n∑
i=1

aij perAij

4
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for any column j ∈ [n].

Many SIS-based approaches (Beichl & Sullivan, 1999; Chen
& Liu, 2007; Alimohammadi et al., 2023) for approximating
the permanent rely on this idea: the iterative construction
of the permutation starts by fixing an entry from the first
column of the matrix and then proceeds by sampling a
permutation according to the remaining submatrix.

To apply the ideas from the previous section, we fix the en-
tries using upper bounds for the permanents of submatrices.
With some abuse of notation, let U(A) be an upper bound
for the total weight of the set of permutations whose weights
are given by A. Then, we choose the ith entry from the first
column with a probability proportional to ai1 · U(Ai1).

3.2. Nesting Bounds

The known nesting upper bounds are product bounds, mean-
ing they can be written in the form

U(A) =
∏
i=1

u(ai,1:n)

for a function u, where ai,1:n is the vector
(ai1, ai2, . . . , ain). We call u the row bound of U .

Note that for a product bound, choosing i with probability
proportional to ai1 ·U(Ai1) is equivalent to choosing it with
probability proportional to ai1/u(ai,2:n). Therefore, the val-
ues are easy to precompute and can be queried in constant
time. Algorithm 2 describes an estimator for the perma-
nent that works with any given product bound. Providing
a nesting product bound yields a NIS scheme. Notice that
Algorithm 2 draws a single sample, so it needs no stopping
rule—one is required for stopping the sampling only when
the algorithm is called repeatedly.

The simplest nesting product bound consists of taking
the sum of entries on each row, that is, its row bound is∑n

j=1 aij . To see that this naive bound UN is an upper
bound, take any permutation σ and notice that a(σ) is one
of the terms of UN(A) when it is expanded to a sum of
products.

To see that UN is nesting, take any of the terms in UN(A).
The sum

∑n
i=1 ai1 · UN(Ai1) includes the term if and only

if the product has exactly one entry from the first column as
a factor. Additionally, this is true for at most one value of i,
proving the property.

With the naive bound, the row is chosen with probability
proportional to aij/

∑n
k=j+1 aik. For binary matrices, this

reduces into an older SIS scheme of Chen & Liu (2007),
which is a special case of a sampler of Smith & Dawkins
(2001) for nonnegative matrices. Curiously, the row is sam-
pled proportionally to a2ij/

∑n
k=j+1 aik in the latter work,

which does not correspond to a nesting upper bound since it
contains the square of aij .

Algorithm 2 SIS for permanent
Input: A nonnegative matrix A, a row bound u.
Output: Estimate a(σ)/q(σ) with σ ∼ q.
out ← 1
used ← [False, False, . . . , False]
for j ← 1, 2, . . . , n do

p← [0, 0, . . . , 0]
for i← 1, 2, . . . , n do

if ¬used [i] then
p[i]← aij/u(ai,(j+1):n)

end if
end for
if p[i] = 0 for all i then

return 0
end if
Normalize p
Draw i ∼ p
out ← out · aij/p[i]
used [i]← True

end for
return out

Empirically, the NIS scheme that uses the naive bound
appears to converge fast based on our preliminary experi-
ments, suggesting it has low critical ratio. However, the ratio
UN(A)/ per(A) can be large, hindering the suitability of
the bound for obtaining estimates with accuracy guarantees
by using Theorem 2.5.

The tightest known nesting bound that works for all nonnega-
tive matrices is the extended Huber bound UE of Harviainen
& Koivisto (2023), which is based on an earlier upper bound
for binary matrices (Huber, 2006). It is defined by the row
bound

n∑
k=1

h(k)− h(k − 1)

e
· a∗ik

where a∗ik is the kth largest entry on the ith row and h is
given by the recurrence h(0) := 0, h(1) := e, and

h(k) = h(k − 1) + 1 +
1

2h(k − 1)
+

3

5h(k − 1)2
.

Deep bounds (Harviainen et al., 2021) are generalizations
of upper bounds for the permanent. Denote the submatrix
of A that has its columns J and rows I by AIJ . Then, the
depth-d variant of the bound U with J := [d] is obtained as

Ud(A) :=
∑
I⊆[n]
|I|=d

perAIJ · U(AĪJ̄)

≥
∑
I⊆[n]
|I|=d

perAIJ · perAĪJ̄

= perA .

5
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For nesting bounds, the upper bound decreases as a func-
tion of d. After preprocessing with dynamic programming
of complexity O(2ddn), the nesting importance sampling
proceeds as follows: First, sample I with probability pro-
portional to perAIJ · U(AĪJ̄) in time O(nd) with stochas-
tic backtracking. Then, sample the remaining permutation
according to the submatrix AĪJ̄ using regular nesting im-
portance sampling.

4. Relation to Previous Work
We will next cover some of the relevant literature on ap-
proximating the permanent and discuss their applicability if
accuracy guarantees are desired.

4.1. Sinkhorn Balancing

A common preprocessing method applied to the matrices is
Sinkhorn balancing (Sinkhorn, 1964) that is performed by
alternating between scaling the rows and the columns by the
sums of their entries. The permanent changes by the same
scaling factors. If the matrix contains no positive entries
that are not part of any positive-valued permutation, this
progress quickly converges into a doubly-stochastic matrix
where both the row and column sums equal one (Soules,
1991). Removing redundant entries can be performed in
polynomial time (Tassa, 2012). This typically tightens the
upper bound as well.

The use of Sinkhorn balancing is partially motivated by
van der Waerden’s conjecture proven by Egorychev (1981)
and Falikman (1981) that states that the permanent of a
doubly stochastic matrix is at least n!/nn ≈ e−n. Both the
naive and extended Huber bound are at most 1 for doubly
stochastic matrices, and so

U(A)/ perA ≤ en.

In contrast, there are nonnegative matrices where this ratio
is super-exponential (Soules, 2003).

4.2. SIS with Pruning

A common issue with both importance and rejection sam-
plers is that they can draw samples of weight 0. This is
because they do not check that the remaining submatrix has
a permutation of non-zero weight. Diaconis (2019) suggests
doing exactly that for binary matrices, and Alimohammadi
et al. (2023) generalize it for nonnegative matrices, building
upon earlier ideas of Beichl & Sullivan (1999) and Smith
& Dawkins (2001). They maintain a perfect matching that
allows computing which entries have become redundant.
Then, an entry from the column is chosen with probability
proportional to its value. Ignoring the redundant entries
reduces the variance of the samples but increases sampling
time. However, based on the experiments of Section 5, it

appears unlikely that this idea would be helpful to our NIS
scheme: the ratio U(A) · ϵ/ per(A) seems to dominate the
critical ratio in the the bound of Theorem 2.5, and thus
reducing the latter would not lead to noticable speedups.

4.3. Godsil–Gutman Type Estimators

Godsil–Gutman type estimators (Godsil & Gutman, 1981)
utilize the similarities between the determinant and the per-
manent. Let B = (bij) be a random n × n matrix ob-
tained from A such that bij = cij

√
aij , where each cij is

chosen uniformly at random from the set {−1, 1}. Then,
E
[
(detB)2

]
= perA. A similar result applies for the es-

timator |detB|2 when the coefficients are fourth roots of
unity (Karmarkar et al., 1993) or quaternions (Chien et al.,
2003). Here, |·|2 is the sum of the squares of the coefficients
of the determinant in the quaternion basis.

The critical ratio of the estimator based on complex num-
bers is almost linear in n for almost all binary matrices and
polynomial for all dense matrices (Frieze & Jerrum, 1995).
Unfortunately, there are instances that result in an expo-
nential critical ratio (Karmarkar et al., 1993; Chien et al.,
2003) with no known way of efficiently detecting such hard
instances. Additionally, there are matrices with entries from
{−1, 1} for any n where the determinant of the matrix is
roughly nn/2 (Clements & Lindström, 1965). Thus, we
would need to divide each |detB|2 by nn to apply the stop-
ping rule of Theorem 2.4, with the expected value being
perA/nn. This ratio, however, can be extremely small,
rendering the stopping rule impractical.

4.4. Self-reducible Rejection Sampling

In rejection sampling, we draw samples from a proposal
distribution and either accept or reject them such that the
distribution of accepted samples is proportional to their
weights. Then, the empirical acceptance rate can be used
to obtain an estimate of the partition function of the dis-
tribution. Here, we draw permutations and estimate the
permanent.

Huber (2006) suggested the following algorithm for sam-
pling permutations. Let U be a nesting upper bound. First,
fix an entry ai1 from the first column with probability
ai1 · U(Ai1)/U(A), and reject the sample with probabil-
ity

1−
n∑

i=1

ai1 · U(Ai1)/U(A) .

If we did not reject the sample, draw the rest of the permu-
tation according to the values of the submatrix Ai1.

Let σ be a permutation and denote the submatrix of A
with its rows [n] \ {σ(1), σ(2), . . . , σ(j)} and columns
[n] \ {1, 2, . . . , j} by Aσ(1)σ(2)...σ(j). Then, the probability

6
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Table 1. The average running time for computing an (ϵ, δ)-approximation with δ = 0.05 and varying values of ϵ.

ϵ = 0.02 ϵ = 0.01 ϵ = 0.005
Instance n DEEPNIS DEEPAR Ratio DEEPNIS DEEPAR Ratio DEEPNIS DEEPAR Ratio

ENZYMES-g479 28 3 · 101 1 · 102 4 8 · 101 4 · 102 5 3 · 102 2 · 103 6
ENZYMES-g192 31 3 · 101 2 · 102 7 9 · 101 9 · 102 10 3 · 102 4 · 103 15
ENZYMES-g230 32 2 · 101 3 · 102 11 6 · 101 1 · 103 16 2 · 102 4 · 103 21
ENZYMES-g575 51 1 · 104 − − 2 · 104 − − − − −
ENZYMES-g283 52 1 · 102 2 · 103 17 3 · 102 8 · 103 28 8 · 102 3 · 104 44
ENZYMES-g501 66 3 · 101 3 · 102 10 8 · 101 1 · 103 15 3 · 102 5 · 103 21

Staircase-30 30 7 · 100 6 · 101 9 1 · 101 3 · 102 21 2 · 101 1 · 103 43
cage5 37 6 · 100 2 · 102 36 1 · 101 8 · 102 72 3 · 101 3 · 103 115

bcspwr01 39 3 · 101 2 · 102 5 8 · 101 6 · 102 8 2 · 102 3 · 103 10
Staircase-45 45 7 · 102 2 · 104 25 1 · 103 − − 2 · 103 − −

GD95-c 62 − − − − − − − − −
CAG-mat72 72 9 · 103 − − 2 · 104 − − 3 · 104 − −

of sampling σ is

n∏
j=1

aσ(j),j · U
(
Aσ(1)σ(2)...σ(j−1)

)
U
(
Aσ(1)σ(2)...σ(j)

) =
a(σ)

U(A)

with an expected acceptance ratio perA/U(A). Thus, mul-
tiplying the empirical acceptance rate by U(A) yields an
estimate of perA. It remains to choose a stopping rule
ensuring the desired accuracy.

The Gamma Bernoulli approximation scheme (GBAS) of
Huber (2017) described in Algorithm 3 gives an estimator
of p := perA/U(A) that stops after obtaining k accepted
draws and outputs p̂. Here, we interpret the samples to be
Bernoulli-distributed with parameter perA/U(A), where
1 corresponds to an accepted sample. For the estimator, it
holds that p/p̂ ∼ Gamma(k, k− 1). To achieve the desired
accuracy, we find the smallest k for which

Pr

(∣∣∣∣ p̂p − 1

∣∣∣∣ > ϵ

)
= Pr

(
p

p̂
<

1

1 + ϵ
or

p

p̂
>

1

1− ϵ

)
is at most δ by evaluating the cumulative distribution func-
tions of Gamma(k, k − 1). Asymptotically, k is of size
O
(
ϵ−2 log δ−1

)
, and each accepted sample requires approx-

imately U(A)/perA draws. This suggests NIS to have
potential for speedups against self-reducible rejection sam-
pling of up to a factor of ϵ−1.

5. Empirical Evaluation
We evaluated the performance of NIS on real-world matri-
ces (Rossi & Ahmed, 2015) licensed under CC-BY-SA and
synthetic instances used by Harviainen et al. (2021) and
Harviainen & Koivisto (2023). The used instantiation of our
scheme, dubbed DEEPNIS, utilizes the depth-16 variant of
the extended Huber bound. We also remove redundant en-
tries from the matrix (Tassa, 2012) and apply 100 iterations

Algorithm 3 GBAS
Input: Matrix A, integer k.
Output: Estimator p̂.
r ← 0, s← 0
while s ̸= k do

Draw a ∼ Exp(1), x ∼ Bernoulli(perA/U(A))
r ← r + a, s← s+ x

end while
return p̂ := (k − 1)/r

of Sinkhorn balancing like Alimohammadi et al. (2023).
DEEPNIS is compared against the state-of-the-art rejection
sampler DEEPAR that uses the same bound but applies n2

rounds of Sinkhorn balancing only if it tightens the ratio
U(A)/ perA. Additionally, they try tightening the ratio
by randomized scaling of the columns. In all cases, we
computed (ϵ, δ)-approximations of the permanents of the
instances with δ = 0.05. The implementations are publicly
available on GitHub1.

For real-world matrices, we ran both schemes with varying
values of ϵ ∈ {0.005, 0.01, 0.02} on each instance indepen-
dently 20 times. Each run was allowed to use 12 hours
(43 200 seconds) of time. The results are reported in Table 1
containing the average times used for obtaining the esti-
mates. Additionally, we report the ratio of the average time
used by DEEPAR to DEEPNIS. If any of the runs exceeded
the time limit, we report “−” as otherwise the averages
would not be comparable. The running times t are rounded
in the table to a number of the form b · 10k that minimizes
the relative error from t.

The synthetic instances are from three classes of matrices.
Uniform consists of n × n matrices with Uniform[0, 1]-

1https://github.com/Sums-of-Products/
nesting-importance-sampling/
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Figure 1. Comparison of running times over synthetic instances of varying values of ϵ ∈ [10−1, 10−3] on the first row and varying sizes
with ϵ = 0.01 on the second row.

distributed entries. Block Diagonal has blocks of 5 × 5
matrices with uniformly distributed entries on the main di-
agonal and zero elsewhere. Bernoulli has matrices where
each entry is 1 with probability 0.1 and 0 otherwise. We
evaluated the schemes with decreasing values of ϵ on a sin-
gle instance from each class and with instances of increasing
size n with ϵ = 0.01. Only the results for instances with
n ≥ 20 are reported in Figure 1, since smaller instances can
be solved exactly in less than a second (Ryser, 1963).

We see that DEEPNIS beats DEEPAR in all instances with
the ratio of running times of DEEPAR to DEEPNIS being
up to two orders of magnitude. Additionally, we see that
the ratio increases as ϵ decreases, meaning that the time
complexity of rejection sampling grows faster in ϵ−1 for
the tested values of ϵ. This suggests that the critical ratio
in the complexity bound of Theorem 2.5 is dominated by
U(Ω) · ϵ/a(Ω), although the critical ratio would start domi-
nating eventually if we kept decreasing ϵ. In some instances,
halving ϵ affected the ratio of running times by slightly over
a factor of 2. This seems to be because of the variance in
the random number of samples needed by the approxima-
tion scheme of Huber & Jones (2019). With DEEPAR, the
running times over the 20 repetitions were fairly consistent,
and the fastest and the slowest run on the same instance
differed by a factor of 1.21. With DEEPNIS, they differed
by a factor of 2.51.

As evidence for the correctness of the implementations, we
note that the relative error from the sample average of all
independent runs for real-world matrices exceeded ϵ in only

2.2% < δ of the runs. In other words, the estimates from
DEEPNIS and DEEPAR agreed and were close to their
mean. The structure of matrices in Block Diagonal enables
exact computation of their permanents, and for these test
instances the relative error from the exact value exceeded
ϵ = 0.01 in less than 1.2% of the runs.

6. Concluding Remarks
We presented a new method for approximate weighted count-
ing or integration: nesting importance sampling. By sam-
pling proportionally to a nesting upper bound, it yields
bounded importance weights, thereby giving access to
known efficient stopping rules to control the required num-
ber of samples. Nesting importance sampling can be viewed
as a boosted variant of the sequential rejection sampling
method of Huber (2006), reducing the number of samples
but losing the ability to draw exact samples. The scheme
is suitable for any setting where nesting upper bounds are
available. Using the notoriously hard problem of approxi-
mating the permanent of a matrix as an example, we demon-
strated the power of this approach by showing speedups of
up to two orders of magnitude when compared against the
state-of-the-art rejection sampling algorithm.

One curious nesting bound stemming from the previous
work (Chen & Liu, 2007; Smith & Dawkins, 2001) is the
naive bound: In our experiments (results not shown), the
resulting estimator for the permanent appeared to converge
rapidly, thus speaking for a low critical ratio of the estima-
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tor in practice. However, as the upper bound is large, it
does not yield an efficient estimator with accuracy guaran-
tees. It turns out that directly applying the nesting property
with this bound leads to Lemma 2.2 greatly overestimating
the importance weights. Developing a general method for
tighter analysis of nesting but “naive” bounds could result
in efficient approximation schemes for integration problems
that are hard in the exact case, such as weighted counting of
Bayesian network structures (Talvitie et al., 2019) or match-
ings of size k in undirected graphs (Curticapean, 2013).
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Harviainen, J., Röyskö, A., and Koivisto, M. Approximating
the permanent with deep rejection sampling. In Advances
in Neural Information Processing Systems 34, NeurIPS
2021, pp. 213–224, 2021.

Huber, M. Exact sampling from perfect matchings of dense
regular bipartite graphs. Algorithmica, 44(3):183–193,
2006.

Huber, M. A Bernoulli mean estimate with known relative
error distribution. Random Struct. Algorithms, 50(2):
173–182, 2017.

Huber, M. and Jones, B. Faster estimates of the mean of
bounded random variables. Math. Comput. Simul., 161:
93–101, 2019.

Huber, M. and Law, J. Fast approximation of the permanent
for very dense problems. In Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2008, pp. 681–689. SIAM, 2008.

Jensen, A. and Beichl, I. A sequential importance sampling
algorithm for counting linear extensions. ACM J. Exp.
Algorithmics, 25:1–14, 2020.

Jerrum, M., Sinclair, A., and Vigoda, E. A polynomial-time
approximation algorithm for the permanent of a matrix
with nonnegative entries. J. ACM, 51(4):671–697, 2004.

Karmarkar, N., Karp, R., Lipton, R., Lovász, L., and Luby,
M. A Monte-Carlo algorithm for estimating the perma-
nent. SIAM J. Comput., 22(2):284–293, 1993.

Kuck, J., Dao, T., Rezatofighi, H., Sabharwal, A., and Er-
mon, S. Approximating the permanent by sampling from
adaptive partitions. In Advances in Neural Information
Processing Systems 32, NeurIPS 2019, pp. 8858–8869,
2019.

Lou, Q., Dechter, R., and Ihler, A. Dynamic importance
sampling for anytime bounds of the partition function. In
Advances in Neural Information Processing Systems 30,
NeurIPS 2017, pp. 3196–3204, 2017.
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