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Abstract
Progress in designing channel codes has been
driven by human ingenuity and, fittingly, has been
sporadic. Polar codes, developed on the foun-
dation of Arikan’s polarization kernel, represent
the latest breakthrough in coding theory and have
emerged as the state-of-the-art error-correction
code for short-to-medium block length regimes.
In an effort to automate the invention of good
channel codes, especially in this regime, we ex-
plore a novel, non-linear generalization of Polar
codes, which we call DEEPPOLAR codes. DEEP-
POLAR codes extend the conventional Polar cod-
ing framework by utilizing a larger kernel size
and parameterizing these kernels and matched
decoders through neural networks. Our results
demonstrate that these data-driven codes effec-
tively leverage the benefits of a larger kernel size,
resulting in enhanced reliability when compared
to both existing neural codes and conventional
Polar codes. Source code is available at this link.

1. Introduction
Reliable digital communication is a primary workhorse of
the information age. To ensure reliable communication over
a noisy channel, it is common to introduce redundancy in
the transmitted data to enable faithful reconstruction of the
message by receivers. This crucial process, known as error
correction coding (channel coding), lies at the heart of both
wired (Ethernet, cable) and wireless (cellular, WiFi, satel-
lite) communication systems. Over the past seven decades,
a significant research thrust has focused on designing re-
liable codes (consisting of an encoder-decoder pair) that
achieve good reliability whilst having an efficient decoder.
The canonical setting is one of point-to-point reliable com-
munication over the additive white Gaussian noise (AWGN)
channel, and the performance of a code in this setting is its
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gold standard. The figure of merit can be precisely mea-
sured: bit error rate (BER) measures the fraction of input
bits that were incorrectly decoded; block error rate (BLER)
measures the fraction of times at least one of the original
data bits was incorrectly decoded.

The field of coding theory has experienced sporadic yet
significant breakthroughs, largely propelled by human in-
genuity. Polar codes, invented by Arikan in 2009 (Arikan,
2009), is one of the most profound developments in coding
theory, significantly revitalizing the field. Polar codes, a
combination of algebraic and graphical coding structures,
are the first class of codes with a deterministic construction
proven to achieve Shannon capacity. Importantly, this is
achieved with low-complexity encoding and decoding. The
impact of Polar codes is evident from their integration into
the 5G standards within just a decade of their proposal – a
remarkably swift timeline considering that it typically takes
several decades for new coding methods to be incorporated
into cellular standards (3GPP, 2018; Bioglio et al., 2020).

The basic building block of Polar codes is a binary matrix

G =

[
1 0
1 1

]
, called the polarization kernel. The generative

matrix, which characterizes a linear code, is obtained by
several Kronecker products of G with itself. This construc-
tion of polar codes gives rise to a remarkable phenomenon
known as “channel polarization". This process transforms n
views of a binary memoryless channel into n synthetic “bit
channels", each with distinct reliability. As the block length
n grows asymptotically large, these bit channels become po-
larized, becoming either completely noiseless or completely
noisy. Polar encoding proceeds by sending information bits
in the noiseless bit channels while the noisy input bits are
“frozen" to a known value. Capacity is achieved via the
sequential successive cancellation (SC) decoder.

Polar codes and SC decoding are optimal for large asymp-
totic blocklengths; however, practical finite-length perfor-
mance is lacking. Recognizing this limitation, recent re-
search has focused on augmenting the polar encoder and im-
proving the decoding performance. Specifically, the concate-
nation of cyclic redundancy check (CRC) with polar codes
improves distance properties. Combining this with succes-
sive cancellation list (SCL) decoding markedly enhances
decoding performance (Tal & Vardy, 2015; Niu & Chen,
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2012). Consequently, Polar codes have emerged as the
state-of-the-art in the short-to-medium block length regime,
leading to their inclusion in 5G standards. Nonetheless,
SCL decoding introduces considerable decoding complexity
and latency, marking a trade-off between performance and
computational efficiency.

In parallel, there have been efforts to improve polar encoders.
One approach involves modifying the Polar encoding struc-
ture. A noteworthy improvement is polarization-adjusted
convolutional (PAC) codes (Arıkan, 2019), which use con-
volutional precoding before polar coding. Remarkably, PAC
codes approach finite-length information-theoretic bounds
for binary codes in the short block length regime. However,
the practical application of PAC codes is limited by their
high decoding complexity, necessitating extremely large list
sizes for effective decoding.

An alternative idea involves increasing the size of the po-
larization kernel. Indeed, (Korada et al., 2010) prove that
polarization holds for all kernels provided they are not uni-
tary and not upper triangular under any column permutation.
Further, one can find large polarization kernels (ℓ ≥ 8) that
achieve faster polarization (characterized by the "scaling ex-
ponent"). Despite these theoretical advantages, Polar codes
with large kernels are not preferred in practice due to their
increased decoding complexity. Nevertheless, there is recent
work addressing these challenges (Trifonov, 2023) based on
specially designed polarization kernels.

In this work, we aim to address the question: How can we
automate the search for good codes? Indeed, it is possi-
ble by parameterizing and learning both the encoder and
decoder using neural networks. However, constructing ef-
fective non-linear codes using this approach is highly chal-
lenging: it is well-documented in literature that naively
parameterizing with off-the-shelf neural architectures often
results in performance worse than even repetition codes, as
elaborated further in App. F.3. Rather, a more promising
approach is to design neural architectures that enable struc-
tured redundancy. Specifically, our work delves into the
innovative intersection between algebraic coding theory and
machine learning by exploring non-linear generalizations
of polarization-driven structures. This can be achieved by
parameterizing each kernel by a neural network, combining
the information-theoretic properties of polarization-driven
code structures with the adaptability and learning capabil-
ities of deep learning. This interplay between algebraic
coding structures and deep learning is a relatively unchar-
tered territory. Our algorithm builds upon the groundwork
laid by (Makkuva et al., 2021), who introduced KO codes
as a non-linear generalization of RM codes. Although this
work marked a significant leap forward, it is limited by
its dependence on Reed-Muller (RM) encoding-decoding
schemes, which restricted its applicability across a broader

range of rates. Importantly, the architecture of KO codes
proved inapplicable for Polar codes, being only scalable
upto a (64,7) code. In contrast, our work proposes DEEPPO-
LAR codes, a non-linear generalization of the encoding and
decoding structures of Polar codes (which encompass RM
codes as a special case). This allows us to scale seamlessly
to various rates and block lengths.
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Figure 1. DEEPPOLAR (n=256, k=37) with appropriate kernel
sizes (e.g., ℓ = 16, 32) outperforms classical Reed-Muller, Po-
lar, and state-of-the-art neural KO codes (Makkuva et al., 2021) on
AWGN channels with -2dB SNR

The core innovation of DEEPPOLAR lies in its utilization
of larger-size kernels, which enables the neural network to
explore an expansive function space. This is complemented
by a matching SC-like neural decoder, which is jointly
trained on samples drawn from an AWGN channel.
Larger kernel sizes are pivotal for DEEPPOLAR achieving
substantial performance improvements on the canonical
AWGN channel, as evidenced in Fig. 1 for the case of
n = 256, k = 37. Through extensive empirical studies, we
find that a kernel size ℓ =

√
n is most effective in balancing

bias and variance, enabling it to achieve significantly
lower bit error rates over the baseline Polar and RM codes,
as well as the KO(8, 2) code, SOTA at this block length
and rate. Additionally, we design a training curriculum
that builds upon the inherent nested hierarchy of polar
coding structures to accelerate training. This combination
of principled coding-theoretic structures with a targeted
training methodology is designed to enable effective
generalization across the vast space of messages. In
summary, we make the following contributions:

• We propose DEEPPOLAR, a novel generalization of
Polar codes via large non-linear NN-based kernels.

• DEEPPOLAR outperforms the classical Polar and Reed-
Muller codes, state-of-the-art binary linear codes, as
well as KO codes, state-of-the-art ML-based codes,
whilst scaling to various code rates.

• We develop a principled curriculum-based training
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methodology that allows DEEPPOLAR to generalize to
the challenging high SNR regime.

2. Problem formulation and Background
2.1. Channel coding

Channel coding is a technique to add redundancy to the
transmission to make it robust against noise added by
the communication channel. More precisely, let u =
(u0, . . . , uk−1) ∈ {0, 1}k denote a block of informa-
tion/message bits that we wish to transmit. A code con-
sists of an encoder and decoder pair. The encoder gϕ :
{0, 1}k → {0, 1}n maps these message bits into a binary
codeword x of length n, i.e. x = g(u). The codewords
are mapped to real/complex values by modulation (eg, Bi-
nary Phase Shift Keying (BPSK)). The channel, denoted
as WY |X(·|·), corrupts the codeword x to its noisy version
y ∈ Rn. Upon receiving the corrupted codeword, the de-
coder fθ estimates the message bits as û = fθ(y). The
performance of the code is measured using standard error
metrics such as Bit-Error-Rate (BER) or Block-Error-Rate
(BLER): BER(gϕ, fθ) ≜ (1/k)

∑
i P[ûi ̸= ui], whereas

BLER(gϕ, fθ) ≜ P[û ̸= u].

Channelu ∈ {0,1}k
x ∈ ℝn y ∈ ℝn

̂u ∈ {0,1}k
Channel Encoder

gϕ

Channel Decoder

fθ

Figure 2. Channel coding via deep learning

2.2. Polar codes

Polar codes, introduced by Erdal Arıkan (Arikan, 2009), are
the first deterministic code construction to achieve the Shan-
non capacity while maintaining low encoding and decoding
complexity. This section formally defines Polar codes and
motivates our method.

Polar Encoding. A Polar code can be described by
Polar(n,k,F). Here, n is the block length; n = 2m for
some integer m, k is the number of information bits, and F
represents the set of “frozen" bit positions. Typically, the
positions corresponding to the noisiest n− k bit channels
arising due to polarization are chosen to be frozen. A polar
encoder maps information bits u ∈ {0, 1}k to a binary code-
word x ∈ {0, 1}n. The basic building block of Polar codes
is the Plotkin transform: {0, 1}d × {0, 1}d → {0, 1}2d.
This mapping for a pair of input bits (u, v) can be repre-

sented by the matrix G2 =

[
1 0
1 1

]
, transforming (u0, u1)

into (u0 ⊕ u1, u1), where ⊕ denotes the XOR operation.
Consistent with the coding theory literature, we term such
a building block a kernel. The encoding matrix for block
length n = 2m is obtained by taking the Kronecker product

of the base kernel G2 m times.

Utilizing this structure, the encoding can be efficiently
performed via a recursive coordinate-wise application
of the Plotkin transform on a binary tree, called the
Plotkin tree. To encode a block of message bits
u = (u0, . . . , uk−1) ∈ {0, 1}k, we first embed them
into a source message vector m ≜ (m1, . . . ,mn) =
(0, . . . , u0, 0, . . . , u1, 0, . . . , uk−1, 0, . . .) ∈ {0, 1}n, where
mI = u and mIC = 0 for some I ⊆ [n]. Since the mes-
sage block m contains the information bits u only at the
indices pertaining to I , the set I is called the information set,
and its complement F = IC the frozen set. We describe the
encoding on a Plotkin tree via a small example, Polar(4,3)
- illustrated in Fig. 3(a). Here, F={0}. Consider an input
of size k = 3, u = [u0, u1, u2]. At the input level (depth 1),
we freeze m0, i.e., m0 = 0 and assign u to the remaining
positions. Applying the Plotkin transform, (0, u0) → (0⊕
u0, u0) and (u1, u2) → (u1 ⊕ u2, u2). At the second level,
we apply the same operation coordinatewise to these vectors
i.e, ((0⊕u0), (u1⊕u2)) → ((0⊕u0)⊕(u1⊕u2), u1⊕u2)
and (u0, u2) → (u0 ⊕ u2, u2). The final encoded vector
is the concatenation of the outputs from the second-level
nodes i.e, (u0 ⊕ u1 ⊕ u2, u0 ⊕ u2, u1 ⊕ u2, u2). For a gen-
eral (n, k) polar code, the encoding proceeds similarly up
to m = log2 n levels.

Polar decoding. The encoded messages are corrupted by
a noisy channel W ≜ WY |X . The successive cancellation
(SC) algorithm is one of the most efficient decoders for Po-
lar codes and is optimal asymptotically. The basic principle
behind the SC algorithm is to sequentially decode each mes-
sage bit ui according to the conditional likelihood given the
corrupted codeword y and previously decoded bits û(i−1).
LLR for ith bit can be computed as

Li = log

(
P(ui = 0|y, û(i−1))

P(ui = 1|(y, û(i−1))

)
. (1)

SC decoding is described in detail in App. A.

Large kernel Polar codes. Polar codes are optimal
(capacity-achieving) at asymptotic blocklengths due to the
phenomenon of channel polarization. (Korada et al., 2010)
prove that replacing the conventional 2 × 2 kernel with
an ℓ × ℓ binary kernel (ℓ > 2) still results in polarization,
provided this matrix is non-singular and not upper triangu-
lar under any column permutation. Further, large kernel
polar codes that achieve capacity at shorter block lengths
compared to conventional polar codes have been found, as
indicated by better scaling exponents (Fazeli & Vardy, 2014;
Fazeli et al., 2020). Notably, the kernel size must be ex-
panded to 8 to surpass Arikan’s G⊗2 kernel, as no size 4
linear kernel offers an improved scaling exponent. These
kernels enable better finite-length performance at the cost
of increased decoding complexity.
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Figure 3. (a) Polar(4, 3) encoding structure using the standard 2× 2 kernel. Encoding is performed recursively on the Plotkin tree. (b)
Polar(16, 8) encoding using 4× 4 kernels. (c) DEEPPOLAR (4, 3, ℓ = 2) replaces the xor operation in Plotkin - 2× 2 by neural networks.
(d) DEEPPOLAR (16, 8, ℓ = 4) : Scaling the DEEPPOLAR encoding to higher-order kernels enables us to achieve good reliability. We are
the first to explore this design space

Large kernel polar encoding and decoding proceeds simi-
larly to conventional Polar codes via an ℓ× ℓ kernel. An ex-
emplar kernel with ℓ = 4 is simply the Kronecker product of
G with itself, G4 = G⊗G. This is a Plotkin transform with
4 inputs, referred to as Plotkin-4. We illustrate this via an ex-
ample of a (n = 16, k = 8) code with kernel size ℓ = 4 in
Fig. 3 . In this example, the message u is input at the infor-
mation positions I = FC = {7, 9, 10, 11, 12, 13, 14, 15}.
The remaining positions are frozen to 0. The kernel is ap-
plied in parallel to groups of ℓ = 4 bits. Mirroring the
conventional polar encoding, we iteratively follow this pro-
cess at each level of the tree. At the second level, we apply
Plotkin-4 coordinatewise to the vectors (v10, v11, v12, v13)
to obtain the codeword x.

In this work, we design a non-linear generalization of the
polar coding and decoding structure by both expanding the
kernel size and parameterizing them as neural networks.
By expanding the design space to include non-linearity and
larger kernels, we aim to discover more reliable codes within
the neural Plotkin code family.

3. DEEPPOLAR codes
3.1. Proposed Architecture

We design DEEPPOLAR codes by generalizing the encoding
and decoding structures of large kernel Polar codes. A
DEEPPOLAR (n, k, ℓ) code maps bits u ∈ {0, 1}k to a
codeword x ∈ Rn, using the neural Plotkin tree of kernel
size ℓ.

DEEPPOLAR encoder. Building on the foundational encod-
ing structure of Polar codes (Fig. 3a), which employs the
recursive application of a binary kernel over a Plotkin tree,
we introduce DEEPPOLAR codes as a non-linear extension
of this concept. The first major modification in our approach
is expanding the conventional 2× 2 kernel to a larger ℓ× ℓ
kernel. This is inspired by the existence of larger binary
kernels that outperform the Arikan kernel (App. B.2.)

On the other hand, we generalize the Plotkin transform by re-
placing each XOR operation with a 2-input NN gd,b, where
d is the depth in the encoding tree, and b is the index of the
NN at depth d. A DEEPPOLAR (n, k, ℓ) inherits the same
parameters as a Polar(n, k) code. The encoding structure
is analogous to conventional polar codes and is illustrated
in Fig. 3(c) - DEEPPOLAR (4,3) with ℓ = 2. We use the
same frozen set F = {0} as the conventional polar code.
Applying the neural Plotkin transform, (0, u0) → v10 =
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BCE Loss

a)Stage 1 - Curriculum learning for kernels

u0

x

0 Frozen

u1 u2 u3 u4 u5 u6 u7

v10 = 0 v13v12v11

g20

g11 g12 g13

 gϕ(4,4) gϕ(4,1)

 gϕ(4,3)
 gϕ(4,3)

b)Stage 2 - Initialize encoder and decoder by pretrained kernels

Figure 4. The curriculum to train DEEPPOLAR (16, 8, ℓ = 4) proceeds in two phases: (a) In Phase 1, the kernels (4, i) are trained
progressively for i = 1, · · · , ℓ. (b) In phase 2, we initialize each kernel in the encoder by the respective kernels (and similarly for the
decoders). For instance, the kernel g11 has one information input bit; we initialize it with a pretrained gϕ(4, 1). Similarly, g20 has three
information input bit-groups; we initialize it with a pretrained gϕ(4, 3).

(g10(0, u0), u0) and (u1, u2) → v11 = (g11(u1, u2), u2).
At the second level, we apply the kernel g20 coordinate-
wise to these vectors. This coordinatewise operation is the
key inductive bias in DEEPPOLAR encoding. The final en-
coded vector is the concatenation of the outputs from the
second-level nodes i.e, (g20(v10, v11), v11). For a general
DEEPPOLAR (n, k, ℓ = 2)code, the encoding proceeds in a
similar way upto m = log2 n levels.

Our work synergizes these two directions by employing a
non-linear kernel of size ℓ× ℓ. Fig. 3(d) illustrates DEEPPO-
LAR (16, 8, ℓ = 4), which mirrors the Plotkin-4 encoder for
Polar(16, 8). The encoding proceeds similarly, with neural
networks gd,b replacing the Plotkin mapping. A power con-
straint, ∥x∥2 = n is enforced at the output of the encoder.
App. E.5 discusses the DEEPPOLAR encoder architecture in
detail.

DEEPPOLAR leverages the Polar encoding structure by pa-
rameterizing the kernel at each internal node at depth d and
bit position b of the Plotkin tree by a neural network gd,b.
We hypothesize that this innovation unlocks performance
gains through the expanded function space afforded by both
non-linearization and the increased kernel size. Addition-
ally, this formulation allows us to scale neural Polar codes
to larger blocklengths and rates.

DEEPPOLAR-SC decoder. To decode the received code-
words corrupted by noise, we design the DEEPPOLAR-SC
decoder, a neural generalization of SC decoding. The DEEP-
POLAR-SC decoder consists of a decoding tree, consisting
of ℓ decoding networks fd,ℓb+j , j : 0 → ℓ − 1, matching
every kernel gd,b. Notably, each decoding NN fd,ℓb+j is
applied coordinatewise and takes as input the LLR from the
previous j − 1 outputs, along with the ℓ inputs to the kernel.

DEEPPOLAR-SC is detailed in App. C.1.

3.2. Training methodology : Curriculum learning.

The primary challenge in training neural channel codes is
the astronomical space of potential codewords; the task
is to find a noise-robust mapping for each binary string
in the k-dimensional Boolean hypercube to a codeword
in Rn. This challenge is pronounced even in the short-
to-medium blocklength regime we focus on, for instance,
training a (256,37) code involves designing 237 codewords
in a 256-dimensional space. During training, we encounter
a tiny fraction of the message space (< 1%), making the
NN’s ability to effectively generalize to unseen messages a
pivotal factor in learning effective codes. While principled
architectural choices are vital for generalization, the training
methodology is equally important. Typically, an end-to-end
training strategy would involve minimizing the binary cross
entropy loss between the actual message bits and estimated
message bits :

L ==−
k∑

i=1

[ui log(ûi) + (1−ui) log(1−ûi)] (2)

However, as highlighted in Sec. 4.5, direct training often
does not generalize well to high SNR scenarios, character-
ized by infrequent error events.

Curriculum. We address this by introducing a principled
two-stage curriculum training procedure that capitalizes on
the inherent nested hierarchy of Polar codes. We leverage
two key properties of the Polar coding structure: (1)Hierar-
chy in k: A Polar(n, k) subsumes all codewords of lower-
rate subcodes Polar(n, i), 1 ≤ i ≤ k. Curriculum training
leveraging the hierarchy in k improved both convergence

5



DEEPPOLAR codes

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

10 4

10 3

10 2

10 1

                       
      
 
 

DEEPPOLAR
KO(8,2)
Polar(256,37)

RM(8,2)

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

a) n = 256, k = 37

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0

10 4

10 3

10 2

10 1

                                     
.  

DEEPPOLAR
Polar

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

b) n = 256, k = 64

8 7 6 5 4 3 2

10 4

10 3

10 2

10 1

                                     
.  

DEEPPOLAR
Polar

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e
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Figure 5. (a) DEEPPOLAR improves over state-of-the-art KO codes (Makkuva et al., 2021), and RM, Polar codes at n=256,k=37. (b,c)
DEEPPOLAR is suitable for a variety of rates and retains gains over Polar, while KO is not suitable for these rates.

speed and reliability in the context of neural polar decoding
(Hebbar et al., 2023). In the first stage, we use a similar C2N
curriculum to pretrain the parameters for each kernel. We
progressively train encoder-decoder pairs for DEEPPOLAR
(n = ℓ, k = j, ℓ) codes, for j = 1 → k as highlighted in
Fig. 4a)), denoted by gϕ(ℓ, j), fθ(ℓ, j). (2)Hierarchy in n:
In the Plotkin tree, an ℓ× ℓ kernel is applied coordinatewise
at each level of the Plotkin tree. In the second stage of our
curriculum, we initialize each kernel in DEEPPOLAR (n,k)
encoder and decoder with the pre-trained kernels from the
first stage, applied at all depths, as illustrated in Fig. 4b).
For instance, g12 and g20, which have three non-frozen in-
puts, are initialized by a pre-trained kernel gϕ(4, 3). Such
a systematic and phased training approach significantly en-
hances the network’s learning efficiency and generalizability
(Sec. 4.5).

4. Main Results
4.1. Data generation.

We generate synthetic input data for the encoder by ran-
domly sampling from a boolean hypercube i.e, {0, 1}k. A
randomly sampled white Gaussian noise is added to the
output of the encoder. During training, the variance of the
Gaussian noise is carefully chosen based on the length and
rate of the desired channel code.

4.2. Baselines.

DEEPPOLAR extends conventional Polar encoding and de-
coding structures using neural networks. We evaluate its
performance against state-of-the-art learning-based codes,
KO codes (Makkuva et al., 2021). Similar to DEEPPO-
LAR, KO codes replaces elements of Reed-Muller by neural
networks to enhance error correction capability. We also
compare DEEPPOLAR to traditional Polar codes employing
Arikan’s kernel and decoded via the successive cancellation
(SC) algorithm. Both codes utilize the same frozen positions,
determined using the Tal-Vardy method (Tal & Vardy, 2013).

We further discuss the impact of frozen position selection in
App. B.1. App. B.2 discusses and compares DEEPPOLAR
to recent large-kernel polar code constructions.

4.3. Results

DEEPPOLAR codes outperform Polar codes. As high-
lighted in Fig. 5, DEEPPOLAR codes achieve enhanced
performance over traditional Polar codes with SC decod-
ing and Reed-Muller codes with Dumer decoding across a
broad range of SNRs in the presence of additive white Gaus-
sian noise (AWGN), in terms of bit error rate (BER). No-
tably, DEEPPOLAR (256,37,ℓ = 16) outperforms KO(8, 2)
(Fig. 5a)), the state-of-the-art neural code mapping 37 infor-
mation bits to a length-256 codeword (Makkuva et al., 2021)
in the short-to-medium blocklength regime. DEEPPOLAR
codes, owing to their Polar-like encoding framework, ac-
commodate a much wider range of rates than KO codes that
rely on the algebraic structure of RM codes. This versatility
is illustrated in Fig. 5b) and Fig. 5c), where DEEPPOLAR
codes outperform Polar codes across diverse rates and SNRs
(cf. KO codes and RM codes do not exist for these rates).
Further, DEEPPOLAR is robust to non-AWGN deviations,
achieving gains over Polar codes on fading channels and
radar noise (App. D).

Effect of kernel size. Fig. 6 highlights that scaling the
kernel size ℓ is crucial for effective training and DEEPPO-
LAR outperforming baselines. In case n is not an integer
exponent of ℓ - i.e., ℓm ≤ n < ℓm+1 and ℓm divides n then
the kernel size at the root is n/ℓm. An increase in kernel
size expands the function space the encoder can represent,
facilitating learning more robust representations. However,
empirical experiments reveal that using ℓ =

√
n , which

results in an encoding and decoding tree of depth 2, is
a good heuristic. Indeed, Fig. 1 highlights significant im-
provements in performance upto ℓ = 16, 32, whereas further
scaling ℓ = 64 leads to a decline. This trend indicates a bias-
variance tradeoff, suggesting the ideal kernel size strikes a
balance between model complexity and its generalization
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Figure 6. n=256,k=37 : Reliability of DEEPPOLAR improves as
the kernel size ℓ is increased. We find that DEEPPOLAR with
ℓ=16,32 beats KO codes in BER. Moreover, curriculum training is
crucial to improve reliability at high SNRs.

capabilities.

4.4. Interpretation

16 18 20 22 24 26 28

                              
 
  
  

DEEPPOLAR

DEEPPOLAR-binary
Gaussian
Polar

Pairwise distance

Figure 7. (n=256,k=37,ℓ = 16): Unlike Polar codes, the distribu-
tion of pairwise distribution between codewords of DEEPPOLAR

shows a strong resemblance to the Gaussian codebook. DEEPPO-
LAR-binary code retains a Gaussian-like distance profile. (pdfs
and pmfs have been renormalized for better visualization.)

Interpreting the encoder. To interpret the encoder, we ex-
amine the distribution of pairwise distances between code-
words (Fig. 7). Gaussian codebooks achieve capacity and
are optimal asymptotically (Shannon, 1948). Remarkably,
the distribution of DEEPPOLAR codewords closely resem-
bles that of the Gaussian codebook. This surprising phe-
nomenon has also been observed in the closely related KO
codes and is a testament to the potential of the marriage
between efficient algebraic code structures and DL.

Interpreting the decoder. In our study, the training loss
used is binary cross entropy (BCE), which serves as a surro-
gate for the bit error rate (BER). However, it is important
to recognize that optimizing for BER does not necessarily
translate to improved block error rate (BLER), an important
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a) BLER performance (n=256,k=37)

Polar

DeepPolar

b) Distribution of Errors (n=256,k=37)

Figure 8. a) The block error rate performance of DEEPPOLAR

codes is subpar. b) The distribution of the first error occurrence
across bit positions reveals that this tradeoff is a consequence of
a more uniform error distribution, driven by the use of BCE loss,
which is a surrogate for BER.

figure of merit in practical systems. Our observations, as
indicated in Fig. 8a), show that DEEPPOLAR underperforms
in BLER compared to baseline methods (See App. F for
more results). The BLER, defined as P[û ̸= u], can be ex-
pressed as the cumulative probability of bit errors occurring
at each position when no errors were made in the previous
ones:

P[û ̸= u] =

k∑
i=1

P[ûi ̸= ui|û1:i−1 = u1:i−1] (3)

An analysis of error distribution (Fig. 8b)) reveals notable
differences between SC and DEEPPOLAR-SC decoders de-
spite both employing a sequential decoding approach. Due
to the effect of channel polarization, most errors in the polar
decoding tend to occur at bit position 0, which predomi-
nantly drives the BLER. In contrast, errors in DEEPPOLAR
decoding are more evenly distributed across various bit
positions. This uniformity is a consequence of the BCE
loss prioritizing BER over BLER. This trade-off leads to a
marginal decrease in BLER performance. Identifying a sta-
ble loss function directly targeting BLER, is an interesting
direction for future research.
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Figure 9. DEEPPOLAR-binary(256,37,ℓ=16) approaches the per-
formance of KO codes

4.5. Ablation studies

DEEPPOLAR-Binary

Compared to canonical coding schemes, a real-valued cod-
ing scheme like DEEPPOLAR offers distinct advantages by
integrating modulation and coding schemes. However, prac-
tical systems may have hard symbol-level power constraints,
necessitating code bits to be integers xi ∈ {−1, 1}. Hence,
it is beneficial to have the ability to learn a binary code while
maintaining the structure of DEEPPOLAR.

To achieve this, a trained DEEPPOLAR model is fine-tuned
with a Straight Through Estimator (STE) (Hubara et al.,
2016) and a binarization module, resulting in a binary ver-
sion, DEEPPOLAR-binary, akin to the methodology in (Jiang
et al., 2019b). Fig. 9 highlights that there is a loss incurred
with respect to DEEPPOLAR. This underscores the contri-
bution of joint coding and modulation to DEEPPOLAR’s
performance. Nevertheless, DEEPPOLAR-binary not only
surpasses the performance of the traditional Polar code but
also closely matches that of KO codes. Additionally, the
distance profile of DEEPPOLAR-binary (Fig. 7) indicates it
preserves Gaussian codebook-like distance properties, rein-
forcing the potential of non-linear binary codes derived from
polarization-inducing structures. This exploration opens av-
enues for future research, particularly in interpreting these
codes to develop novel, efficient encoders and decoders
leveraging non-linear polarization-based methods.

Effect of curriculum. Ensuring reliable performance of
neural codes at high SNR levels is a significant challenge,
primarily due to the sparse occurrence of error events in this
regime. This challenge often leads to a phenomenon known
as an error floor, where the error rate improvement of a
code stagnates beyond a certain SNR (Jamali et al., 2021b).
This issue is not exclusive to neural codes, as it’s also en-
countered in classical codes like LDPC and Turbo codes.
While training hyperparameters such as SNR scheduling
and batch sizes affect high SNR performance - the struc-
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Figure 10. For decoding Polar(256,37) codes, DEEPPOLAR de-
coder matches the SC decoder.

ture of the code also plays a part. Notably, algebraic codes
like polar codes do not suffer from error floors. Driven by
this intuition, our curriculum design (Sec. 3.2) reinforces
the Plotkin code structure, leading to better generalization.
This strategy has been effective, as highlighted in Fig. 6,
where implementing a curriculum markedly enhances code
performance at higher SNRs.

DeepPolar decoder for Polar codes

DEEPPOLAR codes are a generalization of Polar codes, and
inherits its encoding structure (Plotkin tree, frozen set), and
the sequential decoding paradigm, and achieves notable
gains in BER. To pinpoint the efficacy of the learned code,
we fix the Polar encoder and train the DEEPPOLAR decoder
to predict the transmitted message. Fig. 10 demonstrates
that the DEEPPOLAR decoder matches the performance of
SC decoding to decode Polar codes. This is expected, owing
to the SC-like parameterization of the DEEPPOLAR decoder.
The gains in BER, thus, can largely be attributed to the
encoder’s non-linear, binary-to-real encoding scheme.

4.6. Computational Complexity

In our study, we introduce a novel non-linear generalization
of the Polar code’s encoding and decoding structures and
achieve substantial improvements in reliability. Another
essential aspect of evaluating an algorithm is the compu-
tational complexity, which has a direct impact on power
consumption. Polar codes are favored due to their relatively
low-complexity encoding and decoding algorithms. How-
ever, in practice, CRC-aided list decoders are used, which
substantially increases the decoding complexity. DEEPPO-
LAR is a non-linear generalization of Polar codes via neural-
network-based kernels on the Plotkin tree. The DEEPPO-
LAR SC-decoder is a kernel-wise sequential decoder in-
spired by the SC algorithm. For the case of DEEPPOLAR
(n = 256, k = 37, ℓ = 16), the encoder and decoder have
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0.1M and 1.6M parameters, respectively, which we did not
optimize in this project. Our findings serve as constructive
proof that non-linear polar codes with large kernels can out-
perform the state-of-the-art. Further, we demonstrate the
viability of effective binary codes with a large-kernel Polar
structure, complete with efficient decoders. This opens av-
enues for further examination of these codebooks to inform
the development of low-complexity solutions. Notably, the
complexity of neural codes can be reduced significantly
without performance degradation by complexity-aware ar-
chitecture design (eg, TinyKO (Makkuva et al., 2021)).
Our preliminary experiments with DEEPPOLAR-parallel
(App. C.2), which reduces the decoder parameter count by
8×, have already demonstrated improved performance at
lower complexity. Further, several techniques are used in
practice, like distillation, quantization, and pruning, among
others, to reduce the computational overhead of a neural
algorithm. This is important and interesting future work
beyond the scope of this paper.

5. Related work
The application of machine learning to channel coding has
been an active area of research in recent years. The majority
of existing works focus on decoding existing codes, aiming
to achieve better reliability and robustness, and in some
cases, lower decoding complexity (Kim et al., 2018b; Nach-
mani et al., 2016; Dörner et al., 2017; Vasić et al., 2018;
Nachmani & Wolf, 2019; Jiang et al., 2019a; Chen & Ye,
2021; Jamali et al., 2021a; Choukroun & Wolf, 2022a;b;
Hebbar et al., 2022; Aharoni et al., 2023). In the context
of polar codes, several neural decoders have been proposed
(Cammerer et al., 2017b;a; Doan et al., 2018; Hebbar et al.,
2023). In another line of work, (Ebada et al., 2019; Liao
et al., 2021; Li et al., 2021; Miloslavskaya et al., 2023;
Ankireddy et al., 2024a) use deep learning to identify opti-
mal polar code frozen positions without altering the design
of encoder and decoder.

In contrast, jointly learning both encoders and decoders
is a more challenging problem, and very few works in
the literature exist. A common theme is the incorporation
of principled coding-theoretic encoding and decoding
structures. TurboAE (Jiang et al., 2019b), and follow-up
works (Jiang et al., 2020c;a; Chahine et al., 2021; Saber
et al., 2022; Chahine et al., 2022a; Wang et al., 2023), use
sequential encoding and decoding along with interleaving
of input bits, inspired by Turbo codes (Berrou et al.,
1993). KO codes (Makkuva et al., 2021) generalize
Reed-Muller encoding and Dumer decoding by replacing
selected components in the Plotkin tree with neural
networks. ProductAE (Jamali et al., 2021b) generalizes
two-dimensional product codes to scale neural codes to
larger block lengths. In a similar vein, our work generalizes

the coding structures of large-kernel Polar codes by using
non-linear kernels parameterized by NNs.

Deep learning-based schemes for channels with feedback
is another active area of research (Kim et al., 2018a; Safavi
et al., 2021; Chahine et al., 2022b; Ozfatura et al., 2022;
2023b;a; Kim et al., 2023; Ankireddy et al., 2024b) Further-
more, breaking the conventional wisdom that neural codes
are hard to interpret, (Devroye et al., 2022) derives a closed-
form approximation of binarized TurboAE codes via mixed
integer linear programming and other techniques. The task
of analytically approximating and understanding binarized
DEEPPOLAR codes remains a promising subject for future
research.

6. Conclusion
In this work, we introduce DEEPPOLAR codes, a new class
of non-linear generalizations of large-kernel Polar codes.
DEEPPOLAR codes generalize to various rates and block-
lengths, and outperform the current state-of-the-art neural
codes in BER. The neural architecture mirrors the Polar en-
coding and decoding structures, which along with a curricu-
lum training methodology is key to improve generalization
to unseen messages.
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Gündüz, D. All you need is feedback: Communication
with block attention feedback codes. IEEE Journal on Se-
lected Areas in Information Theory, 3(3):587–602, 2022.

Ozfatura, E., Bian, C., and Gündüz, D. Do not interfere
but cooperate: A fully learnable code design for multi-
access channels with feedback. In 2023 12th Interna-
tional Symposium on Topics in Coding (ISTC), pp. 1–5.
IEEE, 2023a.

11



DEEPPOLAR codes

Ozfatura, E., Shao, Y., Ghazanfari, A., Perotti, A., Popovic,
B., and Gündüz, D. Feedback is good, active feedback
is better: Block attention active feedback codes. In
ICC 2023-IEEE International Conference on Commu-
nications, pp. 6652–6657. IEEE, 2023b.

Saber, H., Hatami, H., and Bae, J. H. List autoen-
coder: Towards deep learning based reliable transmis-
sion over noisy channels. In GLOBECOM 2022-2022
IEEE Global Communications Conference, pp. 1454–
1459. IEEE, 2022.

Safavi, A. R., Perotti, A. G., Popovic, B. M., Mashhadi,
M. B., and Gunduz, D. Deep extended feedback codes.
arXiv preprint arXiv:2105.01365, 2021.

Shannon, C. E. A mathematical theory of communication.
The Bell system technical journal, 27(3):379–423, 1948.

Tal, I. and Vardy, A. How to construct polar codes. IEEE
Trans. Inf. Theory, 59(10):6562–6582, 2013.

Tal, I. and Vardy, A. List decoding of polar codes. IEEE
Transactions on Information Theory, 61(5):2213–2226,
2015.

Trifonov, P. V. Design and decoding of polar codes with
large kernels: a survey. Problems of Information Trans-
mission, 59(1):22–40, 2023.

Trofimiuk, G. and Trifonov, P. Window processing of binary
polarization kernels. IEEE Transactions on Communica-
tions, 69(7):4294–4305, 2021.
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Figure 11. Binary tree structure of (8,4) polar code with stages indicated. The frozen bits (in black) are set to 0. Operations at each node
are detailed in Fig. A.

A. Successive Cancellation decoder
Here we look at the Successive Cancellation Decoding algorithm, provided in (Arikan, 2009). As the name suggests, the SC
decoding algorithm decodes the bits sequentially, starting with u0. A frozen bit node is always decoded as 0. And while
decoding the ui, the available bits u0 to ui−1

0 which are represented by the vector ui−1 are used according to decode ui

according to the following rule:

ûi =


0, if i ∈ I and Pr[y, û0

i−1|ui = 0] ≥ Pr[y, ˆui−1
0 |ui = 1]

1, if i ∈ I and Pr[y, û0
i−1|ui = 0] ≤ Pr[y, ˆui−1

0 |ui = 1]
0, if i ∈ F

(4)

where A is the set of information positions.

The probability calculations are computationally easier and less prone to round-off errors in the log domain. Hence, we
consider LLRs instead of probabilities to avoid numerical overflows. LLR for tth bit is defined as:

L(i)(y, û0
i−1) = log

Pr[y, û0
i−1|ui = 0]

Pr[y, ˆui−1
0 |ui = 1]

Hence, the decision rule changes as follows:

ûi =

0, if i ∈ I and L(i)(y, û0
i−1) ≥ 0

1, if i ∈ I and L(i)(y, û0
i−1) ≤ 0

0, if i ∈ F
(5)

The binary tree structure of a polar code can be exploited to simplify the successive cancellation decoding. The binary tree
has n = log2 N+1 stages with numbering from s = 0, . . . , n. Each stage s contains 2s nodes with each node corresponding
to 2n−s bits.

In order, traversal of the tree is done to perform the successive cancellation decoding. At each node, messages are passed as
shown:

Each node passes LLR corresponding LLR values, namely α, to the child nodes and sends the estimated hard bits at the
sage, namely β, o the parent node. The left and right messages, αl

i and αr
i are calculated as:

αl
i = ln

(
1 + eαi+αi+2n−s−1

eαi + eαi+2n−s−1

)
(6)

αr
i = αi+2n−s−1 + (1− 2βl

i)αi (7)
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Figure 12. SC decoding update rules for each node

We define two functions to perform these operations, namely f and g, defined as:

f(α1, α2) = ln

(
1 + eα1+α2

eα1 + eα2

)
g(β, α1, α2) = (1− 2β)α1 + α2

(8)

But the f function is computationally expensive, and hence, we approximate it to a hardware-friendly version using min-sum
approximation as follows:

fminsum(α1, α2) = sign(α1)sign(α2)min(|α1|, |α2|) (9)

where sign gives the sign of input and min gives the minimum of the two inputs.

The algorithm starts from the root node of the tree, which is level n+ 1, and traverses to the leaf node, which is level 0. For
each node, the following set of operations occurs.

1. If the current node has a left child that was not visited, calculate αl and move to the left child.

2. If the current node has a right child that was not visited, calculate αr and move to the right child.

3. If both the messages from child nodes are available, calculate β and move to the parent node.

Once the leaf node is reached, decisions are made based on the sign of the corresponding LLR using the binary quantizer
function h as:

βν = h(αnu) (10)

where h is defined as:

h(α) =

{
0, if α ≥ 0
1, else

B. Polar codes
B.1. 5G Polar codes

Polar codes are conceptualized by channel polarization, i.e., the recursive application of the kernel results in bit-channels
that are either noiseless or very noisy. However, at the practical blocklengths that we consider in this paper, there exist bit
channels that are partially polarized. Consequently, the selection of frozen positions affects the reliability of polar codes.
Although DEEPPOLAR does not exhibit a clear polarization effect—due to its operation in the real field and its non-recursive
kernel application—the choice of frozen positions still significantly impacts the effectiveness of the learned code.
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Figure 13. n=256,k=37 : The choice of frozen positions impacts the performance of DEEPPOLAR. While using 5G frozen positions
improves DEEPPOLAR, its gains over the 5G-Polar code are modest. DEEPPOLAR is a preliminary effort towards an automated search for
large-kernel codes; it matches the best performing Polar code with ℓ = 16 (Trofimiuk & Trifonov, 2021)

In the paper, we consider polar codes constructed via the Tal-Vardy method as our baseline. This choice is justified by the
fact that DEEPPOLAR utilizes the Tal-Vardy rate profile, ensuring a fair comparison. However, we realize that the universal
reliability sequence specified in the 5G standards can be used to find a better frozen set. Fig. 13 depicts that DEEPPOLAR
trained using the 5G frozen positions shows non-trivial improvement. However, the performance gains compared to the
5G-Polar code are modest. Exploring joint optimization of rate-matching strategies (such as freezing or precoding) along
with training DEEPPOLAR presents an intriguing avenue for future research.

B.2. Large kernel Polar codes

The SC decoding operation for larger kernel Polar codes (ℓ > 2) is similar to the original polar codes. Iteratively, the
decoding equation can be expressed as

W (i)
m ((u

(i−1)
0 , ui)|y(n−1)

0 ) =
W

(i)
m (yn−1

0 , ui−1
0 |ui)

2W (yn−1
0 )

,

which is the probability for path ui
0 given channel output yn−1

0 .

While these operations are similar to conventional polar codes, the complexity of iteratively computing the probabilities
increases exponentially with respect to ℓ as O(2ℓ), making it prohibitively expensive for very large kernels. However, recent
work has shown methods towards efficient decoding of a class of large-kernel polar codes (Abbasi & Viterbo, 2020; Gupta
et al., 2021; Trofimiuk & Trifonov, 2021).

DEEPPOLAR generalizes the conventional polar codes, and makes two notable modifications. First, it expands the kernel
size to

√
n. Second, it introduces neural networks to parameterize the encoding and decoding functions for each kernel,

which are then learned through training. The exhaustive search across large kernel spaces to improve upon Arikan’s original
construction is infeasible. Nonetheless, recent advancements have been made by limiting this space and employing more
efficient decoding methods (Trifonov, 2023). DEEPPOLAR represents an initial attempt to automate the search for effective
large-kernel polar codes.

Here, we consider an optimized construction of a kernel of size ℓ = 16 (Trofimiuk & Trifonov, 2021), with SC decoding
and compare it with DEEPPOLAR code of ℓ = 16. Fig. 13 shows that DEEPPOLAR marginally falls short of this optimized
construction. An exciting future direction would be to directly augment these codes using our methodology, akin to how KO
codes augmented the Reed Muller code structure.
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Figure 14. DEEPPOLAR (n=16,k=8,ℓ=4) : DEEPPOLAR-SC decoder decodes each bit sequentially - each edge operation in the decoding
tree is parameterized by a neural network fd,b

C. DEEPPOLAR Decoders
C.1. DEEPPOLAR-SC Decoder

Decoding of DEEPPOLAR for large kernels is depicted in Fig. 14 for DEEPPOLAR (16,8,ℓ = 4). The frozen positions are
not decoded and are directly set to 0, including the full of the first kernel. Beginning with the first information position, û0

is estimated based on the received values y using sub-kernel f1,7. Now, the decoding of the two kernels is complete and
sent to the parent node to begin the decoding of kernel 3. Using the received values y and û0, sub-kernel f1,9 estimates the
next non-frozen position û1. Next, using y and {û0, û1}, sub-kernel f1,10 decodes the next non-frozen position û2. This
process is continued until kernel-3 is decoded completely, after which the decoding of kernel-4 starts in the same manner
and continues until all bits are estimated.

To summarise, successive cancellation decoding of DEEPPOLAR involves sequentially decoding one kernel of size ℓ at
a time. Decoding the kernel is again performed in a successive fashion, where each bit is decoded by the corresponding
component decoder or sub-kernel.

C.2. DEEPPOLAR-parallel decoder
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y

Figure 15. DEEPPOLAR (n=16,k=8,ℓ=4) : DEEPPOLAR-parallel decoder retains the same decoding structure as DEEPPOLAR-SC, but
uses a one-shot parallel decoder at the leaves.
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A major drawback of SC decoding and its variants like SCL decoders is the latency overhead due to sequential decoding.
This drawback is inherently present in the DEEPPOLAR-SC decoder. One method to break this latency barrier, whilst
reducing the computational complexity of the decoder is to replace the ℓ SC-style NN decoders for a kernel at the lowest
depth, by a single 3-layer FCNN, with hidden size 64, that decodes ℓ bits in one shot, as depicted in Fig. 15. We refer to this
as DEEPPOLAR-parallel. This resulted in an immediate reduction of 8x in parameter count compared to DEEPPOLAR-SC
while achieving the same reliability, as highlighted in Fig. 16.
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Figure 16. n=256,k=37 : DEEPPOLAR-parallel, a lower complexity decoder constructed by replacing the SC-style decoding at the leaves
by a bit-MAP-style decoding, achieves better reliability than DEEPPOLAR-SC, whilst suffering lower latency

These preliminary results hint at the existence of low-complexity architectures that provide comparable performance at a
much lower complexity. This is a promising direction of future exploration.

D. Robustness to non-AWGN channels
Traditionally, the canonical setting for the design and evaluation of codes has predominantly focused on AWGN channels
due to the relative simplicity of closed-form performance analysis. However, practical communication channels often
deviate significantly from the AWGN model. Ideally, both the code and decoder should be robust to various channels or
adaptable to the encountered channel conditions. In this section, we demonstrate that DEEPPOLAR codes, which are trained
on AWGN channels, exhibit robustness when tested on non-AWGN channels without retraining. Further, in cases where the
target channel model significantly diverges from AWGN noise, data-driven codes like DEEPPOLAR can achieve substantial
performance improvements through fine-tuning with a small number of steps on the target channel.

First, we consider Rayleigh fast-fading channel with AWGN noise. Rayleigh fading is considered a suitable model for signal
propagation in tropospheric and ionospheric environments, as well as for the effect of heavily built-up urban areas on radio
signals. Mathematically, the channel model can be approximated as

yi = hixi + zi,

where h ∼ N (0, 1) is the fading coefficient and zi ∼ N (0, σ2) is the Gaussian noise. Note that the fading coefficient
changes for every symbol in the codeword, making it a much worse channel than the AWGN channel. As seen from
Fig. 17a), the DEEPPOLAR code demonstrates a gain of up to 0.3 dB compared to Polar(256, 37), demonstrating the
robustness of the learned code.

Next, we consider a bursty noise channel. Bursty noise, also known as popcorn noise, can be described mathematically as

yi = xi + zi + wi,

where zi ∼ N (0, σ2) is the Gaussian noise and wi ∼ N (0, σ2
b ) with probability ρ and wi = 0 with probability 1 − ρ is

the bursty noise. For our experiment, we choose ρ = 0.1 and σb =
√
2σ. As seen from Fig. 17b), the DEEPPOLAR code

demonstrates a gain of up to 0.25 dB compared to Polar(256, 37) in the presence of bursty noise.
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Figure 17. Robustness to channel variations: DEEPPOLAR (256, 37, ℓ = 16) trained on AWGN channel maintains the gains over
Polar(256, 37) when tested on Rayliegh fast fading and bursty noise channels.
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Figure 18. Adaptivity: Performance of DEEPPOLAR (256, 37, ℓ = 16) can be improved by adapting it to target channels. On channels
such as Rayleigh fast fading, we do not see extra gains over the base decoder trained on AWGN. However, on large bursty noise we see a
pronounced improvement

Under larger degradation, for instance a bursty channel with ρ = 0.05 and burst power σb= 10, DeepPolar maintains its
robustness. Still, the performance can be greatly enhanced by fine-tuning the decoder specifically for the target channel
model, as demonstrated in Fig. 18b). This adaptivity to unseen channel models is a key advantage of neural codes and
decoders, such as DeepPolar, compared to classical codes.

E. Experimental details
The complete source code is provided at: https://www.github.com/hebbarashwin/deeppolar

E.1. Training algorithm

We follow a training strategy similar to KO codes (Makkuva et al., 2021), where the encoder and decoder networks are
trained in an alternating optimization, described below.
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Algorithm 1 Training algorithm for DEEPPOLAR (256,37,ℓ=16)

1: Initialize encoder and decoder parameters
2: for E epochs do
3: for Tdec steps do
4: Generate B random message vectors u
5: Simulate AWGN channel with SNRdec
6: Freeze the encoder g and update the decoder network f to minimize the BCE loss L(g, f) using Adam and learning

rate lrdec.
7: end for
8: for Tenc steps do
9: Generate B random message vectors u

10: Simulate AWGN channel with SNRenc
11: Freeze the decoder f and update the encoder network g to minimize the BCE loss L(g, f) using Adam and learning

rate lrenc.
12: end for
13: end for

E.2. Training SNR and number of steps

Choosing the right SNR is critical to avoid local optima during training. Choosing a very low SNR will result in the noise
dominating the training data, and as a result, the training may not converge. On the contrary, choosing a very high SNR will
not provide sufficient error events for the model to learn from. Through empirical testing, we find that a training SNR of 0
dB for the encoder and -2 dB for the decoder works best. Intuitively, this can be interpreted as learning a good decoder
being much harder than learning a good encoder, as the decoder has to work with noisy data, whereas the encoder always
takes clean input.

Continuing on this theme, we also observe that training the encoder for fewer iterations is sufficient compared to the decoder.
In our experiments, we train the encoder 10x fewer steps than the decoder.

High SNR performance. Obtaining gains over classical codes in the high SNR regime is challenging - this stems from
several factors : Firstly, the error events become exceedingly sparse in the high SNR regime, leading to noisy gradient
estimates and unstable training. Secondly, in the high SNR regime, the error rate is primarily governed by the code’s
minimum distance. While DeepPolar exhibits remarkable distance properties (closely resembling the Gaussian codebook -
Fig. 7), optimizing the minimum distance is challenging given the exponentially large space of codewords.

Nevertheless, high SNR performance can be boosted by finetuning the trained models at substantially high batch sizes. For
instance, we finetune the model using a batch size of 200K (a 10x increase from the training phase), at -1dB using a learning
rate of 10−5.

E.3. Large batch size

Having a large batch size during training is desirable for stable training. Larger batch sizes will capture the statistics of the
underlying distribution more accurately, improving the accuracy of normalization using the mean and variance of the batch.
Moreover, a larger batch size also reduces the noise in the gradients computed. In our experiments, we considered a batch
size of up to 20000 and further used gradient accumulation techniques to simulate an even larger batch size.

E.4. Hyperparameter choices for DEEPPOLAR (256,37)

The hyperparamters used for training DEEPPOLAR (256,37,ℓ = 16) are listed in Table 1.

E.5. Architecture for DEEPPOLAR (256,37)

E.5.1. ENCODER

The encoder is a collection of kernels of size ℓ = 16, each of which is modeled by a neural network g. The encoder kernel g
is responsible for encoding ℓ inputs. The architecture for g is given as follows:
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Hyperparameter Value
Batch size (B) 20,000
Encoder training SNR 0 dB
Decoder training SNR -2 dB
Total epochs (T ) 2,000
Encoder steps per epoch (Tenc) 20
Decoder steps per epoch (Tdec) 200
Encoder learning rate (lenc) 10−4

Decoder learning rate (ldec) 10−4

Optimizer Adam

Table 1. Hyperparameters used in model training for DEEPPOLAR (256,37,ℓ = 16)
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Figure 19. Each kernel g at the encoder is parameterized by a fully connected network of 3 hidden layers and a hidden dimension of 64.
The features corresponding to the Plotkin transform of size ℓ is provided via a skip connection

A crucial design choice is to make the polar-encoded features available to the encoding network via a skip connection.
DEEPPOLAR codes rely on the encoding and decoding structures of Polar codes, and the features corresponding to polar
codes are indeed informative. Further, since it is harder for NNs to learn multiplicative policies, this side information proves
to be useful in the learning process.

However, it is noteworthy that the learned DEEPPOLAR codes, as well as DEEPPOLAR-binary codes do not resemble polar
codes, both in the mapping as well as the code distance spectrum.

E.5.2. DECODER

The encoder is a collection of kernels of size ℓ = 16, each of which is modeled by a neural network f . The decoder kernel f
contains ℓ = 16 sub-networks fi, each responsible for decoding the kernel’s ith position. The architecture for fi is given as
follows:
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Figure 20. Each kernel fi at the decoder is parameterized by a fully connected network of 3 hidden layers and a hidden dimension of 128.

F. Additional results
F.1. Block Error Rate

The figures of merit for any channel code are the Bit Error Rate (BER), and Block Error Rate (BLER). Since these metrics
are non-differentiable, we need to find a differentiable surrogate. While the binary cross-entropy loss (used in the paper)
acts as a stable surrogate loss function to optimize the BER, identifying such a surrogate loss for the BLER is an unsolved
problem. (Often, optimizing for BER results in good BLER (eg - Fig. 21b). However, this is not guaranteed).
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Figure 21. (a) DEEPPOLAR achieves sub-optimal BLER compared to Polar codes: this is an artifact of the BCE training objective, which
is a surrogate for the BER
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Figure 22. Finetuning a trained DEEPPOLAR model on a BLER surrogate objective trades off BER gains for BLER.

As preliminary work, we consider several potential loss functions to optimize the BLER, including L1 = 1−Πn
i=1σ(ukLk),

where Lk is the logit corresponding to the kth bit, and L2 = LogSumExp(xn
1 ), where xk = BCEk.

However, both these losses lead to unstable training. For example, the product loss L1 tends to show vanishing gradients.
Nevertheless, fine-tuning a model initially trained on BCE loss to optimize the BER, on BLER loss L1, yields improved
BLER performance, demonstrated in Fig. 22 This strategy, however, introduces a tradeoff in BER gains - since the BER and
BLER objectives are not fully aligned. With the right training objectives, neural codes provide flexibility in optimizing the
figures of merit that we are interested in.

F.2. Model capacity ablation

DEEPPOLAR-SC consists of a total of 100K+1.6M parameters; each kernel is an NN of depth 3, with hidden sizes of 64 and
128, respectively, at the encoder and decoder. We use the notation (e = 64, d = 128) to represent this model. Generally,
overparameterized models are easier to train. Since model size is an important practical consideration, we study the effect of
model size on reliability. We consider the encoder and decoder networks with kernels with hidden sizes e and d respectively
with depth 3. We train the networks via kernel pretraining and curriculum learning, as outlined in Sec. 3.2. As shown in
Table 2, Fig. 23, there is a noticeable degradation in performance when small models, i.e., (e = 8, d = 8), (e = 16, e = 16),
are used to parameterize each kernel. However, (e = 16, e = 32), and specifically (e = 32, h = 32) with 160K parameters
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Enc hidden size # Parameters in Enc Dec hidden size # Parameters in Dec BER at SNR -1.0 dB
8 5K 8 16K 9e-3

16 12K 16 44K 7.4e-4
16 12K 32 133K 2.1e-4
32 33K 32 133K 8.3e-5
64 100K 128 1.6M 5.9e-5

Table 2. Performance comparison as a function of the number of parameters in the encoder and decoder.

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
SNR

10 4

10 3

10 2

10 1

Bi
t E

rro
r R

at
e

DeepPolar(256,37) - Encoder, Decoder hidden sizes ablation
h_e = 8, h_d = 8
h_e = 16, h_d = 16
h_e = 16, h_d = 32
h_e = 32, h_d = 32
h_e = 64, h_d = 128
Polar SC

SNR (dB)

B
it

E
rr

or
R

at
e

a

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
SNR

10 3

10 2

10 1

100

Bl
oc

k 
Er

ro
r R

at
e

DeepPolar(256,37) - Encoder, Decoder hidden sizes ablation
h_e = 8, h_d = 8
h_e = 16, h_d = 16
h_e = 16, h_d = 32
h_e = 32, h_d = 32
h_e = 64, h_d = 128
Polar SC

SNR (dB)

B
lo

ck
E

rr
or

R
at

e

b

Figure 23. Performance as a function of model size with pretraining and curriculum training: DEEPPOLAR (256, 37, ℓ = 16)

(10x reduction), outperforms SC in terms of BER and approaches the performance of (e = 64, d = 128). These observations
can be attributed to the dimension of the input, which is the kernel size 16.

F.3. Fully connected neural code - lacks generalization.
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Figure 24. Codes learned via Fully connected NNs fail to generalize to unseen messages due to the absence of strong inductive biases.

While it might seem intuitive that non-linear codes would give better results compared to linear codes, the construction of
good non-linear codes is highly non-trivial. To illustrate the difficulty, we train a dense, fully connected encoder-decoder pair
using the same training methodology as DEEPPOLAR (Sec. E). As shown in Fig. 24, despite this network having ten times
more parameters than DEEPPOLAR, its performance is substantially inferior to the successive cancellation (SC) decoding of
polar codes. This is an effect of the model’s poor generalization in the absence of good inductive biases, a phenomenon
well-documented in existing literature, for example, see (Jiang et al., 2020b). Thus, neural architectures that add redundancy
in a structured way are essential for learning a good code.
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