
Randomized Confidence Bounds for Stochastic Partial Monitoring

Maxime Heuillet 1 Ola Ahmad 1 2 Audrey Durand 1 3

Abstract
The partial monitoring (PM) framework provides
a theoretical formulation of sequential learning
problems with incomplete feedback. At each
round, a learning agent plays an action while the
environment simultaneously chooses an outcome.
The agent then observes a feedback signal that is
only partially informative about the (unobserved)
outcome. The agent leverages the received feed-
back signals to select actions that minimize the
(unobserved) cumulative loss. In contextual PM,
the outcomes depend on some side information
that is observable by the agent before selecting the
action. In this paper, we consider the contextual
and non-contextual PM settings with stochastic
outcomes. We introduce a new class of PM strate-
gies based on the randomization of deterministic
confidence bounds. We also extend regret guaran-
tees to settings where existing stochastic strategies
are not applicable. Our experiments show that the
proposed RandCBP and RandCBPside⋆ strate-
gies have competitive performance against state-
of-the-art baselines in multiple PM games. To
illustrate how the PM framework can benefit real
world applications, we design a use case on the
real-world problem of monitoring the error rate
of any deployed classification system.

1. Introduction
Partial monitoring (Bartók et al., 2014) is a framework to
formulate online learning problems where the feedback is
partially informative. These online learning problems can
be cast as partial monitoring (PM) games played between
a learning agent and the environment over multiple rounds.
At a given round, the agent selects an action and the envi-
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ronment simultaneously selects an outcome. The agent then
incurs an instant loss and receives a feedback signal that is
partially informative about the outcome. The challenge is
that the agent does not observe the loss while the goal of
the agent is to minimize the (unobserved) cumulative loss.
To achieve this goal, the agent trades-off between actions
associated to informative feedback signals (exploration) and
small-loss actions (exploitation).

At a specific round, the agent’s performance is measured
by the regret. The regret corresponds to the difference be-
tween the loss of the selected action and the loss of the
best action. The cumulative regret scales linearly with the
horizon of rounds T if the agent fails to identify the best
action. In this work, we consider the stochastic PM setting
where outcomes are independent and identically distributed
(i.i.d.) according to some (unknown) stationary outcome
distribution. In the stochastic setting, Bartók et al. (2011)
classified PM games into four categories based on achiev-
able bounds on the cumulative regret: trivial games (no
regret); easy games with poly-logarithmic upper bounds in
Θ̃(
√
T ) ; hard games with upper bounds in Θ(T 2/3); and

intractable games with lower bounds in Ω(T ). For example,
the well-known multi-armed bandit problem (Auer et al.,
2002) corresponds to an easy game. Additionally, hard
games capture a valuable diversity of applications, such as
learning from costly expert advice (Helmbold et al., 1997)
and dynamic pricing (Kleinberg et al., 2003).

Deterministic PM strategies such as CBP (Confidence
Bound Partial Monitoring) (Bartók et al., 2012b) and PM-
DMED (Komiyama et al., 2015) have sub-linear regret guar-
antees on both easy and hard games. However, these are
consistently outperformed empirically by stochastic strate-
gies such as BPM-Least (Vanchinathan et al., 2014) and
TSPM (Tsuchiya et al., 2020), for which regret guarantees
are limited to easy games.

The contextual PM setting is an extension of the stochas-
tic setting where the outcome distribution is a function of
some side information (a context) observed by the agent
before selecting the action at each round. Existing contex-
tual PM strategies are fairly restrictive. The deterministic
CBPside (Bartók et al., 2012a) (a contextual extension of
CBP) is not applicable to hard games. On the other hand,
the stochastic IDS-FW (Kirschner et al., 2023) has regret

1



Randomized Confidence Bounds for Stochastic Partial Monitoring

guarantees on both easy and hard games but comes with
several drawbacks: IDS-FW scales quadratically with the
number of rounds; and IDS-FW requires the set of contexts
to be finite and known in advance, a restriction that often
does not hold in practice.

The primary aim of this study is to make progress for prac-
tical aspects of partial monitoring algorithms. We focus
on CBP-based strategies. While CBP-based strategies have
extensive theoretical regret guarantees (available in both
easy and hard games in the non-contextual setting, and for
easy games in the contextual setting), the empirical per-
formance of CBP-based strategies is often dominated by
stochastic strategies. Kveton et al. (2019) and Vaswani
et al. (2020) show that the deterministic confidence bounds
used in “optimistic in the face of uncertainty” (OFU) strate-
gies can be randomized to improve empirical performance,
while maintaining theoretical guarantees. We therefore for-
mulate the following hypothesis: Can the randomization
of confidence bounds also benefit strategies that are non
OFU-based, such as CBP-based strategies?
Contributions 1 Algorithmic. We investigate the algo-
rithmic mechanics restricting the applicability of CBPside
to easy games. As a response, we propose CBPside⋆

that is applicable to both easy and hard contextual PM
games. Building upon CBP and CBPside⋆, we then
show how to successfully randomize non-OFU based
strategies by introducing the randomized variants Rand-
CBP and RandCBPside⋆. 2 Theoretical. In the non-
contextual setting, we obtain a regret upper-bound for
RandCBP that matches the bound of its deterministic coun-
terpart CBP. Similarly, in the contextual setting, we an-
alyze RandCBPside⋆ and obtain an upper-bound for
easy games that matches CBPside’s. Our analysis of
RandCBPside⋆ introduces the first upper bound for hard
contextual PM games (without assumptions on the set of
contexts). 3 Empirical. Our experiments show that Rand-
CBP and RandCBPside⋆ have competitive empirical per-
formance against state-of-the-art baselines in hard and easy
PM games, both in the contextual and non-contextual set-
tings. 4 Application. Currently, the PM field is predom-
inantly theoretical and there is a notable scarcity of PM
applications (Singla et al., 2014; Kirschner et al., 2023). To
illustrate how the PM framework can benefit real world ap-
plications, we design a new use-case based on the real-world
problem of monitoring the error rate of any deployed clas-
sification system. 5 Reproducibility. Our paper is the first
to provide extensive reproducibility resources (open-source
code for all strategies and environments, and game analyses
in the Appendix) to facilitate future applied developments.

2. Preliminaries on Partial Monitoring
We consider finite PM games defined by N actions available
to the agent and M outcomes available to the environment.

A game is characterized by a loss matrix L ∈ [0, 1]N×M

and a feedback matrix H ∈ ΣN×M . The feedback space Σ
is finite, arbitrary, and not necessarily numeric. Similarly to
Bartók et al. (2012a), we assume that the difference between
greatest and lowest elements in the loss matrix is bounded
by 1, i.e. max(L) −min(L) ≤ 1. A table of notations is
reported in Table 1 in the Appendix.

2.1. Finite stochastic partial monitoring games

A finite PM game is played over T rounds between a learn-
ing agent and the environment. The horizon T is unknown
to both the agent and the environment. The matrices L and
H are known. At each round t = 1, 2, . . . , T , the environ-
ment samples an outcome Jt from a distribution p⋆ ∈ ∆M ,
where ∆M is the probability simplex of dimension M (col-
umn vector). We refer to p⋆ as the outcome distribution and
the outcomes are independent and identically distributed
(i.i.d.) according to p⋆. The agent then plays an action It.
Following this action choice, the agent observes a feedback
H[It, Jt] and incurs a deterministic loss L[It, Jt], where
[i, j] denotes the element at row i and column j. We empha-
size that the loss and the outcome are never revealed to the
agent.

Non-contextual setting The expected loss of action i is
noted ℓi = Lip

⋆, where the notation Li corresponds to
the i-th row of matrix L. The optimal action is given by
i⋆ = argmin1≤i≤N ℓi. The performance of the agent is
evaluated using the cumulative regret (to minimize):

R(T ) =

T∑
t=1

(LIt − Li⋆)p
⋆. (1)

Contextual setting In the non-contextual setting, the opti-
mal action does not depend on side information (context).
In the contextual setting (Bartók et al., 2012a), also known
as PM with side information, the optimal action depends on
side information (context). Let p⋆(x) denote the outcome
distribution as a function of a context x ∈ X , with X de-
noting the unknown and possibly continuous context space.
The optimal action in context x minimizes the expected loss
in that context: i⋆(x) = argmin1≤i≤N Lip

⋆(x). The agent
aims to minimize the cumulative contextual regret:

R(T ) =

T∑
t=1

(LIt − Li⋆(xt))p
⋆(xt), (2)

where Li⋆(xt) is the loss vector of the optimal action in xt.

Other relevant settings We focus on stochastic settings
where the outcome distribution is stationary over the rounds,
which differs from the adversarial settings studied in Piccol-
boni et al. (2001); Cesa-Bianchi et al. (2006); Lattimore et al.
(2020); Lattimore (2022); Tsuchiya et al. (2023) that as-
sume the outcome distribution may change over the rounds.
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We also assume finite action and feedback spaces, unlike
Kirschner et al. (2020) who focus on settings with contin-
uous action and feedback spaces. Finally, we consider a
contextual setting where the context space X is unknown
and can be continuous, whereas Kirschner et al. (2023) as-
sume that X is finite and known in advance.

2.2. Structure of partial monitoring games

The optimality and informativeness of actions are respec-
tively defined by loss matrix L and feedback matrix H.
Definition 2.1 (Cell decomposition, Bartók et al. (2012b)).
The cell Ci of action i is defined as the subspace in the
probability simplex ∆M where action i is optimal. Formally,
Ci = {p ∈ ∆M , j ∈ {1, ..., N}, (Li − Lj)p⟩ ≤ 0}.

Based on the cell, one can tell that an action i is: (i) domi-
nated if Ci = ∅ (i.e. there is no outcome distribution s.t. the
action would be optimal); (ii) degenerate if the action is not
dominated and there exist action i′ such that Ci ⊊ Ci′ (i.e.
actions i and i′ are duplicates, and therefore, both are jointly
optimal under some outcome distributions); (iii) Pareto-
optimal if the action is neither dominated nor degenerate.
The set of Pareto-optimal actions is denoted P .

Let σi denote the number of unique feedback symbols on
row i of H. Let s1, ..., sσi ∈ Σ be an enumeration of the
unique feedback symbols induced by action i (i.e. symbols
in row Hi), sorted by order of appearance (columns) in Hi.
Definition 2.2 (Signal matrix, Bartók et al. (2012b)). Given
action i, the elements of signal matrix Si ∈ {0, 1}σi×M are
defined as Si[u, v] = 1{H[i,v]=su}.

The signal matrix Si is binary and it can be thought of
as a one-hot encoding over the unique feedback symbols
induced by action i. The signal matrices verify the important
relation π⋆

i = Si p
⋆ ∈ ∆σi

, where π⋆
i (respectively π⋆

i (x) in
the contextual setting) is the distribution over the feedback
symbols induced by action i.

Difference between easy and hard games A PM game is
easy if it suffices to play Pareto-optimal actions to minimize
the regret. In hard games, minimizing the regret requires to
play actions that can be dominated and degenerate. Formal
definitions of easy and hard games are in Appendix B.

3. Towards a Randomized CBP
CBP (Bartók et al., 2012b) (Confidence Bound Partial Mon-
itoring) currently stands out as the only strategy offering
regret guarantees in both easy and hard games for non-
contextual PM, and a practical extension in easy contextual
games. In terms of empirical performance, CBP is outper-
formed by stochastic PM strategies. Similar limitations
have been identified in the bandits setting for deterministic
strategies (Chapelle et al., 2011). Randomizing OFU-based

Algorithm 1 CBP (Bartók et al., 2012b) and RandCPB
input : P,N , α, ηa, f(·),K, σ, ε
# Notation e(·) is a σIt dimensional one-hot encoding.
for t = 1, 2, . . . , N do

Play action It = t (play each action once)
Observe feedback H[It, Jt]
Init nIt(N) = 1, νIt(N) = e(H[It, Jt])

for t > N do
for each neighbor pair {i, j} ∈ N do

δ̂ij(t)←
∑

a∈Vij
v⊤ija

νa(t−1)
na(t−1)

B ←
√
αlog(t)

Sample Zijt with Algorithm 2 (Appendix A.1)

c′ij(t)←
∑

a∈Vij
∥vija∥∞Zijt

√
1
na

if |δ̂ij(t)|> cij(t) c′ij(t) then
Add {i, j} to U(t)

Compute D(t) based on U(t)
Get P(t) and N (t) given P , N and D(t)
N+(t)←

⋃
ij∈N (t) N

+
ij

V(t)←
⋃

ij∈N (t) Vij

R(t)← {a ∈ N : na(t− 1) ≤ ηaf(t)}
S(t)← P(t) ∪N+(t) ∪ (V(t) ∩R(t))
Select action It = argmaxa∈S(t)

W 2
a

na(t−1)

Observe feedback H[It, Jt]
ni(t)← ni(t− 1) + I[i = It],∀i
νi(t)← νi(t− 1) + I[i = It]e(H[It, Jt]),∀i

strategies has proven to be helpful (Vaswani et al., 2020;
Kveton et al., 2019) for improving empirical performance
while preserving the theoretical analysis. Here, we extend
these ideas to CBP, a non-OFU based strategy instantiating
successive elimination (Even-Dar et al., 2002). Algorithm 1
jointly displays the pseudo-codes of CBP and the proposed
RandCBP. Differences are highlighted in purple. Imple-
mentation details are reported in Appendix A.

3.1. The CBP Strategy

Recall that the unknown parameter of the game is the out-
come distribution p⋆ ∈ ∆M . The expected loss difference
between two actions i and j is defined as

δi,j =(Li − Lj)p
⋆ = ℓi − ℓj . (3)

The sign of the expected loss indicates which action is better:
action j is better than action i when δi,j > 0.

Definition 3.1 (Neighbor pairs, Bartók et al. (2012b)). Two
Pareto-optimal actions i and j are neighbors if Ci ∩ Cj is
an (M − 2)-dimensional polytope. The set of all neighbor
pairs is denoted N .

Two actions are neighbors when they cannot be jointly opti-
mal under a given outcome distribution. CBP exploits that
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it suffices to compute δi,j for the pairs in N , instead of
computing δi,j for all the action pairs in the game.

Successive elimination confidence bounds CBP com-
putes expected loss difference estimates for all action pairs
in N . Pairs with low confidence estimates are then elimi-
nated based on a successive elimination (Even-Dar et al.,
2002) criterion. Based on Eq. 3, any estimate ℓ̂i(t) of the ex-
pected loss of action i at round t admits an upper confidence
bound, denoted UCBi(t) = ℓ̂i(t) + ci(t) and a lower confi-
dence bound, denoted LCBi(t) = ℓ̂i(t)− ci(t), where ci(t)
is a confidence width that holds with some probability. One
can tell with confidence that action j has a lower expected
loss (i.e. is confidently better) than action i if UCBj(t) is
strictly lower than LCBi(t):

UCBj(t) < LCBi(t)⇔ ℓ̂j(t) + cj(t) < ℓ̂i(t)− ci(t)

⇔ |δ̂ij(t)|> ci,j(t), (4)

where δ̂i,j(t) = ℓ̂i(t)− ℓ̂j(t) and ci,j(t) = ci(t) + cj(t).

At each round, action pairs {i, j} that do not satisfy the
elimination criterion of Eq. 4 correspond to low confidence
estimates that are eliminated by CBP. Action pairs that sat-
isfy the criterion are added to a set of high confidence pairs,
denoted U(t). The set U(t) is then used to compute a sub-
space of the probability simplex, denoted D(t), that sum-
marizes the current knowledge of CBP about the outcome
distribution p⋆. Formally, D(t) = {p ∈ ∆M , (i, j) ∈
U(t),sign(δ̂i,j)(Li − Lj)p > 0}. The sub-space D(t)
gathers constraints based on the signs of the confident esti-
mates, which inform on the relative quality of actions (as
explained below Eq. 3).

Unfortunately, one cannot empirically estimate the losses ℓi
and ℓj to compute δ̂i,j(t) and ci,j(t). Indeed, that would re-
quire to estimate the outcome distribution p⋆, but the agent
never observes the outcomes. To address this challenge,
CBP exploits a connection between the outcome and feed-
back distributions.

Connecting outcome and feedback distributions Com-
puting δ̂i,j and ci,j in practice requires two definitions.

Definition 3.2 (Observer set, Bartók et al. (2012b)). The set
Vi,j associated with action i and j contains the actions re-
quired to verify the relation (Li − Lj)

⊤ ∈ ⊕a∈Vi,j
Im(S⊤

a ),
where ⊕ corresponds to the direct sum.

Definition 3.3 (Observer vectors, Bartók et al. (2012b)).
The observer vector of the action pair {i, j} with respect to
action a in observer set Vi,j , denoted vija ∈ Rσa , is selected
to satisfy the relation (Li − Lj)

⊤ =
∑

a∈Vi,j
S⊤
a vija.

The set Vi,j identifies all the actions that induce informative
feedback signals about a loss difference. Actions in Vi,j

allow Li − Lj to be expressed as a linear combination of

their corresponding signal matrix images, with observer
vectors as coefficients.

From Def. 3.2 and Def. 3.3, one can express the expected
loss difference δi,j as a function of the feedback distribu-
tions π⋆

a associated with every action a in Vi,j :

δi,j = ⟨Li − Lj , p
⋆⟩ =

∑
a∈Vi,j

v⊤ijaSap
⋆ =

∑
a∈Vi,j

v⊤ijaπ
⋆
a,

where we used Eq. 3 and π⋆
a = Sa p

⋆ for action a. As a
result, CBP computes δ̂i,j(t) using the estimates π̂a(t) =
νa(t)
na(t)

, where the vector νa(t) ∈ Nσa counts the number of
times each unique feedback symbol observable with action
a up to time t was observed, and na(t) is the number of
times that action a was played up to time t. The confidence
bound over the estimate δ̂i,j(t) is defined as (Bartók et al.,
2012b):

ci,j(t) =
∑

a∈Vi,j

∥vija∥∞

√
α log(t)

na(t)
, (5)

s.t. P[|δ̂ij(t) − δij |≥ cij(t)] ≤ 2|Vij |t1−2α where α > 1,
and |Vij | is the size of the observer set Vij . Greater values
of α result in more exploration, as it causes less eliminations
from the criterion in Eq. 4.

Exploration and exploitation in CBP At round t, CBP
identifies plausible subsets of P and N , denoted P(t) and
N (t), based on the constrained probability space D(t). The
set P(t) contains all Pareto-optimal actions i ∈ P whose
cell Ci intersects with D(t). Similarly, the setN (t) contains
all neighbor pairs {i, j} ∈ N whose cell intersection Ci∩Cj
also intersects with D(t). When P(t) contains only one
action, the set N (t) is automatically empty and therefore
CBP exploits. When P(t) contains more than one action,
N (t) is not empty and CBP needs to explore. The following
definitions characterize exploration:

Definition 3.4 (Underplayed actions, Bartók et al. (2012b)).
The setR(t) = {a = 1, . . . , N : na(t) ≤ ηaf(t)} contains
actions that are underplayed according to a play rate function
f(t) and a constant ηa > 0.

Definition 3.5 (Neighbor action set, Bartók et al. (2012b)).
The neighbor action set of a neighbor pair {i, j} is defined
as N+

i,j = {k = 1, . . . , N : Ci ∩ Cj ⊆ Ck}. Note that N+
i,j

naturally contains i and j. If N+
i,j contains another action k,

then Ck = Ci or Ck = Cj or Ck = Ci ∩ Cj .

Based on N (t) and Def. 3.5, CBP computes N+(t) =⋃
i,j∈N (t) N

+
i,j for the neighbor pairs. Similarly, CBP com-

putes V(t) =
⋃

i,j∈N (t) Vi,j for the observer actions.

The final set of actions considered by CBP, denoted
S(t), contains potentially optimal actions (P(t) ∪N+(t))
and informative underplayed actions (V(t) ∪ R(t)).
CBP selects the action with the smallest action count,
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i.e. It = argmaxa∈S(t)
W 2

a

na(t)
, weighted by Wa =

max{i,j}∈N ∥vija∥∞.

3.2. Instantiating RandCBP

We now introduce RandCBP, a randomized counterpart of
the CBP strategy. The main idea behind RandCBP is to
replace deterministic confidence bounds (Eq. 5) by random-
ized confidence bounds:

c′i,j(t) =
∑

a∈Vi,j

∥vija∥∞
Zijt√
na(t)

,

where Zijt is sampled for each action pair {i, j} from a
discrete probability distribution supported over K bins in
the interval [A,B]. Note that the CBP strategy corresponds
to the specific case of K = 1 and A = B =

√
α log(t).

Randomization procedure Let ρ1 = A, . . . , ρK = B
denote K equally spaced values, and pk denote the prob-
ability of sampling the value ρk, with k = 1, . . . ,K. The
probabilities assigned to the remaining K − 1 points are
shaped according to the positive side of a discretized Gaus-
sian distribution centered at 0. Formally, for k ≤ K − 1,
let p̄k := exp(−ρ2k/2σ2). Then, pk corresponds to the nor-
malized probabilities, that is, pk := (1 − ε)p̄k/(

∑
k p̄k).

The above distribution from which the Zijt are sampled
is a truncated (between A and B) and discretized (into K
points) Gaussian distribution with tunable hyper-parameters
ε, σ > 0, and K. A pseudo-code of the randomization
procedure is provided in Algorithm 2.

Algorithm 2 Randomization Procedure
Input :A,B,K, ε, σ
Output :Z

Initialize an array ρ of size K with equally spaced values in
[A,B]

for k ← {1 . . .K} do
Calculate p̄k using p̄k = exp

(
− ρ2

k

2σ2

)
Initialize an array p of size K
for k ← {1 . . .K − 1} do

Calculate pk using pk = (1−ε)p̄k∑
k p̄k

Set pK = ϵ
Sample Z in ρ with probabilities p

This randomization procedure was introduced by Vaswani
et al. (2020) for randomizing Upper Confidence Bound
(UCB) strategies in the bandit setting. We generalize these
ideas to the broader PM setting, where confidence bounds
articulate a successive elimination criterion. This requires
to define the randomized confidence bounds on quantities
estimated for each action pair {i, j} in N . We will now
show how this mechanism can be considered seamlessly in

the theoretical analysis of CBP, allowing to maintain the
regret guarantees with RandCBP.

Regret analysis The analysis, follows the structure of
CBP’s analysis (Bartók et al., 2011), and involves upper
bounding the expected number of times the confidence
bounds succeed and fail, as detailed in Appendix C.2 and
C.3 respectively. For the failure case, we leverage that the
probability of the randomized SE criterion failing becomes
negligible over time following Kveton et al. (2019). For the
success case, we adapt lemmas from Bartók et al. (2012b)
by observing that the randomized bounds are always upper
bounded by their deterministic counterparts. The detailed
analysis is reported in Appendix C.

Theorem 3.1. Consider the interval [A,B], with B =√
α log(t) and A ≤ 0. Set the randomization over K bins

with a probability ϵ on the tail and a standard deviation σ.
Set f(t) = α1/3t2/3 log(t)1/3, ηa = W

2/3
a and α > 1. On

easy games, RandCBP achieves

E[RT ] ≤ N

[
2(1 +

1

2α− 2
)|V|+1

]
+

N∑
k=1

δk+

N∑
k=1,δk>0

4W 2
k

g2k
δk

α log(T ),

with V =
⋃

i,j∈N Vij and gk being game dependent con-
stants. On hard games, assuming positive constants C1 and
C2, RandCBP achieves

E[RT ] ≤ C1N + C2T
2/3 log1/3(T ).

Similarly to the guarantees of CBP (Bartók et al., 2012b),
the bound on easy games is problem dependent while the
bound on hard games is problem independent. In both cases,
the expected regret of RandCBP grows at the same rate
as CBP on the horizon T . On easy and hard games, our
bound is equivalent to CBP’s in N , up to a constant. The
dependency on the other terms is equivalent. We will see
in the experiments that RandCBP empirically outperforms
CBP.

4. The Contextual Setting
CBPside (Bartók et al., 2012a) extends CBP to the linear
and logistic contextual PM settings. CBPside was initially
hard-coded for easy games. Then, (Lienert, 2013) showed
that the exploration mechanism developed for CBP (in the
non-contextual setting) can be leveraged to extend CBP-
side to hard games. However, (Lienert, 2013) proposed
an exploration based on action counts, which is inadequate
for the contextual setting. Indeed, action counts do not re-
flect the fact that actions are played in specific contexts (i.e.
observations), in the contextual setting. As a response, we
introduce CBPside⋆, a variation that weights action counts
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based on the current context and the history of contexts that
have been previously observed. This variation enables us to
derive regret guarantees for easy and hard games, as well
as an applicable strategy to hard games. We then propose
RandCBPside⋆, a stochastic counterpart of CBPside⋆,
that enjoys regret guarantees on both easy and hard games
in the linear setting, while empirically outperforming its
deterministic counterpart. Pseudo-codes of CBPside⋆ and
RandCBPside⋆ are reported in Appendix A.

4.1. The linear CBPside⋆ strategy

Recall that under the contextual PM setting, p⋆(x) de-
notes the outcome distribution given d-dimensional con-
texts x ∈ X ⊆ Rd. In the linear setting, p⋆(x) = θx, where
θ ∈ RM×d is an unknown parameter matrix. Similarly
to the non-contextual setting, it is not possible to estimate
the outcome distribution directly (see Section 3.1). Conse-
quently, CBPside⋆ exploits the connection between out-
come and feedback distributions. In the contextual setting,
the feedback distribution is π⋆

i (x) = Sip
⋆(x) ∈ ∆σi for all

actions i ∈ {1, . . . , N} . If we denote θi = Siθ ∈ Rσi×d

as the per-action unknown parameter of the regression, then
the contextual feedback distribution is π⋆

i (x) = θix.

CBPside⋆ estimates θi with a ridge estimator defined as
θ̂i(t) = Yi,tX

⊤
i,t(λId +Xi,tX

⊤
i,t)

−1, where Xit ∈ Rd×t is
the history of contexts, Yit ∈ {0, 1}σi×t is the history of
one-hot-encoded feedback symbols for action i, and Id the
d-dimensional identity matrix. The following confidence
bound on δ̂i,j(x) holds with probability 1/t2:

ci,j(x) =
∑
a∈Vij

∥vija∥2

×σa

(√
d log(t) + 2 log(1/t2) + σa

)
∥x∥G−1

a,t
, (6)

where Ga,t = λId + XatX
⊤
at is the Gram matrix and

∥x∥2
G−1

a,t

= x⊤G−1
a,tx is the weighted 2-norm.

Remark 4.1. The confidence bound of CBPside⋆ (Eq.
6) corrects the bound ci,j(x) ∝ d(

√
d log(t) . . .) used in

Bartók et al. (2012a); Lienert (2013). We multiply by σa

instead of d to correctly instantiate Theorem 3 in Bartók
et al. (2012a) over matrix traces. The corrected confidence
bound is less conservative as σa is usually smaller than d.

Exploration based on pseudo-counts As opposed to
CBPside (Lienert, 2013), the exploration of CBPside⋆

is based on a new definition of underplayed actions suitable
for the contextual setting. The definition enables the appli-
cability of CBPside⋆ to hard games, and the derivation of
regret upper-bounds in both easy and hard games. In the
non-contextual setting, underplayed actions are based on
the number of times that action a was played up to time t,
i.e. na(t). A natural extension would consist in counting
the number of times action a was played in context xt. Un-
fortunately, given that contexts are usually sampled from a

continuous domain X , each context is typically encountered
only once over a game, making such counters irrelevant.

Definition 4.1 (Underplayed actions (contextual case) ). At
round t, the set R(xt) = {a = 1, . . . , N : 1/∥xt∥2G−1

a,t

<

ηaf(t)} contains actions that are underplayed at context xt

given a play rate function f(t) and a constant ηa > 0.

The quantity 1/∥x∥2
G−1

a,t

is a pseudo-count of the number of

selections of action a at a given context x. In the specific
case of orthogonal contexts sampled from the finite set of d-
dimensional one-hot vectors, 1/∥x∥2

G−1
a,t

corresponds to the

exact number of selections of action a in context x. When
contexts are not orthogonal, the pseudo-count increases
proportionally to the frequency of the action being played
in similar contexts.

4.2. Instantiating linear RandCBPside⋆

The randomized counterpart of CBPside⋆, namely
RandCBPside⋆, relies on randomized confidence bounds
defined at time t for a pair {i, j}, defined as

c′i,j(x) =
∑
a∈Vij

||vija||2σa(Zijt + σa)∥x∥G−1
a,t
,

where Zijt is a random variable bounded in [A,B] and fol-
lows the randomization procedure presented in Section 3.2.

Regret analysis We leverage the non-contextual analysis
of CBP (Bartók et al., 2012b). We adapt the analysis to the
contextual case by introducing pseudo-counts and simpli-
fying the obtained expressions with the Cauchy-Schwartz
inequality. The contextual confidence bounds are simplified
by considering the total number of feedback symbols in the
game. To upper bound the expected number of times the
confidence bound fails, we consider some worst-case proba-
bility over all actions of the game. The detailed analysis is
reported in Appendix D.

Theorem 4.2. Consider the interval [A,B], with B =√
d log(t) + 2 log(1/t2) and A ≤ 0. Set the randomization

over K bins with a probability ϵ on the tail and a standard
deviation σ. Let f(t) = α1/3t2/3 log(t)1/3, ηa = W

2/3
a

and α > 1. Assume ∥xt∥2≤ E and positive constants
E,C1, C2, C3, and C4. On easy games, RandCBPside⋆

achieves:

E[RT ] ≤ C1N + C2Nd
√
T log(T )

and, on hard games, RandCBPside⋆ achieves:

E[RT ] ≤ C3N + C4

√
d log(T )1/3T 2/3.

Similarly to CBPside, the guarantee of RandCBPside⋆

is problem independent and grows at the same rate on easy
games. However, RandCBPside⋆ presents a new prob-
lem dependent guarantee on hard games. On easy games,
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(Bartók et al., 2012a) uses a different equation for the confi-
dence bound, which influences the dependencies in N and
d. Accounting for Remark 4.1, we found an improved de-
pendency in N , rather than a dependency in N3/2, and an
improved dependency in d rather than d2, as reported in
(Bartók et al., 2012a). Additionally, since CBPside⋆ is a
special case of RandCBPside⋆ with A = B and K = 1,
our bounds for RandCBPside⋆ also hold for CBPside⋆.
We will see in the experiments that RandCBPside⋆ em-
pirically outperforms CBPside⋆ on easy and hard games.

Applicability to other contextual settings. The focus of
this manuscript is on the linear partial monitoring setting.
Beyond this linear contextual setting, randomization offers
an interesting perspective to online learning strategies that
rely on statistical deviation bounds that are overly conser-
vative in practice, which can be of particular interest for
bounds in the logistic (Bartók et al., 2012a), and neural
settings (Zhou et al., 2020; Xu et al., 2022).

5. Numerical Experiments
We conduct experiments to validate the empirical perfor-
mance of RandCBP and RandCBPside⋆ on the well-
known Apple Tasting (AT) (Helmbold et al., 2000) (fur-
ther studied in (Raman et al., 2024)) and Label Efficient
(LE) (Helmbold et al., 1997) games. AT is a two actions
and two outcomes easy game:

L =
[

action 1 1 0
action 2 0 1

]
,H =

[ ⊥ ⊥
∧ ⊙

]
.

LE is a hard game with three actions and two outcomes:

L =

[
action 1 1 1
action 2 0 1
action 3 1 0

]
,H =

[
⊥ ⊙
∧ ∧
∧ ∧

]
.

For reproducibility, we provide in Appendix B a
detailed analysis of both games. Code is avail-
able at https://github.com/MaxHeuillet/
partial-monitoring-algos.

5.1. Evaluation of RandCBP

Since both AT and LE admit binary outcomes, the outcome
distribution corresponds to p⋆ = [p, 1− p] with p ∈ [0, 1].
We consider imbalanced and balanced instances. Imbal-
anced instances, where p ∼ U[0,0.2]∪[0.8,1], are usually
solved faster since outcomes have lower variance. Balanced
instances, where p ∼ U[0.4,0.6], require more exploration
to estimate p⋆ with confidence. This leads to four cases:
imbalanced/balanced AT and imbalanced/balanced LE. For
each of the four cases, we run the experiment 96 times on a
T = 20k horizon.

Baselines We consider the deterministic PM-DMED and
CBP as baselines, as well as the stochastic BPM-Least,
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(d) Balanced LE

Figure 1: Average regret (with 99% confidence interval
above) on non-contextual AT and LE games.
TSPM, and TSPM-Gaussian (in the settings where they
have a guarantee). The code is open-sourced for all strate-
gies. Implementation and hyper-parameters details are re-
ported in Appendix A.

Performance metrics We measure the performance with
the average non-contextual cumulative regret (Eq. 1) and the
win-count (number of times a strategy achieves the lowest
cumulative regret at end of the game). We perform a one
sided Welch’s t-test to assess if the cumulative regret of
RandCBP at the end of the game is significantly lower than
the baselines’ regret.

Results Figure 1 shows the non-contextual cumulative
regret for each strategy over the four configurations con-
sidered. Numeric details are reported in Table 2 and 3 of
Appendix E. In all four cases, RandCBP is the best strategy
in terms of average regret. RandCBP achieves a regret sig-
nificantly lower (p-value< 0.01) than all baselines in three
settings (Figures 1a, 1c, and 1d) out of the four considered.
In the balanced AT game (Figure 1b), RandCBP is not sta-
tistically different from CBP (p-value=0.055) and TSPM (p-
value=0.854). For CBP, this can be attributed to its high vari-
ance (std=138). For TSPM, we observe from the win-count
that RandCBP achieves lowest regret 37 times, against 13
for TSPM. Performance similarity between RandCBP and
TSPM reflects the theoretical connections between random-
izing confidence bounds and Thompson Sampling (Vaswani
et al., 2020), on which TSPM is based.
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(a) Apple Tasting (AT)
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(b) Label Efficient (LE)

Figure 2: Average regret (with 99% confidence interval
above) on contextual games (10-d contexts).

5.2. Evaluation of RandCBPside⋆

Here, the outcome distribution is a linear function of 10-
dimensional contexts (sampled uniformly in [0, 1]10) and
a fixed unknown parameter θ ∈ RM×10 with all values
set at 0.1. From the uniform context distribution, we have
0.5 as mean for each context feature. Therefore, the result-
ing outcome distributions are more balanced. We run the
experiment 96 times over a T = 20k horizon. We report
the contextual cumulative regret (Eq. 2), the win-count and
Welch’s t-test.

Baselines The only PM baseline in this setting is
CBPside⋆. We therefore resort to baselines that only ap-
ply on specific games. We consider PG-IDS (Grant et al.,
2021), PG-TS (Grant et al., 2021), and STAP (Helmbold
et al., 2000) for the AT game, and CESA (Cesa-Bianchi
et al., 2006) for the LE game. Implementation and hyper-
parameters details are reported in Appendix A.

Results Figure 2 shows the contextual cumulative regret
for each strategy on AT and LE, with dotted-lines indi-
cating game-specific baselines. Numeric details are re-
ported in Table 4 (Appendix E). Over the horizon T = 20k,
RandCBPside⋆ achieves the best regret performance in
both settings and significantly improves over CBPside⋆,
STAP, and CESA (p-value< 0.01 in AT and LE). In the
AT game (Figure 2a), PG-IDS achieves the lowest regret
on the truncated horizon T = 7.5k. However, PG-IDS
and PG-TS scale in cubic time with the number of con-
texts due to the necessity to sample and invert matrices
at each round, whereas CBPside⋆ and RandCBPside⋆

enjoy lower complexity thanks to the Sherman-Morison
update (Sherman et al., 1950), making them practical on
long horizons tasks. We emphasize that PG-IDS, PG-TS,
STAP, and CESA are game-specific, unlike CBPside⋆ and
RandCBPside⋆.

5.3. Discussion on the empirical performance

Recall that the width of the randomized confidence bounds
of RandCBP and RandCBPside⋆ is in expectation
smaller than the width of the deterministic confidence
bounds of CBP and CBPside⋆. As a consequence, the
successive elimination criterion (defined in Eq. 4) in charge
of populating U(t) by separating high confidence from low
confidence estimates is less restrictive when randomized
confidence bounds are used. As a result, a specific loss dif-
ference estimate requires less exploration to be considered
high confidence (i.e. to be added in U(t)). The additional
estimates included in U(t) bring additional constraints that
are used to construct the probability subspace D(t). In
conclusion, D(t) becomes tighter around the ground truth
solution p⋆ or p⋆(xt) faster, resulting in a faster identifica-
tion of potentially optimal actions, which translates into a
smaller regret.

However, one limitation of the proposed approach is that
it requires tuning hyper-parameters ϵ, σ and K, whereas
hyper-parameters tuning is not easily achievable in online
learning.

6. Use-case: Adaptive Monitoring of a
Deployed Black-box Classifier

Partial monitoring has a reputation for being a complex
framework due to its generality (Kirschner et al., 2023),
which can hinder its adoption in real-world problems. Doc-
umented applied studies of PM do not emphasize on how
to employ the framework towards an application (Singla
et al., 2014; Kirschner et al., 2023). Here, we show how
to formulate a real-world application as a PM problem, to
encourage future applied research.

We consider the problem of cost-efficiently verifying the
prediction error rate of a deployed black-box classifier. We
assume a streaming setting where, at each round, the classi-
fier receives an input and outputs probabilities to C classes.
The index of the highest probability determines the pre-
dicted class. Each of the C predicted classes has an error
rate pc. The goal is to identify which predicted classes have
an error rate greater than a tolerance threshold τ ∈ [0, 1]
while minimizing the number of verifications. In contrast
to Kossen et al. (2021), who require a verification budget
to be specified, our approach assumes no prior knowledge
regarding the number of required verifications.

Problem formulation Everytime class c is predicted, a
binary outcome is generated: either the classifier mispre-
dicted (0) or not (1). Thus, the outcome distribution is
p⋆c = [pc, 1− pc] where pc denotes the error rate we aim to
estimate for all classes c ∈ {1, . . . , C}. We design a PM
game, that we name the τ -detection game, to estimate the
outcome distribution over multiple rounds for a predicted
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(a) Case 1 (b) Case 2

Figure 3: Cost-efficiency of the considered approaches
(quartiles of number of verifications).

class c:

L =

[ error no error

verify 1 1
pass 1/τ 0

]
,H =

[ error no error

verify ∧ ⊙
pass ⊥ ⊥

]
.

After each classifier prediction (i.e. round in the stream),
the PM agent can either require a verification (observation
of the true class) or not (pass). The loss matrix is designed
such that the optimal action is to pass when pc < τ and
to verify when pc ≥ τ . The “verify” action is informative
about the error rate pc, but it has a fixed cost no matter the
outcome. For reproducibility, we provide in Appendix B.4
the analysis of this game.

Experiment setup We simulate a variety of black-box
classifiers by randomly generating confusion matrices
with a global error rate lower than 10% (the black-box
would not be deployed otherwise). Prediction errors
from the black-box can be uniformly distributed across
the classes or non-uniformly distributed. In addition, the
distribution of the true classes in the stream can be bal-
anced or imbalanced. We obtain four configurations (uni-
form/balanced, uniform/imbalanced, non-uniform/balanced,
non-uniform/imbalanced). We consider the two opposite
configurations: i) balanced true classes with uniform black-
box errors (case 1), and ii) imbalanced true classes with
non-uniform black-box errors (case 2).

We run the experiment 96 times. We consider four error
tolerance thresholds τ ∈ {0.025, 0.05, 0.1, 0.2} and a clas-
sification task with C = 10 classes. We measure the mean
and median f1-score to assess how accurate a given ap-
proach is at identifying predicted classes whose error rate
exceeds τ , and the underlying average number of verifica-
tions used by each approach. For validation and comparison
purposes, we consider a maximum number of verifications
that one is willing to spend to estimate accurately each error
rate. The maximum number of verifications is derived from
Wald’s confidence intervals formula (more details in Ap-
pendix E.4). The non-adaptive Explore-fully baseline
consumes entirely the maximum number of verifications.

We compare Explore-fully against the adaptive strate-
gies C-RandCBP and C-CBP, which consist of C instances
of RandCBP (resp. CBP) that play the τ -detection game.

Results Tables 5 and 6 (reported in Appendix E) show that
C-RandCBP, C-CBP and Explore-fully all have an
average f1-score is within the same range, indicating that the
three strategies are equally effective in identifying predicted
classes that exceed the threshold τ . In case 1, for the small-
est threshold τ = 0.025, Explore-fully and C-CBP
have an average f1-score of 0.96± 0.15 and C-RandCBP
of 0.95± 0.16. For τ = 0.2, the average f1-score is equal
to 1.0 for all strategies. Similar tendencies are observed for
the other cases. Figure 3 shows that the number of verifi-
cations consumed by C-RandCBP to achieve the task is
consistently lower than the one of Explore-fully and
C-CBP. In case 1, C-RandCBP reduces the verification
cost by 15% for a small error threshold (τ = 0.025) and by
73% for τ = 0.2, relatively to Explore-fully. In case
2, C-RandCBP reduces the verification cost by 18% for a
small error threshold (τ = 0.025) and by 62% at τ = 0.2,
relatively to Explore-fully.

7. Conclusion
This work extends randomization techniques (Kveton et al.,
2019; Vaswani et al., 2020) designed for OFU-based meth-
ods in the bandit setting to successive elimination strategies
in the more general partial monitoring framework. We
show that it is possible to randomize CBP-based strate-
gies (Bartók et al., 2012b;a), allowing to maintain the re-
gret guarantees while improving significantly their empir-
ical performance. In the contextual PM setting, we pro-
pose a correction to the seminal CBPside; the resulting
CBPside⋆ is the first strategy to enjoy regret guarantees on
both easy and hard contextual games. Our proposed Rand-
CBP and RandCBPside⋆ demonstrate competitive perfor-
mance against state-of-the-art baselines in multiple settings
while maintaining regret guarantees. To further bridge the
gap between theory and practice, we present a use case on
the real-world problem of monitoring the error rate of de-
ployed classifiers. Future research may consist in obtaining
tighter regret bounds for RandCBP and RandCBPside⋆.
Obtaining lower bounds in the contextual setting is another
possible future research.
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Impact statement
This work aims to improve the practicality and efficiency
of partial monitoring agents through randomization. A case
study on the cost-efficient verification of deployed classi-
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dependence on machine inference in decision-making tasks.

Acknowledgments
This work was funded through Mitacs with additional sup-
port from CIFAR (CCAI Chair). We thank Alliance Canada
and Calcul Quebec for access to computational resources
and staff expertise consultation. We would like to thank
Junpei Komiyama, Taira Tsuchiya, Ian Lienert, Hastagiri P.
Vanchinathan and James A. Grant for answering our techni-
cal questions and/or providing total/partial access to private
code bases of their approaches. We also acknowledge the
library pmlib of Tanguy Urvoy that was helpful to imple-
ment PM game environments. We thank Quentin Bertrand
and Mathieu Godbout for reading our paper and providing
valuable feedback.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved
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Notation Definition Observable by the agent?
N Number of actions ✓
M Number of outcomes ✓
Σ Feedback space (space of symbols) ✓

L ∈ [0,1]N×M Loss matrix ✓
Li Row i in matrix L (associated with action i) ✓

H ∈ ΣN×M Feedback matrix ✓
Hi Row i in matrix H (associated with action i) ✓
σi Number of unique feedback symbols induced by action i (i.e. on row i of H) ✓
∆M Probability simplex of dimension M (i.e. over the outcome space) ✓
∆σi Probability simplex of dimension σi (i.e. over the symbol space induced by action i) ✓
T Total number of rounds in a game (horizon) ✗

It Action played by the agent at round t ✓
Jt Outcome at round t ✗

p⋆ ∈ ∆M Outcome distribution ✗

H[It,Jt] Element in matrix H at row It and column Jt (i.e. feedback received at round t) ✓
L[It,Jt] Element in matrix L at row It and column Jt (i.e. loss incurred at round t) ✗

ℓi Expected loss of action i ✗

ℓ̂i Estimated expected loss of action i (not observable, p⋆ can’t be computed in practice) ✗

X Observation space ✗

xt ∈ X Observation received at time t ✓
Xi,t ∈ Rd×t History of observations for action i up to time t ✓

Yi,t ∈ {0, 1}σi×t History of one-hot encoded feedback symbols for action i up to time t ✓
Ga,t ∈ Rd×d Gram matrix for action a up to time t ✓
θi ∈ Rσi×d Parameter of the ridge regression of action i ✓
p⋆(xt) ∈ ∆M Outcome distribution in the contextual setting ✗

Ci ⊆ ∆M Cell of action i ✓
Si ∈ {0, 1}σi×M Signal matrix of action i ✓

πi ∈ ∆σi
Distribution for the unique feedback symbols induced by action i ✗

π̂i ∈ ∆σi Estimated distribution for the unique feedback symbols induced by action i ✓
δi,j Expected loss difference between action i and j ✗

δ̂i,j Estimated expected loss difference between action i and j ✓
ni(t) ∈ N Number of times action i was played up to time t ✓
νi(t) ∈ Nσi Count for the unique symbols induced by action i up to time t ✓
P Set of Pareto optimal actions (i.e. set of actions) ✓
N Set of neighbor action pairs (i.e. set of pairs of actions) ✓
U(t) Set of confident action pairs (i.e. set of pairs of actions) ✓
Vi,j Observer set for pair i, j (i.e. set of actions ) ✓
vija Observer vector associated with Vi,j (index a indicates to which action in Vi,j it is associated to) ✓
ci,j(t) Confidence for a pair {i, j} at round t ✓
[A,B] Randomization interval (values A and B set by the user) ✓
Zijt Value sampled at time t for pair i, j in the discretized interval [A,B] at round t ✓
ϵ Probability of sampling value B (parameter of the randomization) ✓
K Number of bins in the discretized distribution (parameter of the randomization) ✓
σ Variance of the Gaussian distribution (parameter of the randomization) ✓

c′i,j(t) Randomized confidence for a pair {i, j} at round t ✓
D(t) ⊆ ∆M Sub-space of the simplex based on constraints in U(t), it includes p⋆ with high confidence ✓

N+
i,j Neighbor action set for pair i, j (set of actions) ✓
V Union of all the observer sets (set of actions) ✓
P(t) Plausible subset of P given D(t) (set of actions) ✓
N (t) Plausible subset of N given D(t) (set of pairs of actions) ✓
R(t) Set of underplayed actions at time t (set of actions) ✓
e(·) One hot encoding ✓
S(t) Final set of actions considered by CBP (set of actions) ✓

Wa = max{i,j}∈N ∥vija∥∞ Weight of an action ✓

Table 1: List of notations

A. Implementation Details for CBP-based Strategies
A.1. Pseudo-code for CBPside⋆ and RandCBPside⋆

Algorithm 3 provides the pseudo-code of CBPside as defined by Lienert (2013) and our proposed RandCBPside⋆.
Differences are highlighted in purple. The strategies are instantiated with the set of Pareto optimal actions P (see Definition
2.1), the set of neighbor pairs N (see Definition 3.1), parameters ηa for each action, the exploration parameter α > 1 and
the decaying exploring rate f(t).
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Remark A.1. Obtaining P(t) and N (t) at each round entails solving a computationally expensive optimization problem
with evolving constraints. However, by caching the various half-spaces collected over time, the encountered problems can
be buffered, significantly enhancing the overall computational complexity of the approach. In practice, Gurobi (Gurobi
Optimization, LLC, 2023) or PULP (Mitchell et al., 2011) can be used to solve the optimization problems.

Remark A.2. In the contextual scenario, the update process of the inverse Gram matrix Ga,t of action a at time t within
CBPside and RandCBPside⋆ can be efficiently implemented using the Sherman-Morrison update (Sherman et al., 1950)
instead of relying on a costly matrix inversion operation.

Algorithm 3 CBPside (Lienert, 2013) and RandCPBside⋆

input : P,N , α, f(·), ηa,K, σ, ε
for t = 1, 2, . . . , N do

Receive side-information xt

Play action It = t
Observe feedback H[It, Jt]
Xi,t = Xi,t−1 ∪ {xt} if It = i else Xi,t = Xi,t−1,∀i
YIt,t = YIt,t−1 ∪ {e(H[It, Jt])} if It = i else Yi,t = Yi,t−1,∀i
Compute G−1

It,t
(Sherman-Morrison update, Sherman et al. (1950))

Update θ̂i(t) = Yi,tX
⊤
i,t(λId +Xi,tX

⊤
i,t)

−1

for t > N do
Receive side-information xt

for a = 1, . . . , N do
π̂a(xt) = θ̂axt

wa(xt) = σa

(√
d log(t) + 2 log(1/t2) + σa

)
∥xt∥G−1

a,t

B =
√

d log(t) + 2 log(1/t2)
Sample Za,t, according to Algorithm 2
w′

a(xt) = σa (Za,t + σa) ∥xt∥G−1
a,t

for each neighbor pair {i, j} ∈ N do
δ̂i,j(xt) =

∑
a∈Vi,j

v⊤ijaπ̂a(xt)

ci,j(xt)←
∑

a∈Vi,j
∥vija∥2wa(xt)

c′ij(xt)←
∑

a∈Vi,j
∥vija∥2w′

a(xt)

if |δ̂i,j(xt)|> ci,j(xt) c′i,j(xt) then
Add pair {i, j} to U(t)

Compute D(t) based on U(t)
Get P(t) and N (t) from P , N and D(t)
N+(t)←

⋃
ij∈N (t) N

+
ij

V(t)←
⋃

ij∈N (t) Vij

R(t)← {a ∈ {1, . . . , N} : na(t) ≤ ηaf(t)}
R(xt)← {a ∈ {1, . . . , N} : 1/∥xt∥2G−1

a,t

< ηaf(t)}
S(t)← P(t) ∪N+(t) ∪ (V(t) ∩R(xt))
Play It = argmaxa∈S(t) Wawa(xt)
Play It = argmaxa∈S(t) Waw

′
a(xt)

Observe feedback H[It, Jt]
Xi,t = Xi,t−1 ∪ {xt} if It = i else Xi,t = Xi,t−1

YIt,t = YIt,t−1 ∪ {e(H[It, Jt])} if It = i else Yi,t = Yi,t−1

Compute G−1
It,t

(Sherman-Morrison update, Sherman et al. (1950))
Update θ̂i(t) = Yi,tX

⊤
i,t(λId +Xi,tX

⊤
i,t)

−1

13



Randomized Confidence Bounds for Stochastic Partial Monitoring

B. Partial Monitoring Games
In this Appendix, we analyse the Apple Tasting (Helmbold et al., 2000), Label Efficient (Helmbold et al., 1997), and
τ -detection games presented in the main paper. The analysis is necessary to implement partial monitoring environments and
strategies based on these games.

B.1. Characterizing a partial monitoring game

A game is easy or hard depending on whether it verifies the global observability or local observability condition. Easy
games refer to games that are locally observable while hard games verify the global observability condition but are not
locally observable.

Definition B.1 (Global observability, Piccolboni et al. (2001)). A partial-monitoring game with L and H admits the global
observability condition, if all pairs {i, j} verify L⊤

i − L⊤
j ∈ ⊕1≤a≤N Im(S⊤

a ).

Definition B.2 (Local observability, Bartók et al. (2012b)). A pair of neighbor actions i, j is locally observable if L⊤
i −L⊤

j ∈
⊕a∈N+

i,j
Im(S⊤

a ). We denote by L ⊂ N the set of locally observable pairs of actions (the pairs are unordered). A game
satisfies the local observability condition if every pair of neighbor actions is locally observable, i.e., if L = N .

Remark B.1. When a pair is locally observable, we have Vij = N+
ij . For non-locally observable pairs, Vij = {1, . . . , N}

is always a valid set Bartók et al. (2012b).

B.2. Apple Tasting Game

The Apple Tasting game is defined by the following loss and feedback matrices:

L =

[ A B

action 1 1 0
action 2 0 1

]
, H =

[ A B

action 1 ⊥ ⊥
action 2 ∧ ⊙

]
.

This game has two possible actions and N = 2 actions and M = 2 outcomes (denoted A and B).

Signal Matrices: Signal matrices are such that S1 ∈ {0, 1}1×2 and S2 ∈ {0, 1}2×2. The matrices verify:

S1 =
[
1 1

]
, S2 =

[
1 0
0 1

]

The outcome distribution is denoted p⋆ = [pA, pB ]
⊤.

• π⋆
1 = S1p

⋆ =
[
1 1

] [pA
pB

]
= 1, there is only one feedback symbol (⊥) induced by action 1 therefore the probability

of seeing this feedback symbol is always 1.

• π⋆
2 = S2p

⋆ =

[
1 0
0 1

] [
pA
pB

]
=

[
pA
pB

]
, therefore, the probability of seeing feedback ∧ is pA and the probability of

seeing ⊙ is pB .

Cells: This game has 2 actions, each associated to a sub-space of the probability simplex:

• For action 1, we have: C1 = {p ∈ ∆M ,∀j ∈ {1, . . . , N}, (L1 − Lj)p ≤ 0}. This probability space corresponds to the
following constraints: [

L1 − L1

L1 − L2

]
p =

[
0 0
1 −1

]
p ≤ 0

The first constraint (L1 − L1)p ≤ 0 is always verified. The second constraint (L1 − L2)p ≤ 0 implies pA − pB ≤ 0.
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• For action 2, we have: C2 = {p ∈ ∆M ,∀j ∈ {1, . . . , N}, (L2 − Lj)p ≤ 0}. This probability space corresponds to the
following constraints: [

L2 − L1

L2 − L2

]
p =

[
−1 1
0 0

]
p ≤ 0

The second constraint (L2 −L2)p ≤ 0 is always verified. The first constraint (L2 −L1)p ≤ 0 implies −pA + pB ≤ 0.

Pareto optimal actions: The cell respective to each action is neither empty nor included one in another. Therefore,
according to Definition 2.1, both actions 1 and 2 are Pareto optimal, i.e. P = {1, 2}

Neighbor actions: The space corresponding to C1 ∩ C2 includes only one unique point, being
[
0.5 0.5

]
. Therefore,

dim(C1 ∩ C2) = 0 = M − 2, which satisfies Definition 3.1. This implies that actions 1 and 2 are neighbors, i.e.
N = {{1, 2}, }.

Neighbor action set: This set includes: N+
12 = N+

21 = [1, 2].

Observability of the game: The action pair {1, 2} is locally observable because L⊤
1 − L⊤

2 can be expressed from the set
of vectors included in Im(S⊤

1 )
⊕

Im(S⊤
2 ). We can conclude that the game is globally and locally observable. Therefore, it

can be classified as an easy game.

Observer set: The pair {1, 2} is locally observable. According to Definition B.2, we have: V12 = N+
12 = [1, 2]. The pair

of actions 2 and 1 is also locally observable therefore V21 = N+
21 = {1, 2}.

Observer vector: For the pair of actions 1 and 2, we have to find vija, a ∈ Vij such that L⊤
1 − L⊤

2 =
∑

a∈Vij
ST
i vija,

according to Definition 3.3. Choosing and v121 = 0 and v⊤122 =
[
1 −1

]
verifies the relation:

L⊤
1 − L⊤

2 =

[
1
−1

]
= ⟨
[
1
1

]
, 0⟩+

[
1 0
0 1

] [
1
−1

]
(7)

It suffices to reproduce the same procedure for pair of actions 2 and 1.

B.3. Label Efficient Game

The Label Efficient game (Helmbold et al., 1997) is defined by the following loss and feedback matrices:

L =


A B

action 1 1 1
action 2 1 0
action 3 0 1

, H =


A B

action 1 ⊥ ⊙
action 2 ∧ ∧
action 3 ∧ ∧

.
The game includes a set of N = 3 possible actions and M = 2 possible outcomes (denoted A and B).

Signal Matrices: The dimension of the signal matrices are such that S1 ∈ {0, 1}2×2, S2 ∈ {0, 1}1×2 and S3 ∈ {0, 1}1×2.
The matrices verify:

S1 =

[
1 0
0 1

]
, S2 =

[
1 1

]
, S3 =

[
1 1

]
The outcome distribution is noted p⋆ = [pA, pB ]

⊤.
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Cells: Each action can be associated to a sub-space of the probability simplex noted cell (see Definition 2.1):

• For action 1, we have: C1 = {p ∈ ∆M ,∀j ∈ {1, . . . , N}, (L1 − Lj)p ≤ 0}. This probability space corresponds to the
following constraints: L1 − L1

L1 − L2

L1 − L3

 p =

0 0
0 1
1 0

 p ≤ 0

The first constraint (L1 − L1)p ≤ 0 is always verified. The second constraint (L1 − L2)p ≤ 0 implies pB ≤ 0 and
the third constraint (L1 − L3)p ≤ 0 implies pA ≤ 0. There exist no probability vector in ∆M satisfying these three
constraints at the same time.

• For action 2, we have: C2 = {p ∈ ∆M ,∀j ∈ {1, . . . , N}, (L2 − Lj)p ≤ 0}. This probability space corresponds to the
following constraints: L2 − L1

L2 − L2

L2 − L3

 p =

0 −1
0 0
1 −1

 p ≤ 0

The second constraint (L2−L2)p ≤ 0) is always verified. The first constraint (L2−L1)p ≤ 0 implies−pB ≤ 0 ⇐⇒
pB ≥ 0. The third constraint (L2 − L3)p ≤ 0 implies pA − pB ≤ 0 ⇐⇒ pA ≤ pB .

• For action 3, we have: C3 = {p ∈ ∆M ,∀j ∈ {1, . . . , N}, (L3 − Lj)p ≤ 0}. This probability space corresponds to the
following constraints: L3 − L1

L3 − L2

L3 − L3

 p =

−1 0
−1 1
0 0

 p ≤ 0

The third constraint (L3 − L3)p ≤ 0 is always satisfied. The second constraint (L3 − L1)p ≤ 0 implies −pA + pB ≤
0 ⇐⇒ pB ≥ pA. The first constraint ((L3 − L1)p ≤ 0) implies −pA ≤ 0 ⇐⇒ pA ≥ 0.

Pareto optimal actions: From the analysis of the cells, we have C1 = ∅. Therefore, action 1 is dominated, according
to Definition 2.1. The remaining actions 2 and 3 are Pareto optimal because their respective cells are not included in one
another, i.e. P = {2, 3}.

Neighbor actions: In this paragraph, we will determine whether action 2 and 3 are a neighbor pair.

C1 ∩ C2 =


pB ≥ 0

pA ≤ pB

pB ≤ pA

pA ≥ 0

The only point in this vector space is
[
0.5 0.5

]⊤
. Therefore, dim(C1 ∩ C2) = 0 = M − 2 and the pair {2, 3} is a neighbor

pair, i.e. N = {{2, 3}, }.

Neighbor action set: This set is defined as N+
ij = {k ∈ {1, . . . , N}, Ci ∩ Cj ⊂ Ck}. This yields: N+

23 = N+
32 = [2, 3]

because the cell of action 1 is empty.

Observability of the game: The pair {2, 3} is not locally observable because it is not possible to express L⊤
2 − L⊤

3 from⊕
i∈N+

23
Im(S⊤

i ). On the contrary, it is possible to express L⊤
2 − L⊤

3 from
⊕

1≤i≤N Im(S⊤
i ). We can conclude that the

game is not locally observable and that the pair {2, 3} is globally observable. Therefore, the Label Efficient game belongs to
the class of hard games.

Observer set: The pair {2, 3} is not locally observable. According to Definition B.2, we have: V23 = {1, . . . , N} same
applies to V32 = {1, . . . , N}.
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Observer vector: For the pair {2, 3}, we have to find vija, a ∈ Vij such that L⊤
2 − L⊤

3 =
∑

a∈Vij
ST
i vija, according to

Definition 3.3. Choosing and v⊤231 =
[
−1 1

]
, v232 = 0 and v233 = 0 verifies the relation:

L⊤
2 − L⊤

3 =

[
−1
1

]
=

[
1 0
0 1

] [
−1
1

]
+

[
1
1

]
0 +

[
1
1

]
0 (8)

It suffices to reproduce the same procedure for pair of actions 3 and 2.

B.4. τ -detection Game

Let us consider the τ -detection game, with τ ∈]0, 1[. The game is defined by the following loss and feedback matrices:

L =

[ A B

action 1 1 1
action 2 1/τ 0

]
,H =

[ A B

action 1 ∧ ⊙
action 2 ⊥ ⊥

]
.

This game includes a set of N = 2 possible actions and M = 2 possible outcomes (denoted A and B).

Signal Matrices: The dimension of the signal matrices are such that S1 ∈ {0, 1}2×2 and S2 ∈ {0, 1}1×2. The matrices
verify:

S1 =

[
1 0
0 1

]
, S2 =

[
1 1

]
Consider a general instance of the problem where the outcome distribution is p⋆ = [pA, pB ]

⊤.

Cells: This game has two actions, each can be associated to a cell:

• For action 1, we have: C1 = {p ∈ ∆M ,∀j ∈ {1, . . . , N}, (L1 − Lj)p ≤ 0}. This probability space corresponds to the
following constraints: [

L1 − L1

L1 − L2

]
p =

[
0 0

1− 1/τ 1

]
p ≤ 0

The first constraint (L1−L1)p ≤ 0 is always verified. The second constraint (L1−L2)p ≤ 0 implies pA(2−1/τ) ≤ 1.

• For action 2, we have: C2 = {p ∈ ∆M ,∀j ∈ {1, . . . , N}, (L2 − Lj)p ≤ 0}. This probability space corresponds to the
following constraints: [

L2 − L1

L2 − L2

]
p =

[
1/τ − 1 −1

0 0

]
p ≤ 0

The second constraint (L2 − L2)p ≤ 0) is always verified. The first constraint (L2 − L1)p ≤ 0 implies pA ≤ τ .

Pareto optimal actions: The cell respective to each action is neither empty nor included one in another. Therefore,
according to Definition 2.1, both actions 1 and 2 are Pareto optimal, i.e. P = {1, 2}

Neighbor actions: For values of τ ∈]0, 1[, C1 ∩ C2 = ∅. Therefore, dim(C1 ∩ C2) = 0, which satisfies the definition 3.1.
This implies that actions 1 and 2 are neighboring actions, i.e. N = {{1, 2}, }.

Neighbor action set: This set is defined as N+
ij = {k ∈ {1, . . . , N}, Ci ∩ Cj ⊂ Ck}. This yields: N+

12 = N+
21 = [1, 2].

Observability of the game: The action pair {1, 2} is locally observable because L⊤
1 − L⊤

2 =
[
1− 1/τ 1

]
can be

expressed from the set of basis vectors included in Im(S1)
⊕

Im(S2) (see Definition B.2). Since this also applies to the pair
{2, 1}, we can conclude that the game is globally and locally observable. Therefore, it can be classified as an easy game.

Observer set: The pair {1, 2} is locally observable. According to the definition 3.2, we have: V12 = N+
12 = [1, 2]. The

pair {2, 1} being also locally observable, we have V21 = N+
21 = {1, 2}.
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Observer vector: For the pair {1, 2}, we have to find vija, a ∈ Vij such that L⊤
1 − L⊤

2 =
∑

a∈Vij
ST
i vija. Choosing and

v121 = 0 and v⊤122 =
[
1 −(1− bopt)

]
verifies the relation:

L⊤
1 − L⊤

2 =

[
1− 1/τ

1

]
=

[
1
1

]
0 +

[
1 0
0 1

] [
1

−(1− bopt)

]
, (9)

where bopt satisfies the constraint 1/bopt − τ = 0

C. Regret Analysis of RandCBP

In this section, we provide an upper bound on the expected regret of RandCBP. The incidence of randomization on Upper
confidence bound strategies was characterized by Kveton et al. (2019) and Vaswani et al. (2020). CBP-based strategies
belong instead to the class of Successive Elimination strategies, which utilize both upper and lower confidence bounds.

Let δi = max1≤j≤N δij be the sub-optimality gap between the expected loss of action i and the optimal action. Similarly to
Bartók et al. (2012a), define gi as

gi = max
P′,N ′∈Ψ,i∈P′

min
π∈Bi(N ′),π=(i0,...,ir)

r∑
s=1

|Vis−1,is | (10)

where Ψ corresponds to the set of plausible configurations and Bi(N ′) the set of possible paths. The quantity gi is correlated
with the number of actions N .

C.1. Regret decomposition of RandCBP

Assuming action 1 is optimal:

E[R(T )] = E[
T∑

t=1

(LIt − L1)p
⋆] (11)

=

N∑
k=1

E[nk(T )]δk (12)

The goal is to bound E[nk(T )]. Define the event Et: ”the confidence interval succeeds”1. Formally, Et = {|δ̂i,j(t)− δi,j |≤
ci,j(t)}. The event Et induces the following decomposition:

E[nk(T )] = E[
T∑

t=1

1{It=k}] (13)

= E[
T∑

t=1

1{It=k,Et}]︸ ︷︷ ︸
Ak

+E[
T∑

t=1

1{It=k,Ec
t }]︸ ︷︷ ︸

Bk

(14)

The regret can thus be expressed as:

E[R(T )] =

N∑
k=1

δkAk + δkBk (15)

To obtain an upper bound on the regret of RandCBP, we need to upper bound the terms Ak and Bk. The bound of Ak is
reported in Section C.2. The bound of Bk is reported in Section C.3. The theorem that follows is obtained by combining Eq.
15 and the analyses from Sections Section C.2 and C.3.

Theorem C.1. Consider the randomization over K bins in the interval [A,B], a probability ϵ on the tail and a standard
deviation σ. Setting ηa = W

2/3
k , f(t) = α1/3t2/3 log1/3(t) and, with the notations W = max1≤a≤N Wa, V =

⋃
i,j∈N Vi,j ,

1We reverse the notation used in Bartók et al. (2012b).
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and N+ =
⋃

i,j∈N N+
i,j , we obtain:

(16)

E[RT ] ≤
∑

1≤k≤N

[
2(1 +

1

2α− 2
)|V|+1

]
+

N∑
k=1

δk +

N∑
k=1,δk>0

4W 2
k

g2k
δk

α log(T ) +

∑
k∈V\N+

δk min(4W 2
k

g2l(k)

δ2l(k)
α log(T ), α1/3W

2/3
k T 2/3 log1/3(T )) +

∑
k∈V\N+

δkα
1/3W

2/3
k T 2/3 log1/3(T ) + 2gkα

1/3W 2/3T 2/3 log1/3(T )

On easy games, we have V\N+ = ∅. The theorem implies a bound on the individual regret of RandCBP on easy games:

Corollary C.2. Consider an easy game, and the same assumptions as in Theorem C.1. Then:

E[RT ] ≤ N

[
2(1 +

1

2α− 2
)|V|+1

]
+

N∑
k=1

δk +

N∑
k=1,δk>0

4W 2
k

g2k
δk

α log(T ).

Corollary C.2 matches the upper bound on the regret of CBP on the time horizon (Bartók et al., 2012b). The first term
corresponds to the confidence interval of the failure event. The second term comes from the initialization phase of the
algorithm. The third term comes from the exploration-exploitation trade-off achievable on easy games.

Corollary C.3. Consider a hard game and the same assumptions as in Theorem C.1. Then, there exists a constant C1 and
C2 such that the expected regret can be upper bounded independently of the choice of p⋆ as

E[RT ] ≤ C1N + C2T
2/3 log1/3(T )

The regret bound of RandCBP on hard games matches CBP’s on hard games on the time horizon (Bartók et al., 2012b).
Note that the bound on hard games is problem-independent unlike the bound on easy games.

C.2. Bounding Ak

This part is quite similar to that of Bartók et al. (2012b), except that the underlying Lemma C.4 has been adapted for the
randomized confidence bounds. We include the steps for completeness.

The notation It corresponds to the action that was effectively played at round t. Define k(t) = argmaxi∈P(t)∪V (t) W
2
i /ni(t).

The event k(t) ̸= It happens when k(t) /∈ N+(t) and k(t) /∈ R(t), i.e. k(t) is a purely information seek-
ing (exploratory) action which has been sampled frequently. This corresponds to the event Dt = {k(t) ̸= It} =
”the decaying exploration rule is in effect at time t” .

We can decompose:
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(17)

E[
T∑

t=1

1{It=k,Et}]δk ≤ δk +

E[
T∑

t=N+1

1{Et,Dc
t ,k∈P(t)∪N+(t),It=k}]δk︸ ︷︷ ︸

A1

+

E[
T∑

t=N+1

1{Et,Dc
t ,k/∈P(t)∪N+(t),It=k}]δk︸ ︷︷ ︸

A2

+

E[
T∑

t=N+1

1{Et,Dt,k∈P(t)∪N+(t),It=k}]δk︸ ︷︷ ︸
A3

+

E[
T∑

t=N+1

1{Et,Dt,k/∈P(t)∪N+(t),It=k}]δk︸ ︷︷ ︸
A4

The first δk corresponds to the initialization phase of the algorithm when every action is chosen once. The next paragraphs
are devoted to upper bounding the remaining four expressions A1, A2, A3 and A4, using the results from Lemma C.4. Note
that, if action k is optimal, then δk = 0, so all the terms are zero. Thus, we can assume from now on that δk > 0.

Term A1: Consider the event Et ∩ Dc
t ∩ {k ∈ P(t) ∪ N+(t)}. Using case 2 from Lemma C.4 with the choice k = i.

Thus, from It = i, we get that It = i = k ∈ P(t) ∪N+(t). The result of the lemma gives:

nk(t) ≤ Ak(t) = 4W 2
k

g2k
δ2k

α log(t)

Therefore, we have

T∑
t=N+1

1{Et,Dc
t ,k∈P(t)∪N+(t),It=k} (18)

≤
T∑

t=N+1

1{It=k,nk(t)≤Ak(t)} +

T∑
t=N+1

1{Et,Dt,k/∈P(t)∪N+(t),It=k,nk(t)>Ak(t)} (19)

=

T∑
t=N+1

1{It=k,nk(t)≤Ak(t)} (20)

≤ Ak(T ) = 4W 2
k

g2k
δ2k

α log(T ) (21)

Consequently,

T∑
t=N+1

1{Et,Dc
t ,k∈P(t)∪N+(t),It=k}δk ≤ 4W 2

k

g2k
δk

α log(T ) (22)

Term A2: Consider the event Et ∩ Dc
t ∩ {k /∈ P(t) ∪N+(t)}. From case 2 of Lemma C.4. The Lemma gives:

nk(t) ≤ min
j∈P(t)∪N+(t)

4W 2
k

g2j
δj

α log(T )
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We know that k ∈ V(t) =
⋃

k,j∈N (t) Vi,j . Let Φt be the set of pairs {i, j} in N (t) ⊆ N such that k ∈ Vi,j . For any
{i, j} ∈ Φt, we also have that i, j ∈ P(t) and thus if l′{i,j} = argmaxl∈{i,j} δl then:

nk(t− 1) ≤ 4W 2
k

g2l′{i,j}
δ2l′{i,j}

α log(t)

If we define l(k) as the action with

δl(k) = min{δl′{i,j} : {i, j} ∈ N , k ∈ Vij}

Then, it follows that:

nk(t− 1) ≤ 4W 2
k

g2l(k)

δ2l(k)
α log(t)

Note that δl(k) can be zero and thus we use the convention c/0 =∞. Also, since k is not in P(t) ∪N+(t), we have that
nk(t− 1) ≤ ηkf(t). Define Ak(t) as:

Ak(t) = min
{
4W 2

k

g2l(k)

δ2l(k)
α log(t), ηkf(t)

}
Then, with the same argument as in the previous case (and recalling that f(t) is increasing), we get:

E[
T∑

t=N+1

1{Et,Dc
t ,k/∈P(t)∪N+(t),It=k}] ≤ δk min

{
4W 2

k

g2l(k)

δ2l(k)
α log(t), ηkf(t)

}

Term A3: Consider the event Et ∩Dt ∩ {k ∈ P(t) ∪N+(t)}. From Lemma C.4 we have that:

δk ≤ 2gk

√
α log(T )

f(t)
max

1≤l≤N

Wl√
ηl

Thus,

E[
T∑

t=N+1

1{Et,Dt,k∈P(t)∪N+(t),It=k}] ≤ gk

√
α log(T )

f(T )
max

1≤l≤N

Wl√
ηl

Term A4: Consider the event Et ∩ Dt ∩ {k /∈ P(t) ∪ N+(t)} we know that k ∈ V(t) ∩ R(t) ⊆ R(t) and hence
nk(t) ≤ ηkf(t). With the same argument as in the first and second term, we get that:

E[
T∑

t=N+1

1{Et,Dt,k/∈P(t)∪N+(t),It=k}] ≤ δkηkf(T )

C.3. Bounding term Bk:

In the analysis of Bk, the goal is to upper-bound the probability that the confidence interval fails. For the deterministic CBP,
this corresponds to Lemma 1 in Bartók et al. (2012b). RandCBP uses instead randomized confidence intervals. Following
the terminology in Vaswani et al. (2017), we use uncoupled randomized confidence intervals because we sample a value for
each action pair.

For a pair of actions {i, j} ∈ N , at a time t, note Qij(t) the probability that the confidence interval of pair {i, j} fails:

Qi,j(t) = PZijt
({δi,j < δ̂i,j(t)− c′i,j(t)} ∪ {δi,j > δ̂i,j(t) + c′i,j(t)}) (23)

= PZijt(|δ̂i,j(t)− δi,j |> c′i,j(t)) (24)
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The event Ect is unlikely to occur when T is large; let

Υk = {t ∈ [T ],∀{i, j} ∈ N , Qi,j(t) >
1

T
}

be the set of time steps where the probability of failure is non-negligible, i.e. is higher than 1/T . Following Kveton et al.
(2019), the regret can be decomposed according to Υk:

E[
T∑

t=1

1{It=k,Ec
t }] = E[

∑
t∈Υk

1{It=k}] + E[
∑
t/∈Υk

1{Ec
t }] (25)

≤ E[
T∑

t=0

∑
{i,j}∈N

1{Qi,j(t)>
1
T }] + E[

∑
t/∈Υk

1

T
] (26)

≤
T∑

t=0

∑
{i,j}∈N

Pδ̂i,j(t)
(Qi,j(t) >

1

T
) + 1 (27)

For a given pair {i, j} ∈ N , and for a specific time t, define:

bi,j(t) = Pδ̂i,j(t)

[
Qi,j(t) >

1

T

]
(28)

= Pδ̂i,j(t)

[
PZijt

(|δ̂i,j(t)− δi,j |≥ c′i,j(t)) >
1

T

]
(29)

By definition of Zijt (that are sampled from a discrete probability distribution) we have:

bi,j(t) = Pδ̂i,j(t)

[
PZijt

(|δ̂i,j(t)− δi,j |≥ c′i,j(t)) >
1

T

]
(30)

= Pδ̂i,j(t)

[
K∑

k=1

pk1{|δ̂i,j(t)−δi,j |≥cki,j(t)}
>

1

T

]
(31)

where cki,j(t) denotes the confidence interval associated to the sampled value ρk. Since pK > 1
T , we have:

bi,j(t) = Pδ̂i,j(t)
(|δ̂i,j(t)− δi,j |≥ cKi,j(t)) (32)

= Pδ̂i,j(t)
(|δ̂i,j(t)− δi,j |>

∑
a∈Vi,j

||vija||∞
ρK√
na(t)

) (33)

≤
∑

a∈Vi,j

t∑
s=1

Pδ̂i,j
(δ̂ij(s)− δi,j > ||vija||∞

ρK√
l
)1{na(t)=s} (34)

≤
∑

a∈Vi,j

t∑
s=1

2 exp(−2s(||vija||∞
ρK√
s
)2)1{na(t)=s} (35)

≤
∑

a∈Vi,j

t∑
s=1

2 exp(−2||vija||2∞ρ2K)1{na(t)=s} (36)

≤
∑

a∈Vi,j

2 exp(−2ρ2K)

t∑
s=1

1{na(t)=s} (37)

≤
∑

a∈Vi,j

2 exp(−2ρ2K) (38)

≤ 2|Vi,j |exp(−2ρ2K) (39)
(40)
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Where the Hoeffding’s inequality was used in 35. Therefore,

Bk ≤
T∑

t=1

∑
{i,j}∈N

bi,j(t) + 1 (41)

≤
T∑

t=1

∑
{i,j}∈N

2|Vi,j |exp(−2ρ2K) + 1 (42)

≤ 2|V|exp(−2ρ2K)T + 1 (43)

The linear dependency on T is cancelled with ρK =
√
α log(T ) and for α > 1, we have:

≤ 2(1 +
1

2α− 2
)|V|+1, (44)

where V =
⋃

i,j∈N Vi,j .

C.4. Proofs of lemmas

Lemma C.4. Fix any t ≥ 1.

1. Take any action i. On the event Et ∩ Dt, from i ∈ P(t) ∩N+(t) it follows that

δi ≤ 2gi

√
α log(t)

f(t)
max

1≤k≤N

Wk√
ηk

2. Take any action k. On the event Et ∩ Dc
t , from It = i it follows that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

g2j
δ2j

α log(t)

Proof. Observe that for any neighboring action pair {i, j} ∈ N (t), on Et, it holds that δi,j(t) ≤ 2c′i,j(t). Indeed, from
i, j ∈ N (t) it follows by definition of the algorithm that δ̃i,j(t) ≤ c′i,j(t). Now, from the definition of Et, we observe
δi,j(t) ≤ δ̃i,j(t) + c′ij(t). Putting together the two inequalities, we get δi,j(t) ≤ 2c′i,j(t) ≤ 2ci,j(t).

Now, fix some action i that is not dominated. We define the parent action i′ of i as follows: If i is not degenerate then i′ = i.
If i is degenerate then we define i′ to be the Pareto-optimal action such that δi′ ≥ δi and i is in the neighborhood action set
of i′ and some other Pareto-optimal action. It follows from Bartók et al. (2012b) that i′ is well-defined.

Case 1 Consider case 1. Recall that k(t) = argmaxj∈P(t)∪V(t)
W 2

j

nj(t)
. Thus, It ̸= k(t). Consequently, k(t) /∈ R(t), i.e.

nk(t)(t) > ηk(t)f(t). Assume now that i ∈ P(t) ∪N+(t). If i is degenerate, then i′ as defined in the previous paragraph is
in P(t) (because the rejected regions in the algorithm are closed). In any case, we know from Bartók et al. (2012b) that
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there exists a path (i0, ..., ir) in N (t) that connects i′ to i∗ (i∗ ∈ P(t) holds on Et). We have that:

δi ≤ δi′ =

r∑
s=1

δis−1,is (45)

≤ 2

r∑
s=1

c′is−1,is (46)

≤ 2

r∑
s=1

cis−1,is (47)

≤ 2

r∑
s=1

∑
a∈Vis−1,is

∥vis−1,vis ,a∥∞

√
α log(t)

na(t)
(48)

≤ 2

r∑
s=1

∑
a∈Vis−1,is

Wa

√
α log(t)

na(t)
(49)

≤ 2giWk(t)

√
α log(t)

nk(t)(t)
(50)

≤ 2giWk(t)

√
α log(t)

ηk(t)f(t)
(51)

Upper bounding Wk(t)/
√
ηk(t) by max1≤k≤N Wk/

√
ηk we obtain the desired bound.

Case 2: Now, for case 2 take an action k, consider Et∩Dc
t , and assume that It = k. On the event Dc

t , we have that It = k(t).

Thus, from It = k it follows that Wk/
√

nk(t) ≥Wj/
√
nj(t) holds true for all j ∈ P(t). Let Jt = argminj∈P(t)∪N+(t)

g2
j

δ2j
.

Now, similarly to the previous case, there exists a path (i0, ..., ir) from the parent action Jt′ ∈ P(t) of Jt to i⋆ ∈ N (t).
Hence,

δJt
≤ δJ′

t
=

r∑
s=1

δis−1,is (52)

≤ 2

r∑
s=1

c′is−1,is (53)

≤ 2

r∑
s=1

cis−1,is (54)

≤ 2

r∑
s=1

∑
a∈Vis−1,is

Wa

√
α log(t)

na(t)
(55)

≤ 2gJt
Wk

√
α log(t)

nk(t)
(56)

This implies

nk(t− 1) ≤ 4W 2
k

d2Jt

δ2Jt

α log(t) (57)

= 4W 2
k min

j∈P(t)∪N+(t)

d2j
δ2j

α log(t) (58)

This concludes the proof of the Lemma.
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D. Regret Analysis of RandCBPside⋆

In this Section, we provide an upper bound on the expected regret of RandCBPside⋆. Consider the problem of partial
monitoring with linear side information (Bartók et al., 2012a). Let δi(x) = max1≤j≤N δi,j(x) be the sub-optimality
gap between the expected loss of action i and the optimal action given the context x. Define Ψ = max1≤a≤N σa as the
maximum number of feedback symbols that can be induced by an action in the game.

Similarly to the proof in (Bartók et al., 2012b), consider the events Dt = ”the decaying exploration rule is in effect at time t”
and Et = ”the confidence interval succeeds at time t” = {|δ̂i,j(xt)− δi,j(xt)|≤ ci,j(xt)}2.

D.1. Lemma: the confidence interval succeeds

Lemma D.1. Fix any t ≥ 1. Take any action i. On the event Et ∩ Dt, from i ∈ P(t) ∩N+(t) it follows that

δi(xt) ≤
2giΨ

(√
d log(t) + Ψ

)
√
f(t)

max
1≤k≤N

Wk√
ηk

(59)

Proof. We start the proof with the following remarks:

Remark D.2. Observe that for any neighboring action pair {i, j} ∈ N (t), on Et, it holds that δi,j(xt) ≤ 2c′i,j(xt).
Indeed, from i, j ∈ N (t) it follows by definition of the algorithm that δ̃i,j(xt) ≤ c′i,j(xt). Furthermore, we have:
δi,j(xt) ≤ δ̃i,j(xt)+ c′i,j(xt), by definition of Et. Putting together the two inequalities, and given that of c′i,j(xt) ≤ ci,j(xt),
we obtain δi,j(xt) ≤ 2c′i,j(xt) ≤ 2ci,j(xt).

Remark D.3. Now, fix some action i that is not dominated3. We define the parent action i′ of i as follows: If i is not
degenerate then i′ = i. If i is degenerate then i′ is the Pareto-optimal action such that δi′(xt) ≥ δi(xt) and i is in the
neighborhood action set of i′ and some other Pareto-optimal action. It follows from Lemma 5 in Bartók et al. (2012b) that i′

is well-defined.

Define the action k(t) = argmaxj∈P(t)∪V(t) Wjwj(t). In other words, k(t) represents the action that has the largest
confidence width within the set P(t) ∪ V(t), which corresponds to the exploitation component of the strategy.

Consider Et ∩ Dt. Due to Dt, the played action It is such that It ̸= k(t). Therefore, k(t) /∈ R(xt) which implies
∥xt∥G−1

k(t),t
≤ 1√

ηk(t)f(t)
from the definition of R(xt) in the contextual setting. Assume now that i ∈ P(t) ∪N+(t). If i

is degenerate, then i′ as defined in the previous paragraph is in P(t). In any case, there is a path (i0, ..., ir) in N (t) that

2The notation is inversed in Bartók et al. (2012b).
3see definition 2.1
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connects i′ to i∗, with i∗ ∈ P(t) that holds on Et. We have that:

δi(xt) ≤ δi′(xt) =

r∑
s=1

δis−1,is(xt) (60)

≤ 2

r∑
s=1

c′is−1,is(xt) (61)

≤ 2

r∑
s=1

cis−1,is(xt) (62)

= 2

r∑
s=1

∑
a∈Vis−1,is

∥vis−1isa∥∞σa

(√
d log(t) + 2 log(1/δt) + σa

)
∥xt∥G−1

a,t
(63)

≤ 2

r∑
s=1

∑
a∈Vis−1,is

Wk(t)Ψ
(√

Ψ log(t) + 2 log(1/δt) + Ψ
)
∥xt∥G−1

k(t),t
(64)

≤ 2giWk(t)Ψ
(√

d log(t) + 2 log(1/δt) + Ψ
)
∥xt∥G−1

k(t),t
(65)

≤ 2giWk(t)Ψ
(√

d log(t) + 2 log(1/δt) + Ψ
) 1√

ηk(t)f(t)
(66)

≤
2giΨ

(√
d log(t) + 2 log(1/δt) + Ψ

)
√
f(t)

max
1≤k≤N

Wk√
ηk

, (67)

Equation 60 was derived from the definition of a parent action. Equations 61 and 62 follow from remark D.2. In Equation
63, we expand the formula of the confidence bound, defined in Section 4. In Equation 65, we simplify the double sum by
using the fact that ∥vis−1,is,a∥∞ is upper bounded by Wk(t) and that the cardinality of the double sum is gi. In Equation 66
we use the upper bound on the Gram matrix obtained from the events considered in the Lemma. In Equation 67, we finalize
the upper-bound by considering the action in {1, . . . , N} that maximizes Wk√

ηk
.

This concludes the proof of the Lemma.

D.2. Bounding the sum of sub-optimality gaps

The goal of this section is to establish an upper bound for the sum of sub-optimality gaps, specifically under the event
denoted as Et, which signifies the success of the confidence interval.

CBPside, as presented by Bartók et al. (2012a), utilizes confidence bounds that are tailored for easy games exclusively.
RandCBPside⋆ adopts a broader definition of confidence bounds, as originally introduced by Bartók et al. (2012b) and
Lienert (2013). This broader definition makes RandCBPside⋆ applicable to both easy and hard games.

Lemma D.4. When Et holds, the sum of the sub-optimality gaps can be upper-bounded by√√√√nk(T )∑
s=1

δk(xtk(s))
2 ≤ 2gkWkΨd1/2

(√
d log(T ) + 2 log(1/δt) + Ψ

)√
2 log(T ),

where nk(t) is the total number of times action k was played up to time t and tk(s) is the round index where action k was
played for the s-th time.

Proof. Recall that δIt(xt) corresponds to the gap between action k and the optimal action given context xt. There exist a
path of r neighboring actions It = k0, k1, ..., kr = i⋆(xt) between the action played and the optimal action. This sequence
always exists thanks to how the algorithm constructs the set of admissible actions 4. The first step of the proof consists in

4for a proof of this statement, refer to Bartók et al. (2012a).

26



Randomized Confidence Bounds for Stochastic Partial Monitoring

upper-bounding the sub-optimality gap:

δk(xt)
2 ≤

(
r∑

s=1

2c′ks−1,ks
(xt)

)2

(68)

≤

(
r∑

s=1

2cks−1,ks
(xt)

)2

(69)

≤ 4

 r∑
s=1

∑
a∈Vks−1,ks

∥vks−1,ks,a∥∞σa

(√
d log(t) + 2 log(1/δt) + σa

)
∥xt∥G−1

a,t

2

(70)

≤ 4

 r∑
s=1

∑
a∈Vks−1,ks

∥vks−1,ks,a∥∞σa

(√
d log(t) + 2 log(1/δt) + σa

)
∥xt∥G−1

a,t

2

(71)

≤ 4

 r∑
s=1

∑
a∈Vks−1,ks

WkΨ
(√

d log(t) + 2 log(1/δt) + Ψ
)

max
1≤l≤N

∥xt∥G−1
l,t

2

(72)

≤ 4

(
gkWkΨ

(√
d log(t) + 2 log(1/δt) + Ψ

)
max

1≤l≤N
∥xt∥G−1

l,t

)2

(73)

≤ 4g2kW
2
kΨ

2
(√

d log(t) + 2 log(1/δt) + Ψ
)2

max
1≤l≤N

∥xt∥2G−1
l,t

(74)

For the detail between Equation 68 and Equation 72, we refer the reader to the steps described in the proof of Lemma D.1.
In Equation 73 we consider the greatest weighted norm over the action space {1, . . . , N} to be able to remove it from the
double sum.

We now analyse the square root of the sum of the sub-optimality gaps over the time horizon of the action k. We start with
the result obtained in Equation 74:

√√√√nk(T )∑
t=1

δk(xtk(s))
2 ≤

√√√√nk(T )∑
s=1

min(4g2kW
2
kΨ

2
(√

log(tk(s)) + 2 log(1/δs) + Ψ
)2

max
1≤l≤N

∥xtk(s)∥2G−1
l,tk(s)

, 1) (75)

≤

√√√√4g2kW
2
kΨ

2
(√

d log(T ) + 2 log(1/δT ) + Ψ
)2 nk(T )∑

s=1

min( max
1≤l≤N

∥xt∥2G−1
l,tk(s)

, 1) (76)

≤ 2gkWkΨ
(√

d log(T ) + 2 log(1/δT ) + Ψ
)√

2d log(1 + nk(T )E2) (77)

∈ O(2gkWkΨd1/2
(√

d log(T ) + 2 log(1/δT ) + Ψ
)√

2 log(T )) (78)

In Equation 77 we have used the upper bound on the sum of weighted norms presented in Lemma 10 of Abbasi-Yadkori
et al. (2011), with the assumption ∥xt∥2≤ E. The difference between Line 78 and Equation 6 in Bartók et al. (2012a) is that
a
√
T term is not appearing. We will see that the

√
T term appears appears later in the analysis from the Cauchy-Schwartz

inequality.

D.3. Regret analysis of RandCBPside using Lemma D.1

In this Section, we analyse the regret rate of RandCBPside⋆ on easy and hard games. The initial strategy CBPside
(Bartók et al., 2012a) has a guarantee restricted to easy games. The key component to obtain the guarantee of RandCBPside
to hard games is to define underplayed actions in a suitable way for the contextual setting.

Proof. First, we decompose the regret around the event Et and its complimentary:
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E[RT ] =

T∑
t=1

E[L[It, Jt]]−
T∑

t=1

E[L[i⋆(xt), Jt]] (79)

=

T∑
t=1

E[δIt(xt)]

=

T∑
t=1

E[1{Et}δIt(xt)] + E[1{Ec
t }δIt(xt)] (80)

=

T∑
t=1

E[1{Ec
t }δIt(xt)]︸ ︷︷ ︸
A

+

T∑
t=1

E[1{Et}δIt(xt)]︸ ︷︷ ︸
B

(81)

D.4. Term A

In this Section, we will study component A. Assume for each action k at time t, there exist a number such that p(Ect , Ik =
k) ≤ βk,t. Therefore, there exist a sequence of numbers βk,1, βk,2, . . . , βk,T ∈ [0, 1]. These numbers can be seen as some
probabilities that Ec occurs. In the previous analysis (Bartók et al., 2012a) the numbers where action independent. In this
work, the numbers are action dependent i.e. we add a dependency on k because the strategy RandCBPside⋆ generates a
sample Zk,t for each action which influences the value of βk,t. Define a(t) = argmax1≤k≤N βk,t:

(82)

T∑
t =1

E[1{Ec
t }δIt(xt)] =

T∑
t=1

N∑
k=1

E[1{Ec
t ,k=It}δk(xt)]

≤
T∑

t=1

N∑
k=1

E[1{Ec
t ,k=It}], because δk(xt) ≤ 1

=

T∑
t=1

N∑
k=1

βk,t

≤
T∑

t=1

Nβa(t),t

D.5. Term B:

Consider a specific action k. The regret decomposition is decomposed into multiple components. depending whether Dt

occurs or not. This decomposition was initially presented in Bartók et al. (2012b) in the non-contextual case. Here, we adapt
the decomposition to the contextual case, as demonstrated by the presence of contextual sub-optimality gaps δk(xt).
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(83)

E[
T∑

t=1

1{Et,It=k}δk(xt)] = δk(xt) +

T∑
t=N+1

E[1{Et,Dt,k∈P (t)∪N+(t),It=k}]δk(xt)︸ ︷︷ ︸
B1

+

T∑
t=N+1

E[1{Et,Dt,k/∈P (t)∪N+(t),It=k}]δk(xt)︸ ︷︷ ︸
B2

+

T∑
t=N+1

E[1{Et,Dc
t ,k∈P (t)∪N+(t),It=k}]δk(xt)︸ ︷︷ ︸

B3

+

T∑
t=N+1

E[1{Et,Dc
t ,k/∈P (t)∪N+(t),It=k}]δk(xt)︸ ︷︷ ︸

B4

The first term corresponds to the regret suffered at the initialization of the algorithm, where each action is played once. We
will now focus on bounding the terms B1, B2, B3, and B4.

Term B1: Consider the case Et ∩Dt ∩ {k ∈ P (t) ∪N+(t)}. From case 1 of Lemma D.1, we have the relation:

δk(xt) ≤
2gkΨ

(√
d log(t) + 2 log(1/δt) + Ψ

)
√

f(t)
max

1≤j≤N

Wj√
ηj

(84)

(85)

T∑
t =N+1

E[1{Et,Dt,k∈P(t)∪N+(t),It=k}δk(xt)] ≤

T
2gkΨ

(√
d log(T ) + 2 log(1/δT ) + Ψ

)
√
f(T )

max
1≤j≤N

Wj√
ηj

Term B2: Consider the case Et ∩Dt ∩ {k /∈ P (t) ∪N+(t)}. It follows that k ∈ V(t) ∩R(x) ⊆ R(x). Hence, we know
by definition of the exploration rule that 1/∥x∥2

G−1
k,t

< ηkf(t).

(86)

T∑
t =N+1

1{Et,Dt,k/∈P(t)∪N+(t),It=k} ≤
T∑

t=N+1

1{It=k,1/∥xt∥2

G
−1
k,t

<ηkf(t)}

+

T∑
t=N+1

1{Et,Dt,k/∈P(t)∪N+(t),It=k,1/∥xt∥2

G
−1
k,t

≥ηkf(t)}

≤ ηkf(T )

In Equation 86 there are two antagonist indicators. The second one simplifies to 0 because the inequality is never verified
due to Dt. We now apply the Cauchy-Schwartz inequality:
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T∑
t=N+1

1{Et,Dt,k/∈P(t)∪N+(t),It=k}δk(xt) ≤

√√√√( T∑
t=N+1

12
{Et,Dt,k/∈P(t)∪N+(t),It=k}

)(
T∑

t=N+1

δk(xt)2

)
(87)

≤


√√√√ T∑

t=N+1

1{Et,Dt,k/∈P(t)∪N+(t),It=k}


√√√√ T∑

t=N+1

δk(xt)2

 (88)

≤
√
ηkf(T )


√√√√ T∑

t=N+1

δk(xt)2

 (89)

In Equation 87 we use the relation (
∑

i aibi)
2 ≤

(∑
i a

2
i

) (∑
i b

2
i

)
. In Equation 88 we notice that the square of an indicator

is equal to the indicator. We also use the relation
√
ab ≤

√
a
√
b.

Term B3: Consider the event Et ∩ Dc
t ∩ {k ∈ P(t) ∪N+(t)}. We will use the Cauchy-Schwartz inequality to simplify

the expression.

T∑
t=N+1

1{Et,Dc
t ,k∈P(t)∪N+(t),It=k}δk(xt) ≤

√√√√( T∑
t=N+1

12
{Et,Dc

t ,k∈P(t)∪N+(t),It=k}

)(
T∑

t=N+1

δk(xt)2

)
(90)

≤


√√√√ T∑

t=N+1

1{Et,Dc
t ,k∈P(t)∪N+(t),It=k}


√√√√ T∑

t=N+1

δk(xt)2

 (91)

≤
√
T2gkWkΨd1/2

(√
d log(T ) + 2 log(1/δT ) + Ψ

)√
2 log(T ) (92)

≤
√
T2gkWkΨd1/2

(√
d log(T ) + 2 log(1/δT ) + Ψ

)√
2 log(T ) (93)

Term B4: Consider the event {Et,Dc
t , k /∈ P(t) ∪N+(t)}. Since k is not in P(t) ∪N+(t), we also have that ∥x∥2

G−1
k,t

≤
1

ηkf(t)
⇐⇒ 1

∥x∥2

G
−1
k,t

≥ ηkf(t). We get:

E[
T∑

t=N+1

1{Et,Dc
t ,k/∈P(t)∪N+(t),It=k}] ≤ min

{
T, ηkf(T )

}
(94)

We now use Cauchy-Schwartz,

T∑
t=N+1

1{Et,Dc
t ,k/∈P(t)∪N+(t),It=k}δk(xt) ≤

√√√√( T∑
t=N+1

12
{Et,Dc

t ,k/∈P(t)∪N+(t),It=k}

)(
T∑

t=N+1

δk(xt)2

)
(95)

≤


√√√√ T∑

t=N+1

1{Et,Dc
t ,k/∈P(t)∪N+(t),It=k}


√√√√ T∑

t=N+1

δk(xt)2

 (96)

≤
√
min

{
T, ηkf(T )

}
√√√√ T∑

t=N+1

δk(xt)2

 (97)
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D.6. Conclusion:

The following theorem is an individual upper bound on the regret of RandCBPside.
Theorem D.5. Consider the interval [A,B], with B =

√
d log(t) + 2 log(1/t2) and A ≤ 0. Set the randomization over

K bins with a probability ϵ on the tail and a standard deviation σ. Let f(t) = α1/3t2/3 log(t)1/3, ηa = W
2/3
a and α > 1.

Assume ∥xt∥2≤ E and positive constants C1, C2, C3, and C4. Note W = max1≤k≤N Wk.

(98)

E[R(T )] ≤
T∑

t=1

Nβa(t),t +N +

∑
1≤k≤N


√√√√nk(T )∑

s=1

δk(xtk(s))
2

√T +

∑
k∈V\N+


√√√√nk(T )∑

s=1

δk(xtk(s))
2

(√ηkf(T ) +

√
min

{
T, ηkf(T )

})
+

∑
k∈V\N+

T
2gkΨ

(√
d log(T ) + 2 log(1/δT ) + Ψ

)
√
f(T )

W 2/3,

where V =
⋃

i,j∈N Vi,j , and N+ =
⋃

i,j∈N N+
i,j .

Result on easy games: On easy games, the set k ∈ V\N+ is empty which simplifies the expression in Equation 98. The
regret rate can be expressed as:

E[R(T )] ≤
T∑

t=1

Nβa(t),t +N +N
√
T2gkWkΨd1/2

(√
d log(T ) + 2 log(1/δT ) + Ψ

)√
2 log(T ) (99)

Corollary D.6. Consider an easy game and δt = 1/t2, and the same assumptions as in theorem D.5, there exist constants
C1 and C2 such that the expected regret of RandCBPside on this game can be upper bounded independently of the choice
of p⋆ as:

E[RT ] ≤ C1N + C2Nd
√
T log(T )

The guarantee of CBPside on easy games proposed in Bartók et al. (2012a) is C1N + C2N
3/2d2

√
T log T . Here, the

dependency drops from d2 to d simply because we corrected the confidence bound formula, but this result should also apply
to CBPside.

Result on hard games: On hard games, the set V\N+ is not empty.

We need to study the terms of the regret expression to identify which one dominates. The regret expression is:

E[R(T )] ≤
T∑

t=1

Nβa(t),t +N+

∑
k∈N

√
T2gkWkd

3/2
(√

d log(T ) + 2 log(1/δT ) + Ψ
)√

2 log(T )+

∑
k∈V\N+

(√
ηkf(T ) + min

{√
T ,
√
ηkf(T )

})
2gkWkΨd1/2

(√
d log(T ) + 2 log(1/δT ) + Ψ

)√
2 log(T )+

∑
k∈V\N+

T
2gkΨ

(√
Ψ log(T ) + 2 log(1/δT ) + Ψ

)
√
f(T )

W 2/3 (100)
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We will now study the last term in the regret expression. If we choose δt = 1/t2, we can set f(t) = t2/3 log(t)1/3 and
ηk = W

2/3
k , we have

√
ηkf(T ) + min

{√
T ,
√

ηkf(T )
}
∈ O(

√
ηkf(T ))

∑
k∈V\N+

T
2gkΨ

(√
d log(T ) + 2 log(1/δT ) + Ψ

)
√

f(T )
W 2/3 =

∑
k∈V\N+

T
2gkΨ

(√
(d+ 4) log(T ) + Ψ

)
√
f(T )

W 2/3 (101)

∈ O(2gkΨd1/2T

√
log(T )√
f(T )

W 2/3) (102)

∈ O(2gkΨd1/2T 2/3

√
log(T )√

log(T )1/3
W 2/3) (103)

∈ O(2gkΨd1/2T 2/3 log(T )1/2−1/6W 2/3) (104)

∈ O(2gkΨd1/2T 2/3 log(T )1/3W 2/3) (105)

We will now study the penultimate term in the regret expression. If we choose δt = 1/t2, we can set f(t) = t2/3 log(t)1/3

and ηk = W
2/3
k , we have:

√
f(T )ηk × (. . . ) = W

1/3
k T 1/3 log(T )1/62gkWkΨd1/2

(√
d log(T ) + 2 log(1/δT ) + Ψ

)√
2 log(T ) (106)

= 2gkW
3/2
k Ψd1/2T 1/3 log(T )1/6

(√
d log(T ) + 2 log(1/δT ) + Ψ

)
(107)

∈ O(2gkW
3/2
k ΨdT 1/3 log(T )2/3) (108)

The conclusion is that the last term dominates the penultimate term over time. Therefore, we can conclude:

Corollary D.7. Consider a hard game and δt = 1/t2, and the same assumptions as in theorem D.5. Then, there exist
constants C3 and C4 such that the expected regret of RandCBPside on this game can be upper bounded independently of
the choice of p⋆ as:

E[RT ] ≤ C3N + C4

√
d log(T )1/3T 2/3

E. Additional Experiments
E.1. Implementation details and hyper-parameters

Contextual and non-contextual experiments are run on machines with 48 CPUs which justifies why we consider 96 runs
rather than 100 (48× 2 = 96 is the optimal allocation).

Non-contextual baselines The stochastic strategies BPM-Least, TSPM andTSPM-Gaussian are initialized with
priors p⋆ = [1/M, . . . , 1/M ] as this is the common choice reported in their respective original papers (Vanchinathan et al.,
2014; Tsuchiya et al., 2020). The number of samples for BPM-Least, TSPM and TSPM-Gaussian is set to 100. We
found that higher values increase drastically the computational complexity of the approaches. The strategies TSPM and
TSPM-Gaussian are set with λ = 0.01 as reported to be the most competitive value in the original paper (Tsuchiya et al.,
2020). The deterministic strategy PM-DMED is initialized with c = 1 following the value presented in the original paper
(Komiyama et al., 2015).

To compare CBP and RandCBP fairly, both strategies are set with α = 1.01. Sampling in RandCBP is performed according
to the procedure described in Section 3.2 over K = 5 bins, with probability ε = 10−7 on the tail and standard deviation
σ = 1. Although this choice is not necessarily the most optimal (see Figures 4 and 5), we find it is the most robust across
the different settings considered.

Contextual baselines We run PG-TS and PG-IDS over a horizon T = 7.5k because both strategies scale in cubic
time with the number of verifications. For a horizon 20k, on a time budget of 5 hours and a 48-cores machine, less than
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Game Apple Tasting (AT)
Case imbalanced balanced

Metric mean std pvalue win count mean std pvalue win count
RandCBP 4.689 4.07 1.0 82 41.417 78.311 1.0 37

CBP 8.672 8.532 0.0 47 72.748 138.279 0.055 48
PM-DMED 13.915 13.155 0.0 2 113.5 138.047 0.0 3

TSPM 9.359 9.007 0.0 25 43.117 45.53 0.854 13
TSPM-Gaussian 19.417 15.925 0.0 7 67.658 56.203 0.008 3

BPM-Least 15.125 8.063 0.0 0 165.04 111.969 0.0 3

Table 2: Supplement for the non-contextual experiment presented in the main paper (see Figure 1). Imbalanced instances:
p ∼ U[0,0.2]∪[0.8,1]. Balanced instances: p ∼ U[0.4,0.6]. Mean: average regret at the last step (T = 20k). Std: standard
deviation at the last step. P-value: Welch’s t-test on the distribution of regrets at the last step, with RandCBP as reference
(p-value > 0.05 means no statistical difference). Win count: number of times a given strategy achieved the lowest final
regret (ties included). Color indicates the best; indicates second best; is the third best.

Game Label Efficient (LE)
Case imbalanced balanced

Metric mean std pvalue win count mean std pvalue win count
RandCBP 11.887 15.004 1.0 81.0 321.023 353.111 1.0 60.0

CBP 16.47 8.173 0.009 15.0 726.877 643.233 0.0 18.0
PM-DMED 1489.217 2887.675 0.0 0.0 1253.432 1048.542 0.0 18.0

Table 3: Supplement for the non-contextual experiment presented in the main paper (see Figure 1). Imbalanced instances:
p ∼ U[0,0.2]∪[0.8,1]. Balanced instances: p ∼ U[0.4,0.6]. Mean: average regret at the last step (T = 20k). Std: standard
deviation at the last step. P-value: Welch’s t-test on the distribution of regrets at the last step, with RandCBP as reference
(p-value > 0.05 means no statistical difference). Win count: number of times a given strategy achieved the lowest final
regret (ties included). Color indicates the best; indicates second best; is the third best.

10 realizations succeed out of the 96 considered. Note that PG-TS and PG-IDS assume a logistic setting while in our
experiments we consider a linear setting. The logistic regression still performs well because we consider binary outcome
games. For both strategies, we consider 10 Gibbs samples: higher values increase the computational complexity of the
approaches. STAP and CESA are hyper-parameter free.

We compare CBPside⋆ to its counterpart RandCBPside⋆ fairly by setting both with α = 1.01. Sampling in
RandCBPside⋆ is performed according to the randomization procedure described in Section 3.2 with K = 5 bins,
a probability ε = 10−7 on the tail, and standard deviation σ = 1. Although this choice is not always the most optimal (see
Figures 4 and 5), we find it is the most robust across the various settings considered.

All contextual approaches use a regularization λ = 0.05.

E.2. Detailed results

Table 2 and 3 provide numeric details to support the non-contextual experiments in the main paper. Table 4 provides numeric
details for the contextual experiment presented in the main paper.

E.3. Sensitivity to hyper-parameters

The goal of this experiment is to illustrate the sensitivity to hyper-parameters of RandCBP and RandCBPside⋆. We
conducted the evaluation for ε = 10−7. Higher values of ϵ imply a higher probability of sampling on the value B in the
discretized interval [A,B]. We consider the standard deviation values σ ∈ {1/2, 1, 2, 10}. We consider bin values of K in
{5, 10, 20}. We report averaged regret and upper 99% confidence interval, measured over a 20k horizon and 96 random
runs.
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Game Apple Tasting (AT) Label Efficient (LE)
Metric mean std pvalue win count mean std pvalue win count

RandCBPside⋆ 1016.312 82.151 1.0 96 2026.604 70.161 1.0 96.0
CBPside⋆ 6109.521 86.325 0.0 0 11071.333 86.779 0.0 0

PG-IDS 129.5 12.758 0.0 0
PG-TS 179.156 15.318 0.0 0
STAP 1565.917 127.488 0.0 0
CESA 5792.052 1386.179 0.0 0

Table 4: Numeric detail of the contextual experiment presented in the main paper (see Figure 2). Mean: average regret at the
last step (T = 20k). Std: standard deviation at the last step. P-value: Welch’s t-test on the distribution of regrets at the last
step with RandCBPside as reference (p-value> 0.05 means no statistical difference). Win count: number of times a given
strategy achieved the lowest final regret (ties included). Color indicates the best; indicates second best; is the
third best. Color indicates an evaluation on the truncated horizon T = 7.5k.

Results (non-contextual case): The experimental setting is described in the main paper. We find the hyper-parameter σ to
be the most influential in the performance of RandCBP. Too small values of σ result in a more exploitation, and expose the
strategy to a risk of catastrophic failures.
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(e) Legend

Figure 4: Benchmark of RandCBP on Apple Tasting (AT) and Label Efficient (LE) games, non-contextual case.

Results (contextual case): The experimental setting is described in the main paper. Figure 5 reports multiple hyper-
parameter combinations over the Apple Tasting (AT) and Label Efficient (LE) games on linear contexts.
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Figure 5: Benchmark of RandCBPside⋆ on Apple Tasting (AT) and Label Efficient (LE) games, contextual case.

E.4. Additional results on the case-study

In this Section, we report additional results for the use-case presented in Section 6. The distribution of true classes in the
stream of observations is represented by the vector B ∈ [0, 1]N and the black-box classifier is represented by its confusion
matrix C ∈ [0, 1]N×N . In each run, B and C are generated randomly such that the global error rate remains below 10% (the
black-box would probably not be deployed otherwise). Each instance of RandCBP and CBP in the approaches C-CBP and
C-RandCBP is parameterized similarly as in previous experiments.

Maximum number of verification Since the outcomes are binary, the Wald’s confidence interval can be used to determine
the maximum number of verifications needed to obtain estimates of pc with a specified level of confidence. We set probability
that the confidence interval fails is set to ζ = 0.01 and the acceptable margin length of the Wald interval to E = τ/10.
Assuming that the classifier is deployed with a global error rate of at most 10%, a reasonable prior belief per class (noted
p̄c) is that the error rate is distributed uniformly across classes p̄c = 10/C%. For a detection threshold τ , the maximum
verification budget for a class c is nτ = z(1−ζ/2)2p̄(1−p̄)

E2 , where z(·) is the quantile of the standard normal distribution.
In practice, the value C × nτ corresponds to the maximum number of verifications one is willing to use to identify with
confidence which of the C predicted classes errors exceed the threshold τ . The goal is to obtain a strategy that performs the
task while consuming less verifications than this maximum amount.

Results In the main paper, we reported results for cases: i) the true classes are balanced and the black-box yields uniform
mispredictions (case 1), ii) the true classes are imbalanced and the black-box yields non-uniform mispredictions (case 2).
Results for the two cases are reported in Tables 5 and 6.

Threshold Strategy F1-score (mean) F1-score (median) F1-score (std) Nb. verifs (mean) Nb. verifs (median) Nb. verifs (std)
Explore-fully 0.962 1.0 0.15 105120.0 105120.0 0.0

C-CBP 0.962 1.0 0.15 105110.0 105110.0 0.00.025
C-RandCBP 0.955 1.0 0.163 83818.0 104846.0 32297.0

Explore-fully 0.927 1.0 0.195 26300.0 26300.0 0.0
C-CBP 0.927 1.0 0.195 26290.0 26290.0 0.00.05

C-RandCBP 0.915 1.0 0.208 15976.0 15091.0 9071.0
Explore-fully 0.907 1.0 0.219 6590.0 6590.0 0.0

C-CBP 0.908 1.0 0.216 6491.0 6580.0 251.00.1
C-RandCBP 0.91 1.0 0.211 2000.0 1666.0 1094.0

Explore-fully 1.0 1.0 0.0 1670.0 1670.0 0.0
C-CBP 1.0 1.0 0.0 1289.0 1326.0 273.00.2

C-RandCBP 1.0 1.0 0.0 272.0 255.0 70.0

Table 5: Case 1 - balanced stream and uniform mispredictions
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Threshold Strategy F1-score (mean) F1-score (median) F1-score (std) Nb. verifs (mean) Nb. verifs (median) Nb. verifs (std)
Explore-fully 0.978 1.0 0.07 103703.0 105120.0 2853.0

C-CBP 0.978 1.0 0.07 103693.0 105110.0 2853.00.025
C-RandCBP 0.976 1.0 0.07 81741.0 81330.0 10921.0

Explore-fully 0.976 1.0 0.054 26231.0 26300.0 287.0
C-CBP 0.975 1.0 0.054 26221.0 26290.0 287.00.05

C-RandCBP 0.965 1.0 0.063 16901.0 16673.0 2580.0
Explore-fully 0.953 1.0 0.073 6590.0 6590.0 0.0

C-CBP 0.953 1.0 0.073 6453.0 6457.0 111.00.1
C-RandCBP 0.959 1.0 0.073 2965.0 2961.0 506.0

Explore-fully 0.927 1.0 0.156 1670.0 1670.0 0.0
C-CBP 0.927 1.0 0.156 1335.0 1338.0 90.00.2

C-RandCBP 0.923 1.0 0.163 447.0 436.0 84.0

Table 6: Case 2 - Imbalanced stream and non-uniform mispredictions
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