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Abstract
In this work, we study rapid improvements of
the training loss in transformers when being con-
fronted with multi-step decision tasks. We found
that transformers struggle to learn the interme-
diate task and both training and validation loss
saturate for hundreds of epochs. When transform-
ers finally learn the intermediate task, they do this
rapidly and unexpectedly. We call these abrupt
improvements Eureka-moments, since the trans-
former appears to suddenly learn a previously in-
comprehensible concept. We designed synthetic
tasks to study the problem in detail, but the leaps
in performance can be observed also for language
modeling and in-context learning (ICL). We sus-
pect that these abrupt transitions are caused by the
multi-step nature of these tasks. Indeed, we find
connections and show that ways to improve on
the synthetic multi-step tasks can be used to im-
prove the training of language modeling and ICL.
Using the synthetic data we trace the problem
back to the Softmax function in the self-attention
block of transformers and show ways to allevi-
ate the problem. These fixes reduce the required
number of training steps, lead to higher likeli-
hood to learn the intermediate task, to higher final
accuracy and training becomes more robust to
hyper-parameters.

1. Introduction
A key quality of any intelligent system is its ability to deal
with complex problems that may consist of multiple sub-
problems. It should learn to solve these sub-problems even
in the absence of direct feedback. Deep learning has en-
abled such capabilities to a certain degree. For example,
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deep classifiers learn the hierarchical feature representa-
tions necessary to build a good classifier. Reinforcement
learning learns object representations required to predict
how to receive a sparse reward. Language models group
tokens to derive their contextual meaning and then predict a
new token. In-context learning (ICL) tasks require to first
learn similarities and then associate tokens based on posi-
tional information by learning induction heads (Olsson et al.,
2022). While aforementioned examples show great promise,
researchers spend a large effort on designing the training
process to learn sub-tasks. For instance, reward shaping
is common in reinforcement learning, many computer vi-
sion works use explicit or implicit intermediate supervision,
while for language modelling and ICL a good data arrange-
ment plays an important role (Chan et al., 2022). For some
of these problems, a saturation of the learning process fol-
lowed by a sudden improvements can be observed, as shown
in Fig. 1c. However, the relation of implicit multi-step learn-
ing to saturation of the learning process followed by abrupt
improvements in training loss has not been investigated.

But how can we study multi-step learning? One may tend to
study popular tasks in detail, for which many benchmarks
and results already exist. BERT pretraining (Devlin et al.,
2019) and ICL (Chan et al., 2022) are candidates that are
likely to entail a multi-step task. For BERT the network
might first learn word frequencies and might learn to use the
context to predict masked tokens in a second step. Similarly
ICL can be understood as multi-step task, where first simi-
larities of tokens have to be learned, followed by learning
where to look up the correct label, i.e., learning an induc-
tion head. For both tasks we observe sudden improvements,
similar to those that we study in this work (see Fig. 1c). Un-
fortunately, real data prohibits a clean study due to multiple
factors: 1) The exact sub-tasks are typically unknown and,
hence, hard to study. 2) There are many easy samples that
do no require multi-step reasoning, overlaying the progress
on the multi-step task. 3) The features necessary for the
tasks are unknown, i.e., we cannot study what the network
fails to learn, let alone the reason for it. 4) Even the number
of steps is unknown, thus, we cannot determine if models
learn only a subset of the tasks.

As a remedy, we propose to analyze multi-step learning by
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Figure 1: Transformers can get stuck during optimization for two-stage tasks. (a) Describes our 2 step decision task
used to study Eureka-moments. Task 1 is to compare the two indicators (here digits). If the digits are the same, task 2 is to
classify the top-right image and bottom left else. Top-right and bottom left are referred to as targets. The location of the
correct target is referred to as target location. (b) Validation accuracy and training loss for the task in (a). 2 ViTs (blue
and green) fail to converge, while one ViT (yellow) has a Eureka-moment. Eureka-moments are characterised by a sudden
increase of accuracy and drop of the loss (in contrast to Grokking (Power et al., 2022)). ResNets are not susceptible to this
kind of optimization difficulty. (c) Eureka-moments on real datasets. Sharp improvements after initial plateauing can
also be observed for GPT-2 ICL, here in the Omniglot ICL task (Chan et al., 2022) and language modeling with RoBERTa
on Wikipedia. We will show later that our analysis transfers to these tasks (see Fig. 9).

controlling the data-generating process with synthetic data.
This allows us to create clean two-step tasks in a controlled
setting that facilitates a detailed study. Specifically, we
remove confounding variables, know the number of tasks,
and know for each task the relevant features, their location
and the total number of steps. Thus, it solves the issues
above all at once. This comes with the assumption that our
findings on synthetic data transfer to related observations on
real data. Indeed, our understanding how Eureka-moments
appear on synthetic tasks and the corresponding way to
improve training leads to better training behavior on non
synthetic tasks, i.e., higher ICL accuracy on Omniglot and
earlier Eureka-moments on masked language modeling on
Wikipedia (see Fig. 9).

In each of our synthetic datasets, the answer to the first task
p(z|x), which is not explicitly modeled in the loss function,
must be found by the model in order to correctly solve the
final second task depending on it p(y|x, z). For example, in
Fig. 1a, the model must first classify the two digits to find
out if they are of the same class, which determines where
to look for the subsequent FashionMNIST classification
task. The loss only provides a training signal for the latter
task. Thus, the model must figure this out by itself during
training. Formally, such multi-step tasks can be described
as p(y|x, z) · p(z|x), i.e., the probability of class y given
evidence x and the latent variable z.

Our study reveals that transformers have difficulties in learn-
ing such two-step tasks (Fig. 1b). After they learned to clas-
sify a randomly selected FashionMNIST image p(y|x, z),
they saturate and only after a long time suddenly learn
p(z|x), i.e., the task to select the right fashion image by
comparing the digits. We call this phenomenon a Eureka-
moment. Intriguingly, we find that they never learn task 1
within 1000 epochs and stick with the prior p(z) for some
random seeds. We later find that the probability of Eureka-
moments depends on the difficulty of the task. In contrast
to the transformer, a ResNet learns both tasks immediately.

Our goal is not to add to the old transformer vs. CNN dis-
cussion, but we want to investigate this particular problem.
What is its cause? Is it due to a too small capacity? Is it
the number of heads or the learning rate? Is it the spatial
arrangement of task 1 and 2? We found that these factors
play only a minor role and finally traced the problem back to
the Softmax function in the transformer’s attention blocks.
We found parts of the gradient’s components become very
small depending on the Softmax output. This cannot be
fixed by using a larger learning rate, since other components
of the gradient are large, but it can be simply fixed by a
normalization of the Softmax function.

In summary, the contributions of this analysis paper are:
1) We study multi-step learning without intermediate su-
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pervision via a fully controlled data-generating process on
synthetic tasks. 2) We discover a new failure mode of trans-
formers. 3) We analyse the mechanisms underlying this
failure mode and find that the Softmax function leads to
(local) small gradients for the key and value weight ma-
trices, thereby hindering learning. 4) To validate the role
of Softmax, we mitigate the failure mode through targeted
interventions. We show that these interventions lead to sig-
nificantly faster convergence, higher accuracy, higher robust-
ness to suboptimal hyper-parameters, and higher probability
of model convergence, affirming our analysis. 5) We find
related learning behavior in ICL and language modeling and
show that our solution transfers to these settings. The code
to reproduce the results and create the datasets is available1.

2. Related Works
Emergence and phase transitions. Following Steinhardt
(2022) & Wei et al. (2022), emergence refers to a qual-
itative change in a learning system resulting from an in-
crease of model size, training data or training steps, where
phase transitions are additionally characterized by a sharp
change. Eureka-moments are special types of phase tran-
sitions. While recent work showed that sharp emergence
may just be an artifact of the choice of a discontinuous
metric (Schaeffer et al., 2024; Srivastava et al., 2023), we
observe rapid changes also for continuous metrics in our
setting. A connection between phase transitions or emer-
gence and our work may exist, and both may be related to
escaping bad energy landscapes as in our work.

Unexplained phase transitions. Previous works reported
observations that may be Eureka-moments, without investi-
gating their cause. For instance, rapid improvements happen
for in-context-learning (ICL) (Olsson et al., 2022), diffu-
sion model training (Zhang et al., 2023) and BERT training
(Gupta & Berant, 2020; Deshpande & Narasimhan, 2020;
Nagatsuka et al., 2021; ano, 2023; Chen et al., 2024). Desh-
pande & Narasimhan (2020) proposed to bias the attention
mechanism towards predefined attention patterns and ob-
served speed-ups in BERT training, while Chen et al. (2024)
connect the sharp drop to sudden learning of syntactic at-
tention structures. We also identify the learning of the task-
required attention pattern to be the cause of the problem.
In concurrent work Reddy (2023) studied phase transitions
in ICL. Specifically, they show for a small toy-model that
slow initial learning is due to a saddle-point, where one
path leads to a sub-optimal minimum (i.e., random context
label) and the other path to the ICL solution. They discover
a “cliff” in the loss landscape and shallow gradients that
lead to the ICL solution. While our setting shows substan-
tial differences, our analysis reveals the same underlying

1https://github.com/boschresearch/
eurekaMoments

mechanisms, i.e., shallow gradients, which we investigate
in more detail.

Grokking. A similar phenomenon has been discovered on
synthetic data (Power et al., 2022) and was further stud-
ied in (Liu et al., 2023; Nanda et al., 2023; Thilak et al.,
2022; Millidge, 2022; Barak et al., 2022; Liu et al., 2022).
Grokking describes the phenomenon of sudden general-
ization after overfitting, which can be induced by weight
decay. In contrast to Eureka-moments, the training accu-
racy already saturates at close to 100% (overfitting), a long
time before the validation accuracy has a sudden leap from
chance level to perfect generalization. For Eureka-moments,
validation and training loss saturate (no overfitting) and the
sudden leap occurs for both simultaneously.

Unstable gradients in transformers. The position of the
layer-norm (LN) (Xiong et al., 2020) and instabilities in
the Adam optimizer in combination with LN induced van-
ishing gradients (Huang et al., 2020). Removing the LN
(Baevski & Auli, 2019; Child et al., 2019; Wang et al., 2019)
or Warmup (Baevski & Auli, 2019; Child et al., 2019; Wang
et al., 2019; Huang et al., 2020) resolves this problem, but
in our case, Warmup alone does not help. Others identi-
fied the Softmax as one of the problems, showing that both
extremes, attention entropy collapse, i.e., too centralized
attention (Zhai et al., 2023; Shen et al., 2023) and a large
number of small attention scores, i.e., close to maximum
entropy (Dong et al., 2021; Chen et al., 2023) can lead to
small gradients (Noci et al., 2022). As a remedy to vanish-
ing gradients caused by entropy collapse Wang et al. (2021)
proposed to replace the Softmax by periodic functions. How-
ever, before Eureka-moments, the attention distribution is
in neither extreme. Instead the attention is allocated to the
wrong tokens.

Temperature in Softmax. A key operation in the trans-
former is the scaled dot-product attention. Large products
can lead to attention entropy collapse (Zhai et al., 2023;
Shen et al., 2023), which results in very small gradients.
In contrast, Chen et al. (2023) observed close to uniform
attention over tokens. They scaled down very low scores
further while amplifying larger scores, but this only ampli-
fied the problem when important tokens are already ignored.
Instead, Jiang et al. (2023) proposed to normalize the dot
product. Their proposed NormSoftmax avoids low variance
attention weights and thus avoids the small gradient prob-
lem. We found it as the most effective intervention on the
Softmax function. Others proposed to learn the temperature
parameter (Dufter et al., 2020; Ali et al., 2021), but this is
difficult to optimize. For very large models the problem
becomes more severe. Models with more than 8B parame-
ters show attention entropy collapse (Dehghani et al., 2023).
They followed (Gilmer et al., 2023) and normalized the
QKT with layer norm before the Softmax.
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3. Background
Preliminaries. This work investigates the popular dot
product attention (Vaswani et al., 2017), defined as

Attention(Q,K, V ) = Softmax
(
QKT

τ

)
V, (1)

where the weight matrices WQ, WK and WV map the input
X to query Q, key K, value V , and the temperature param-
eter τ controls the entropy of the output. A low temperature
leads to low entropy, i.e., a more “peaky” distribution. Com-
monly, τ is set to

√
dk, where dk is the dimensionality of Q

and K. Thus,
√
dk is the standard deviation of QKT under

the independence assumption of rows of Q and K with 0
mean and variance of 1 (Vaswani et al., 2017).

Softmax attention can cause vanishing gradients. Atten-
tion entropy collapse, i.e., too centralized attention, can
cause vanishing gradients (Zhai et al., 2023; Shen et al.,
2023), since all entries of the Jacobian of the Softmax will
become almost 0 (see . A.11). Similarly, uniform attention
can cause vanishing gradients for WK and WQ (Noci et al.,
2022).

A remedy to both problems is to control the attention temper-
ature τ . A larger τ in the Softmax will dampen differences
of QKT and by that prevent vanishing gradients by low
attention entropy. In contrast, a smaller τ will amplify dif-
ferences of QKT and prevents vanishing gradients caused
by uniform attention. Choosing the right temperature is
difficult and can have a strong influence on what the model
learns, how fast it converges etc. As a remedy, we pro-
pose to start training with a low temperature and follow a
schedule to heat it up to the default value of

√
dk. We refer

to this approach as Heat Treatment (HT) and it is one of
our interventions to test whether the Softmax is indeed the
root cause of the optimization difficulties. This approach
has multiple advantages. First, it removes the difficulty of
choosing the exact temperature. Second, the network gets
optimized for “more peaky” attention, but the temperature
increases steadily. By that, the network starts with cen-
tralized attention but since the next epochs attention will
be more uniform than the previous (due to increasing the
temperature), it does not run into the issue of low attention
entropy. Last, the network can focus on most important
features early in training and broaden the view over time,
attending to other features.

NormSoftmax. An alternative to tame the attention is
NormSoftmax (Jiang et al., 2023), which replaces the ex-
pected standard deviation

√
dk gets by the empirical stan-

dard deviation σ(QKT ), for each attention block individu-
ally. NormSoftmax can be computed by

NormSoftmax(Q,K) = Softmax
(

QKT

min(σ(QKT ), τ)

)
.

(2)

If QKT has low standard deviation differences will be am-
plified. If σ(QKT ) > τ , τ will be used.

4. Task Description & Experimental
Conditions

Recent works across diverse fields found sudden abrupt
learning behaviors, e.g., sudden improvements of RoBERTa
(Liu et al., 2019), rapid emergence of induction heads (Ols-
son et al., 2022), or the “sudden convergence phenomenon”
of control net (Zhang et al., 2023). We hypothesize that all
of these constitute multi-step mechanisms p(y|x, z) ·p(z|x),
where p(y|x, z) (task 2) is dependent on the result of p(z|x)
(task 1), where only the last task is supervised. But why does
it take so long for transformers to learn such mechanisms
and why is the improvement so sudden?

Task description. We suspect that these training problems
are due to the multi-step nature of these tasks. To test this
we study such multi-step mechanisms on a simple two-step
tasks. Note that many-step tasks would also be possible
but are a more complicated study object. Fig. 1a provides
a schematic overview for one of our vision tasks: Task 1
requires the model to indicate where to look at, i.e., top
right or bottom left depending on whether the MNIST digits
(LeCun et al., 2010) in the top left and bottom right match
or do not match. Task 2 is a simple classification. Here it is
FashionMNIST (Xiao et al., 2017) classification. Note that
only task 2 is evaluated and only task 2 gets supervision;
akin to, ICL for example, for which supervision is only
provided for a the missing token, but not directly for the
induction head learning. By design of our datasets, 40−55%
accuracy can be obtained by only solving task 2 and picking
the target at random. The range is due to varying difficulty of
task 2. Higher accuracies can only be achieved by learning
the multi-step structure.

Vision dataset creation. The visual datasets are based on
MNIST (LeCun et al., 2010) and Fashion-MNIST (Xiao
et al., 2017). An example and a schematic of the task is
shown in Fig. 1a. The samples are created by sampling 2
random Fashion-MNIST samples and 2 digit samples from
the MNIST classes “1” and “2”. We apply a random color to
the MNIST samples (red or blue). Next, we compose a new
image from the 4 images, putting the 2 MNIST samples on
top left and bottom right and the Fashion-MNIST samples
on the remaining free quadrants. If the 2 MNIST samples
are from the same class, the class of the top-right image is
the sample label and bottom-left else.

Reasoning task. Complementary to above vision tasks,
we further simplified the multi-step task to an algorithmic

task of the form f(a, b, c, d) =

{
c, g(a, b)
d, otherwise ,

where a, b, c, d ∈ {0, 1, ..., n}, task 1 is g(a, b) =
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1[(a is even ∧ b is odd) ∨ (a is odd ∧ b is even)] and task 2
is a simple copying task of either c or d. More details are
provided in A.16.

Metrics. We define the Eureka-ratio as the proportion
of training runs with Eureka-moment across the different
random seeds. To automatically detect Eureka-moments,
we set a conservative threshold at a validation accuracy of
70%, as this threshold can not be crossed without solving
task 1. Accuracy after Eureka-moment, in the following
referred to as accuracy, is computed over all runs that had
a Eureka-moment. Note that this metric must be jointly
considered with the Eureka-ratio, since high accuracy with
low Eureka-ratio indicates that optimization typically failed
(no Eureka-moment) but possibly just one “lucky” training
run learned to solve the multi-step mechanism. Finally, av-
erage Eureka-epoch provides the average epoch at which
the Eureka-moment happened. It is computed only for runs
with Eureka-moment and again must be interpreted jointly
with the Eureka-ratio.

Models and hyper-parameters. Following Hassani et al.
(2021), we use a ViT version specifically designed for small
datasets. Unless stated otherwise, we train a ViT with 7
layers, 4 heads each with embedding dimension of 64, patch
size of 4 and MLP-ratio of 2. Consequently, the default
temperature is

√
dk = 8. The ResNet has a comparable

parameter count and consists of 9 layers. For ViT, ViT+HT
and NormSoftmax, we tested 5 different temperature param-
eters in initial experiments. More details on the training
setup are provided in A.14. For the reasoning task, we train
a transformer on 30% of the entire set of possible inputs
(i.e., 114 = 14 641 input combinations) for 10K epochs
over five random seeds. More details on model and training
are provided in A.16 .

5. Understanding Eureka-moments &
Optimization Problems of Transformers

Here, we analyze the problem on the dataset described in
Fig. 1a. In Sec. 5.3 we provide supporting experiments and
finally show indications, that the results can be transferred
to real datasets, i.e., Wikipedia text completion and ICL.

5.1. Why Do Transformers Fail to Learn Two-step
Tasks?

To investigate why ViT’s training fails, we analyze the
learned representations using progress measures. Note that
solving task 1 requires ViT to 1) learn to distinguish the
indicators, 2) carry the information through the layers and
3) compare the indicator information to obtain the target
location. We use linear probes on the output of the atten-
tion heads, i.e., Zi = Attention(Qi,Ki, Vi), for all heads
i. However, note that linear separation becomes very likely
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Ep. 50: before res.
Ep. 50: after res.
Ep. 50: before res. cls only
Ep. 50: after res. cls only

Ep. 250: before res.
Ep. 250: after res.
Ep. 250: before res. cls only
Ep. 250: after res. cls only

(b) ViT τ = 1
3

(with Eureka-moment)
Figure 2: What is represented in different parts of the
attention block. Bar plots show linear probe accuracy av-
eraged over heads. Indicator 1 is the top MNIST digit. Both
ViT and ViT τ = 1

3 extract the indicator class information
from the images and it is available in each layer. Informa-
tion is available before and after the residual connection,
therefore it is not entirely ignored by the attention. Differ-
ences between ViT and ViT τ = 1

3 are visible for CLS token
and target location task. Res. denotes residual layer. Error
bars show variance over heads. Results for layer 6 using Zi.
Black line indicates chance. Indicator 2 plots are similar.
More layers and indicator 2 plots are shown in Fig. 19. Q,
K, V linear probes in Figs. 20 to 22. A similar analysis
using more sensitive information-theoretic probes (Voita &
Titov, 2020) can be found in Appendix A.12

as feature dimensionality increases. Thus, a high accuracy
on the linear probe classification does not imply that the
transformer is using that information. It only shows that the
information is represented and linearly separable.

Does the transformer fail to distinguish the indicators?
The left bar plots in Fig. 2a show that the indicators can
be linearly separated well (orange, brown) across all layers
(Fig. 19). Nonetheless, ViT fails to learn task 1 (Fig. 2a
right plot). Thus, the transformer represents the information
to solve task 1 but does not utilize it.

Does the transformer filter out information required for
task 1? Since the loss provides a training signal only for
task 2, the transformer may learn to just ignore the indica-
tors. Task 1 information could be ignored in the attention
blocks, i.e., the attention function does not attend to the
indicators. To test this, we probe the representation after
the attention operation at two locations, before and after
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(a)

(b)

Figure 3: Attention maps after training for: (a) ViT with-
out Eureka-moment. It fails to compare the 2 digits. First
layers explicitly ignore indicators (digits) (highlighted with
red). (b) ViT τ = 1

3 with Eureka-moment attends indi-
cators in first layers (red) and predominantly attends the
correct target (ankle boot) in later layers. Black is no and
white is high attention. Maps show the average attention of
each query, i.e., we average over the key-dimension of the
attention map.

the residual connection. Fig. 2a reveals that the indica-
tor information is available in all layers. Early in training,
some indicator information is filtered out in the attention
block (blue). Indicator information is partially filtered out
in deeper layers, but is always recovered by the residual
connections (see Fig. 19). Thus, features required for task 1
are not filtered out.

Does the transformer fail to combine the information?
We observe that the target location (solution of task 1) can-
not be inferred by the linear probe (Fig. 2a). Therefore, even
though the (indicator) information is available, it is not able
to utilize this information to predict the target location of
task 2. Thus, the transformer has all the information but
fails to combine it to solve the multi-step task.

Differences to a transformer that had a Eureka-
moment. Fig. 2b shows the linear probe results for a trans-
former that had a Eureka-moment. Interestingly, the target
location can be inferred by linear probes from all layers and
all tested representations with high accuracy. This is in stark
contrast to transformers that had no Eureka-moment. The
second striking difference is that indicator information is

Figure 4: L1 gradient norm during training forWK ,WQ

and WV for the first layer. For ViT, WK and WQ receive
much smaller gradients than WV . Before Eureka-moment
(gray regions), the differences between gradient magnitudes
are much smaller for smaller temperatures or NormSoftmax.
The y-axis is log scaled. All layers shown in Fig. 14.

ViT ViT τ=1/3 ViT+HT NormSoftmax

Figure 5: Gradients on image for Wk at Epoch 50. For
ViT the gradient for WK comes mostly from target regions,
while for the other approaches indicator regions provide
substantial gradient. A detailed explanation of this plot and
plots for Q and V can be found in Sec. A.2

represented in the CLS token. This is even stronger for early
layers (Fig. 19). We suspect, that the transformer uses the
CLS token to match the classes of the indicators.

Why does the transformer fail to combine the informa-
tion? We visualize the attention maps of two fully trained
ViTs in Fig. 3. We find that the transformer without Eureka-
moment does not attend the indicator digits and attends only
the targets of task 2, whereas a transformer with Eureka-
moment attends the indicator digits in early layers. This
suggest that a ViT without Eureka-moment does not pay
enough attention to the indicators to match them and strug-
gles to learn to attend different regions.

Why does the transformer fail to learn to attend to the
indicators? Based on the discussion in Sec. 3, we hypothe-
size that ill-distributed attention scores lead to small gradi-
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Table 1: Quantitative results on the main dataset, as de-
scribed in Fig. 1a. and the No position task (Fig. 7). τ
not optimized for No position task. ER: Eureka-ratio, Acc.:
Accuracy, Avg. EE.: average Eureka-epoch.

Main Dataset

Avg. over EMs
Model τ ER ↑ Acc. ↑ Avg. EE.

ViT 1
0.025 3/10 89.40 174.67

ViT 1
0.075 6/10 90.13 181.34

ViT + WD 0.5
√
dk 5/10 90.09 177.8

ViT
√
dk 7/10 89.48 207.43

ViT + Warmup 20
√
dk 8/10 87.65 205.87

WQKV grad scaling
√
dk 10/10 87.96 119.4

NormSoftmax
√
dk 10/10 89.56 28.2

NormSoftmax 1
3 10/10 89.18 23.5

ViT 1
3 10/10 89.35 66.6

ViT+HT 1
3 →

√
dk 10/10 89.81 74.0

NormSoftmax + HT 1
3 →

√
dk 10/10 89.83 17.5

No Position Task

ViT
√
dk 0/4 - -

ViT + Warmup 20
√
dk 1/4 89.55 117

WQKV grad scaling
√
dk 0/4 - -

NormSoftmax
√
dk 3/4 88.98 228

NormSoftmax 1
3 1/4 89.77 20

ViT 1
3 1/4 89.68 191

ViT+HT 1
3 →

√
dk 1/4 88.36 242

NormSoftmax + HT 1
3 →

√
dk 1/4 90.63 19

Table 2: Sensitivity to learning rate. Lower temperatures
and NormSoftmax drastically increase robustness to imper-
fect learning rate schedules. Eureka-ratio computed over
seeds and schedules.

Model Eureka-ratio ↑

ViT 04/36
VIT + Warmup 20 14/36
WQKV grad scaling 5/36
NormSoftmax 36/36
ViT τ = 1

3 20/36
ViT+HT 1

3 →
√
dk 25/36

ents for WK and WQ, which in turn inhibit learning and in
particular learning to shift attention towards the indicators.
Note that high attention to some pairs with low attention
to all others or uniformly distributed attention can result
in vanishing gradients (Noci et al., 2022). To test this, we
visualize the L1-norm of the gradient of the first layer in
Fig. 4. For vanilla ViT the gradients for WK and WQ are
0.5-1 orders of magnitude smaller than those for WV . Thus,
only small gradients are backpropagated through the Soft-
max to WQ and WK , and the attention map improves only
slowly, which results in the observed slow learning. Dif-
ferences between the gradients are much smaller for ViT
τ = 1

3 , ViT+HT and NormSoftmax, in particular before the
Eureka-moment. Fig. 5 shows the origin of gradients on the

image plane for Wk. For ViT, the gradients mostly originate
from the target regions, which further explains why many
steps are needed to move attention to the indicators, as these
gradients only lead to improved target recognition.

Is too small or too large attention-entropy the problem?
We visualize the distribution of attention maps over training
in Fig. 10: the vast majority of attention scores is very small.
This indicates that a too uniform attention is causing small
gradients. Larger attentions are rare, but not absent, as can
be seen in Fig. 3a, but indicator regions have small and
uniform attention. Thus, we conclude that local uniform
attention causes the transformer’s learning problems.

5.2. Can Enforcing Lower Entropy Attention Maps
Resolve the Small Gradients?

The previous subsection indicates that a local uniform at-
tention is causing the learning problems of the transformer.
To test this hypothesis and show that this causes the ob-
served problems we use targeted interventions. Particularly,
we modify Softmax’s temperature τ in the attention block.
Large temperatures increase entropy, while small tempera-
tures decrease it. We apply following interventions: training
with lower/higher temperature; HT, where the temperature
increases from a low value to default temperature during the
first half of training; and NormSoftmax, which adaptively
changes the temperature for each sample, head and layer.

Does a lower temperature solve the small gradient issue
and thereby mitigate the optimization issues? Increas-
ing the temperature from low to default or using NormSoft-
max increases high attention scores (c.f. Fig. 10). Impor-
tantly, the transformer learns to also attend to the indicators
(Fig. 3b). Furthermore, all approaches (lower temperature
τ , HT and NormSoftmax) solve the imbalanced gradient
issue for WV , WQ and WK (Fig. 4) and lead to higher
gradients in indicator regions (Fig. 5). Eureka-moments
happen much earlier or instantly (see Fig. 6). Thus, the
interventions indeed mitigate the optimization issues. A
comprehensive comparison between a vanilla ViT and other
versions is provided in Tab. 1. Decreasing the temperature
or using NormSoftmax increases the Eureka-ratio, accuracy
and decreases the Eureka-epoch (i.e., improving the energy
landscape). In contrast, increasing the temperature has a
negative effect on the Eureka-ratio, showing that the local
uniform attention is the main cause for the learning problem.

5.3. Is This an Artificial Problem Caused by Other
Factors?

Does the transformer simply ignore specific indicator
locations? The task and dataset used in the previous sub-
sections showed indicators and targets always at the same
location, i.e., indicators on top-left and bottom right. Such a
dataset design might result in two undesired effects: 1) The
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Figure 6: Validation accuracy curves on main dataset.
Both interventions, ViT+HT and NormSoftmax drastically
reduce the saturation period and can even lead to a complete
disappearance of the saturation period.

Figure 7: No position task description. This task is iden-
tical to the main task, but removes more information by
swapping indicator (digit) and target (fashion) in each row
with a probability of 0.5, i.e., task 2 is to classify either the
top or bottom fashion sample. Two samples are shown to
highlight differences from the task described in Fig. 1a.

transformer might learn to ignore features based on the as-
sociated positional embeddings. 2) The task might be easier,
since positional embeddings can be used as shortcut to find
indicators without the need to rely on the actual features.
To disprove both cases we create another dataset, explained
in Fig. 7. We observe that removing the fixed position for
indicators and targets makes the task even more difficult
(Tab. 1 bottom) and differences between methods are even
more apparent. Thus, ViTs without Eureka-moment do not
simply learn to ignore regions of the image.

Is this a mere artifact of a bad choice of hyper-
parameters? We test various competing explanations
that could lead to the observed phenomenon, like train-
ing instabilities due to inadequate Warmup, bad choice of
learning rate schedules and Weight Decay to force circuit
formation as observed for grokking (Nanda et al., 2023).
Weight Decay and Warmup do not improve the results. We

find that Eureka-moments are sensitive to the learning rate.
NormSoftmax and HT reduce the sensitivity to sub-optimal
learning rates drastically (see Tab. 2). See A.5 for a more
detailed answer to the posed question.

Influence of model scale, dataset size and image resolu-
tion on Eureka-moments. We found no consistent influ-
ence of model scale on Eureka-ratio. See A.6 for more
details. Further, we can rule out that this observation is an
artifact of image resolution or dataset size by showing the
phenomenon on a ImageNet-100 based dataset in A.10.

Can the problem be fixed by rescaling of the gradient
magnitude for WV , WQ and WK? The observation that
lower gradient imbalance leads to higher Eureka-ratio sug-
gests, that simply rescaling of the gradients may solve the
problem. We find that this does work for the Main task
but not for the No position task, (see Tab. 1) and is very
sensitive to the learning rate (see Tab. 2). We attribute this
to the differences in gradient magnitudes for indicators and
targets and discuss it further in Sec. A.4.

Do gradients vanish completely and can transformers
recover? Fig. 1b already suggests, that one potential solu-
tion to reliably get Eureka-moments is very long training.
This observation is supported by Fig. 4, which indicates
that gradients become small, but not 0. Indeed we observe
that training for 3000 epochs results in a Eureka-ratio of
4/4 for all the learning rate schedules. In practice, this is of
little help because the number of sub-tasks is unknown and
Eureka-moments are hard to predict.

Is this truly a transformer optimization problem?

To show that Eureka-moments are general to all transform-
ers and not just artifacts of vision data, we also show their
occurrence in single-layer 4 head transformers on simplistic
algorithmic tasks, referred to as the reasoning task (Sec. 4).
Here, features (numbers) are directly provided as tokens and
need not be extracted. Fig. 8 reveals that Eureka-moments
appear even in this minimal setting. Both HT and NormSoft-
max reduce the training steps required for Eureka-moments
to occur and increase the Eureka-ratio from 3/5 to 4/5 or
5/5, respectively.

Does the NormSoftmax intervention translate to real
data? Jiang et al. (2023) reported improved performance
and faster convergence on ImageNet and machine transla-
tion tasks using NormSoftmax. Both tasks likely contain
some innate multi-step tasks, e.g., identifying a common
discriminative feature and then discriminating between the
difficult classes for ImageNet. These improvements may be
due to easier multi-step learning with NormSoftmax.

To further validate the results of our analysis in a real setting
we train RoBERTa (Liu et al., 2019) with NormSoftmax for
language modeling on Wikipedia, where we suspect task
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Figure 8: Eureka-moments for single-layer transformers on a simple reasoning task. We show the train (blue) and
test (orange) accuracies for attention with Softmax, Softmax+HT, or NormSoftmax, over 5 random seeds (transparencies).
Chance probability is 6/11 ≈ 54% (black).
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(b) In-Context learning
Figure 9: Eureka-moments on real datasets. Sharp im-
provements after plateauing can be observed for RoBERTa
pretraining and ICL. Using NormSoftmax leads to an earlier
(RoBERTa) and higher (ICL) Eureka-moment. Averages for
ICL over 4 seeds, 2 exemplary seeds shown per method.

1 to be learning of general word probabilities and task 2
to be modulating these probabilities based on context, or
modulating them based on syntactic relations (Chen et al.,

2024). Additionally, we train GPT-2 on the Omniglot (Rad-
ford et al., 2019) dataset and test its ICL abilities following
Chan et al. (2022). Experimental details for RoBERTa and
ICL are provided in A.18 and A.19, respectively. Fig. 9
shows that NormSoftmax indeed leads to earlier Eureka-
moments for RoBERTa. Furthermore, NormSoftmax also
improves ICL, i.e., GPT-2 with NormSoftmax trained on the
Omniglot ICL task results in higher ICL accuracy and seems
to prevent failure cases like no or a small Eureka-moment
(Baseline s1 in Fig. 9). Thus, our analysis and results are
indeed transferable to real datasets and also to transformers
with causal attention,i.e., GPT-2.

6. Limitations and Conclusion
Limitations. The ability to decompose tasks into sub-
problems and learn to solve those sub-tasks is a common
problem, but it is difficult to study on real datasets, due to
many confounding factors. As a result many works follow a
trial-and-error approach. In contrast, we try to gain deeper
understanding by studying this problem in a controlled, syn-
thetic setting. This comes with the assumption that our
analysis transfers to real data. We find evidence for that, as
the intervention (NormSoftmax) leads to improvements on
real data and can prevent getting stuck (Fig. 9).

Conclusion. In this work, we identified that transformers
have difficulties to decompose a task into sub-problems and
learn to solve the intermediate sub-tasks. We observed that
transformers can learn these tasks suddenly and unexpect-
edly but usually take a long time to do so. We called these
sudden leaps Eureka-moments. We pined the problem down
to the Softmax in the attention that leads to small gradi-
ents. We proposed simple interventions that specifically
target the Softmax and show that they improve the trans-
formers’ capabilities to learn sub-tasks and to learn them
faster. We identify NormSoftmax as most robust and con-
venient method, leading to consistently better results. Last,
we showed that our observations transfer to real datasets.
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A. Appendix
Here, we provide additional information that supports under-
standing and helps interpreting the main paper. We provide
supplemental experimental results and more detailed analy-
sis. We show the gradient norm for indicators and targets
individually, which reveals that most of the already small
gradients for WQ and WK is attributed to target features for
models that do not learn the task and very little to indicator
features. We provide a more complete version of Fig. 4.
Provide more insights into why gradient magnitude scaling
does not work and provide more details on our analysis of
competing hypotheses. We provide an ablation on model
scale and the main results from the main paper with stan-
dard deviation and training speed up. We explain additional
datasets and report results on them. We repeat the linear
probe analysis with more sensitive information probes. We
provide the linear probe plots using also Q, K and V repre-
sentations and the full version of Fig. 4. Last, we provide
details on training and experimental setups and an explana-
tion for vanishing gradients in case of centralized attention
maps.

A.1. Attention Distribution Over Time

We show the change of the attention distribution during the
course of training in Fig. 11.

A.2. Gradient Norm for Indicators and Targets

Our particular dataset design allows us to look at the gradi-
ents for indicators and targets separately. In particular, we
make use of the fact, that indicators and targets are always at
the exact same spacial location. More precisely, we use the
partial derivatives as proxy for the gradients. We compute
∂Z
∂Q , ∂Z

∂K and ∂Z
∂V , where Z is the output of the attention func-

tion. To analyze the gradient norm for targets and indicators
independently we compute ∂Z

∂Q , ∂Z
∂K and ∂Z

∂V , where Z is
the output of the attention function. Since we compute the
derivative wrt. the tokens, the spacial dimension remains.
By averaging over the batch dimension and heads we can
plot the partial derivative for each token. While it’s not
exactly the same, we will use the term gradient to refer to
these partial derivatives in the following.

Since each token corresponds to a region in the image, we
can visualize these results as an image. The results are
shown in Figs. 5, 11, 12. It can clearly be seen, that target
regions (top-right and bottom-left) receive more gradients
than indicator regions for K and V . ViT, ViT+HT and
NormSoftmax mitigate this problem, leading to significant
gradient for indicator tokens. Indicator regions forQ receive
comparatively larger gradients, however, the gradients for
Q are much smaller.

Besides that, we compute the mean partial derivative for

indicator and target regions of the image, i.e., we average the
partial derivatives for tokens corresponding to target regions
or indicator regions. This allows us to plot the gradient
norm for Q, K and V for only target and indicator tokens
over the training. We show the results in Fig. 13. We make
the following observations:

1. In general, the gradients are not evenly divided between
target and indicator K, with usually smaller gradient
for the indicator regions. Therefore Fig. 4 even un-
derestimates the difference for the indicator regions,
i.e., the regions relevant for a Eureka-moment.

2. This difference can explain why more time is needed
to reach a Eureka-moment for ViT in comparison to
the other methods.

3. This difference between indicator k and target k can
also explain, why the WQKV grad scaling does not
solve the problem.

4. For ViT the difference between gradients of “V ” and
K” and “V ” and ”Q” is, for most layers, generally
much larger compared to the other approaches. This
is particularly true before the Eureka-moment, where
larger gradients for indicator K and indicator Q are
crucial to get an early Eureka-moment. Most promi-
nent is the difference between target V and indicator
K, showing a large mismatch. This explains, why
the attention maps change so slowly and why simply
increasing the learning rate does not solve the problem.

A.3. Gradient Norm

Fig. 14 shows the L1 gradient norm for all layers and all
methods. It can be seen, that throughout all layers and the
entire training ViT has larger gradients for WV in compari-
son to WK and WQ. For the other methods differences are
much smaller and less consistent.

A.4. Why Gradient Magnitude Scaling Does Not Work.

Following the observation of Fig. 4, it stands to reason to
simply scale the gradients forWV ,WQ andWK to the same
value. To this end, we compute the gradient norm for WV ,
WQ and WK for each layer and the overall mean. We scale
the gradients for WV , WQ and WK , such that their norm
is equal to the mean norm. This removes the imbalanced
gradient issue and results in identical effective learning rate.

While this approach might work, it solves only part of the
problem. Different features might receive differently large
gradients. For instance the indicator features (here digits)
receive little gradient, while target (here fashion) receive
large gradients, as can be seen in Fig. 11. Simply scaling
up the gradients would not solve the imbalance between
indicator and target gradients.
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Figure 10: Attention distribution as a heatmap. Attention scores are sampled during evaluation after each epoch and
binned to 25 bins. The color map is log scaled. For all 3 models, the vast majority of values falls into the first bin. ViT
shows very few higher attention scores. ViT+HT and ViT+NormSoftmax lead to a significantly larger number of medium
and high attention values. For ViT+HT this is limited to the first 100 epochs.

Figure 11: Gradient norm for different image regions visualized for Q, K, V . Larger gradients are visible for target
regions, i.e, top-right and bottom-left. Indicator receive less gradients for K and V . ViT τ = 1

3 , ViT+HT and NormSoftmax
mitigate this problem well. Indicator regions for Q receive more gradient relative to the target regions, but overall the
gradient for Q is very small (see color bar). Plots created at epoch 50.

14



Eureka-Moments in Transformers: Multi-Step Tasks Reveal Softmax Induced Optimization Problems

Figure 12: Gradient norm for different image regions visualized for Q, K, V at epoch 13 (Eureka-moment of Norm-
Softmax).

We can see in Tab. 1, that WQKV grad scaling helps on
the main dataset, but is very sensitive to the learning rate
(Tab. 2). However, it completely fails on the harder task. The
learning rate sensitivity and the failure on the harder task
are most likely due to the gradient imbalanced discussed
above.

A.5. Are the Learning Problems a mere Artifact of a
Bad Choice of Hyper-parameters?

We always use the default of 5 Warmup epochs to avoid
training instabilities during early stages of training. We
found that 20 Warmup epochs were most effective in mit-
igating the problem. However, sensitivity to the learning
rate schedule (Tab. 2) is high. The average Eureka-epoch is
very late (Tab. 1 left) and we found more Warmup epochs
lead to worse results on harder tasks (Tab. 1 right). The
Eureka-ratio is sensitive to the learning rate schedule. We
test 9 learning rate schedules for each method, (Tab. 11).
Lower temperatures are less sensitive to the learning rate
schedule (see Tab. 2).

Weight Decay (WD) can facilitate grokking (Power et al.,
2022) by forcing the network to learn general mechanisms

(Power et al., 2022; Nanda et al., 2023). In our setting, we
only found mild improvements for higher WD. However,
more random seeds revealed, that higher WD rather reduces
the Eureka-ratio (Tab. 1) and does not help in solving trans-
former’s learning issue.

A.6. Influence of Model Scale on Eureka-ratio.

The low Eureka-ratio could also be due to a too large or too
small architecture. Also the number of heads might play an
important role, since different features can be attended in
different heads. More heads might increase the likelihood
of one head specializing in indicators. Also the embedding
dimension per head might just be too small or large for the
task at hand. Maybe, even the hidden dimension of the MLP
at the end of the attention block is the bottleneck. Many
parameters of the transformer itself could explain why it
fails to solve our tasks. We test these hypotheses in Tab. 3.
While most changes lead to a lower Eureka-ratio, reducing
the depth and increasing the number of heads leads to mild
improvements. Combining both leads to a Eureka-ratio of
4/4, but, as can be seen in Tab. 5, this architecture does not
generalize to other datasets.
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Figure 13: L1 gradient norm separately for indicator and target tokens. Indicator regions/features receive much less
gradient than target regions. Gray region indicates steps before Eureka-moment.
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Figure 14: L1 gradient norm plot for all layers, all models and entire training. This is the complete version of Fig. 4.
For ViT it can be seen that for all layers the gradient for WV is significantly larger than for WQ and WK . For ViT+HT, ViT
with τ = 1

3 and NormSoftmax the gradient norm is very similar for the weight matrices (note that the y-axis is not shared).
NormSoftmax achives this also for deeper layers. Often after Eureka-moment WV starts to get larger attention than WK and
WQ. We conjecture that this is because the attention is already optimized, while task 2 can still improve by modifying the
feature representation. Gray region indicates steps before Eureka-moment.

A.7. Transformers Learn the Prior p(z)

Given a task like p(y|x, z) · p(z|x), i.e., the probability of
class y given evidence x and the latent variable z, we argue,
that transformers first learn a prior p(z), ignoring the evi-
dence. Sometimes they fail to unlearn this and pay attention

to the evidence. In all previous experiments, the probability
of target 1 or target 2 being the target to classify was 0.5.
In a setting without 0.5 probability, the transformer should
pick the target which is more frequently correct, in case it
actually learns the prior p(z) . We test this by changing the
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Table 3: Influence of model scale on Eureka-ratio. Eureka-ratio is only partially influenced by the architecture. More
shallow models and more heads both improve the results. The combination leads to 4/4 Eureka-ratio, but as can be seen in
Tab. 5 this architecture fails at other tasks, while our solutions lead to improvements even on the “no position task”.

Avg. over subset with Eureka-moment

Heads Emb. Dim. Depth MLP Eureka-ratio ↑ Accuracy ↑ Avg. Eureka-epoch

4 64 7 2 2/4 88.61 ± 1.64 232.50 ± 35.50
4 64 7 4 1/4 90.16 ± 0.00 162.00 ± 0.00
4 64 4 2 3/4 88.77 ± 1.20 216.33 ± 46.64
4 64 10 2 2/4 89.93 ± 0.26 221.00 ± 18.00
4 48 7 2 1/4 90.18 ± 0.00 137.00 ± 0.00
4 96 7 2 2/4 89.76 ± 0.03 140.50 ± 70.5
2 64 7 2 0/4 - -
6 64 7 2 3/4 89.67 ±0.25 139.67 ± 55.16
6 64 4 2 4/4 89.75 ± 0.24 152.25 ± 44.49

probability of the top-right target to be the target location
to 0.65. As can be seen in Fig. 15, the transformer initially
learns the shortcut of always picking the more likely target.

A.8. Main Results with Standard Deviation, ResNet
and Convergence Speed Improvements

Due to space and readability constraints we report in the
main paper only the mean over all seeds. In Tabs. 4 & 5 we
show the same tables including the standard deviation.

Additionally, Tabs. 4 & 5 also provide a comparison to a
ResNet9.

Lastly, for Tab. 4 we report the improved convergence speed
as a percentage of the number of training steps to reach 95%
of ViT accuracy (averaged only over seeds with Eureka-
moments), denoted as “% of steps”. This value is computed
only over the fraction of seeds, that actually lead to a higher
accuracy than 95% of ViTs accuracy. In the last column,
we also report this fraction. Note, that the Eureka-ratio is
the maximum possible value for the “95%-ratio”, i.e., for
“ViT +Warmup 20” 8/10 seeds have a Eureka-moment. Out
of these 8 only 5 reach an accuracy higher than 95% of the
ViT accuracy.

A.9. Description of and Results on More Datasets

In the following we report results on 5 more datasets. The
datasets are depicted in Fig. 16.

Cifar task 1. A schematic for this task is shown in Fig. 16a.
The “Cifar task 1” dataset uses Cifar-10 (Krizhevsky et al.,
2009) images of classes “automobile” and “bird” as indica-
tors. Targets are sampled from fashion MNIST and MNIST.
All 4 images are randomly placed on a 4x4 canvas and we
apply random colors (red or blue) to the MNIST and fashion
MNIST samples. Task 1 is to compare the Cifar-10 classes.

If they come from the same class, task 2 is to classify the
MNIST digit. If not, the tasks is to classify the fashion
MNIST sample. Results are reported in Tab. 6. normal ViT
fails in 1/4 cases and Eureka-epoch is usually late. Note,
that this task may seem difficult, but differences in color
distribution of “bird” and “automobile” simplify the task.

Top if above. The task description is summarized in
Fig. 16b. For data creation we sample 2 images from fash-
ion MNIST and place one in the top row of a 4x4 canvas
and the other in the bottom row. The column is selected
randomly for both. Task 1 is to check whether the 2 samples
are in the same column. If they are, task 2 is to classify
the top image. If not, the image in the bottom row must
be classified. This task is relatively simple, as it removes
additional indicators. Instead, only the relative location of
the images is the relevant information to solve task 1. This
task is very simple and leads to a low Eureka-epoch for all
methods (see 16b).

Same color decision task. The task is explained in Fig. 16b.
For data creation we sample only MNIST digits and apply
random colors (red or blue) to all digits. If color of the
indicators is identical, the top right must be classified and
bottom left if not. As can be seen in Tab. 8, this task is again
very easy. Color seems to be easily accessible for ViT and
ViT has little trouble to compare the indicator colors.

Color or fashion classification. This task is shown in
Fig. 16d. For the creation of the dataset we define 10 ran-
dom colors, i.e., (brown, blue, yellow, orange, red, green,
purple, gray, pink, turquoise) and apply a random color to
each target and each indicator sample. For targets we use
fashion MNIST samples and indicators are MNIST classes
“1” and “2”. Task 1 is to compare digits. If they are the same
class, the top right fashion sample must be classified. If not,
the color of the top right sample must be classified.
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Figure 15: Validation accuracy curves for “main dataset” with changed target probabilities. ViT learns that one target
is more likely than the other and learn to always pick this target, as can be seen by the higher plateau accuracy.

Table 4: Main dataset – Comparison of proposed solutions and baselines. This is a complete version of Tab. 1 including
standard deviation, and speed improvements. For the main dataset, as described in Fig. 1a. ER: Eureka-ratio, Acc.:
Accuracy, Avg. EE.: average Eureka-epoch. % of steps indicates the % of steps needed to reach 95% of ViTs accuracy.
95%-ratio indicates the ratio of models that actually reached 95% of ViTs accuracy.

Main Dataset

Avg. over EMs Avg. over ViT 95% Acc.

Model τ ER ↑ Acc. ↑ Avg. EE. % of steps 95%-ratio

ResNet 10/10 99.40 ± 0.10 3.00 ± 00.00 - -
ViT 1

0.025 3/10 89.40 ± 0.08 174.67 ± 37.82 84.26 3/10
ViT 1

0.075 6/10 90.13 ± 0.40 181.34 ± 24.94 86.79 2/10
ViT + WD 0.5

√
dk 5/10 90.09 ± 0.27 177.80 ± 52.30 84.70 5/10

ViT
√
dk 7/10 89.48 ± 1.10 207.43 ± 46.65 100.00 4/10

ViT + Warmup 20
√
dk 8/10 87.65 ± 6.48 205.87 ± 57.05 91.87 5/10

WQKV grad scaling
√
dk 10/10 87.96 ± 2.45 119.4 ± 62.70 73.79 5/10

NormSoftmax
√
dk 10/10 89.56 ± 0.65 28.20 ± 34.85 19.87 10/10

NormSoftmax 1
3 10/10 89.18 ± 0.36 23.50 ± 08.15 19.25 10/10

ViT 1
3 10/10 89.35 ± 0.28 66.60 ± 58.55 36.71 10/10

ViT+HT 1
3 →

√
dk 10/10 89.81 ± 0.29 74.00 ± 61.29 39.88 10/10

NormSoftmax + HT 1
3 →

√
dk 10/10 89.83 ± 0.41 17.50 ± 04.84 16.41 10/10

Digit grouping. Finally, we make the indicator task more
difficult. We follow the same setting as for the Main dataset,
as described in Fig. 1a. However, indicators are not sampled
from digits 1 and 2, but from 1, 2, 3 and 4. Task 1 is to find
out whether both indicators are smaller or both indicators
are larger or equal to 3. I.e., we build indicator sets [1, 2]
and [3, 4] if both indicators are from the same group the
top-right image should be classified. As can be seen in
Tab. 10, increasing the difficulty of the indicator task quickly
makes the dataset too hard. Further optimization of hyper-
parameters and architecture are likely to solve the tasks.

A.9.1. WHAT MAKES A MULTI-STEP TASK HARD TO
LEARN?

Based on the additional datasets described above we ob-
serve, that task 1 difficulty plays a major role in what makes
a multi-step task difficult. For example the Same color deci-
sion task (Fig. 16c and Table 8) is significantly easier than
our Main task (compare to Avg. Eureka-epoch in Table 4).
We attribute this to the readily available feature (color) used
to solve task 1. Similarly, the Top if above task (Fig. 16b
and Table 7) is very easy to learn, as it removes one task 1
feature completely and relies solely on the position features.
Making task 1 harder leads to much rarer and later Eureka-
moments, as can be seen for the No position task (Fig. 7
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Figure 16: Schematics for additional datasets.
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Table 5: No Position Task – Comparison of proposed solutions and baselines. For the No position task, as described in
Fig. 7. τ not optimized for this task. ER: Eureka-ratio, Acc.: Accuracy, Avg. EE.: average Eureka-epoch.

No Position Task

Avg. over EMs

Model τ ER ↑ Acc. ↑ Avg. EE.

ResNet 4/4 91.27 ± 0.30 4.25 ± 00.43
ViT

√
dk 0/4 - -

ViT + Warmup 20
√
dk 1/4 89.55 ± 0.00 117 ± 00.00

WQKV grad scaling
√
dk 0/4 - -

NormSoftmax
√
dk 3/4 88.98 ± 0.55 228.67 ± 08.22

NormSoftmax 1
3 1/4 89.77 ± 0.00 20.00 ± 00.00

ViT 1
3 1/4 89.68 ± 0.00 191.00 ± 00.00

ViT+HT 1
3 →

√
dk 1/4 88.36 ± 0.00 242.00 ± 00.00

NormSoftmax + HT 1
3 →

√
dk 1/4 90.63 ± 0.00 19.00 ± 00.00

ViT 6 heads, depth 4 0/0 - -

Table 6: Results “Cifar task 1” dataset. τ not optimized
for this task. ER: Eureka-ratio, Acc.: Accuracy, Avg. EE.:
average Eureka-epoch.

Cifar task 1

Avg. over EMs

Model τ ER ↑ Acc. ↑ Avg. EE.

ViT
√
dk 3/4 83.43 ± 1.83 187.67 ± 42.46

ViT 1
3 4/4 86.86 ± 0.75 76.50 ± 08.90

NormSoftmax
√
dk 4/4 82.89 ± 0.31 100.0 ± 27.89

Table 7: Results “Top if above” dataset. τ not optimized
for this task. ER: Eureka-ratio, Acc.: Accuracy, Avg. EE.:
average Eureka-epoch.

Top if above

Avg. over EMs

Model τ ER ↑ Acc. ↑ Avg. EE.

ViT
√
dk 4/4 91.47 ± 0.13 13.75 ± 2.19

ViT 1
3 4/4 90.38 ± 0.13 9.5 ± 1.25

NormSoftmax
√
dk 4/4 90.84 ± 0.27 9.25 ± 1.09

and Table 5) and the Digit grouping task (Fig. 16e and Ta-
ble 10). They make task 1 harder by removing the position
information to locate and match indicators or introducing
more variance to the appearance of indicators, respectively.
We conjecture, that task 1 difficulty plays a major role in de-
termining whether and when a Eureka-moment will happen.
Task difficulty here seems to depend on the availability of
the features required to solve task 1.

A.10. Eureka-moments on Realistic, Large Scale
High-resolution Images (ImageNet-100 based)

To show that Eureka-moments can also be observed on
large scale high-resolution datasets we create a dataset with
high-resolution natural images using ImageNet-100 (Tian

Table 8: Results “Same color decision task” dataset. τ
not optimized for this task. ER: Eureka-ratio, Acc.: Accu-
racy, Avg. EE.: average Eureka-epoch.

Same color decision task

Avg. over EMs

Model τ ER ↑ Acc. ↑ Avg. EE.

ViT
√
dk 4/4 98.35 ± 0.58 91.5 ± 60.04

ViT 1
3 4/4 98.95 ± 0.10 8.25 ± 1.48

NormSoftmax
√
dk 4/4 98.93 ± 0.03 7.75 ± 0.43

Table 9: Results “Color or fashion class” dataset. τ not
optimized for this task. ER: Eureka-ratio, Acc.: Accuracy,
Avg. EE.: average Eureka-epoch.

Color or fashion class

Avg. over EMs

Model τ ER ↑ Acc. ↑ Avg. EE.

ViT
√
dk 4/4 92.85 ± 0.25 12.00 ± 3.32

ViT 1
3 4/4 92.53 ± 0.40 20.75 ± 2.49

NormSoftmax
√
dk 4/4 92.75 ± 0.71 11.25 ± 0.83

et al., 2020). For simplicity, we follow the same dataset
design as for the MNIST-like datasets, i.e., we place the
targets in the top-right and bottom left, while the other
two quadrants show indicator images. Targets are simply
images from ImageNet-100. The indicators are sampled
from 2 of the ImageNet dog classes. If both indicators
show the exact same sample, the top-right image needs to
be classified and bottom left otherwise. The probability of
top-right location being the target is 0.5. We train “ViT-S"
and “ViT-S with NormSoftmax " following the standard
ImageNet training setting using strong augmentations from
Deit training (Touvron et al., 2021). Vanilla ViT obtains
only 41% accuracy and we don’t observe a Eureka-Moment.
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Table 10: Results “Digit grouping” dataset. τ not op-
timized for this task. ER: Eureka-ratio, Acc.: Accuracy,
Avg. EE.: average Eureka-epoch.

Digit grouping

Avg. over EMs

Model τ ER ↑ Acc. ↑ Avg. EE.

ViT
√
dk 0/4 - -

ViT 1
3 0/4 - -

NormSoftmax
√
dk 0/4 - -

For ViT-S with NormSoftmax we observe a Eureka-Moment
at epoch 131. The training and validation curves are shown
in Fig. 17.

A.11. Vanishing Gradient in the Softmax.

Softmax attention can cause vanishing gradients forWq

and WK . To see that softmax attention can result in vanish-
ing gradients it helps to take a look at the gradients of the
attention function. Let

A(Wq,Wk,Wv, X) = Z (3)

A(Wq,Wk,Wv, X) =

S
(
D
(
Q(Wq, X),K(Wk, X)

))
(Wv, X), (4)

S(D) = softmax(D), (5)

D(Q,K) =
QKT

τ
, (6)

Q(Wq, X) =WqX, (7)
K(Wk, X) =WkX, (8)
V (Wv, X) =WvX. (9)

be the attention function, where Wk, Wq and Wv are weight
matrices, X is the input.

Using the chain rule we get

∂A

∂Wq
=
∂A

∂D

∂D

∂Q

∂Q

∂Wq
(10)

∂A

∂Wk
=
∂A

∂D

∂D

∂K

∂K

∂Wk
. (11)

Since ∂D
∂Q ,

∂Q
∂Wq

, ∂D∂K ,
∂K
∂Wk

are constants we only need to

look more closely into ∂A
∂D .

∂A
∂D is given by ∂A

∂D = ∂S
∂DV , where S(D) takes the values

S = (s1, . . . , sn). Therefore, to analyze how the gradients

∂A
∂Wq

and ∂A
∂Wk

behave, we need to analyze the ∂S
∂D , i.e., the

Jacobian of the Softmax S(D). It is given by

∂S

∂D
=


s1(1− s1) −s1s2 . . . −s1sn
−s2s1 s2(1− s2) . . . −s2sn

...
...

. . .
...

−sns1 −sns2 . . . sn(1− sn)

 .

(12)

It can be easily seen, that almost all entries in the Jacobian
are close to 0 whenever a single si is close to 1 and all others
are almost 0. Please see (Kurbiel, 2021) for a more detailed
analysis.

A.12. Information-Theoretic Probes

While our main analysis of accessibility of information in
the main paper is entirely sufficient to support our claims, a
more detailed look into accessibility of the information can
complement our analysis. Our analysis tests for linear de-
codability of particular features from the learned representa-
tions. However, it does not measure how easily information
is accessible. Voita & Titov (2020) propose to measure this
“effort” by changing the amount of data needed to learn to
extract the feature in question, referred to as online code-
length. The codelength is measured in bits. The idea of
online codelength is to measure the “availability” of a fea-
ture by limiting the data to learn the probe. Intuitively, if
the representation has a high degree of order and the feature
in question can be easily separated from other features, less
data is required to learn a good representation. Thus, a short
codelength corresponds to a feature being easily accessible.
Following Voita & Titov (2020), we use 0.1%, 0.2%, 0.4%,
0, 8%, 1.6%, 3.2%, 6.25%, 12, 5%, 25% and 50% of the
data to learn the probes. We train each probe for 70 epochs,
e.g., for the first subset (0.1%) the linear probe sees the
same 0.1% of the dataset 70 times.

As can be seen in Fig. 18, the codelength necessary to extract
the indicators does not differ much. Similarly as in Fig. 2,
differences can be observed for the target location. For ViT
(Fig. 18a) we see that the codelength for the target location
is large for all types of representations across all layers.
For ViT+HT (Fig. 18b) we can see that late in training the
feature becomes easily accessible, in particular in deeper
layers and in the full representation. In contrast, ViT τ = 1

3
(Fig. 18c) represents the feature already early in training
and also the CLS token contains a better representation of
the target location compared to ViT+HT.

A.13. Linear Probe Results for Q, K and V and for
Target Classification.

In the following we will show the linear probe results for Q,
K, V and Z for all layers.
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(a) Training loss on ImageNet-100 dog decision for
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(b) Validation accuracy on ImageNet-100 dog decision
for ViT-S trained with NormSoftmax and vanilla ViT-s

Figure 17: Results on ImageNet-100 based task. Also for a larger ViT, realistic data, high-resolution images we observe
Eureka-moments. In particular, NormSoftmax leads to a Eureka-moment, while the vanilla ViT fails to learn task 1. Task
description: If both indicators show the image of an identical dog the top-right image is the target and bottom left otherwise.
Dog samples taken from 2 dog classes. Probability of top-right being the target is set to 0.5.

Linear probe results for Z for all layers. Fig. 19 shows
the same plot as in the main paper, but for all layers. In
addition to the observations made for the main paper, we can
see that layer 2, 4 and 6 for the ViT with Eureka-moment
(Fig. 19b) represent significantly more information about
the target locations than other layers in the CLS token. Indi-
cating, that this information is extracted in these layers and
written on the CLS token.

Linear probes for Q and K and V . Figs. 20 & 21 show
the results when using the Q and K as input for the linear
probes. Note, that Q and K are not updated by the resid-
ual connection of the attention block, therefore, no bars for
“after residual” are plotted. The linear probe classification
accuracies for Q and K are very similar. Again, we can see
that the ViT without Eureka-moment does not represent in-
dicator information in the CLS token and target location can
not be linearly separated from other information. Similarly,
as for linear probe results with Z, layer 2, 4 and 6 for Q and
K contain significantly more information about the indica-
tors and target location for the ViT with Eureka-moment
(compare Figs. 19b, 20b, 21b).

The linear probe results for V look very similar to those for
Q and K (see Fig. 22).

Linear probes from Z to targets. Last, we show the linear
probe results when predicting the targets from Z. As can
be seen, from the entire representation, for both ViT with
Eureka-moment and ViT without Eureka-moment, target
classes can be predicted with high accuracy. Differences
can be observed when using only the CLS token. Here, we
observe that more target information is in the CLS token of
the model without Eureka-moment (see Fig. 23).

A.14. Experimental setup — Vision Task

We mostly follow the DeiT (Touvron et al., 2021) train-
ing recipe without distillation. For optimization we use
AdamW (Loshchilov & Hutter, 2019) with default values,
i.e., β1 = 0.9 and β2 = 0.999 and ε = 10−8. Unless other-
wise stated we Warmup the learning rate for 5 epochs from
10−6 to the maximum learning rate, use a weight decay of
0.05 and train for 300 epochs. We train all models with a
batch size of 512, which fits on a single V100, for all the
architectures that we considered. Since position and color
can be important cues in our datasets we train without data
augmentation. We only sample color-noise from a standard
normal Gaussian with standard deviation 0.05 for each color
channel independently. Color-noise is sampled for each sub-
sample (i.e., each indicator and each target) independently
and added to the RGB value.

Learning rate schedules for all models. To compare the
tested methods and models fairly, we run a search over 9
learning rate schedules with 4 random seeds, each. We
anneal the learning rate from a maximum to a minimum
using a cosine scheduler. We also use Warmup, as described
in the paragraph above. The different schedules can be
seen in Tab. 11. We pick the schedule that leads to highest
Eureka-ratio for each model. In case of a tie we pick the
schedule with higher accuracy.

Info on taus: In initial experiments we tested for ViT 5
values for τ , τ = 2

3 , τ = 1
2 , τ = 1

3 , τ = 1
4 and τ = 1

5 .
We found τ = 1

3 , τ = 1
4 to work well and did not further

optimize them for the different methods. For HT we set the
goal temperature to the default

√
dk and tried also 1

2∗
√
dk

.
Further optimizing these parameters for each model and
dataset will most likely lead to improvements, but would
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(a) ViT (without Eureka-moment)
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(b) ViT+HT (with Eureka-moment)

(c) ViT τ = 1
3

(with Eureka-moment)

Figure 18: How easily is information accessible in different parts of the network for (a) ViT without Eureka-moment,
(b) ViT+HT (with Eureka-moment) and (c) ViT τ = 1

3 (with Eureka-moment). To measure how easily information can
be extraceted we follow the online codelength approach of Voita & Titov (2020). In contrast to Fig. 2, lower is better for
codelength.
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Table 11: Learning rate schedules. We use cosine anneal-
ing from “max learning rate” to “min learning rate”.

max learning rate min learning rate

10−3 10−5

10−3 5 ∗ 10−6
10−4 10−5

5 ∗ 10−4 5 ∗ 10−6
5 ∗ 10−4 10−6

10−4 10−6

5 ∗ 10−5 10−6

10−5 10−6

10−5 10−7

add very little to a deeper understanding of the Eureka-
moments.

A.15. Implementation Details NormSoftmax

In practice, σ(·) can be defined by arbitrary functions. As
highlighted in the background section, the standard devi-
ation is a theoretically motivated choice. Alternatives are
discussed by Jiang et al. (2023). In this work, we find the
variance to work better for ViT and RoBERTa, while we
stick to the standard deviation for the reasoning task.

A.16. Experimental Setup – reasoning task

The input of the model is of the form “a b c d =“, where,
where a, b, c, d ∈ {0, 1, . . . , n}. In our experiments, we set
n = 11. We train the transformer on 30% of the entire set
of possible inputs (i.e., 114 = 14 641 input combinations),
that is with a batch size of 4392. The rest is used as test
set. We train for 10 000 epochs over five random seeds. We
use token embeddings of size of d = 2dlog2 ne = 16, four
attention heads of dimension of d/4 = 4, 4d = 64 hidden
units in the MLP, and learned positional embeddings.

We trained with full batch gradient descent using AdamW
(Loshchilov & Hutter, 2019) with a cross-entropy loss. We
optimized learning rates via grid search over [10−4, 10−2]
on seed 0. Following Nanda et al. (2023) we use a weight
decay of 1.

A.17. Slingshot Effects on Reasoning Task

We observed that NormSoftmax caused slingshot effects
(Thilak et al., 2022) during the convergence phase of some
of the training runs but believe this may be due to the interac-
tion of gradients at different scales with adaptive optimizers
(Nanda et al., 2023). Since slingshot effects only occur
after Eureka-moments, they cannot be the cause for their
occurrence. We did not further investigate this observation.

A.18. Experimental Setup – RoBERTa

The RoBERTa experiments are based on the Code provided
by (Deshpande & Narasimhan, 2020). We follow the data
acquisition and preparation strategy of (Shoeybi et al., 2019).
Thus, we train on the latest Wikipedia dump (downloaded
on the 2nd of August 2023). We train a 12 layer RoBERTa
model with 12 heads. We use a batch size of 84 and a
learning rate of 5e-5.

A.19. Experimental Setup – In-Context Learning

The in-context learning experiments are based on the ex-
perimental setup of Chan et al. (2022) using the Omniglot
dataset (Lake et al., 2015). During training the network is
presented with sequences of image label pairs, where each
image is followed by it’s true label. For the last image the
label is missing and must be predicted by the transformer.
The sequences are usually constrained in such a way, that
the target label is often present at least once in the sequence
(burstiness). The task can be partially solved by simply
learning to associate image to a label, called in-weights
learning (IWL). To generalize to unseen or rare samples, a
better strategy is to exploit the solution given by the example
in the context, referred to as in-context learning (ICL).

Experiments are based on the code of Chan et al. (2022).
We follow the original setup and use GPT-2 (Radford et al.,
2019) with 12 layers, embedding dimension of 64 and 8
heads. The images were embedded using a non pretrained
ResNet-18 architecture with (16, 32, 32, 64) channels per
group while the labels were embedded using a standard
embedding layer. Following the original training procedure,
we ran the experiments for 500k iterations on a single GPU
with batch size 32 using the Adam optimizer. We use a
learning rate scheduler with a linear Warmup over 4000
iterations to maximum learning rate followed by square root
decay.

We optimized the learning rate for each method indepen-
dently by testing 5 learning rates in the interval [3e-5, 3e-3].
For each learning rate and method we trained two models
with different random seed. For both, the NormSoftmax
variant of GPT-2 and GPT-2 a learning rate of 9e-4 lead
to best results and was used for the experiments reported
here. We ran each experiment with 4 different seeds - 0, 42,
1337 and 80085. We report the averaged results and show 2
instructive examples for each method.

The in-context performance is reported on the 10 holdout
classes not seen during training in the 2-way 4-shot few-shot
evaluation setting. Here, the sequence consists only of 2
labels (0/1) with 4 images from each and we consider zero
in-context performance for random chance level of 50 %.
For all experiments we used 50% of burstiness in data and
uniform sampling.
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(a) ViT without Eureka-moment (b) ViT with Eureka-moment

Figure 19: Linear probe results for with Z as input (all layers). This the complete version of Fig. 2. Additionally, we
can observe in (b) that layers 2, 3 and 6 contain more target location information than other layers, indicating, that this
information can be processed in these layers.
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(a) ViT without Eureka-moment (b) ViT with Eureka-moment

Figure 20: Linear probes for Q.
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(a) ViT without Eureka-moment (b) ViT with Eureka-moment

Figure 21: Linear probes for K.
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(a) ViT without Eureka-moment (b) ViT with Eureka-moment

Figure 22: Linear probes for V.
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(a) ViT without Eureka-moment (b) ViT with Eureka-moment

Figure 23: Linear probes for Z with target classification.
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