
ΦFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

Philipp Holl 1 Nils Thuerey 1

Abstract

Differentiable processes have proven an invalu-
able tool for machine learning (ML) in scien-
tific and engineering settings, but most ML li-
braries are not primarily designed for such ap-
plications. We present ΦFlow, a Python toolkit
that seamlessly integrates with PyTorch, Tensor-
Flow, Jax and NumPy, simplifying the process
of writing differentiable simulation code at ev-
ery step. ΦFlow provides many essential features
that go beyond the capabilities of the base li-
braries, such as differential operators, boundary
conditions, the ability to write dimensionality-
agnostic code, floating-point precision manage-
ment, fully differentiable preconditioned (sparse)
linear solves, automatic matrix generation via
function tracing, integration of SciPy optimiz-
ers, simulation vectorization, and visualization
tools. At the same time, ΦFlow inherits all impor-
tant traits of the base ML libraries, such as GPU /
TPU support, just-in-time compilation, and auto-
matic differentiation. Put together, these features
drastically simplify scientific code like PDE or
ODE solvers on grids or unstructured meshes, and
ΦFlow even includes out-of-the-box support for
fluid simulations. ΦFlow has been used in various
publications and as a ground-truth solver in multi-
ple scientific data sets. It is available at https:
//github.com/tum-pbs/PhiFlow.

1. Introduction
The combination of deep learning and physics simulations
has sparked a multitude of promising lines of research.
Neural networks have been used to accelerate simula-
tions (Sanchez-Gonzalez et al., 2020; Tompson et al., 2017),
improve simulation accuracy for fixed resolutions (Kochkov

*Equal contribution 1School of Computation, Information and
Technology, Technical University of Munich, Germany. Corre-
spondence to: Philipp Holl <philipp.holl@tum.de>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

et al., 2021b; Um et al., 2020), control complex physical sys-
tems (Bieker et al., 2020; Holl et al., 2020), encode physical
states and sequences (Raissi et al., 2019) and find conserva-
tion laws (Greydanus et al., 2019), among others. In all of
these tasks, the output of a neural network is interpreted as
a physical quantity that influences a physical system and the
learning objective is defined in terms of the resulting phys-
ical behavior, i.e. the network prediction passes through
a physics simulation before the loss is defined. Optimal
training methods for the first three tasks even require the
prediction to go through multiple simulation steps, passing
through the network multiple times along the way (Um et al.,
2020).

Training a neural network to directly minimize the loss for
any of the above-mentioned tasks requires the physical be-
havior to be differentiable in order to compute the derivative
of the loss w.r.t. the network weights. Differentiable simula-
tions have long been used in classical optimization (Jarny
et al., 1991; Jameson, 2003) where the adjoint method is typ-
ically employed to compute the required gradients (Plessix,
2006). The adjoint method is also used in machine learning
(ML), where it is known as reverse-mode differentiation or
simply backpropagation. Consequently, it can also be used
to backpropagate through joint systems comprising of both
neural networks and physical simulations as long as all parts
are differentiable.

Despite this deep connection between the two fields, most
established software frameworks focus on only one of
them. There are frameworks for differentiable simula-
tions (Todorov et al., 2012; Mitusch et al., 2019) and sepa-
rate frameworks for neural network optimization, such as
PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al.,
2016), and Jax (Bradbury et al., 2018b; Babuschkin et al.,
2020; Hennigan et al., 2020). Combining these frameworks
is hard to achieve in practice and many researchers have
instead chosen to implement custom differentiable simula-
tions compatible with one specific machine learning frame-
work (Tompson et al., 2017; Kochkov et al., 2021b; Bieker
et al., 2020). However, this approach results in highly spe-
cialized and low-level simulation code, preventing adoption
to different projects.

A number of libraries combine differentiable physics and
ML (Schoenholz & Cubuk, 2020; Hu et al., 2019; Bezgin

1

https://github.com/tum-pbs/PhiFlow
https://github.com/tum-pbs/PhiFlow

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

et al., 2022; Kochkov et al., 2021a; Macklin, 2022) but
they are either very specialized or use different program-
ming paradigms than the popular ML libraries, making
seamless integration difficult. The programming language
Julia (Bezanson et al., 2017) offers language-level differ-
entiation but is not compatible with most established ML
libraries. The difficulty in training neural networks with
differentiable physics has led many authors to fall back to
supervised learning (Sanchez-Gonzalez et al., 2020; Rasp &
Thuerey, 2021; Thapa et al., 2020; Stachenfeld et al., 2021).

In this work, we present ΦFlow (PhiFlow), an open-source
framework for differentiable simulations that builds on top
of PyTorch, TensorFlow, Jax or NumPy (Harris et al., 2020),
using the abstraction layer ΦML (Holl & Thuerey, 2024). It
is intended to be used for a wide variety of simulations and
includes high-level data structures for grid-based (Eulerian)
as well as particle-based (Lagrangian) simulations. ΦFlow is
designed to make simulation code as reusable as possible
without sacrificing readability or performance. Additionally
ΦFlow aims to accelerate development iterations by promot-
ing interactivity and clean code. Originally developed as
a fluid solver in 2019, ΦFlow has since accumulated many
features and extended its scope. It has been used in produc-
tion for multiple works and publications (Um et al., 2020;
Holl et al., 2020; 2021; Thuerey et al., 2021; Schnell et al.,
2022; Holl et al., 2022; Brandstetter et al., 2021; Wandel
et al., 2020b; Brandstetter et al., 2022; Takamoto et al., 2023;
Teikmanis et al.; Wandel et al., 2021; 2020a; Bokil et al.,
2023; Sengar et al., 2021; Parekh et al., 1993; Brahmachary
& Thuerey, 2023; Ramos et al., 2022; Yadav et al., 2021;
Tathawadekar et al., 2021; Wang et al., 2022a; Kurz et al.,
2023; Wang et al., 2022b; Wang, 2023; Wu et al., 2022;
Li et al., 2023), as well as open data sets (Takamoto et al.,
2022; Gupta & Brandstetter, 2022). This paper outlines the
following contributions:

• ΦFlow includes a fully-featured Eulerian incompress-
ible fluid solver. All operations, e.g. diffusion and
convection, can be repurposed for other simulations,
such as heat transfer.

• ΦFlow provides differential operators on grids and un-
structured meshes, including higher-order spatial dif-
ferentiation on grids via compact schemes.

• ΦFlow includes boundary condition handling for all
common types of boundaries, allowing boundary types
to be changed without altering the simulation code.

• We introduce a system for writing dimensionality-
agnostic code by tagging dimensions as spatial axes,
so user code can run in 1D, 2D, 3D, and higher dimen-
sions without modification.

• We introduce a new system for handling floating-point

precision to simplify specifying the desired accuracy
and avoid data-type-related errors.

• ΦFlow includes differentiable linear solvers and precon-
ditioners for dense and sparse matrices. Unlike other
libraries, we can also differentiate w.r.t. the matrix and
all of its dependencies.

• We introduce automatic matrix generation via function
tracing. ΦFlow can automatically build matrices from
linear Python functions by recording the performed
operations.

• ΦFlow seamlessly integrates all linear and non-linear
SciPy optimizers into all supported ML libraries in an
efficient manner.

• We introduce an alternative way of vectorizing code
by defining batch dimensions instead of using vmap.
This preserves break points for debugging and is more
flexible than vmap.

• We introduce a plotting library that can create a broad
range of plots with a single call, drastically reducing
the overhead required for visualizing results and inter-
mediate quantities.

We first explain the major features included in ΦFlow before
demonstrating their application on challenging problems
involving simulations and neural networks. We show that
using ΦFlow leads to more flexible, concise, readable, and
less error prone code compared to directly using the base
libraries, without compromising performance.

2. Major features of ΦFlow

All of ΦFlow’s core functionality is implemented directly in
Python 3 (Van Rossum & Drake Jr, 1995). This makes it
compatible with PyTorch, TensorFlow and Jax, and allows
users to easily locate and understand the implementation of
all provided functions. To make this broad range of compat-
ibility possible, ΦFlow employs an internal wrapping layer
that abstracts the tensor operations provided by the chosen
ML library or NumPy. All functions in ΦFlow build upon
this abstraction and are thus compatible with all backends.
DLPack (et al., 2017) integration further allows users to
switch between ML libraries mid-execution and without
copying data.

ΦFlow provides classes to represent various geometries, such
as grids, unstructured meshes, or point clouds, and a class
to represent physical quantities, fields, sampled on these
geometries. In the following, we go over the major features
that ΦFlow adds on top of the base ML libraries, along with
example code. In fact, we provide the full source code of
all main experiments in this document to demonstrate the
brevity of code written against our API.

2

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

0 50 100
X

0

20

40

60

80

100

Y
T 0

0 50 100
X

T 1

0 50 100
X

T 2

0 50 100
X

T 3

4

2

0

2

4

1

0

1

1.0

0.5

0.0

0.5

0.75

0.50

0.25

0.00

0.25

0.50

Figure 1. Snapshots of the vorticity field ∇× v⃗ of the incompressible fluid simulation defined in Fig. 2. The full code generating this
figure is plot(v trj.t[1::25].curl(), same scale=False, size=(10, 2.5)) . All labels and bars are added automatically.

Fluid solver Incompressible fluid simulations are chal-
lenging, both theoretically and numerically (Ferziger et al.,
2019). Unlike many other toolkits, ΦFlow does not provide a
stand-alone solver but rather a set of building blocks from
which a full simulation can quickly be assembled. This
gives users full control and makes it easy to adapt the code
to their specific needs. The example code in Fig. 2 runs an
incompressible fluid simulation using staggered grids and
operator splitting. To extend this to a smoke simulation with
buoyancy, for example, we can extend this function to also
advect a smoke density field s and add the resulting buoy-
ancy to the velocity field via v += dt * resample(s

* (0, 0.1), to=v). A visualization of this simulation
is shown in Fig. 1.

from phi.torch.flow import *

@jit_compile
def incompressible_fluid_step(v, dt=.25):

v, p = fluid.make_incompressible(v)
v = diffuse.explicit(v, 0.1, dt)
v = advect.semi_lagrangian(v, v, dt)
return v

v0 = StaggeredGrid(Noise(), x=256, y=256, bounds=Box(x=100, y=100), boundary=0)
v_trj = iterate(incompressible_fluid_step, batch(t=100), v0)

Figure 2. Executable source code of an incompressible (line 4)
fluid simulation consisting of diffusion (line 5) and advection
(line 6) with operator splitting. The simulation (lines 3-7) runs
completely on PyTorch (line 1) with just-in-time compilation (line
2) and will make use of GPU acceleration if available. We initialize
an initial velocity from random noise fluctuations on a staggered
grid with 256 × 256 cells spanning 100 physical units (line 8)
and record the simulation for 100 time steps (line 9) with ∆t =
0.25. The quantity p (line 4) denotes the pseudo-pressure from the
Helmholtz decomposition of the velocity v. Fig. 1 visualizes this
simulation.

Differential operators Differential operators are a key
building block of all PDEs, and many such simulations can
be expressed as purely a combination of applying differen-
tial operators and basic arithmetic. ΦFlow implements all
common differential operators for grids as well as unstruc-
tured meshes. These includes the gradient ∇u, divergence

∇·u⃗, laplace ∇2u, and curl ∇×u⃗, as well as their generaliza-
tions to matrix fields. For grids, ΦFlow also provides higher-
order operators, letting users specify the spatial order of
accuracy via the order keyword, e.g. divergence(v,
order=6). We generate the corresponding stencils on-the-
fly, allowing users to specify any even order of accuracy.
All differential operators are compatible with all supported
boundary conditions, which are automatically inferred from
the field.

Boundary conditions Correctly handling boundary condi-
tions can be a major hurdle in writing simulations, as the im-
plementation depends not only on the type of boundary but
also the employed numerical scheme and the nearby topol-
ogy. Higher-order methods may necessitate the use of one-
sided stencils close to the boundary while lower-order meth-
ods can employ ghost cells. Furthermore, boundary condi-
tions affect particle operations differently than grid opera-
tions, e.g. how to compute distances or which points are rel-
evant for interpolation. ΦFlow alleviates these complications
by providing an extensive library dedicated to boundary con-
dition handling. Along with the supported types (Dirichlet,
Neumann, periodic, symmetric conditions), ΦFlow includes
boundary condition arithmetic, padding and distance func-
tions, as well as index transforms. Users need only specify
the boundary for each field, optionally per-side, and all
physics function will automatically adjust the employed
numerical scheme accordingly. E.g., to specify that field
values should be zero at the boundary, pass boundary=0
as in Fig. 2 line 8, or specify boundary=’periodic’
for periodic boundary conditions.

Dimensionality-agnostic code Many PDEs can be real-
ized in multiple dimensionalities, i.e. 1D, 2D, 3D, etc.,
because most differential operators are dimension-agnostic.
Take the heat equation, u̇ = κ∇2u for example, where the
Laplace operator ∇2 =

∑
i
∂2u
∂x2

i
can be computed in any

number of dimensions. This abstract mathematical descrip-
tion usually does not translate into code, however, as tensor
shapes and ranks vary with the dimensionality, requiring

3

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

specific handling for each realization. We introduce a new
system for writing dimensionality-agnostic code. Instead
of specifying the axes to operate on per operation, users de-
clare tensor dimensions as spatial dimensions. All relevant
functions, such as differential operators or spectral opera-
tions, can then infer the dimensionality from the number
of tagged dimensions. This allows users to test their 3D
simulations in 2D without changing the simulation function.
The code given in Fig. 2 can be made to run in 1D, 2D,
3D, and higher dimensions, by modifying only line 8. No
change to the simulation function is required.

Floating-point precision management All common nu-
merics and ML libraries infer the precision of tensor oper-
ations from the inputs, upgrading values or raising errors
when data types do not match exactly. This approach comes
with two major problems: (i) porting code to use a differ-
ent floating-point (FP) precision requires changing the data
types of all involved tensors, which can incur changes in
many places, and (ii) automatic upgrading can lead to unin-
tentional type conversions, making it hard to track the root
cause. This issue has led the Jax developers to completely
disable double precision by default. Since controlling the
FP precision is essential for numerical simulations, we have
developed a new system to solve these issues. ΦFlow’s ten-
sor operations determine the desired FP precision from the
operation context rather than the data types of its inputs.
The precision can be set globally or specified locally via
context managers, and operations will automatically con-
vert tensors of non-matching data types if necessary. This
avoids data-type-related problems and errors, as well as
making user code more concise and cohesive. To make the
example in Fig. 2 run with double precision, insert the line
math.set global precision(64) below line 1.

Fully differentiable preconditioned linear solvers Solv-
ing systems of linear equations Ax = b is a vital function
for numerical simulations, such as for computing implicit
operations. Unlike explicit computations, they guarantee
numerical stability, making them a popular choice in many
methods, such as FEM (Reddy, 2019), FVM (Versteeg &
Malalasekera, 2007) or MPM (Bardenhagen et al., 2004).
ΦFlow includes all SciPy solvers, as well as custom GPU-
compatible conjugate gradient and (stabilized) bi-conjugate
gradient methods (Shewchuk et al., 1994) for solving linear
systems of equations, both with sparse and dense matrices.
Furthermore, ΦFlow comes with support for GPU-compatible
preconditioners, such as the incomplete LU decomposi-
tion (Saad, 1996) and clustering, which can drastically im-
prove convergence speed. Linear solves are implemented
differentiably, i.e. the adjoint system is solved during back-
propagation or computation of higher-order derivatives. In
addition to differentiating w.r.t. the right-hand-side b, ΦFlow
can also differentiate w.r.t. the (sparse) matrix A and all of

its dependencies, a feature that is missing from the base ML
libraries but is required in many circumstances, e.g. when
differentiating through implicit convection or finding the
optimal viscosity in implicit diffusion.

Automatic matrix generation via function tracing
There are generally two categories of linear system solvers:
ones that use an explicit representation of the matrix A,
and matrix-free solvers which use a functional represen-
tation Â(x) that computes the result of A · x. While the
latter is more convenient, concise, readable and debuggable
in code, the former is more efficient and enables usage
of generic preconditioners, such as the incomplete LU de-
composition of A. We aim to combine the best of both
worlds by introducing automatic (sparse) matrix genera-
tion. This allows users to write and test the effect of A as
a function but still perform an explicit matrix solve with
automatically-generated preconditioners. To achieve this,
we implement a function tracing algorithm similar to just-
in-time compilation, but, instead of low-level code, it out-
puts a matrix, representing the effect of the function Â
on a placeholder vector. It records all affine operations,
including boundary conditions, performed by Â and as-
sembles the matrix A ∈ Rn×m and offset o ∈ Rn, such
that Â(x) = A · x + o ∀x ∈ Rm. Tracing can be done
explicitly by the user via matrix from function(),
or under-the-hood by decorating an affine Python function
with @jit compile linear. Then the matrix will be
generated when the function is used in a linear solve, and
all constant terms in Â will be automatically subtracted
from the right-hand-side vector to solve A · x = b − o.
Tracing Python functions may seem like a large overhead
if it needs to be done for each simulation step, but, in ad-
dition to caching, ΦFlow includes various optimizations for
production code, i.e. when the simulation is jit-compiled.

• The dependencies of A and o on simulation parameters
are expressed as a jit-compiled computational graph in
the corresponding ML library, reducing the overhead
of matrix construction.

• The sparsity pattern of A is determined at jit-compile
time, usually performed only once. For variable pat-
terns, such as upwind schemes, the combined pattern
is determined and zeros are added to the matrix values
where necessary.

• Sparse matrices are automatically compressed at
compile-time into the most optimal format supported
by the ML library, such as the compressed sparse row
(CSR) format. At runtime, this only induces a gather
operation with fixed indices on the values tensor to
order the entries correctly.

• If Â has no dependence on variables outside x, the

4

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

matrix is computed using NumPy. It enters the com-
putational graph of the ML library as a constant, and
no matrix-building operations need to be performed at
runtime.

• If the matrix values depend on parameters that vary
across examples, the sparse matrix can be represented
in either monolithic block-diagonal form or batched-
values form to maximize hardware utilization.

These optimizations also apply to all preconditioners.

Integration of SciPy optimizers Scientific problems of-
ten require the use of general function minimizers. ΦFlow
includes a simple API for the SciPy optimizers available
through scipy.optimize.minimize, like the pop-
ular L-BFGS method. For example, minimize(sin,
Solve(’BFGS’, x0=0)) returns the minimum of
sin(x) using BFGS with initial guess 0. The full optimiza-
tion trajectory can optionally be recovered as well by using
a SolveTape. ΦFlow integrates the SciPy methods into the
computational graph of the base ML library, i.e. derivatives
are computed via automatic differentiation and can be eval-
uated on the GPU. ΦFlow also supports solving batches of
optimization problems in parallel by bundling the current
estimates of the individual optimizations.

Vectorization via batch dimensions PyTorch, Tensor-
Flow, and Jax all support two ways of vectorizing code:
batch dimensions and function transformations, i.e. vmap.
Both often exhibit equal performance, but operations sup-
porting batch dimensions are always implemented in the
most efficient manner, which is not guaranteed for vmap.
When it comes to code development and maintenance, batch
dimensions also have a major advantage over vmap as they
support break points for debugging, visualizing the batched
quantities, and easily computing batch statistics. However,
the base ML libraries only support batch dimensions for
a subset of their API. This is especially relevant for sim-
ulation code which frequently makes use of more niche
operations. ΦFlow’s API supports batch dimensions for all
operations, making vmap superfluous. Our system is im-
plemented so that all user-written code can be trivially vec-
torized by adding one or more batch dimensions to any of
its inputs. We achieve this by letting users tag tensor di-
mensions as batch dimensions, a property that is retained
throughout the whole computational graph. For example, to
simulate a batch of four fluid simulations with different ini-
tial conditions, simply pass batch(b=4) as an argument
to Noise() in line 8 of Fig. 2. This adds a batch dimen-
sion with name b to the initial velocity field and propagates
it through the simulation code.

Single-call visualization A host of scientific plotting li-
braries can be used to create high-quality figures and anima-

tions. Popular libraries, such as Matplotlib (Hunter, 2007)
and Plotly (Inc., 2015) provide a multitude of functions to
configure every aspect of the plot. This flexibility comes at
the cost of verbose user code, however. A Matplotlib plot
with titled subfigures and labelled axes typically requires
a large paragraph of code to create. This level of effort is
acceptable for final plots, but makes intermediate visualiza-
tions tedious. To alleviate this issue, we have developed a
plotting frontend for Matplotlib and Plotly that creates fully-
fledged figures with a single command: plot(). This is
possible due to the support for dimension names and types
that all ΦFlow tensors and composite types have. For ex-
ample, the batch dimensions introduced above translate to
subfigures by default but can alternatively be used as the
time axis in an animation. Based on the types and names
of the data dimensions, ΦFlow selects an appropriate plot
type to represent the data, automatically labelling all axes
according to the names given to the tensor dimensions. Cur-
rently available plot types for tensors include line plots, bar
charts, histograms, 2D and 3D heatmaps, 2D and 3D vector
fields, stream plots and scatter plots. All supported geome-
try types can also be shown, additionally enabling grid and
mesh visualizations, 1D and 2D heightmap plots, as well
as geometric primitives, like circles, rectangles, cuboids,
and spheres. The plot() function offers some options to
customize plots, such as adding error bars or specifying col-
ors, but ΦFlow’s plotting API only consists of plot() and
show(). This makes it extremely easy to use and, since the
created figures are Matplotlib or Plotly types, those libraries
can be used to make alterations if required. Fig. 1 shows
snapshots of the fluid simulation from above. The whole
figure was generated with one line of code. All other plots
shown in this document were also created with one plot()
call.

3. Experiments
To illustrate how the above features can be used, not only
to simulate ground-truth data, but also to solve complex
inverse problems, we perform a series of challenging exper-
iments and reimplement experiments from prior work.We
provide the full source code including data generation in
the corresponding figures and all shown plots are generated
with our Matplotlib frontend. Juptyer notebooks containing
the source code together with all plotting code are avail-
able in the supplemental information (SI), and performance
measurements are given in appendix A.

3.1. Material composition from thermal conductivity

First, we consider a heat conduction setting. A plane con-
sists of a mixture of two materials with different thermal
conductivity coefficients, e.g. a conductor and an insulator.
The task is to determine the fraction of each material at

5

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

0

25Y
Initial Temperature Final Temperature

0 50 100
X

0

25Y

True Conductivity

0 50 100
X

Fit
2.5

0.0
2.5

2.5
0.0
2.5

0

1

0.0

0.5

from phi.jax.flow import *

def simulate(x): # x is the guess for the conductivity
return diffuse.implicit(initial_temp, field.maximum(0, x), 10, Solve('biCG-stab(2)'))

boundary = {'x': 'periodic', 'y': 'zero-gradient'}
conductivity = field.maximum(0, CenteredGrid(Noise(scale=100), boundary, x=100, y=40))
initial_temp = CenteredGrid(Noise(), boundary, x=100, y=40)
final_temp = simulate(conductivity)

fit = minimize(lambda x: math.l2_loss(final_temp - simulate(x)),
Solve('GD', x0=conductivity.with_values(.01)))

Figure 3. Visualization and full source code of the conductivity
reconstruction experiment, including data generation (lines 5-7)
and optimization (line 8). We consider a 2D domain with 100×40
cells (line 5-6) with periodic boundary conditions on the left and
right edge and open top and bottom boundaries (line 4). The
ground truth conductivity is initialized from large-scale fluctua-
tions clipped to positive values (line 5), and the observed initial
temperature distribution is sampled from smaller-scale noise (line
6). Using the simulation function (line 2), the observed tempera-
ture ten seconds later (line 7) is computed via an implicit diffusion
operation employing a GPU-enabled biconjugate gradient solver
(line 3). We reconstruct the conductivity using steepest gradient
descsent (line 8), minimizing the mean squared error between ob-
served final state and simulation output. The optimizer uses the
automatic differentiation provided by the Jax library (line 1).

every point. To achieve this, we warm up some places and
observe the so-created temperature profile, as well as the
profile at a later time. Reconstructing the exact material frac-
tions from these two snapshots alone is impossible as only
variations in the initial temperature gradient yield informa-
tion about the composition. Furthermore, as the temperature
approaches equilibrium, most information about the com-
position is erased. Despite these fundamental challenges,
we aim to obtain a best guess of the material component
fractions.

We implement this scenario by generating a ground truth
conductivity C and initial temperature profile T0 (Fig. 3
left plots). Using ΦFlow, we can easily write a differentiable
simulator for implicit heat conduction, ensuring numerical
stability for all simulated times (Fig. 3 code). We use this to
generate the ground-truth observation data Tf and to opti-
mize for the material composition. Using the mean squared
error (MSE) between observed and reconstructed temper-
ature profile T (T0,∆t, C), we need to solve the following

inverse problem.

C = arg minC′ ||T (T0,∆t, C ′)− Tf ||22 (1)

We employ steepest gradient descent to approximate C.
This requires the gradient ∂T (·,C)

∂C , i.e. differentiating the
implicit diffusion result T by the composition C which only
affects the matrix entries, not the right-hand-side vector.
This would require manual gradient implementation in most
ML libraries, but ΦFlow includes support for this kind of
differentiation.

Fig. 3 shows an example reconstruction. As expected, the
fine detail cannot be recovered but the fit adequately ap-
proximates the ground truth conductivity distribution. This
whole experiment can be expressed in eight lines of Python
code when using ΦFlow, attesting to the high information-to-
code ratio. We encourage readers to go through the source
code line-by-line, as we believe it explains our methodology
in more detail and clarity than we can achieve in text.

3.2. Particle image velocimetry

Reconstruction the motion of a fluid can be done by tracking
the positions of small marker particles, i.e. particle image
velocimetry (PIV). The markers are passively advected with
the fluid, and, given the particle positions at two consecu-
tive frames, one can fit the velocity field at that time. We
realize a PIV solver using ΦFlow’s differentiable advection
operation. With the objective to minimize the observed
marker positions M(M0,∆t, v) on the second frame given
the initial positions M0, we get the inverse problem

v = arg minv′ ||M(M0,∆t, v′)−M0||22, (2)

where v denotes the fluid velocity. We first fit a coarse veloc-
ity grid at quarter-resolution to avoid zero-velocity values
in cells empty of markers, and then perform a residual fit at
full resolution. For both fits, we employ SciPy’s L-BFGS-B
optimizer, which converges significantly faster than gradient
descent. The top plots of Fig. 4 show an example velocity
field with 4096 markers and the reconstruction error.

To determine how many markers are required to adequately
reconstruct v with this algorithm, we perform this exper-
iment for multiple numbers of marker particles and test
16 different velocity fields, each. Using ΦFlow’s batch di-
mensions, we can simply expand the relevant simulation
inputs and run the optimization and simulation code without
modification, as can be seen in Fig. 4, where the two batch
dimensions seed and count are introduced in lines 5 and
7. Varying the number of particles does change the tensor
sizes, but all sizes are still tracked consistently throughout
the simulation. The bottom plots in Fig. 4 show that increas-
ing the number of markers improves the velocity MSE at
about one order of magnitude per 8× more markers. The

6

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

average particle position MSE also decreases but is more
variable across runs with large standard deviations.

0 10 20
X

0

5

10

15

20

Y

Velocity & Particles

0 10 20
X

0

5

10

15

20

Y

Vorticity Difference

3

2

1

0

1

2

3

128 256 512 102420484096
Count

101

102

Velocity MSE

128 256 512 1024 2048 4096
Count

102

4 × 101

6 × 101

44.3057.63

43.23

MSE per Particle (10 9)

from phi.jax.flow import *

@jit_compile
def simulate(v): # v is the guess for the velocity

return advect.points(initial_markers, v, dt=.1, integrator=advect.rk4)

v0 = StaggeredGrid(Noise(batch(seed=16)), x=64, y=64, bounds=Box(x=20, y=20))
v0, _ = fluid.make_incompressible(v0)
marker_count = vec(batch('count'), 128, 256, 512, 1024, 2048, 4096)
initial_markers = v0.bounds.sample_uniform(instance(markers=marker_count))
final_markers = simulate(v0)

fit1 = minimize(lambda x: math.l2_loss(final_markers - simulate(x)),
Solve('L-BFGS-B', x0=0 * v0.downsample(4))).at(v0)

fit2 = minimize(lambda x: math.l2_loss(final_markers - simulate(x+fit1)),
Solve('L-BFGS-B', x0=0 * v0))

v_estimate = fit1 + fit2

Figure 4. Visualization and full source code of the PIV experiment,
including data generation (lines 5-9) and optimization (lines 10-11).
We generate a divergence-free 64× 64 ground-truth velocity field
v0 (lines 5-6, top-left plot) and randomly distribute a number of
particles within it (lines 7-8, orange points). The observed particle
positions 0.1 seconds later (line 9) are determined using a Runge-
Kutta-4 (Runge, 1895) advection scheme (line 4). To reconstruct
the velocity field from the observed particle movement, we perform
two L-BFGS-B optimizations, one at quarter-resolution (line 10)
and a residual fit at full resolution (line 11). The reconstructed
velocity is the sum of the upscaled coarse and fine residual fits
(line 12). The vorticity difference between ground truth velocity
and reconstruction is shown in the top right. We perform this
experiment for various numbers of particles between 128 and 4096
(line 7) and 16 different velocity initialization seeds (line 5) in
parallel. The lower plots show the reconstruction errors in velocity
and particle spaces depending on the particle count (mean and
standard deviation).

3.3. Learning to simulate fluids

Training neural networks to mimic ground-truth simulators
is a major goal in scientific machine learning (), as they
may achieve similar results in a fraction of time. Multiple
schemes for training the networks have been investigated,

and it has become increasingly clear that a one-step super-
vised objective is not ideal (Um et al., 2020). Rolling out
multiple time steps at training time can drastically increase
long-term stability and prevent numerical explosions, as the
network learns to account for the errors made by its previous
iterations (data shift).

Here, we train a U-Net (Ronneberger et al., 2015) N to
mimic the fluid solver defined in Fig. 2. Given the initial
state u0 and consecutive frame u1 = S(u0) computed using
the ground-truth simulator, we define the loss function for
the network Nθ parameters

L(θ) = ||Nθ(u0)−u1||22+λ||N2
θ (u0)−S(N(u0))||22, (3)

where N2 denotes applying the network twice. The first
term represents a one-step supervised loss and the second
term computes the error after two time steps. Accurate
gradients ∂L

∂θ require a differentiable simulator S for the sec-
ond term. The implementation of this training setup, along
with example learning curves, are shown in Fig. 5. We use
ΦFlow’s built-in U-Net implementation which is available
for PyTorch, Jax, and TensorFlow. Like the similar con-
volutional, residual, and fully-connected architectures, this
U-Net can be created with one line of code and is config-
urable in numbers of inputs and outputs, intermediate layers,
activations functions, and more.

After an initial drop, the learning curve in Fig. 5 exhibits lin-
ear convergence, i.e. the loss decreases exponentially with
the number of iterations. This is expected for this optimiza-
tion using Adam (Kingma & Ba, 2014) and shows that the
network can be successfully trained with the differentiable
simulator.

3.4. Billiards, sphere packing & wave propagation

In addition to our main experiments, we replicate three se-
tups from prior work to show that ΦFlow’s features scale
to problems outside its core domain. Specifically, we im-
plement (i) the billiards experiment from (Hu et al., 2019)
which simulates collisions between balls, (ii) the sphere
packing experiment from (Schoenholz & Cubuk, 2020)
which searches for the optimal configuration of spheres with
minimal overlap, and (iii) the wave propagation example
from (Macklin, 2022) which performs a 2D grid simulation.
All three problems were published as showcases for their
respective frameworks. To assess the readability of our im-
plementation, we tasked ChatGPT with explaining our code
and the original code, see Appendix B.

Billiards This experiment served as a demonstration of
differentiable collisions. Ten billiard balls are placed in a
triangular formation, and a cue ball is placed some distance
apart, as shown in Fig. 6. The task is finding the initial
velocity of the cue ball vcue, such that one corner ball from

7

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

0 20 40 60 80 100
Training Iteration

103

Training loss

from phi.jax.stax.flow import *

net = u_net(in_channels=2, out_channels=2, levels=4)
opt = adam(net, learning_rate=1e-2)

def loss_function(x: Field, y1):
pred1 = field.native_call(net, x)
y2 = incompressible_fluid_step(pred1)
pred2 = field.native_call(net, pred1)
return math.l2_loss(pred1 - y1) + .5 * math.l2_loss(pred2 - y2)

x = StaggeredGrid(Noise(batch(dataset=10, batch=10)), x=63, y=63)
y = incompressible_fluid_step(x)
for epoch in range(10):

for xb, yb in zip(x.dataset, y.dataset):
print(update_weights(net, opt, loss_function, xb, yb))

Figure 5. Visualization and source code for training a U-Net (line
2) using Adam (line 3) to mimic an incompressible fluid simulation.
Based on the first prediction t0 → t1, we run the neural network
for a second time t1 → t2 and simultaneously perform a time
step with the ground-truth simulator from Fig. 1 to improve long-
term stability (lines 6-7). The objective (line 4) is minimizing
the error at both t1 and t2 (line 8). The training data consists of
corresponding velocity fields at t0 and t1. We generate 10 batches
of 10 examples, each (lines 9-10), and train the network for 10
epochs (line 11) by iterating over the batches in the data set (line
12) and performing an optimizer step for each (line 13).

0.2 0.4 0.6
X

0.4

0.5

0.6

Y

Billiard balls

0.50 0.25 0.00 0.25 0.50
Alpha

0.6

0.7
Loss by angle

Figure 6. Replication of the billiards experiment from (Hu et al.,
2019). Setup with orange cue ball left, and loss L(α) right, where
α denotes angle of the cue ball velocity vcue.

the triangle reaches a desired location after some time. The
objective is measured as the mean squared error between
desired and observed ball position x, L(vcue) = ||x(vcue)−
x∗||22. What makes this task challenging is the chaotic nature
of the collisions, resulting in discontinuous gradients ∂L

∂vcue
.

The corresponding loss landscape depending on the incident
angle, L(α) with α = tan−1(

vy
vx
), is shown in Fig. 6.

The original implementation uses a custom Python-like pro-
gramming language designed for differentiable simulations.
To generate an animation of the simulation and the loss plot,
it requires 79 lines for computation, and 41 lines for plotting.
Our replication consists of 29 lines for computation and 2
lines for plotting, one for the animation and one for the loss
graph. We provide our source code for this experiment in
the SI.

0 5 10 15 20
X

0

5

10

15

20

Y

1

0 5 10 15
X

0

5

10

15

Y

0.5

from phi.tf.flow import *

def energy(x: Tensor, boundary=PERIODIC):
dx = boundary.shortest_distance(x, rename_dims(x, 'spheres', 'o'), size)
dr = math.vec_length(dx, eps=1e-8) / (R + rename_dims(R, 'spheres', 'o'))
return math.l2_loss(math.where((dr < 2e-4) | (dr > 1), 0, 1 - dr))

R = wrap([1]*64 + [vec(batch('d'), 1, .5)]*64, instance('spheres'))
size = (math.sum(Sphere(vec(x=0, y=0), R).volume, 'spheres') * 1.05) ** .5
x0 = math.random_uniform(instance(R), channel(vector='x,y'), high=size)
x_packed = minimize(energy, Solve('L-BFGS-B', x0=x0)) % size

Figure 7. Replication of the sphere packing experiment
from (Schoenholz & Cubuk, 2020). We initialize the system by
randomly scattering two types of spheres (line 8), half with ra-
dius 1 and half with radius D ∈ {1, 0.5} (line 6). To reach the
maximally frustrated state, we minimize the energy (lines 2-5)
using L-BFGS-B (line 9). The energy considers all pair-wise
distances on the periodic domain (lines 3-4) and pushes over-
lapping circles apart (line 5). The top plot was generated via
plot(Sphere(x packed, R), size=(6, 3)) .

Figure 8. Replication of the wave propagation example from
warp (Macklin, 2022).

Sphere packing The goal of this experiment is to pack
spheres in a periodic 2D domain with minimal overlap, i.e.
to find the maximally frustrated state. This can be achieved
by defining an energy function E(x,R) given the positions
x and radii R of all particles and then minimizing the energy.
As in the original experiment, we divide the spheres into
two types, half with radius R = 1, the other half with
R = D, D ∈ (0, 1]. Fig. 7 shows the maximally frustrated
states for two values of D, along with our source code. For
this result, the original experiment used 25 lines of imports,
25 lines for computation, and 33 lines for plotting.

Wave propagation This example from warp (Macklin,
2022) consists of a wave simulation on a 128 × 128 grid,
driven by a circular obstacle that moves inside the domain.
Fig. 8 shows the final wave height after five seconds. Our

8

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

implementation, shown in appendix B, consists of 14 lines
of code, which is significantly shorter than the original warp
implementation at 165 lines.

4. Conclusions
We have extensively demonstrated the capabilities of ΦFlow,
both for challenging problems involving PDEs and for gen-
eral inverse problems. We have showcased the modular
nature of ΦFlow as well as its tight integration with the ML
libraries PyTorch, Jax and TensorFlow, which can be in-
terchanged by simply modifying the import statement.
ΦFlow provides a large number of simulation-related func-
tions and unique features, such as automatic matrix gener-
ation or the ability to write dimension-agnostic code. The
source code provided in this document demonstrates that
user code written against ΦFlow’s API is concise and ex-
pressive, without sacrificing flexibility or performance. We
believe code readability is a greatly underappreciated aspect
of machine learning research, resulting in many unnecessary
re-implementations, and we hope that ΦFlow will aid in that
regard.

Impact Statement
The presented library aims to make it easier for researchers
to work with differentiable simulations. We believe that
users of ΦFlow will write more interpretable code. We see
no harmful impacts of this work.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
{TensorFlow}: A system for {Large-Scale} machine
learning. In 12th USENIX symposium on operating sys-
tems design and implementation (OSDI 16), pp. 265–283,
2016.

Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce,
J., Buchlovsky, P., Budden, D., Cai, T., Clark, A., Dani-
helka, I., Fantacci, C., Godwin, J., Jones, C., Hennigan,
T., Hessel, M., Kapturowski, S., Keck, T., Kemaev, I.,
King, M., Martens, L., Mikulik, V., Norman, T., Quan,
J., Papamakarios, G., Ring, R., Ruiz, F., Sanchez, A.,
Schneider, R., Sezener, E., Spencer, S., Srinivasan, S.,
Stokowiec, W., and Viola, F. The DeepMind JAX Ecosys-
tem, 2020. URL http://github.com/deepmind.

Bardenhagen, S. G., Kober, E. M., et al. The generalized
interpolation material point method. Computer Modeling
in Engineering and Sciences, 5(6):477–496, 2004.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.

Julia: A fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017.

Bezgin, D. A., Buhendwa, A. B., and Adams, N. A.
Jax-fluids: A fully-differentiable high-order com-
putational fluid dynamics solver for compressible
two-phase flows. Computer Physics Communi-
cations, pp. 108527, 2022. ISSN 0010-4655.
doi: https://doi.org/10.1016/j.cpc.2022.108527.
URL https://www.sciencedirect.com/
science/article/pii/S0010465522002466.

Bieker, K., Peitz, S., Brunton, S. L., Kutz, J. N., and Dell-
nitz, M. Deep model predictive flow control with limited
sensor data and online learning. Theoretical and compu-
tational fluid dynamics, 34(4):577–591, 2020.

Bokil, G., Geyer, T., and Wolff, S. Towards convolutional
neural networks for heat exchangers in electrified aircraft.
2023.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas,
J., Wanderman-Milne, S., and Zhang, Q. JAX: compos-
able transformations of Python+NumPy programs, 2018a.
URL http://github.com/google/jax.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas,
J., Wanderman-Milne, S., and Zhang, Q. JAX: compos-
able transformations of Python+NumPy programs, 2018b.
URL http://github.com/google/jax.

Brahmachary, S. and Thuerey, N. Unsteady cylinder wakes
from arbitrary bodies with differentiable physics-assisted
neural network. arXiv preprint arXiv:2308.04296, 2023.

Brandstetter, J., Worrall, D. E., and Welling, M. Message
passing neural pde solvers. In International Conference
on Learning Representations, 2021.

Brandstetter, J., van den Berg, R., Welling, M., and Gupta,
J. K. Clifford neural layers for pde modeling. In The
Eleventh International Conference on Learning Repre-
sentations, 2022.

et al., T. C. Dlpack: Open in memory tensor structure.
https://github.com/dmlc/dlpack, 2017.

Ferziger, J. H., Perić, M., and Street, R. L. Computational
methods for fluid dynamics. springer, 2019.

Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian
neural networks. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Gupta, J. K. and Brandstetter, J. Towards multi-
spatiotemporal-scale generalized pde modeling. arXiv
preprint arXiv:2209.15616, 2022.

9

http://github.com/deepmind
https://www.sciencedirect.com/science/article/pii/S0010465522002466
https://www.sciencedirect.com/science/article/pii/S0010465522002466
http://github.com/google/jax
http://github.com/google/jax
https://github.com/dmlc/dlpack

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357–362, September 2020. doi: 10.
1038/s41586-020-2649-2. URL https://doi.org/
10.1038/s41586-020-2649-2.

Hennigan, T., Cai, T., Norman, T., and Babuschkin, I. Haiku:
Sonnet for JAX, 2020. URL http://github.com/
deepmind/dm-haiku.

Holl, P. and Thuerey, N. ϕ-ml: Intuitive scientific com-
puting with dimension types for jax, pytorch, tensor-
flow & numpy. Journal of Open Source Software, 9
(95):6171, 2024. doi: 10.21105/joss.06171. URL
https://doi.org/10.21105/joss.06171.

Holl, P., Koltun, V., and Thuerey, N. Learning to con-
trol pdes with differentiable physics. arXiv preprint
arXiv:2001.07457, 2020.

Holl, P., Koltun, V., and Thuerey, N. Physical gradients for
deep learning. arXiv preprint arXiv:2109.15048, 2021.

Holl, P., Koltun, V., and Thuerey, N. Scale-invariant learning
by physics inversion. Advances in Neural Information
Processing Systems, 35:5390–5403, 2022.

Hu, Y., Anderson, L., Li, T.-M., Sun, Q., Carr, N., Ragan-
Kelley, J., and Durand, F. Difftaichi: Differentiable
programming for physical simulation. arXiv preprint
arXiv:1910.00935, 2019.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

Inc., P. T. Collaborative data science, 2015. URL https:
//plot.ly.

Jameson, A. Aerodynamic shape optimization using the
adjoint method. Lectures at the Von Karman Institute,
Brussels, 2003.

Jarny, Y., Ozisik, M., and Bardon, J. A general optimization
method using adjoint equation for solving multidimen-
sional inverse heat conduction. International journal of
heat and mass transfer, 34(11):2911–2919, 1991.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National

Academy of Sciences, 118(21), 2021a. ISSN 0027-8424.
doi: 10.1073/pnas.2101784118. URL https://www.
pnas.org/content/118/21/e2101784118.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21), 2021b.

Kurz, J. A., Seman, M. G., Khan, T., Bowman, B. A., and
Oian, C. A. Machine learning for pac1d and sese. 2023.

Li, Z., Patil, S., Shu, D., and Farimani, A. B. Latent neural
pde solver for time-dependent systems. In NeurIPS 2023
AI for Science Workshop, 2023.

Macklin, M. Warp: A high-performance python framework
for gpu simulation and graphics. https://github.
com/nvidia/warp, March 2022. NVIDIA GPU
Technology Conference (GTC).

Mitusch, S. K., Funke, S. W., and Dokken, J. S. dolfin-
adjoint 2018.1: automated adjoints for fenics and fire-
drake. Journal of Open Source Software, 4(38):1292,
2019.

Parekh, N., Zou, A., Jungling, I., Endlich, K., Sadowski, J.,
and Steinhausen, M. Sex differences in control of renal
outer medullary circulation in rats: role of prostaglandins.
American Journal of Physiology-Renal Physiology, 264
(4):F629–F636, 1993.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Plessix, R.-E. A review of the adjoint-state method for
computing the gradient of a functional with geophysical
applications. Geophysical Journal International, 167(2):
495–503, 2006.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Ramos, B., Trost, F., and Thuerey, N. Control of two-
way coupled fluid systems with differentiable solvers. In
ICLR 2022 Workshop on Generalizable Policy Learning
in Physical World, 2022.

Rasp, S. and Thuerey, N. Data-driven medium-range
weather prediction with a resnet pretrained on climate
simulations: A new model for weatherbench. Jour-
nal of Advances in Modeling Earth Systems, 13(2):
e2020MS002405, 2021.

10

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://github.com/deepmind/dm-haiku
http://github.com/deepmind/dm-haiku
https://doi.org/10.21105/joss.06171
https://plot.ly
https://plot.ly
https://www.pnas.org/content/118/21/e2101784118
https://www.pnas.org/content/118/21/e2101784118
https://github.com/nvidia/warp
https://github.com/nvidia/warp

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

Reddy, J. N. Introduction to the finite element method.
McGraw-Hill Education, 2019.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical image computing and
computer-assisted intervention, pp. 234–241. Springer,
2015.

Runge, C. Über die numerische auflösung von differential-
gleichungen. Mathematische Annalen, 46(2):167–178,
1895.

Saad, Y. Iterative methods for sparse linear systems. IEEE
Computational Science and Engineering, 3(4):87, 1996.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In International Con-
ference on Machine Learning, pp. 8459–8468. PMLR,
2020.

Schnell, P., Holl, P., and Thuerey, N. Half-inverse
gradients for physical deep learning. arXiv preprint
arXiv:2203.10131, 2022.

Schoenholz, S. and Cubuk, E. D. Jax md: a framework for
differentiable physics. Advances in Neural Information
Processing Systems, 33:11428–11441, 2020.

Sengar, V., Seemakurthy, K., Gubbi, J., and P, B. Multi-task
learning based approach for surgical video desmoking. In
Proceedings of the twelfth Indian conference on computer
vision, graphics and image processing, pp. 1–9, 2021.

Shewchuk, J. R. et al. An introduction to the conjugate
gradient method without the agonizing pain, 1994.

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer,
M., Pfaff, T., Godwin, J., Cui, C., Ho, S., Battaglia,
P., and Sanchez-Gonzalez, A. Learned coarse mod-
els for efficient turbulence simulation. arXiv preprint
arXiv:2112.15275, 2021.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. Pdebench:
An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:
1596–1611, 2022.

Takamoto, M., Alesiani, F., and Niepert, M. Learning neu-
ral pde solvers with parameter-guided channel attention.
arXiv preprint arXiv:2304.14118, 2023.

Tathawadekar, N., Doan, N. A. K., Silva, C. F., and Thuerey,
N. Hybrid neural network pde solvers for reacting flows.
arXiv preprint arXiv:2111.11185, 2021.

Teikmanis, O., Leja, L., and Freivalds, K. Applying a
differentiable physics simulation to move objects with
fluid streams.

Thapa, S., Li, N., and Ye, J. Dynamic fluid surface re-
construction using deep neural network. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21–30, 2020.

Thuerey, N., Holl, P., Mueller, M., Schnell, P., Trost, F.,
and Um, K. Physics-based deep learning. arXiv preprint
arXiv:2109.05237, 2021.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp.
5026–5033. IEEE, 2012.

Tompson, J., Schlachter, K., Sprechmann, P., and Perlin,
K. Accelerating eulerian fluid simulation with convolu-
tional networks. In International Conference on Machine
Learning, pp. 3424–3433. PMLR, 2017.

Um, K., Brand, R., Fei, Y. R., Holl, P., and Thuerey, N.
Solver-in-the-loop: Learning from differentiable physics
to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

Van Rossum, G. and Drake Jr, F. L. Python reference man-
ual. Centrum voor Wiskunde en Informatica Amsterdam,
1995.

Versteeg, H. K. and Malalasekera, W. An introduction to
computational fluid dynamics: the finite volume method.
Pearson education, 2007.

Wandel, N., Weinmann, M., and Klein, R. Learning in-
compressible fluid dynamics from scratch-towards fast,
differentiable fluid models that generalize. In Interna-
tional Conference on Learning Representations, 2020a.

Wandel, N., Weinmann, M., and Klein, R. Teaching the
incompressible navier-stokes equations to fast neural sur-
rogate models in 3d. arXiv preprint arXiv:2012.11893,
2020b.

Wandel, N., Weinmann, M., and Klein, R. Teaching the
incompressible navier–stokes equations to fast neural sur-
rogate models in three dimensions. Physics of Fluids, 33
(4), 2021.

Wang, P. The applications of generative adversarial network
in surgical videos. In Third International Conference on
Intelligent Computing and Human-Computer Interaction
(ICHCI 2022), volume 12509, pp. 300–305. SPIE, 2023.

Wang, R., Walters, R., and Yu, R. Approximately equivari-
ant networks for imperfectly symmetric dynamics. In In-
ternational Conference on Machine Learning, pp. 23078–
23091. PMLR, 2022a.

11

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

Wang, R., Walters, R., and Yu, R. Meta-learning dynamics
forecasting using task inference. Advances in Neural In-
formation Processing Systems, 35:21640–21653, 2022b.

Wu, T., Maruyama, T., and Leskovec, J. Learning to ac-
celerate partial differential equations via latent global
evolution. Advances in Neural Information Processing
Systems, 35:2240–2253, 2022.

Yadav, V. C. et al. Simulation of Fluid Flows based on the
Data-driven Evolution of Vortex Particles. PhD thesis,
Institut für Strömungsmechanik, 2021.

12

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

A. Performance measurements
We benchmark all experiments with the three supported machine learning backends: PyTorch, TensorFlow and JAX. We
always enable just-in-time (JIT) compilation using ΦFlow’s @jit compile function decorator. The results are shown in
Tab. 1. Overall, the performance gap between the backends is reasonably small, and no library consistently outperforms the
others. For fluids and tasks involving random data access, JAX usually yields the best performance, while PyTorch works
best for easy-to-parallelize tasks.

Table 1. Performance measurements of our experiments by ML backend. The table shows wall-clock time in ms per step on an NVIDIA
RTX 3090 excluding warm-up.

PyTorch TensorFlow JAX
Thermal conductivity 24.4 ± 1.5 28.2 ± 1.1 40.5 ± 3.1
PIV 25 ± 2 41.6 ± 1.7 46 ± 2
Learning fluids 293 ± 363 296 ± 356 156 ± 373
Billiards 0.88 ± 1.80 1.20 ± 2.45 0.85 ± 0.21
Sphere packing 2.0 ± 0.3 4.4 ± 0.4 7.8 ± 0.7
2D Waves 0.50 ± 0.07 0.74 ± 0.05 0.38 ± 0.05

B. Code readability
To measure the readability of our code, we prompt ChatGPT with the input ”Explain this code to me:”, followed by the
source code. We show the first output generated by ChatGPT 3.5 for each experiment in full below. We made no changes to
our code after reading the explanations generated by ChatGPT to prevent biasing the results.

Sphere packing (ΦFlow) ChatGPT accurately explains our code, recognizing our library PhiFlow and the TensorFlow
backend. Its summary is also correct, but it misses the physical interpretation of the energy function. ChatGPT breaks the
code into sections and explains each variable separately, citing the appropriate snippets of code. The explanation resembles
our description above, which was written without AI-assistance.

Sphere packing (JAX-MD) Given the original Jax-MD code, ChatGPT summarizes the task as ”self-assembly of colloidal
particles”, which matches the domain of the Jax-MD library but is not correct for the given code, as the spheres are explicitly
referred to as bubbles in the original experiment and code. ChatGPT also fails to recognize the Jax-MD library, despite 7
lines of corresponding imports. Instead, it assumes the code uses JAX (Bradbury et al., 2018a) directly. ChatGPT breaks the
code down into nine sections, each with two to seven subsections. It does not cite lines from the source, likely due to the
lengthy input.

Billiards (ΦFlow) ChatGPT’s explanation of our code is concise and to the point, structuring the code into four sections
with three to five points each. Despite the brevity, the output captures all essential parts with sufficient detail, such as the
triangular initialization, how the simulation works, and what the loss function is intended to do. ChatGPT even draws on its
physics knowledge to explain that the elasticity is connected to the energy conserved in collisions. The output is generally
high-level, focusing more on the purpose than on individual variables. All explanations are correct except for two minor
issues: (i) ChatGPT did not recognize that only the cue ball velocity is optimized and (ii) it refers to a ”controllable ball”,
which does not match the code. ChatGPT’s summary at the bottom perfectly describes the experiment.

Billiards (DiffTaichi) ChatGPT’s explanation of the original source code differs greatly from our version. ChatGPT
structures the original source code from DiffTaichi into 13 sections, many of which only sport a single bullet point. This lack
of structure is likely due to the fact that ChatGPT tries to mirror the order in which variables and functions are defined in the
source code. Unlike with our code, the explanations here are low-level, usually limited to individual variables or functions.
The bigger picture, such as the purpose of functions or the code as a whole, is not mentioned. Except for missclassifying sys
and os as scientific computing libraries and describing the loss as a ”scalar field”, the output is mostly correct. However,
most statements seem trivial and redundant, e.g. ”collide pair(t, i, j): Function to handle collisions between
pairs of balls” or ”vis resolution: Resolution for visualization”. How the simulation works is not explained; ChatGPT
only states that the simulation ”initializes the system, performs collision handling, and updates the positions and velocities

13

PhiFlow: Differentiable Simulations for PyTorch, TensorFlow and Jax

of the particles”. The initial triangle configuration as well as the loss function are not explained at all. Evidently ChatGPT
understands that the code runs a Billiards simulation but fails to figure out how the simulation works or what its purpose is.

Waves (ΦFlow) ChatGPT identifies the code as a 2D grid simulation of propagating waves, quoting many important lines
from the source code. It correctly identifies the purpose of both functions and all of their arguments, and it extracts the
resolution, domain size and boundary conditions of the simulation. While it correctly identifies that 60 steps per second with
16 sub-steps each are used, it fails to derive the total simulation time, mixing up seconds and minutes.

Waves (Warp) ChatGPT identifies the code as a grid-based wave propagation simulation but does not extract its resolution,
domain size, boundary conditions, or simulation time. No line from the source code is quoted, instead the explana-
tion focusses on the code structure, likely due to the lengthy input. The helper functions sample, laplacian and
grid update are summarized very briefly, and ChatGPT seems unaware that, as kernel functions, these will run on the
whole grid in parallel. The descriptions of the main functions wave displace and wave solve are also very short
but also partly inaccurate. ChatGPT describes wave displace as displacing points in a circular pattern to simulate
wave generation. While technically true, the function simply fills a circle on the grid with a constant value. Furthermore,
wave solve is described as solving the wave equation iteratively for each point in the grid. This fails to capture that the
function only performs one simulation sub-step, and it misses that the execution is performed in parallel, not iteratively. The
bulk of ChatGPT’s response deals with the code structure, such as the Example class. Only section 2 out of six sections
describes the simulation, and no concrete numbers are given.

The full ChatGPT generations are shown on the next pages, followed by the source code we gave to ChatGPT. For both
experiments, the outputs based on our code seem easier to understand, more concise and more insightful.

14

Sphere Packing (Φ𝐹𝑙𝑜𝑤)

You: Explain this code to me: from phi.tf.flow import * […]

ChatGPT:

This code appears to be a Python script using the TensorFlow-based library called “PhiFlow” to simulate a
physical system involving spheres. Let’s break down the code step by step:

• Import necessary modules:

from phi.tf.flow import *

This line imports the required modules from the “phi.tf.flow” package. PhiFlow is a library for differentiable
physics in TensorFlow. - Define an energy function:

def energy(x: Tensor, boundary=PERIODIC):
 dx = boundary.shortest_distance(x, rename_dims(x, 'spheres', 'o'), size)
 dr = math.vec_length(dx, eps=1e-8) / (R + rename_dims(R, 'spheres', 'o'))
 return math.l2_loss(math.where((dr < 2e-4) | (dr > 1), 0, 1 - dr))

This function energy calculates the energy of a system of spheres at positions x. It uses the periodic
boundary condition (PERIODIC). The energy is based on the shortest distances (dx) between the spheres, and
dr is a normalized distance. The energy is calculated using the L2 loss of a modified distance. - Set up initial
parameters:

R = wrap([1]*64 + [vec(batch('d'), 1, .5)]*64, instance('spheres'))

This line sets up a list of radii (R) for 64 small spheres with radius 1 and 64 larger spheres with radius 0.5. -
Compute system size:

size = (math.sum(Sphere(vec(x=0, y=0), R).volume, 'spheres') * 1.05) ** .5

This line calculates the total volume of the spheres and computes the size of the simulation domain based on
that volume. - Initialize particle positions randomly:

x0 = math.random_uniform(instance(R), channel(vector='x,y'), high=size)

This line initializes the positions (x0) of the spheres randomly within the simulation domain. - Minimize the
energy using L-BFGS-B optimization:

x_packed = minimize(energy, Solve('L-BFGS-B', x0=x0)) % size

The code uses the minimize function to find the configuration of sphere positions (x_packed) that
minimizes the energy. The optimization is performed using the L-BFGS-B algorithm. The result is wrapped
around to ensure periodic boundary conditions.

In summary, this code sets up a physical system with spheres, defines an energy function based on sphere
positions, initializes the system, and then minimizes the energy using an optimization algorithm to find a
stable configuration for the spheres. The periodic boundary conditions ensure that the system behaves
consistently at the edges of the simulation domain.

Sphere Packing (Φ𝐹𝑙𝑜𝑤)

from phi.tf.flow import *

def energy(x: Tensor, boundary=PERIODIC):

 dx = boundary.shortest_distance(x, rename_dims(x, 'spheres', 'o'), size)

 dr = math.vec_length(dx, eps=1e-8) / (R + rename_dims(R, 'spheres', 'o'))

 return math.l2_loss(math.where((dr < 2e-4) | (dr > 1), 0, 1 - dr))

R = wrap([1]*64 + [vec(batch('d'), 1, .5)]*64, instance('spheres'))

size = (math.sum(Sphere(vec(x=0, y=0), R).volume, 'spheres') * 1.05) ** .5

x0 = math.random_uniform(instance(R), channel(vector='x,y'), high=size)

x_packed = minimize(energy, Solve('L-BFGS-B', x0=x0)) % size

plot(Sphere(x_packed, R), size=(6, 3))

Sphere Packing (JAX-MD)

You: Explain this code to me: import time […] finalize_plot((2.0, 1))

ChatGPT:

This code is a Python script that uses JAX (Just Another XLA) to simulate the self-assembly of colloidal
particles. The simulation is based on the minimization of a soft sphere pair potential energy function.

Let’s break down the code into sections:

• Importing Libraries:

– The code starts by importing necessary libraries like JAX, NumPy, and Matplotlib.

– It also includes some utilities for progress bars and plot formatting.

• Progress Bars and Plot Settings:

– The ProgressIter and progress functions are used for displaying progress bars.

– Matplotlib settings are configured for plot formatting.

• System Visualization Functions:

– draw_system: Function to visualize the system by plotting particle positions.

– finalize_plot: Function to adjust the plot size and layout.

• System Property Utilities:

– box_size_at_number_density: Calculates the box size based on particle count and number
density.

• Simulation Parameters:

– N: Total number of particles.

– simulation_steps: Number of simulation steps.

– dt: Time step for the simulation.

– temperature: Temperature of the system.

– key: Random key for initializing the system.

– packing_fraction: Desired packing fraction of particles in the system.

– markersize: Size of markers for particle visualization.

• Particle Species and Interaction:

– The system consists of two types of particles, species 0 and species 1.

– species_sigma: Function to define the diameter matrix based on particle species.

• Simulation Function:

– simulation: Main simulation function that takes a diameter and a random key as input.

– It sets up the simulation environment, defines the soft sphere pair potential energy, initializes
the system, and performs minimization steps.

• Simulation Visualization:

– The script plots two visualizations using Matplotlib:

• The first subplot shows the self-assembly of particles with a diameter of 1.0.

• The second subplot shows the self-assembly of particles with diameters 0.8 and 1.0.

– Plotting and Finalization:

– The draw_system function is used to plot the particle positions.

– The finalize_plot function adjusts the plot size and layout.

In summary, the code simulates the self-assembly of colloidal particles using JAX and visualizes the results
with Matplotlib. The particles interact through a soft sphere pair potential energy, and the system’s evolution
is visualized at different diameters.

Sphere Packing (JAX-MD)

import time

from functools import partial

import numpy as onp

import jax.numpy as np

from jax.api import jit

from jax.api import grad

from jax.api import vmap

from jax.api import value_and_grad

from jax import random

from jax import lax

from jax.experimental import stax

from jax.experimental import optimizers

from jax.config import config

config.update('jax_enable_x64', True)

from jax_md import space

from jax_md import minimize

from jax_md import simulate

from jax_md import space

from jax_md import energy

from jax_md import quantity

from jax_md.util import f32, f64

Progress Bars.

from IPython.display import HTML, display

import time

def ProgressIter(iter_fun, iter_len=0):

 if not iter_len:

 iter_len = len(iter_fun)

 out = display(progress(0, iter_len), display_id=True)

 for i, it in enumerate(iter_fun):

 yield it

 out.update(progress(i + 1, iter_len))

def progress(value, max):

 return HTML("""

 <progress

 value='{value}'

 max='{max}',

 style='width: 45%'

 >

 {value}

 </progress>

 """.format(value=value, max=max))

Matplotlib settings.

import matplotlib

import matplotlib.pyplot as plt

import seaborn as sns

sns.set_style(style='white')

sns.set(font_scale=1.6)

def format_plot(x, y):

 plt.xlabel(x, fontsize=20)

 plt.ylabel(y, fontsize=20)

def finalize_plot(shape=(1, 1)):

 plt.gcf().set_size_inches(

 shape[0] * 1.5 * plt.gcf().get_size_inches()[1],

 shape[1] * 1.5 * plt.gcf().get_size_inches()[1])

 plt.tight_layout()

def draw_system(R, box_size, marker_size, color=None):

 if color == None:

 color = [64 / 256] * 3

 ms = marker_size / box_size

 R = onp.array(R)

 marker_style = dict(

 linestyle='none',

 markeredgewidth=3,

 marker='o',

 markersize=ms,

 color=color,

 fillstyle='none')

 plt.plot(R[:, 0], R[:, 1], **marker_style)

 plt.plot(R[:, 0] + box_size, R[:, 1], **marker_style)

 plt.plot(R[:, 0], R[:, 1] + box_size, **marker_style)

 plt.plot(R[:, 0] + box_size, R[:, 1] + box_size, **marker_style)

 plt.plot(R[:, 0] - box_size, R[:, 1], **marker_style)

 plt.plot(R[:, 0], R[:, 1] - box_size, **marker_style)

 plt.plot(R[:, 0] - box_size, R[:, 1] - box_size, **marker_style)

 plt.xlim([0, box_size])

 plt.ylim([0, box_size])

 plt.axis('off')

 plt.gca().set_facecolor([1, 1, 1])

System property utilities.

def box_size_at_number_density(particle_count, number_density):

 return f32((particle_count / number_density) ** 0.5)

N = 128

N_2 = N // 2

simulation_steps = np.arange(300)

dt = 1e-2

temperature = 1e-5

key = random.PRNGKey(0)

packing_fraction = 0.98

markersize = 260

def box_size_at_packing_fraction(diameter):

 bubble_volume = N_2 * np.pi * (diameter ** 2 + 1) / 4

 return np.sqrt(bubble_volume / packing_fraction)

species = np.array([0] * (N_2) + [1] * (N_2), dtype=np.int32)

def species_sigma(diameter):

 d_AA = diameter

 d_BB = 1

 d_AB = 0.5 * (diameter + 1)

 return np.array(

 [[d_AA, d_AB],

 [d_AB, d_BB]]

)

@jit

def simulation(diameter, key):

 # Create the simulation environment.

 box_size = box_size_at_packing_fraction(diameter)

 displacement, shift = space.periodic(box_size)

 # Create the energy function.

 sigma = species_sigma(diameter)

 energy_fun = energy.soft_sphere_pair(

 displacement, species=species, sigma=sigma)

 # Randomly initialize the system.

 R = random.uniform(key, (N, 2), maxval=box_size)

 # Minimize to the nearest minimum.

 init_fn, apply_fn = minimize.fire_descent(energy_fun, shift)

 state = init_fn(R)

 do_step = lambda state, t: (apply_fn(state, t=t), ())

 state, _ = lax.scan(do_step, state, simulation_steps)

 return box_size, energy_fun(state.position), state.position

plt.subplot(1, 2, 1)

box_size, raft_energy, bubble_positions = simulation(1.0, key)

draw_system(bubble_positions, box_size, markersize)

finalize_plot((0.5, 0.5))

plt.subplot(1, 2, 2)

box_size, raft_energy, bubble_positions = simulation(0.8, key)

draw_system(bubble_positions[:N_2], box_size, 0.8 * markersize)

draw_system(bubble_positions[N_2:], box_size, markersize)

finalize_plot((2.0, 1))

Billiards (Φ𝐹𝑙𝑜𝑤)

You: Explain this code to me: from phi.torch.flow import * […]

ChatGPT:

This code appears to be a Python script that defines a simulation of billiard balls moving in a triangular
configuration. Let’s break down the code into its main components:

• billiards_triangle function:

– This function generates the initial configuration of the billiard balls arranged in a triangular
pattern.

– billiard_layers determines the number of layers in the triangle, and radius is the radius of
each ball.

– The function uses nested loops to create the ball coordinates based on the layer and position
within the layer.

• physics_step function:

– This function simulates a physics step for the billiard balls.

– It uses the phi library (specifically, advect.points and math functions) for numerical
simulation.

– The function calculates the next position of the balls (v_next) based on advection (movement).

– It then computes the distance between balls, checks for collisions, and updates the velocities
accordingly.

– Elasticity determines how much energy is conserved during collisions.

• loss_function function:

– This function defines the loss function for the optimization process.

– It takes initial position x0 and initial velocity v0 as inputs and simulates the motion of the
billiard balls using the physics_step function.

– The goal is to minimize the L2 loss between the final position of the controllable ball and a
specified goal position.

– The function returns the L2 loss and the trajectory of the simulation.

• Last part:

– The script sets an initial position x0 and a function v0 that generates initial velocities based on
an angle alpha.

– It then uses the loss_function to create a scan over different values of alpha, aiming to find
the best initial velocity that minimizes the L2 loss.

– The result is stored in the scan variable, which represents a centered grid of loss values over
the specified range of alpha.

In summary, this code defines a simulation of billiard balls with a triangular initial configuration, and it aims
to find the optimal initial velocity to reach a specified goal position. The optimization is performed over a
range of angles using the phi library for numerical simulations.

Billiards (Φ𝐹𝑙𝑜𝑤)

from phi.torch.flow import *

def billiards_triangle(billiard_layers=4, radius=.03):

 coords = []

 for i in range(billiard_layers):

 for j in range(i + 1):

 coords.append(vec(x=i * 2 * radius + 0.5, y=j * 2 * radius + 0.5 - i * radius * 0.7))

 return Sphere(stack(coords, instance('balls')), radius=radius)

def physics_step(v: PointCloud, dt: float, elasticity=0.8):

 v_next = advect.points(v, v, dt)

 dist = v_next.points - rename_dims(v_next.points, 'balls', 'others')

 dist_norm = math.vec_length(dist, eps=1e-4) # eps to avoid NaN during backprop of sqrt

 rel_v = v.values - rename_dims(v.values, 'balls', 'others')

 dist_dir = math.safe_div(dist, dist_norm)

 projected_v = dist_dir.vector * rel_v.vector

 has_impact = (projected_v < 0) & (dist_norm < 2 * v.geometry.radius)

 impulse = -(1 + elasticity) * .5 * projected_v * dist_dir

 radius_sum = v.geometry.radius + rename_dims(v.geometry.radius, 'balls', 'others')

 impact_time = math.safe_div(dist_norm - radius_sum, projected_v)

 x_inc_contrib = math.sum(math.where(has_impact, math.minimum(impact_time - dt, 0) * impulse, 0), 'others')

 v = v.with_elements(v.geometry.shifted(x_inc_contrib))

 v += math.sum(math.where(has_impact, impulse, 0), 'others')

 return advect.points(v, v, dt)

def loss_function(x0: Tensor, v0: Tensor, goal=vec(x=0.9, y=0.75), steps=1024):

 triangle_balls = PointCloud(billiards_triangle()) * (0, 0)

 controllable_ball = PointCloud(Sphere(expand(x0, instance(triangle_balls).with_size(1)),

radius=triangle_balls.geometry.radius)) * v0

 all_balls = controllable_ball & triangle_balls

 trj = iterate(physics_step, batch(t=steps), all_balls, f_kwargs={'dt': 0.003})

 return math.l2_loss(trj.t[-1].balls[-1] - goal), trj

x0 = vec(x=.1, y=.5)

v0 = lambda alpha: vec(x=0.3 * math.cos(alpha), y=0.3 * math.sin(alpha))

scan = CenteredGrid(lambda alpha: loss_function(x0, v0(alpha))[0], alpha=1000, bounds=Box(alpha=(-PI/4, PI/4)))

plot({"Billiard balls": [billiards_triangle(), Sphere(x0, radius=.03)], "Loss by angle": scan.alpha[200:-200]}, size=(6, 1.8),

overlay='list')

Billiards (DiffTaichi)

You: Explain this code to me: import taichi as ti […] scan(float(sys.argv[1]))

ChatGPT:

This code is a simulation of billiards using the Taichi programming language. It employs a numerical
approach to simulate the physics of billiards, including collision detection and response.

Here is a breakdown of the code:

• Importing Libraries:

– taichi, sys, math, numpy, os: Libraries for scientific computing and simulation.

– matplotlib.pyplot: Used for plotting graphs.

• Taichi Initialization:

– ti.init(): Initializes the Taichi runtime with a default floating-point precision (real is set to
ti.f32).

• Simulation Parameters:

– max_steps, vis_interval, output_vis_interval, steps: Parameters for the simulation.

– vis_resolution: Resolution for visualization.

– scalar and vec: Functions to define scalar and vector fields.

– loss: Scalar field to represent the loss.

• Particle Properties and Simulation Setup:

– init_x, init_v: Initial positions and velocities.

– x, v, x_inc, impulse: Particle positions, velocities, increments, and impulses.

– billiard_layers, n_balls, target_ball: Parameters defining the billiard scene.

– goal, radius, elasticity: Goal position, radius of the balls, and elasticity factor.

– ti.root: Defines the hierarchical structure of the simulation data.

• Simulation Parameters and Constants:

– dt, alpha, learning_rate: Time step, regularization parameter, and learning rate.

• Collision Pair Function:

– collide_pair(t, i, j): Function to handle collisions between pairs of balls.

• Collision, Advance, and Loss Computation Kernels:

– collide(t): Kernel to handle collisions between all pairs of balls.

– advance(t): Kernel to update particle velocities and positions based on impulses.

– compute_loss(t): Kernel to compute the loss at a given time step.

• Initialization Function:

– initialize(): Initializes the initial positions and velocities of the particles.

• Taichi GUI Setup:

– ti.GUI: Initializes a graphical user interface for visualization.

• Forward Simulation Function:

• forward(visualize=False, output=None): Main simulation function that initializes the system,
performs collision handling, and updates the positions and velocities of the particles.

• Clear Function:

• clear(): Resets the impulse and position increment fields.

• Scan Function:

• scan(zoom): Performs a parameter scan by varying the initial velocity angle and plots the resulting
loss.

• Simulation Execution:

• The script executes by calling the scan function with a zoom factor specified from the command line
argument (sys.argv[1]).

The simulation progresses through time steps, handling collisions, updating positions and velocities, and
computing the loss. The final loss values are plotted against the angle of the initial velocity, providing insights
into the objective of the billiard scene.

Billiards (DiffTaichi)

import taichi as ti

import sys

import math

import numpy as np

import os

import matplotlib.pyplot as plt

real = ti.f32

ti.init(default_fp=real, flatten_if=True)

max_steps = 2048

vis_interval = 64

output_vis_interval = 16

steps = 1024

assert steps * 2 <= max_steps

vis_resolution = 1024

scalar = lambda: ti.field(dtype=real)

vec = lambda: ti.Vector.field(2, dtype=real)

loss = scalar()

init_x = vec()

init_v = vec()

x = vec()

x_inc = vec() # for TOI

v = vec()

impulse = vec()

billiard_layers = 4

n_balls = 1 + (1 + billiard_layers) * billiard_layers // 2

target_ball = n_balls - 1

target_ball = 0

goal = [0.9, 0.75]

radius = 0.03

elasticity = 0.8

ti.root.dense(ti.i, max_steps).dense(ti.j, n_balls).place(x, v, x_inc, impulse)

ti.root.place(init_x, init_v)

ti.root.place(loss)

ti.root.lazy_grad()

dt = 0.003

alpha = 0.00000

learning_rate = 0.01

@ti.func

def collide_pair(t, i, j):

 imp = ti.Vector([0.0, 0.0])

 x_inc_contrib = ti.Vector([0.0, 0.0])

 if i != j:

 dist = (x[t, i] + dt * v[t, i]) - (x[t, j] + dt * v[t, j])

 dist_norm = dist.norm()

 rela_v = v[t, i] - v[t, j]

 if dist_norm < 2 * radius:

 dir = ti.Vector.normalized(dist, 1e-6)

 projected_v = dir.dot(rela_v)

 if projected_v < 0:

 imp = -(1 + elasticity) * 0.5 * projected_v * dir

 toi = (dist_norm - 2 * radius) / min(

 -1e-3, projected_v) # Time of impact

 x_inc_contrib = min(toi - dt, 0) * imp

 x_inc[t + 1, i] += x_inc_contrib

 impulse[t + 1, i] += imp

@ti.kernel

def collide(t: ti.i32):

 for i in range(n_balls):

 for j in range(i):

 collide_pair(t, i, j)

 for i in range(n_balls):

 for j in range(i + 1, n_balls):

 collide_pair(t, i, j)

@ti.kernel

def advance(t: ti.i32):

 for i in range(n_balls):

 v[t, i] = v[t - 1, i] + impulse[t, i]

 x[t, i] = x[t - 1, i] + dt * v[t, i] + x_inc[t, i]

@ti.kernel

def compute_loss(t: ti.i32):

 loss[None] = (x[t, target_ball][0] - goal[0])**2 + (x[t, target_ball][1] -

 goal[1])**2

@ti.kernel

def initialize():

 x[0, 0] = init_x[None]

 v[0, 0] = init_v[None]

gui = ti.GUI("Billiards", (1024, 1024), background_color=0x3C733F)

def forward(visualize=False, output=None):

 initialize()

 interval = vis_interval

 if output:

 interval = output_vis_interval

 os.makedirs('billiards/{}/'.format(output), exist_ok=True)

 count = 0

 for i in range(billiard_layers):

 for j in range(i + 1):

 count += 1

 x[0, count] = [

 i * 2 * radius + 0.5, j * 2 * radius + 0.5 - i * radius * 0.7

]

 pixel_radius = int(radius * 1024) + 1

 for t in range(1, steps):

 collide(t - 1)

 advance(t)

 if (t + 1) % interval == 0 and visualize:

 gui.clear()

 gui.circle((goal[0], goal[1]), 0x00000, pixel_radius // 2)

 for i in range(n_balls):

 if i == 0:

 color = 0xCCCCCC

 elif i == n_balls - 1:

 color = 0x3344cc

 else:

 color = 0xF20530

 gui.circle((x[t, i][0], x[t, i][1]), color, pixel_radius)

 if output:

 gui.show('billiards/{}/{:04d}.png'.format(output, t))

 else:

 gui.show()

 compute_loss(steps - 1)

@ti.kernel

def clear():

 for t, i in ti.ndrange(max_steps, n_balls):

 impulse[t, i] = ti.Vector([0.0, 0.0])

 x_inc[t, i] = ti.Vector([0.0, 0.0])

def scan(zoom):

 N = 1000

 angles = []

 losses = []

 forward(visualize=True, output='initial')

 for i in range(N):

 alpha = ((i + 0.5) / N - 0.5) * math.pi * zoom

 init_x[None] = [0.1, 0.5]

 init_v[None] = [0.3 * math.cos(alpha), 0.3 * math.sin(alpha)]

 loss[None] = 0

 clear()

 forward(visualize=False)

 print(loss[None])

 losses.append(loss[None])

 angles.append(math.degrees(alpha))

 plt.plot(angles, losses)

 fig = plt.gcf()

 fig.set_size_inches(5, 3)

 plt.title('Billiard Scene Objective')

 plt.ylabel('Objective')

 plt.xlabel('Angle of velocity')

 plt.tight_layout()

 plt.show()

scan(float(sys.argv[1]))

Waves (Φ𝐹𝑙𝑜𝑤)

You: Explain this code to me: from phi.jax.flow import * […]

ChatGPT:

This code seems to be a simulation of a wave propagating through a 2D grid, possibly representing a
water surface or similar phenomenon. Let's break it down step by step:

1. Import Statements:

from phi.jax.flow import *
This imports necessary functions and classes from the phi library for running simulations with

computational fluid dynamics (CFD) applications.

2. Function Definitions:

• wave_displace(sphere: Sphere, *fields: Field, mag=.5, t=-math.PI * 0.5): This

function takes a Sphere object and one or more Field objects as input. It displaces the fields

based on the distance to the sphere and a time-dependent displacement value. The displacement
value is calculated as a sinusoidal function of time (t). It returns a list of displaced fields.

• step(h_c, h_p, time, dt=1/60./16, k_speed=1.0, k_damp=0.0): This function defines a

single time step in the simulation. It takes the current state of the simulation grid h_c, the previous

state h_p, the current time, and optional parameters for time step (dt), wave speed coefficient

(k_speed), and damping coefficient (k_damp). It computes the next state h_n based on the wave

equation and returns it along with updated values of the current grid and time.

3. Initial Conditions:

h_initial = CenteredGrid(x=128, y=128, bounds=Box(x=12.8, y=12.8),
boundary=ZERO_GRADIENT)
This initializes the simulation grid (h_initial) with a resolution of 128x128 cells and a spatial

domain defined by a bounding box of size 12.8x12.8. ZERO_GRADIENT indicates the boundary

condition where the gradient at the boundary is assumed to be zero.

4. Simulation Execution:

final, *_ = iterate(step, 5 * 60 * 16, h_initial, h_initial, 0)
This line executes the simulation. It iterates the step function for a total of 5 minutes (using 60 steps

per second and 16 iterations per step). It starts with the initial grid state (h_initial) and previous

state (h_initial) and initial time 0. It returns the final state of the simulation grid.

5. Visualization: show(final)
This line displays the final state of the simulation grid.

In summary, this code simulates the propagation of waves through a 2D grid using computational fluid
dynamics principles, possibly representing phenomena like water waves, with the capability to displace
the grid based on a spherical object.

Waves (Φ𝐹𝑙𝑜𝑤)

from phi.jax.flow import *

def wave_displace(sphere: Sphere, *fields: Field, mag=.5, t=-math.PI * 0.5):

 sq_dist_to_sphere = math.vec_squared(fields[0].center - sphere.center)

 displace_val = mag * math.sin(t)

 return [field.where(sq_dist_to_sphere < sphere.radius**2, displace_val, f) for f in fields]

@jit_compile

def step(h_c, h_p, time, dt=1/60./16, k_speed=1.0, k_damp=0.0):

 sphere = Sphere(center=h_c.bounds.center + math.rotate_vector(vec(x=0, y=-12.8/3), time), radius=1.)

 h_c, h_p = wave_displace(sphere, h_c, h_p)

 h_n = 2.0 * h_c - h_p + dt * dt * (k_speed * h_c.laplace() - k_damp * (h_c - h_p)) # wave_solve

 return h_n, h_c, time + dt

h_initial = CenteredGrid(x=128, y=128, bounds=Box(x=12.8, y=12.8), boundary=ZERO_GRADIENT)

final, *_ = iterate(step, 5 * 60 * 16, h_initial, h_initial, 0)

plot(final)

Waves (Warp)

You: Explain this code to me: import math […]

ChatGPT:

This code appears to be a simulation of wave propagation in a grid-based environment, with a visualization
component. Let's break it down:

1. Imports: The code imports necessary libraries, including math for mathematical operations and a
module named warp for parallel computation and rendering.

2. Function Definitions:

o sample: Retrieves the value from a 2D array at specified coordinates, clamping the
coordinates within the array boundaries.

o laplacian: Computes the Laplacian of a scalar field at a given point in the grid.

o wave_displace: Displaces the grid points around a specified center in a circular pattern to
simulate wave generation.

o wave_solve: Solves the wave equation iteratively for each point in the grid.

o grid_update: Updates the vertex positions of a grid based on the calculated heights.

3. Class Definition:

o Example: Manages the simulation and rendering of the wave propagation.

▪ Initializes simulation parameters, grid dimensions, and wave constants.

▪ Generates grid vertices and indices for rendering.

▪ Provides methods to advance the simulation (step) and render the current state
(render).

4. Main Execution:

o Instantiates an Example object.

o Iterates over simulation frames, advancing the simulation and rendering each frame.

o If a renderer is available, saves the rendered frames to a file.

5. Simulation Process:

o In each frame, the simulation advances in discrete substeps.

o Wave displacement and wave equation solving kernels are launched in parallel for each grid
point.

o Grid heights are updated based on the wave simulation results.

o The simulation time is incremented.

6. Rendering:

o If a renderer is available, the grid vertices along with a sphere representing the wave source
are rendered in a 3D scene.

o The rendering process is timed using ScopedTimer.

Overall, the code simulates the propagation of waves in a grid-based environment and visualizes the results
using parallel computation and rendering techniques provided by the warp module.

Waves (Warp)

import math

import warp as wp

import warp.render

wp.init()

@wp.func

def sample(f: wp.array(dtype=float), x: int, y: int, width: int, height: int):

 # clamp texture coords

 x = wp.clamp(x, 0, width - 1)

 y = wp.clamp(y, 0, height - 1)

 s = f[y * width + x]

 return s

@wp.func

def laplacian(f: wp.array(dtype=float), x: int, y: int, width: int, height: int):

 ddx = sample(f, x + 1, y, width, height) - 2.0 * sample(f, x, y, width, height) + sample(f, x - 1, y, width, height)

 ddy = sample(f, x, y + 1, width, height) - 2.0 * sample(f, x, y, width, height) + sample(f, x, y - 1, width, height)

 return ddx + ddy

@wp.kernel

def wave_displace(

 hcurrent: wp.array(dtype=float),

 hprevious: wp.array(dtype=float),

 width: int,

 height: int,

 center_x: float,

 center_y: float,

 r: float,

 mag: float,

 t: float,

):

 tid = wp.tid()

 x = tid % width

 y = tid // width

 dx = float(x) - center_x

 dy = float(y) - center_y

 dist_sq = float(dx * dx + dy * dy)

 if dist_sq < r * r:

 h = mag * wp.sin(t)

 hcurrent[tid] = h

 hprevious[tid] = h

@wp.kernel

def wave_solve(

 hprevious: wp.array(dtype=float),

 hcurrent: wp.array(dtype=float),

 width: int,

 height: int,

 inv_cell: float,

 k_speed: float,

 k_damp: float,

 dt: float,

):

 tid = wp.tid()

 x = tid % width

 y = tid // width

 l = laplacian(hcurrent, x, y, width, height) * inv_cell * inv_cell

 # integrate

 h1 = hcurrent[tid]

 h0 = hprevious[tid]

 h = 2.0 * h1 - h0 + dt * dt * (k_speed * l - k_damp * (h1 - h0))

 # buffers get swapped each iteration

 hprevious[tid] = h

simple kernel to apply height deltas to a vertex array

@wp.kernel

def grid_update(heights: wp.array(dtype=float), vertices: wp.array(dtype=wp.vec3)):

 tid = wp.tid()

 h = heights[tid]

 v = vertices[tid]

 v_new = wp.vec3(v[0], h, v[2])

 vertices[tid] = v_new

class Example:

 def __init__(self, stage):

 self.sim_width = 128

 self.sim_height = 128

 self.sim_fps = 60.0

 self.sim_substeps = 16

 self.sim_duration = 5.0

 self.sim_frames = int(self.sim_duration * self.sim_fps)

 self.sim_dt = (1.0 / self.sim_fps) / self.sim_substeps

 self.sim_time = 0.0

 # wave constants

 self.k_speed = 1.0

 self.k_damp = 0.0

 # grid constants

 self.grid_size = 0.1

 self.grid_displace = 0.5

 vertices = []

 self.indices = []

 def grid_index(x, y, stride):

 return y * stride + x

 for z in range(self.sim_height):

 for x in range(self.sim_width):

 pos = (

 float(x) * self.grid_size,

 0.0,

 float(z) * self.grid_size,

)

 # directly modifies verts_host memory since this is a numpy alias of the same buffer

 vertices.append(pos)

 if x > 0 and z > 0:

 self.indices.append(grid_index(x - 1, z - 1, self.sim_width))

 self.indices.append(grid_index(x, z, self.sim_width))

 self.indices.append(grid_index(x, z - 1, self.sim_width))

 self.indices.append(grid_index(x - 1, z - 1, self.sim_width))

 self.indices.append(grid_index(x - 1, z, self.sim_width))

 self.indices.append(grid_index(x, z, self.sim_width))

 # simulation grids

 self.sim_grid0 = wp.zeros(self.sim_width * self.sim_height, dtype=float)

 self.sim_grid1 = wp.zeros(self.sim_width * self.sim_height, dtype=float)

 self.sim_verts = wp.array(vertices, dtype=wp.vec3)

 # create surface displacement around a point

 self.cx = self.sim_width / 2 + math.sin(self.sim_time) * self.sim_width / 3

 self.cy = self.sim_height / 2 + math.cos(self.sim_time) * self.sim_height / 3

 self.renderer = None

 if stage:

 self.renderer = wp.render.UsdRenderer(stage)

 def step(self):

 with wp.ScopedTimer("step", active=True):

 for s in range(self.sim_substeps):

 # create surface displacement around a point

 self.cx = self.sim_width / 2 + math.sin(self.sim_time) * self.sim_width / 3

 self.cy = self.sim_height / 2 + math.cos(self.sim_time) * self.sim_height / 3

 wp.launch(

 kernel=wave_displace,

 dim=self.sim_width * self.sim_height,

 inputs=[

 self.sim_grid0,

 self.sim_grid1,

 self.sim_width,

 self.sim_height,

 self.cx,

 self.cy,

 10.0,

 self.grid_displace,

 -math.pi * 0.5,

],

)

 # integrate wave equation

 wp.launch(

 kernel=wave_solve,

 dim=self.sim_width * self.sim_height,

 inputs=[

 self.sim_grid0,

 self.sim_grid1,

 self.sim_width,

 self.sim_height,

 1.0 / self.grid_size,

 self.k_speed,

 self.k_damp,

 self.sim_dt,

],

)

 # swap grids

 (self.sim_grid0, self.sim_grid1) = (self.sim_grid1, self.sim_grid0)

 self.sim_time += self.sim_dt

 with wp.ScopedTimer("mesh", active=False):

 # update grid vertices from heights

 wp.launch(kernel=grid_update, dim=self.sim_width * self.sim_height, inputs=[self.sim_grid0, self.sim_verts])

 def render(self):

 if self.renderer is None:

 return

 with wp.ScopedTimer("render", active=True):

 vertices = self.sim_verts.numpy()

 self.renderer.begin_frame(self.sim_time)

 self.renderer.render_mesh("surface", vertices, self.indices, colors=((0.35, 0.55, 0.9),) * len(vertices))

 self.renderer.render_sphere(

 "sphere",

 (self.cx * self.grid_size, 0.0, self.cy * self.grid_size),

 (0.0, 0.0, 0.0, 1.0),

 10.0 * self.grid_size,

 color=(1.0, 1.0, 1.0),

)

 self.renderer.end_frame()

if __name__ == "__main__":

 stage_path = "example_wave.usd"

 example = Example(stage_path)

 for i in range(example.sim_frames):

 example.step()

 example.render()

 if example.renderer:

 example.renderer.save()

