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Abstract
In this work, we develop a new theory and
method for sufficient dimension reduction (SDR)
in single-index models, where SDR is a sub-
field of supervised dimension reduction based on
conditional independence. Our work is primar-
ily motivated by the recent introduction of the
Hellinger correlation as a dependency measure.
Utilizing this measure, we develop a method capa-
ble of effectively detecting the dimension reduc-
tion subspace, complete with theoretical justifica-
tion. Through extensive numerical experiments,
we demonstrate that our proposed method signif-
icantly enhances and outperforms existing SDR
methods. This improvement is largely attributed
to our proposed method’s deeper understanding of
data dependencies and the refinement of existing
SDR techniques.

1. Introduction
In the age of big data, the advent of high-dimensional
datasets has transformed the landscape of statistical analysis
and machine learning. However, as the number of features
in a dataset increases, so does the complexity of modeling
and interpretation. This phenomenon, often referred to as
the curse of dimensionality, poses a significant challenge
to researchers and practitioners who seek to extract mean-
ingful information and insights from vast and intricate data
structures.

In response to this challenge, the field of sufficient dimen-
sion reduction (SDR) has emerged as a powerful approach
to navigating high-dimensional space and uncovering the
underlying structure without compromising interpretability.
Much like how sufficient statistics provide essential informa-
tion for estimation, sufficient dimension reduction methods
furnish us with a subspace that contains adequate informa-
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tion to accurately estimate or explain the response variable.
This approach is rooted in the idea that by identifying and
preserving the key relationships in the notion of conditional
independence as follows. For a univariate random variable
Y and a p-dimensional random vector X , the objective of
linear sufficient dimension reduction is to seek out a matrix
B ∈ Rp×d (d < p) that possesses the smallest achievable
column space such that

Y ⊥⊥ X |BTX. (1)

It is important to note that the conditional independence
does not change when B is multiplied by any non-singular
matrix A ∈ Rd×d. Thus, to make the target identifiable,
the parameter needed to seek is the space spanned by the
columns of B, i.e, Span(B), not a matrix B itself. The
column space of B with the smallest d is called the central
space denoted by SY |X and the dimension of the central
space is the structural dimension, say d.

The conditional independence (1) can also be represented as

Y ⊥⊥ X |R(X),

for a proper linear mapping, R : Rp → Rd. It can be further
represented as

Y |X ∼ Y |R(X),

where ∼ means equal in distribution, which tells us that once
R(X) is identified, no more information about Y can be
obtained from X , and all the regression information for the
predictor is preserved through R(X). Another equivalent
statement is

X |Y,R(X) ∼ X |R(X).

Consider rewriting that X represents data D and Y symbol-
izes a parameter θ. Under this reinterpretation, the above
statement is equivalent to D | (θ,R) ∼ D |R, which sug-
gests that R acts as a sufficient statistic. Hence, the SDR
mapping R(·) aligns with the traditional concept of statisti-
cal sufficiency. A key distinction, however, lies in the nature
of the sufficient statistic versus the SDR: while a sufficient
statistic is observable, the SDR involves parameters that
require estimation. Adragni & Cook (2009) explains this
conceptual idea of sufficiency more rigorously.
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If we have a proper B satisfying conditional independence
as in (1), then the response Y can be represented as

Y = g(bT
1X, . . . , b

T
dX, ε), (2)

where g : Rp+1 7→ R is an unknown measurable function
and ε is independent of X with mean zero, and b1, · · · , bd
are the columns of B. As there is no strong prerequisite
for the function g, dimension reduction can be performed
without relying on a specific model.

Various SDR methods have been proposed and success-
fully applied in diverse disciplines such as bioinformatics
(Chiaromonte & Martinelli, 2002; Hsueh & Tsai, 2016),
finance (Wang, 2023), marketing (Naik et al., 2000) and
ecology (Roley & Newman, 2008). The two most domi-
nating approaches for SDR are inverse regression and for-
ward regression approach. The inverse method requires
an additional assumption on the conditional distribution of
the predictors given the response, X |Y . The well-known
techniques for the inverse method include sliced inverse
regression (SIR) (Li, 1991), sliced average variance esti-
mation (SAVE) (Cook & Weisberg, 1991), and directional
regression (DR) (Li & Wang, 2007). The forward method
requires less assumptions on the conditional distribution but
has additional assumptions on the link function. The mini-
mum average variance estimation (MAVE) (Xia et al., 2002)
is a widely recognized approach to the forward method.
We refer to Li (2018) for a detailed explanation. Although
the prior methods have proven effective, their success re-
lies on specific assumptions mentioned earlier: inverse re-
gression methods impose strong assumptions on the condi-
tional/marginal distribution of X such as the predictors X
following an elliptical distribution, while forward-regression
approaches require an assumption on the link function g(·).
All these assumptions are difficult to verify with the dataset.

On the other hand, there are other directions of SDR studies,
which build on measures of statistical dependence. Quan-
tifying the dependence between two random objects has
been a central topic in statistics. Some notable examples
of dependence measures, especially in nonparametric set-
tings, include the distance covariance (Székely et al., 2007;
Székely & Rizzo, 2009), the Hilbert–Schmidt independence
criterion (HSIC) (Gretton et al., 2005) and the ball covari-
ance (Pan et al., 2020). The SDR subspace can be found by
maximizing the dependence between the response Y and
predictors X . Sheng & Yin (2013) showed that sufficient di-
mension reduction can be achieved for a single-index model
by the distance covariance. Sheng & Yin (2016) extended
this method to a general structural dimension d. Similarly,
Zhang & Yin (2015) proposed a way to utilize the HSIC for
the single index model, and Xue et al. (2017) extended it to
a general dimension d. In addition, Zhang & Chen (2019)
analyzed single and multi-index models based on the ball
covariance. See Dong (2021) for a comprehensive review.

While existing SDR methods based on dependence mea-
sures have shown their effectiveness, they are not free from
limitations. One notable limitation is in the interpretation
of the dependence measure itself: while a zero value indi-
cates independence between two random variables, a larger
measure does not necessarily imply a stronger relationship
between them. This gap can lead to potential misinterpre-
tations when assessing the strength of these relationships.
Moreover, these methods encounter challenges regarding
their theoretical foundation. Some dependence measure-
based SDR methods either lack comprehensive theoretical
validation or rely on specific independence assumptions
that are difficult to verify in practical applications. It raises
concerns about their reliability.

To address these issues, this article introduces a new SDR
method using Hellinger correlation, which improves the
accuracy of estimating the central subspace while achiev-
ing its theoretical justification with weaker assumptions
than existing methods. More precisely, compared to other
dependence measures, the Hellinger correlation is more
adept at capturing the strength of various relationships and
satisfies the natural axioms for dependence measures (Gee-
nens & Lafaye de Micheaux, 2022). Equipped with the
benefits of the Hellinger correlation, our SDR approach is
straightforward to implement and consistently delivers sig-
nificant improvements over existing methods in almost all
cases considered. Moreover, we distinguish the proposed
method from existing approaches by establishing a theo-
retical foundation, including consistency guarantees with
minimal assumptions.

To establish a solid foundation for a new SDR method based
on a dependence measure, we focus on the single-index
model where the target dimension is one. Although ex-
tending our method to multi-index models is feasible and
promising, as discussed in Section 6 and other work (Sheng
& Yin, 2016; Christou, 2020), we have opted to prioritize
the foundational principles of SDR by concentrating on
the simple yet fundamental single-indexed model. This ap-
proach aims to ensure clarity and maintain the robustness
of the article, while laying a strong groundwork for future
expansions.

The remainder of this article is organized as follows. Sec-
tion 2 provides background information and motivation for
this paper. Section 3 delves into the optimization meth-
ods and presents the theoretical results. In Section 4, we
provide simulation results that compare our method with
existing ones. Section 5 presents a real data application
of the method. Section 6 summarizes our contributions
and discusses several directions for future work. Lastly,
the appendix includes additional simulation results. The
code that implements our proposed method is available at
https://github.com/JSongLab/SDR HC.
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2. Background and Motivation
2.1. SDR through dependence measure

As mentioned in Section 1, there have been studies focused
on developing SDR methods that utilize dependence mea-
sures. To explain the idea, assume that the structural di-
mension is known as d. Let η0 be the basis of the central
subspace and η1 be the basis of the orthogonal complement
of the central subspace. In other words, η = (η0,η1)

⊤ is
a basis of Rp. Let ρ : Rd × R → [0,∞) be a generic de-
pendence measure between two random quantities. A SDR
method based on ρ seeks to find the central space SY |X by
solving the following optimization problem:

B0 = argmax
B∈Rp×d

ρ(BTX,Y ) subject to BTΣXB = Id

where ΣX is the covariance matrix of X ∈ Rp. To con-
clude that the maximizer recovers the central space, i.e.,
Span(B0) = Span(η0), the previous approaches impose
an additional independence assumption on projected random
variables, namely

η0
TX ⊥⊥ η1

TX,

which is not easily verifiable in practical applications. In
contrast, we aim to remove this additional restriction and
propose a more reliable SDR method.

2.2. Copula

We next briefly discuss copulas. Copulas are essential tools
in high-dimensional analysis, enabling us to estimate ran-
dom vectors through the estimation of marginal distributions.
This tool has applications across various fields, with finance
being a prime example of its extensive usage (Cherubini
et al., 2004). Assume that there exists a continuous random
vector X = (X1, X2, . . . , Xp)

T. Let Ui = Fi(Xi) where
Fi is the cumulative distribution function of Xi. By the
integral probability transform, all Ui are uniform random
variables on the interval [0, 1]. The copula C is defined as

C(u1, . . . , up) = P (U1 ≤ u1, . . . , Up ≤ up). (3)

In other words, the copula C is the joint cumulative distri-
bution function of a random vector in the unit cube, where
each marginal is a uniform random variable.

Sklar (1959) explains that a copula is an adequate tool for
understanding the distribution of a random vector, and es-
tablishes the following result:
Theorem 2.1 (Sklar, 1959). Let X = (X1, X2, . . . , Xp)

T

be a random vector. Suppose that F and f are the joint
cumulative distribution function and the joint probability
density function of X . Then, there exists a function C :
[0, 1]p → [0, 1], called the copula of X , such that

F (x1, x2, . . . , xp) = C(F1(x1), F2(x2, ), . . . , Fp(xp)).

Additionally, there exists a function c : [0, 1]p → [0,∞),
called the copula density of X , such that

f(x1, x2, . . . , xp) = c(F1(x1), F2(x2, ), . . . , Fp(xp))

× f1(x1)f2(x2) · · · fp(xp).

For a random variable Y , we have FY (y) = C(FY (y))
and fY (y) = c(FY (y))fY (y). Thus, the univariate random
variable copula is the identity function and the density of
the copula is 1 in the unit interval [0, 1]. This property will
be used later in the construction of the proposed method.

Since the cumulative distribution function of a random vari-
able is a monotonic function, a copula is invariant to the
monotonic transformation of its marginals. This property is
powerful in determining the dependence between random
variables.

2.3. f-divergence

The f -divergence is a function that measures the difference
between two distributions P and Q given as

Dφ(P∥Q) =

∫
φ

(
dP

dQ

)
dQ, (4)

where φ : (0,∞) → R is convex and φ(1) = 0. The f -
divergence family encompasses a wide range of statistical
distances between distributions. Some notable examples in-
clude the Kullback–Leibler divergence with φ(t) = t log t,
the squared Hellinger distance with φ(t) = (

√
t− 1)2 and

the total variation distance with φ(t) = |t− 1|/2.

If φ is strictly convex, P and Q are identical distributions
if and only if Dφ(P∥Q) = 0. This characteristic property
allows us to build upon the f -divergence to test the inde-
pendence between two random vectors. More formally, the
hypotheses for independence testing are given as

H0 : FXY = FXFY versus H1 : FXY ̸= FXFY ,

where FXY is the joint distribution of (X,Y ) and FXFY

is the product of the marginal distributions. The char-
acteristic property of the f -divergence implies that the
above hypotheses can be equivalently written as H0 :
Dφ(FXY ∥FXFY ) = 0 versus H1 : Dφ(FXY ∥FXFY ) ̸=
0. Hence one can use an estimator of

Dφ(FXY ∥FXFY ) =

∫∫
φ

(
dFXY

dFXdFY

)
dFXdFY

as a test statistic for independence testing. If both FX and
FY are absolutely continuous, then Dφ can be represented
in terms of density functions as follows:

Dφ(FXY ∥FXFY ) =

∫∫
fXfY φ

(
fXY

fXfY

)
dxdy. (5)
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Kinney & Atwal (2014) proved that any measure of de-
pendence constructed by f -divergence (5) holds data pro-
cessing inequality. That is, D(X,Z) ≤ D(Y, Z) where
X ⊥⊥ Z |Y .

2.4. Hellinger Correlation

Geenens & Lafaye de Micheaux (2022) proposed the
Hellinger correlation as a tool for capturing the dependence
between a pair of random variables. As implied by its name,
it is formulated based on the squared Hellinger distance,
which is an example of the f -divergence. More specifically,
the squared Hellinger distance between FXY and FXFY is
given as

H2(X,Y ) =
1

2

∫∫
R2

(√
dFXY

dFXdFY
− 1

)2

dFXdFY

=
1

2

∫∫
I2

(
√
cXY (ux, uy)− 1)2duxduy

= 1−
∫∫

I2

√
cXY (ux, uy)duxduy

:= 1− B(X,Y ),

(6)

where I2 denotes the unit square [0, 1]2. In the above equa-
tions, cXY denotes the joint copula density of UX and UY

where UX and UY denote the cumulative distribution func-
tion of X and Y , respectively. The quantity B(X,Y ) in the
last line is referred to as the Bhattacharyya affinity coeffi-
cient (Bhattacharyya, 1943) between the copula densities.
From now on, we will write B(X,Y ) as B for simplicity.

To motivate the Hellinger correlation, consider a bivari-
ate normal random vector (X,Y ) ∼ N((0, 0), ( 1 ρ

ρ 1 )). As
dicsussed in Geenens & Lafaye de Micheaux (2022), the
squared Hellinger distance betweenX and Y has an explicit
expression as

H2(X,Y ) = 1− (2(1− ρ2)1/4)/(4− ρ2)1/2

or B = (2(1 − ρ2)1/4)/(4 − ρ2)1/2 in terms of the Bhat-
tacharyya affinity coefficient. As a result, the correlation
parameter ρ can be written as

|ρ| = 2

B2
{B4 + (4− 3B4)1/2 − 2}1/2.

This relationship leads to the Hellinger correlation between
random variables X and Y defined as follows.

Definition 2.2. Let B denote the Bhattacharyya affinity co-
efficient for (X,Y ) defined in (6). The Hellinger correlation
between X and Y is defined as

H(X,Y ) =
2

B2
{B4 + (4− 3B4)1/2 − 2}1/2. (7)

By construction, the Hellinger correlation H(X,Y ) coin-
cides with the Pearson correlation when (X,Y ) follows a
joint normal distribution, whereas they can differ signifi-
cantly for non-normal distributions. It is worth noting that
the properties of f -divergence and copula are preserved in
the Hellinger correlation as the map h : [0, 1] → [0, 1],
given as h(x) = 2x−2{x4 + (4 − 3x4)1/2 − 2}1/2, is a
bijection.

The Hellinger correlation has several attractive properties,
worth highlighting. First of all, like distance correlation, the
Hellinger correlation fully characterizes independence, i.e.,
H(X,Y ) = 0 if and only ifX and Y are independent. How-
ever, unlike distance correlation, the Hellinger correlation
does not depend on any moment conditions. Moreover, it is
properly normalized as 0 ≤ H(X,Y ) ≤ 1, and equals one
when X and Y are deterministically predictable from each
other. See (P6) in Geenens & Lafaye de Micheaux (2022)
for a more precise statement. The latter property is in sharp
contrast to other popular measures such as Pearson’s cor-
relation, distance correlation and rank-based correlations.
In particular, Pearson’s correlation and distance correlation
are 1 if a random variable is an affine transformation of the
other variable. Additionally, rank-based measures such as
Spearman’s ρ, Kendall’s τ , and Hoeffeding’s D are 1 if two
random variables have a monotonic deterministic relation-
ship. More fundamentally, the Hellinger correlation takes 1
if and only if there exists a Borel function Φ : [0, 1] → R2

such that (X,Y ) = Φ(U) where U is a uniform random
variable in the interval [0, 1]. Another important property
of the Hellinger correlation is that it is invariant to any
monotonic transformations. This means that for any two
strictly monotonic functions ψ1, ψ2, the following relation-
ship holds

H(ψ1(X), ψ2(Y )) = H(X,Y ).

This invariance property has been highlighted as a funda-
mental property of any valid dependence measure. We refer
the reader to Geenens & Lafaye de Micheaux (2022) for
further discussion on the properties of the Hellinger correla-
tion. We also point out that the Hellinger correlation tends
to be more sensitive to non-linear and realistic dependence
than other popular dependence measures as illustrated in
the simulation section in Geenens & Lafaye de Micheaux
(2022).

Definition 2.2 indicates that estimating B is sufficient for
estimating H(X,Y ). Geenens & Lafaye de Micheaux
(2022) introduce an estimator of B based on the es-
timator of Leonenko et al. (2008). To explain, let
{(X1, Y1), . . . , (Xn, Yn)} be a random sample of size n.
Let Ui = (UXi

, UYi
) = (FX(Xi), FY (Yi)). Under the

continuity assumption for FX and FY , it is clear that
UXi and UYi are uniform random variables. Let Ûi,
the sample version of Ui, be (F̂X(Xi), F̂Y (Yi)) where
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F̂X(u) := (1/(n + 1))
∑n

i=1 I{Xi≤u} and F̂Y (u) :=
(1/(n + 1))

∑n
i=1 I{Yi≤u}. Let Ri = minj ̸=i ∥Uj − Ui∥2

and R̂i = minj ̸=i ∥Ûj − Ûi∥2. Then the final estimator of
B suggested by Geenens & Lafaye de Micheaux (2022) is

B̂n =
2
√
n− 1

n

n∑
i=1

R̂i, (8)

and the corresponding estimator of the Hellinger correlation
is

Ĥn(X,Y ) =
2

B̂2
n

{B̂4
n + (4− 3B̂4

n)
1/2 − 2}1/2. (9)

Our work builds upon these estimators of the Bhattacharyya
affinity coefficient and the Hellinger correlation, and pro-
poses an SDR method that offers both theoretical and em-
pirical advantages over existing approaches.

There are several instances of f -divergence (e.g., the to-
tal variation distance) that share similar properties as the
Hellinger correlation. However, unlike the Hellinger corre-
lation, there is currently a lack of computationally efficient
estimators with solid theoretical guarantees for these diver-
gences, which is the main bottleneck for using those in SDR
applications. We therefore focus on the Hellinger corre-
lation in this work, while leaving the exploration of other
f -divergence measures for SDR as an interesting avenue for
future research.

3. Main Results
We now introduce the main results of this work by focusing
on the setting where the structural dimension is d = 1 and
both X and Y have continuous distributions. In this setting,
the multi-index model (2) becomes the single-index model

Y = g(η0
TX, ε), (10)

and our goal is then to estimate the central subspace spanned
by η0 through the Hellinger correlation.

3.1. Method

For the purpose of identification, we restrict the parame-
ter space to the unit sphere of Rp, which is denoted as
Sp−1. Since H is a monotonically decreasing function of
B, minimizing B is equivalent to maximizing H . Thus, our
objective is to find η0 such that

η0 = argmax
α∈Sp−1

H(αTX,Y ) = argmin
α∈Sp−1

B(αTX,Y ). (11)

We use the sphere coordinate to represent Sp−1. To represent
the direction vector in the Euclidean coordinate, we convert
it to the p − 1 radian tuple. For α ∈ Rp, there exists

ϕ = (ϕ1, ϕ2, . . . , ϕp−1) where ϕ1, . . . , ϕp−2 ∈ [0, π] and
ϕp−1 ∈ [0, 2π) defined as below:

ϕ1 = arctan
(√

α2
p + · · ·+ α2

2/α1

)
ϕ2 = arctan

(√
α2
p + · · ·+ α2

3/α2

)
...

ϕp−1 = arctan(αp/αp−1).

(12)

Given the radian tuple, our optimization process consists
of two steps. First, we use the simulated annealing method
(Bélisle, 1992) given initial values produced by existing
SDR methods: SIR, SAVE, DR, and MAVE. Second, start-
ing with the results of the first method, we apply the
downhill simplex method proposed by Nelder & Mead
(1965). After optimization, we transform ϕ and return
(α1, . . . , αp)

⊤ ∈ Rp defined as

α1 = cos(ϕ1)

α2 = sin(ϕ1) cos(ϕ2)

...
αp−1 = sin(ϕ1) · · · sin(ϕp−2) cos(ϕp−1)

αp = sin(ϕ1) · · · sin(ϕp−2) sin(ϕp−1).

(13)

The sample-level estimation procedure is based on our esti-
mators for B and H given in (8) and (9):

η̂n = argmax
α∈Sp−1

Ĥn(α
TX,Y ) = argmin

α∈Sp−1

B̂n(α
TX,Y ),

and our next goal is to investigate theoretical and empirical
properties of η̂n.

Before moving on, let us briefly discuss the computational
complexity of the proposed procedure. Our method involves
computing the Hellinger correlation estimator, which has
a complexity of O(n2p). The transformation of α into
spherical coordinates and back into Euclidean coordinates
adds a complexity of O(p) per iteration, maintaining the
overall complexity at O(n2p) per iteration. The number of
iterations for the downhill simplex method to reach a local
optimum varies depending on several factors such as initial
values and tolerance, making precise complexity analysis
challenging. Nevertheless, denoting the number of iterations
as k, the overall complexity of our method can be concisely
written as O(n2pk).

3.2. Theoretical Results

In this section, we show the consistency of the sample-
level estimation η̂n. First, we show that the population-
level estimation (11) recovers the central space and the
solution is unique up to a sign-flip. Specifically, the next
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theorem shows that we can recover the central subspace
by maximizing H(αTX,Y ) with respect to α ∈ Sp−1, i.e.,
η0 = argmaxH(αTX,Y ) over all α ∈ Sp−1.

Theorem 3.1. Let X ∈ Rp be a random vector and Y ∈ R
be a random variable. Let η0 ∈ Sp−1 be the basis of the
central subspace SY |X . Then η0 = argmaxH(αTX,Y )
for all α ∈ Sp−1. Moreover it holds that H(η0

TX,Y ) =
H(αTX,Y ) if and only if Span(η0) = Span(α).

Proof. Geenens & Lafaye de Micheaux (2022) explained
that the Hellinger correlation satisfies the generalized
data processing inequality. That is, H(X,Y ) ≤
min{H(X,Z), H(Y,Z)} if X ⊥⊥ Y | Z. Let Pα be the
orthogonal projection matrix generated by α. In addition,
let σ(A) denote the smallest σ-algebra generated by the
random variable A. From sufficient dimension reduction
assumptions, for any α ∈ Sp−1,

X ⊥⊥ Y | ηT
0X ⇒ PαX ⊥⊥ Y | η0TX

since σ(PαX) ⊆ σ(X). We also have σ(Pαx) = σ(αTx).
Thus,

αTX ⊥⊥ Y | η0TX.

By the property of the Hellinger correlation,

H(αTX,Y ) ≤ H(η0
TX,Y ).

Thus, H(αTX,Y ) achieves the maximum when α = η0.

Next we prove that H(ηT
0X,Y ) = H(αTX,Y ) if and only

if Span(η0) = Span(α). The “if ” direction is trivial be-
cause the Hellinger correlation is invariant to monotonic
transformations. We thus focus on the “only if ” direction.

Suppose now that α0 ∈ Sp−1 is another maximizer. If
there is a monotonic relation between α0

TX and η0
TX ,

then σ(α0
TX) = σ(η0

TX) and α0 ∈ SY |X . We next as-
sume that there is no monotonic relationship between α0

TX
and η0

TX , and show that this will contradict our condi-
tion that α0 is another maximizer of H(α⊤X,Y ). Since
the Hellinger correlation is a monotone increasing func-
tion of the squared Hellinger distance, it suffices to prove
that H2(X1, Y ) < H2(X2, Y ) where X1 = α0

TX and
X2 = η0

TX . Since X1 and X2 do not have a monotonic
relationship, the density functions are written as p(x1, y) =∫
p(x1|x2)p(x2, y)dx2 and p(x1) =

∫
p(x1|x2)p(x2)dx2.

Equipped with this notation, we have

H2(X1, Y )

=

∫∫
φ

(
p(x1, y)

p(x1)p(y)

)
p(x1)p(y)dx1dy

=

∫∫∫
φ

( ∫
p(x1|x2)p(x2, y)dx2∫
p(x1|x2)p(x2)p(y)dx2

)
× p(x1|x2)p(x2)p(y)dx1dx2dy

≤
∫∫∫

φ

(
p(x2, y)

p(x2)p(y)

)
p(x1|x2)p(x2)p(y)dx1dx2dy,

=

∫∫
φ

(
p(x2, y)

p(x2)p(y)

)
p(x2)p(y)dx2dy

= H2(X2, Y ),

where the inequality in the third line comes from Jensen’s
inequality as used in the proof of Theorem 4 in the appendix
of Kinney & Atwal (2014). Notice that the the squared
Hellinger distance H2 uses φ(t) = (t1/2 − 1)2, which
is strongly convex. Thus, the equality holds if and only
if p(x2,y)

p(x2)p(y)
= 1. In other words, the equality holds if

and only if η0TX ⊥⊥ Y , which contradicts the assumption
that η0 ∈ Sp−1 is the basis of the central subspace SY |X .
Therefore, α0

TX and η0TX have a monotonic relationship
and Span(η0) = Span(α0).

Theorem 3.1 indicates that one can find a basis of the central
subspace by optimizing the Hellinger correlation or Bhat-
tacharyya affinity coefficient. Since η0 and −η0 span the
same space, the result of optimization is not unique. How-
ever, the parameter that one wants to obtain is the central
space. Thus, our goal is identifiable.

The next theorem shows that, for any direction vector, the
sample-level Hellinger correlation of our objective function
is consistent.

Theorem 3.2. Let α ∈ Sp−1 be an arbitrary vector. Then

Ĥn(α
TX,Y )

P−→ H(αTX,Y ) (14)

where P−→ means convergence in probability.

Proof. Since H(αTX,Y ) is a continuous function of
B(αTX,Y ), it suffices to show that B̂n converges to B. Let
U = (UαTX , UY ) for which it holds that B = E[c−1/2(U)].
Since Ûi converges to Ui in probability, R̂i also converges
to Ri. Then

B̂n − B̃n
P−→ 0, (15)

where B̃n = 2
√
n−1
n

∑n
i=1Ri.

Leonenko et al. (2008) provides an estimator for E[f(X)q]
where f is the density function of X . Our estimator B̂n

corresponds to the case where q = −1/2. Theorem 3.2 of
Leonenko et al. (2008) shows that B̃n converges to B in
probability. Thus,

B̂n − B = (B̂n − B̃n) + (B̃n − B) P−→ 0.

With the two above theorems, we can show that the sample-
level estimator η̂n converges to the true SDR direction in
probability.
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Theorem 3.3. Let η̂n = argmax{Ĥn(α
TX,Y ) |α ∈

Sp−1} and η0 = Sp−1 be the basis for the central subspace

SY |X . Then zη̂n
P−→ η0 where |z| = 1.

Proof. Suppose that η̂n is not a consistent estimator of
η0. Since Sp−1 is a compact set, {η̂n} has a subsequence
{η̂m(n)} that converges to η∗ where Span(η∗) ̸= Span(η0).
Then Ĥm(n)(η̂

T
m(n)X,Y ) ≥ Ĥm(n)(η0

TX,Y ). If we take
a limit on both sides, we obtain

H(η∗
TX,Y ) ≥ H(η0

TX,Y ).

By Theorem 3.1, there is a contradiction since η0 =
argmaxH(αTX,Y ). Thus, η̂n is a consistent estimator
of η0.

Like the population-level approach, maximizing the esti-
mate of the Hellinger correlation may give two different
results, η̂n or −η̂n. The role of z is to equalize the direction.
If we focus on the projection matrix, we can check that two
direction vectors align with the same subspace.

We emphasize that our results are derived without the as-
sumption η0

⊤X ⊥⊥ η1
⊤X where η0⊤η1 = 0, which is

required for other SDR methods based on dependence mea-
sures. This assumption may hold asymptotically for dis-
tributions satisfying certain moment conditions. However,
in the case of long-tailed distributions, such as the Cauchy
distribution, this assumption may not be valid. For further
details, see Diaconis & Freedman (1984).

4. Numerical Experiments
To evaluate the accuracy of our proposed method, we con-
ducted simulation experiments under various scenarios:

Model I : Y = (η⊤X)2 + ε.

Model II : Y = exp(η⊤X) + ε.

Model III : Y = 5 sin(η⊤X) + ε,

where ε ∼ N(µ = 0, σ = 0.2) and we set η as

Model I : η = (1,−1, 0, 0, 0, 0, 0, 0, 0, 0)T.

Model II : η = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)T.

Model III : η = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T.

We generate X from two different distributions described as

Normal: (X1, . . . , X10)
T ∼ N10(0, I10)

Non-normal: X1 ∼ Exp(2), X2 ∼ Exp(4), X3 ∼ χ2(5),

X4 ∼ t(15), X5 ∼ t(3),

(X6, . . . , X10)
T ∼ N5(0, I5).

To assess the performance of our method, we employ the
following metric to quantify the difference between two
subspaces:

∆(STrue,SEstimated) = ∥PSTrue
− PSEstimated

∥, (16)

where ∥ · ∥ is the maximum eigenvalue of a matrix and
PSTrue

and PSEstimated
are the orthogonal projection matri-

ces of the subspace STrue = Span(η∗) and SEstimated =
Span(η̂). A smaller value of ∆ indicates a more accurate
estimation.

In addition, to provide a robust comparison of the methods,
we generate 100 samples of each case with different sample
sizes n = 100, 200, 400. Then we compute the mean and
standard deviation of ∆(STrue,SEstimated) over 100 sam-
ples and summarize them in Table 1–Table 3 and also in the
appendix.

Table 1 shows the results of the experiment under
Model I with the normal predictors. It presents
∆(STrue,SEstimated) when we use SIR (Li, 1991), SAVE
(Cook & Weisberg, 1991), DR (Li & Wang, 2007), and
MAVE (Xia et al., 2002). Then SIR-HC, SAVE-HC, DR-
HC, MAVE-HC are our methods with their initial values in
the iteration as SIR, SAVE, DR, and MAVE, respectively.
One can check that SIR fails to recover the central subspace
because of the U-shape structure in the model. However,
our proposed method based on SIR successfully discloses
the central subspace. This result shows that our proposed
method can overcome the weakness of initial methods. Fur-
thermore, our method enhances the SDR performance sig-
nificantly even with the MAVE, which is known to be a
gold standard. More importantly, the accuracy increases as
n increases. It shows an experimental justification of the
consistency of our method.

Table 2 shows the results of the experiment under Model II
with the normal predictors. Model II has a strong monotonic
relation in which SAVE does not perform well. Similar to
Model I, our method can capture central space effectively
even with the worst case, and improves its accuracy signifi-
cantly.

Table 3 presents the summary of results for Model III with
the normal predictors. We can see that the inverse-regression
methods such as SIR, SAVE, and DR require a larger sample
size to capture the direction correctly. However, with our
proposed method, all the estimators become closer to the
true direction with high accuracy even with the small sample
size.

Figure 1 provides the boxplots of ∆(STrue,SEstimated) for
Model I, II, and II with n = 100 and normal predictors.
Overall, our method improves existing SDR methods effec-
tively in various scenarios.

Additional comparisons with contemporary SDR methods
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Table 1. Model I: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n when predictors
are normal.

SIR SIR-HC SAVE SAVE-HC DR DR-HC MAVE MAVE-HC

n = 100
0.9546 0.037 0.5154 0.0355 0.2995 0.0371 0.0654 0.0379
(0.0801) (0.0211) (0.1712) (0.0194) (0.0744) (0.0202) (0.0223) (0.0203)

n = 200
0.8868 0.0261 0.2977 0.0242 0.1961 0.0232 0.0353 0.0257
(0.1552) (0.014) (0.098) (0.0136) (0.0534) (0.0126) (0.0087) (0.0109)

n = 400
0.8793 0.0183 0.1938 0.0177 0.1262 0.0183 0.0205 0.0195
(0.1603) (0.0082) (0.0485) (0.0096) (0.0278) (0.009) (0.0053) (0.0095)

Table 2. Model II: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n when predictors
are normal.

SIR SIR-HC SAVE SAVE-HC DR DR-HC MAVE MAVE-HC

n = 100
0.1191 0.0737 0.9937 0.1203 0.1659 0.0732 0.0699 0.0602
(0.0365) (0.0406) (0.0078) (0.0836) (0.0475) (0.0452) (0.0209) (0.0251)

n = 200
0.0747 0.0356 0.7806 0.0654 0.1007 0.0328 0.0405 0.0314
(0.0203) (0.0182) (0.2891) (0.0576) (0.0323) (0.0144) (0.0104) (0.0119)

n = 400
0.0535 0.0209 0.0691 0.023 0.0662 0.0208 0.0261 0.0179
(0.0152) (0.0092) (0.0231) (0.0132) (0.0161) (0.0093) (0.0067) (0.0071)

Table 3. Model III: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n when predictors
are normal.

SIR SIR-HC SAVE SAVE-HC DR DR-HC MAVE MAVE-HC

n = 100
0.2873 0.0186 0.9663 0.0183 0.4165 0.0172 0.0455 0.018
(0.1141) (0.0102) (0.06) (0.0094) (0.1897) (0.0089) (0.0149) (0.0095)

n = 200
0.2011 0.0135 0.9131 0.0135 0.2606 0.0127 0.0218 0.0144
(0.0583) (0.0069) (0.1254) (0.0072) (0.0919) (0.007) (0.0063) (0.0073)

n = 400
0.1433 0.0092 0.4004 0.0096 0.1761 0.0085 0.012 0.0094
(0.0372) (0.0053) (0.2249) (0.0047) (0.0513) (0.0042) (0.0026) (0.0046)

using distance covariance, HSIC, and ball covariance are
provided in the appendix, along with simulation results with
non-sparse η and non-normal predictors.

5. Real Data Analysis
We apply our methods to the real estate valuation dataset in
the UCI Machine Learning Repository (Yeh, 2018). There
are 414 observations, and the features in the dataset are

• Transaction date,

• house age,

• distance to the nearest MRT station,

• number of convenience stores,

• latitude,

• longitude, and

• (Target) house price of unit area.

We remove the transaction date variable and standardize
the predictors before applying SDR methods. Subsequently,
we randomly divide the dataset into a training sample of
size 300 and use the remaining objects as the test sample.
SDR methods are then applied to the training set to extract
the SDR direction, followed by fitting a local polynomial
regression using the remaining variables to predict the house
price. The weights are given equally for each observation
and quadratic polynomial was used to fit the model. Finally,
we predict the house price in the test set and compute the
test MSE to evaluate the SDR performance. It is important
to note that in real data applications, the true central space
is unknown, which is why we apply local polynomial re-
gression between the target and the reduced predictor η̂TX
to measure the performance. The results are summarized in
Table 4.

Table 4 shows that all the SDR methods have been improved
with our method. The estimated direction with MAVE-HC
is

η̂ = (−0.089,−0.987, 0.019, 0.067, 0.117)T,
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Figure 1. Boxplots of ∆(STrue,SEstimated) over 100 samples of size n = 100 with normal predictors. We compare the performance
between SDR Method (aqua blue) and our proposed SDR Method-HC (light coral). As shown, our proposed method consistently
outperforms the corresponding SDR methods.

Table 4. Real data analysis: Test MSE of house price with SDR
methods. The last row is the result from the generalized additive
models (GAM) without dimension reduction.

SDR Methods MSE: SDR MSE: SDR-HC
SIR 0.313 0.243

SAVE 0.496 0.248
DR 0.314 0.264

MAVE 0.485 0.243
DCOV 0.301 0.263
HSIC 0.257 0.252
BCOV 0.279 0.260

GAM(without SDR) 0.245 -

which tells that “house age” is a dominating factor in the
single-index nonparametric regression model estimation,
Ŷ = f̂(η̂TX).

Table 4 shows that our proposed approach can succinctly
capture the essential characteristics of predictors in regres-
sion using a single-index model, while maintaining regres-
sion performance expressed by MSE.

6. Discussion
In this work, we introduce a novel approach to recovering
the central space by leveraging the Hellinger correlation,
specifically designed for scenarios with a structural dimen-
sion of one. Our method sets itself apart from existing
approaches, such as those dependent on distance covariance
and HSIC, by relaxing the stringent requirements of inde-
pendence assumptions, which frequently present challenges
in practical applications. Significantly, our method excels

at deriving theoretical results without imposing such techni-
cal constraints. Moreover, numerical experiments demon-
strate its capability to enhance current existing sufficient di-
mension reduction methods. Furthermore, the single-index
model SDR provides an interpretation of the intrinsic struc-
ture of the nonparametric regression model, as demonstrated
in the real-world data analysis.

Although the current approach has proven effective, it opens
up several important avenues for future work. One promis-
ing direction is to extend the application of the proposed
method to classification problems. This extension would in-
volve modifying the Hellinger correlation to accommodate
categorical variables, such as by leveraging the discrete f-
divergence (Geenens, 2020). The question of interest is then
to see whether our method can help improve classification
accuracy while maintaining theoretical validity under weak
assumptions. Another direction for future work is to extend
our framework to multi-index models by using a sequential
generation of SDR directions as done in Christou (2020) or
generalizing the Hellinger correlation to multivariate cases.
Additionally, it would be valuable to study the convergence
rate of the proposed method, which would provide a deeper
understanding of its performance across various settings.
We believe that exploring these topics will expand the appli-
cability of our method and make valuable contributions to
the field.

Impact Statement
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of Machine Learning. There are many potential societal
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A. Additional Simulation Results
The following tables present simulation results when the predictors are non-normal. In most cases, our method significantly
enhances existing SDR methods. The specific simulation settings are provided in Section 4.

Table 5. Model I: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n when predictors
are non-normal.

SIR SIR-HC SAVE SAVE-HC DR DR-HC MAVE MAVE-HC

n = 100
0.6971 0.2674 0.6735 0.2391 0.3958 0.2381 0.3233 0.2609
(0.2136) (0.2471) (0.2009) (0.2264) (0.1993) (0.2279) (0.3243) (0.2457)

n = 200
0.7144 0.1882 0.6396 0.1636 0.4058 0.1804 0.1217 0.1915
(0.1396) (0.1613) (0.2075) (0.1299) (0.1405) (0.1521) (0.1517) (0.1565)

n = 400
0.7284 0.1095 0.472 0.1171 0.3929 0.1108 0.0533 0.1193
(0.1064) (0.079) (0.2394) (0.0925) (0.1284) (0.0851) (0.0264) (0.0977)

Table 5 shows the experimental results under Model I with the non-normal predictors. It presents ∆(STrue,SEstimated)
when we use SIR (Li, 1991), SAVE (Cook & Weisberg, 1991), DR (Li & Wang, 2007), and MAVE (Xia et al., 2002).
As in the main text, the SIR-HC, SAVE-HC, DR-HC, MAVE-HC refer to our approaches, using SIR, SAVE, DR, and
MAVE, respectively, as their initial values in the iterations. One can observe that SIR fails to recover the central subspace
as previously mentioned for cases with normal predictors. In contrast, our proposed method based on SIR successfully
discloses the central subspace.

Table 6. Model II: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n when predictors
are non-normal.

SIR SIR-HC SAVE SAVE-HC DR DR-HC MAVE MAVE-HC

n = 100
0.2287 0.0666 0.9200 0.1190 0.4555 0.1049 0.0686 0.0377
(0.1429) (0.0679) (0.0583) (0.144) (0.2447) (0.1307) (0.0327) (0.021)

n = 200
0.1053 0.0193 0.9067 0.0557 0.3717 0.0425 0.0296 0.0121
(0.0476) (0.0214) (0.1324) (0.0965) (0.2233) (0.0712) (0.0125) (0.0091)

n = 400
0.0881 0.0069 0.5365 0.0162 0.359 0.0126 0.0148 0.004
(0.0524) (0.0074) (0.3664) (0.0273) (0.2045) (0.0243) (0.0063) (0.0027)

Table 7. Model III: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n when predictors
are non-normal.

SIR SIR-HC SAVE SAVE-HC DR DR-HC MAVE MAVE-HC

n = 100
0.2457 0.0421 0.7842 0.0393 0.4237 0.0379 0.0286 0.0363
(0.1431) (0.0286) (0.2328) (0.0236) (0.2585) (0.0272) (0.0178) (0.0251)

n = 200
0.2044 0.0298 0.8084 0.0292 0.3501 0.0317 0.0178 0.0288
(0.0997) (0.0235) (0.1985) (0.0226) (0.2204) (0.0255) (0.0097) (0.0225)

n = 400
0.1889 0.0229 0.7952 0.0237 0.3232 0.0246 0.0117 0.0226
(0.0824) (0.0186) (0.1989) (0.0176) (0.1856) (0.0175) (0.0072) (0.0175)

Table 6 and 7 show the experimental results under Model II and Model III with the non-normal predictors. Similar to normal
cases, our method can effectively capture the central space and significantly improves its accuracy.

Tables 8–10 show the experimental results using modern SDR methods as the initial values. We compared three existing
methods (via distance covariance (Sheng & Yin, 2013), via HSIC (Zhang & Yin, 2015) and via Ball covariance (Zhang
& Chen, 2019)) that capture the central subspace by maximizing dependency measures. The simulation settings are same
as those in Tables 1–3. The predictors follow normal distributions. The true ηs and models are detailed in Section 4. Our
proposed method enhances outcomes by using initial values provided by these three methods. In most cases, the standard
deviation has also decreased. One can verify that our method still improves the results, even though the results of the existing
method were already promising.
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Table 8. Model I: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n where modern
methods are initial methods.

DCOV DCOV-HC HSIC HSIC-HC BCOV BCOV-HC

n = 100 0.1521 0.0373 0.1578 0.0379 0.1425 0.0339
(0.1744) (0.0224) (0.1694) (0.0215) (0.1943) (0.0191)

n = 200 0.0966 0.0232 0.0948 0.0224 0.0747 0.0227
(0.159) (0.0131) (0.1293) (0.0141) (0.1628) (0.0121)

n = 400 0.0732 0.0177 0.0804 0.0182 0.0556 0.0184
(0.1617) (0.0086) (0.1608) (0.0095) (0.1654) (0.0089)

Table 9. Model II: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n where modern
methods are initial methods.

DCOV DCOV-HC HSIC HSIC-HC BCOV BCOV-HC

n = 100 0.1632 0.0843 0.1077 0.0680 0.1087 0.0660
(0.076) (0.0539) (0.0332) (0.0354) (0.0422) (0.0365)

n = 200 0.0997 0.0411 0.0743 0.0373 0.0396 0.0307
(0.0291) (0.021) (0.0219) (0.0173) (0.0153) (0.0155)

n = 400 0.0657 0.0219 0.0469 0.0204 0.0289 0.0163
(0.0549) (0.011) (0.0131) (0.0089) (0.0983) (0.007)

Table 10. Model III: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n where modern
methods are initial methods.

DCOV DCOV-HC HSIC HSIC-HC BCOV BCOV-HC

n = 100 0.1459 0.0194 0.1223 0.0177 0.0594 0.0201
(0.0452) (0.0103) (0.0399) (0.0104) (0.0284) (0.0116)

n = 200 0.0873 0.0126 0.075 0.0114 0.0204 0.0136
(0.0252) (0.0067) (0.0201) (0.0066) (0.007) (0.006)

n = 400 0.0594 0.0087 0.0503 0.0090 0.0114 0.009
(0.0143) (0.0039) (0.0127) (0.0043) (0.0035) (0.0041)

Tables 11–13 show the experimental results when η is not sparse. The sparsity of the direction vector does not affect our
proposed method as well as the other existing methods. We changed only the true ηs as follows:

Model I : η = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T/
√
10.

Model II : η = (1, 1, 1,−1,−1,−1,−1, 1, 1,−1)T/
√
10.

Model III : η = (3,−1, 4,−2,−4, 5, 1,−3,−5, 2)T/
√
110.

All other conditions, including the models and the distribution of predictors, remain the same as described in Section 4.

Table 11. Model I: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n when true η is
non-sparse.

SIR SIR-HC SAVE SAVE-HC DR DR-HC MAVE MAVE-HC

n = 100 0.9462 0.8865 0.5093 0.6764 0.2946 0.2274 0.0534 0.0328
(0.0903) (0.1755) (0.185) (0.3597) (0.0766) (0.2351) (0.015) (0.0112)

n = 200 0.8857 0.8435 0.3138 0.1749 0.1821 0.0678 0.0246 0.0152
(0.154) (0.1636) (0.1186) (0.2072) (0.0442) (0.0471) (0.0061) (0.0046)

n = 400 0.8804 0.6878 0.1819 0.0564 0.1249 0.0403 0.013 0.0085
(0.1703) (0.3057) (0.0538) (0.0415) (0.0349) (0.0325) (0.0032) (0.0026)
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Table 12. Model II: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n when true η is
non-sparse.

SIR SIR-HC SAVE SAVE-HC DR DR-HC MAVE MAVE-HC

n = 100 0.1554 0.1223 0.9922 0.7911 0.5444 0.5769 0.0725 0.0741
(0.0431) (0.0496) (0.0095) (0.1455) (0.1962) (0.3026) (0.0259) (0.0358)

n = 200 0.0992 0.0677 0.8597 0.6362 0.4024 0.2929 0.0427 0.0372
(0.0272) (0.0307) (0.2312) (0.255) (0.1727) (0.2632) (0.0137) (0.0194)

n = 400 0.0519 0.0623 0.0696 0.0679 0.0704 0.0691 0.0378 0.0594
(0.0109) (0.0189) (0.0181) (0.0228) (0.0168) (0.0194) (0.0091) (0.0179)

Table 13. Model III: Mean and standard deviation (with parentheses) of ∆(STrue,SEstimated) over 100 samples of size n when true η is
non-sparse.

SIR SIR-HC SAVE SAVE-HC DR DR-HC MAVE MAVE-HC

n = 100 0.1405 0.0871 0.9903 0.763 0.194 0.1012 0.0371 0.0398
(0.0568) (0.0497) (0.0133) (0.1594) (0.0831) (0.098) (0.0131) (0.0111)

n = 200 0.0853 0.0409 0.8053 0.5614 0.1198 0.0542 0.0176 0.0243
(0.0289) (0.018) (0.2765) (0.256) (0.0417) (0.0273) (0.0047) (0.0073)

n = 400 0.0624 0.03 0.0893 0.0373 0.0808 0.0338 0.0109 0.0174
(0.0201) (0.0116) (0.0334) (0.0201) (0.0244) (0.0168) (0.0029) (0.0057)

The overall behavior of the experimental results with non-sparse direction vectors is not significantly different from those
in Tables 1–3. We observe that, as the sample size increases, our proposed method detects the true directions with high
accuracy.
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