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Abstract
Combining the predictions of multiple trained
models through ensembling is generally a good
way to improve accuracy by leveraging the dif-
ferent learned features of the models, however
it comes with high computational and storage
costs. Model fusion, the act of merging multi-
ple models into one by combining their parame-
ters reduces these costs but doesn’t work as well
in practice. Indeed, neural network loss land-
scapes are high-dimensional and non-convex and
the minima found through learning are typically
separated by high loss barriers. Numerous recent
works have been focused on finding permutations
matching one network features to the features of a
second one, lowering the loss barrier on the linear
path between them in parameter space. However,
permutations are restrictive since they assume a
one-to-one mapping between the different models’
neurons exists. We propose a new model merging
algorithm, CCA Merge, which is based on Canon-
ical Correlation Analysis and aims to maximize
the correlations between linear combinations of
the model features. We show that our alignment
method leads to better performances than past
methods when averaging models trained on the
same, or differing data splits. We also extend this
analysis into the harder setting where more than 2
models are merged, and we find that CCA Merge
works significantly better than past methods. 1

1. Introduction
A classical idea for improving the predictive performance
and robustness of machine learning models is to use multi-
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Figure 1: Visual representation of using CCA Merge to
align two models. Canonical Correlation Analysis is used
to find a common representation space where orthogonal
linear combinations of the features (neurons) from A and
B are maximally correlated. The linear transformation PA

(resp. PB) and its inverse can be used to go from the repre-
sentation space of model A (resp. model B) to this common
representation space and back. By applying PB first and
then PA−1

we can align the representations of model B
to those of model A. Applying the same transformation
directly to the parameters of model B effectively aligns the
two models, thus allowing their merging.

ple trained models simultaneously. Each model might learn
to extract different, complementary pieces of information
from the input data, and combining the models would take
advantage of this complementarity; thus benefiting the final
performance (Ho, 1995). One of the simplest ways to imple-
ment this idea is to use ensembles, where multiple models
are trained on a given task and their outputs are combined
through averaging or majority vote at inference (Ho, 1995;
Lobacheva et al., 2020). While this method yields good
results, it comes with the disadvantages of having to store
in memory the parameters of multiple models and having
to run each of them individually at inference time, resulting
in high storage and computational costs, particularly in the
case of neural networks (NNs). Another way of leveraging
multiple models to improve predictive performance is to
combine the different sets of parameters into a single model.
This is typically done through averaging or interpolation
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in the parameter space of the models. After this “fusion”
only a single model remains which will be used at inference
time; therefore, the storage and computational costs are min-
imized, being the same as for a single model. The downside
of such model fusion methods is that existing methods are
not robust and typically do not perform as well in practice
as ensembling (Stoica et al., 2024). Neural networks are
highly over-parameterized for the task they solve (Arpit
et al., 2017) and their loss landscapes are high-dimensional
and non-convex objects which are still somewhat poorly
understood despite many recent works shedding light on
some of their characteristics (Goodfellow & Vinyals, 2015;
Keskar et al., 2017; Li et al., 2018; Horoi et al., 2022). Mul-
tiple good local minima can be found for a given model and
task but these minima are most often separated by regions
of high loss (Frankle et al., 2020). Therefore, combining
the parameters from multiple trained models without falling
into one of these high-loss regions and destroying the fea-
tures learned during training is a hard task and constitutes
an active area of research.

Previous works established empirically that any two min-
ima in an NN parameter space found through SGD and its
variants are linked by a non-linear low-loss path (Garipov
et al., 2018; Draxler et al., 2018). The term mode connec-
tivity describes this phenomenon. However, to find this
low-loss path between two minima one needs to run a com-
putationally expensive optimization algorithm. As such,
model fusion based on nonlinear mode connectivity has not
been explored. On the other hand, linear mode connectivity
which describes two optima connected by a linear low loss
path in the parameter space (Frankle et al., 2020), provides a
straightforward way of combining these models. Indeed, if
the loss remains low on the linear path from one model to the
other, merging the two models is as simple as averaging or
linearly interpolating their parameters. This has emerged as
a simple, yet powerful way to compare NN minima. How-
ever, this phenomenon is very rare in practice and is not
guaranteed even for networks with the same initializations
(Frankle et al., 2020).

One reason linear mode connectivity is hard to obtain is
due to the well-known NN invariance to permutations. In-
deed, it is possible to permute the neurons of an NN layer
without changing the actual function learned by the model
as long as the connections/weights to the subsequent layer
are permuted consistently. Therefore, it is possible to have
the same features learned at every layer of two different
NN models and them not be linearly mode-connected if the
order of the features differs from one network to the other.
Using this invariance as justification, Entezari et al. (2022)
conjectured that most SGD solutions can be permuted in
such a way that they are linearly mode connected to most
other SGD solutions and presented empirical support for
this conjecture. Many works in recent years have provided

algorithms for finding permutations that successfully ren-
der pairs of SGD solutions linearly mode connected, or at
least significantly lower the loss barrier on the linear path
between these solutions, further supporting this conjecture
(Tatro et al., 2020; Singh & Jaggi, 2020; Peña et al., 2023;
Ainsworth et al., 2023).

While these algorithms and the found transformations have
been successful in lowering the loss barrier when interpo-
lating between pairs of SGD solutions most of them do not
consider the possibility that perhaps other linear transforma-
tions, besides permutations, would provide an even better
matching of NN weights. While the permutation conjecture
is enticing given its simplicity and NNs’ invariance to per-
mutations, there is nothing inherently stopping NNs from
distributing computations that are done by one neuron in
a model to be done by multiple neurons in another model.
Permutations would fail to capture this relationship since
it is not a one-to-one mapping between features. Further-
more, the focus of recent works has been mainly on merging
pairs of models, and merging multiple models has received
limited study. However, if a similar function is learned by
networks trained on the same task then it should be possible
to extract the commonly learned features from not only two
but also a larger population of models. Model merging al-
gorithms should therefore be able to find these features and
the relationship between them and then merge many models
without negatively affecting performance.

Contributions In this work we introduce CCA Merge, a
more flexible way of merging models based on maximiz-
ing the correlation between linear combinations of neurons.
Furthermore we focus on the difficult setting of merging not
only two but also multiple models which were fully trained
from random initializations. Our main contributions are
threefold:

• We propose a new model merging method based on
Canonical Correlation Analysis (Sec. 3) which we will
refer to as “CCA Merge”. This method is more flexi-
ble than past, permutation-based methods and therefore
makes better use of the correlation information between
neurons (Sec. 4.2).

• We compare CCA Merge to past works and find that it
yields better performing merged models across a variety
of architectures and datasets. This is true in both settings
where the models were trained on the same data (Sec. 4.3)
or on disjoint splits of the data (Sec. 4.5).

• We take on the difficult problem of aligning features from
multiple models and then merging them. We find that
CCA Merge is significantly better at finding the common
learned features from populations of NNs and aligning
them, leading to lesser accuracy drops as the number of
models being merged increases (Sec. 4.4).
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2. Related Work
Mode connectivity Freeman & Bruna (2017) proved the-
oretically that one-layered ReLU neural networks have
asymptotically connected level sets. Garipov et al. (2018)
and Draxler et al. (2018) explore these ideas empirically
and introduce the concept of mode connectivity to describe
ANN minima that are connected by nonlinear paths in pa-
rameter space along which the loss remains low. Frankle
et al. (2020) introduced the concept of linear mode connec-
tivity describing the scenario in which two ANN minima
are connected by a linear low loss path in parameter space.

Model merging through alignment More recently, En-
tezari et al. (2022) have conjectured that “Most SGD solu-
tions belong to a set S whose elements can be permuted in
such a way that there is no barrier on the linear interpolation
between any two permuted elements in S” or in other words
most SGD solutions are linearly mode connected provided
the right permutation is applied to align the two solutions.
Many recent works seem to support this conjecture, propos-
ing methods for finding the “right” permutations (Tatro et al.,
2020; Singh & Jaggi, 2020; Peña et al., 2023; Ainsworth
et al., 2023).

“Easy” settings for model averaging Linear mode con-
nectivity is hard to achieve in deep learning models. Frankle
et al. (2020) established that even models trained on the
same dataset with the same learning procedure and even the
same initialization might not be linearly mode connected
if they have different data orders/augmentations. It seems
that only models that are already very close in parameter
space can be directly combined through linear interpolation.
This is the case for snapshots of a model taken at different
points during its training trajectory (Garipov et al., 2018;
Izmailov et al., 2018) or multiple fine-tuned models with
the same pre-trained initialization (Wortsman et al., 2022;
Ilharco et al., 2023; Yadav et al., 2023). This latter setting
is the one typically considered in NLP research. Another
setting that is worth mentioning here is the “federated learn-
ing” inspired one where models are merged every couple
of epochs during training (McMahan et al., 2017). The
common starting point in parameter space and the small
number of training iterations before merging make LMC
easier to attain. Model fusion has been very successful in
these settings where aligning the models prior to merging is
not required.

We emphasize that these settings are different from ours in
which we aim to merge fully trained models with different
parameter initializations and SGD noise (data order and
augmentations).

Merging multiple models Merging more than two mod-
els has only been explored thoroughly in the “easy” settings
described above. For example, Wortsman et al. (2022) aver-

age models fine-tuned with different hyperparameter config-
urations and find that this improves accuracy and robustness.
Jolicoeur-Martineau et al. (2024) average the weights of a
population of neural networks multiple times during train-
ing, leading to performance gains. On the other hand, works
that have focused on providing feature alignment methods
to be able to merge models in settings in which LMC is not
trivial have mainly done so for 2 models at the time (Singh
& Jaggi, 2020; Ainsworth et al., 2023; Peña et al., 2023;
Jordan et al., 2023). An exception to this is Git Re-Basin
(Ainsworth et al., 2023) which proposes a “Merge Many”
algorithm for merging a set of multiple models by succes-
sively aligning each model to the average of all the other
models. However, results obtained with this method, which
they use to merge up to 32 models, only concern the very
simple set-up of MLPs trained on MNIST. Singh & Jaggi
(2020) also consider merging multiple models but either in
a similarly simple set-up, i.e. 4 MLPs trained on MNIST,
or they fine-tune the resulting model after merging up to 8
VGG11 models trained on CIFAR100. We extend this line
of work to more challenging settings, using more complex
model architectures, we report the merged models accura-
cies directly without fine-tuning and make this a key focus
in our work.

Model merging beyond permutations We note that the
two model merging methods based on optimal transport
(Singh & Jaggi, 2020; Peña et al., 2023) can also align
models beyond permutations. However, in Singh & Jaggi
(2020) this only happens when the two models being merged
have different numbers of neurons at each layer. When the
models have the same number of neurons the alignment
matrix found by their method is a permutation, as such the
majority of their results are with permutations. The method
proposed by Peña et al. (2023) isn’t constrained to finding
binary permutation matrices but binarity is still encouraged
through the addition of an entropy regularizer. Furthermore,
our CCA based method is different in nature from both of
these since it is not inspired by optimal transport theory.

CCA in deep learning In the general context of deep
learning, Canonical Correlation Analysis has been used to
align and compare learned representations in deep learning
models (Raghu et al., 2017; Morcos et al., 2018; Gotmare
et al., 2019), a task which is similar to the feature matching
conducted by model merging algorithms. These past works
serve as great motivation for the present paper.

3. Using CCA to Merge Models
3.1. Merging Models: Problem Definition
Let M denote a standard multilayer perceptron (MLP) and
layer Li ∈ M denote a linear layer of that model with a
σ = ReLU activation function, weights Wi ∈ Rni×ni−1

and bias bi ∈ Rni . Its input is the vector of embeddings
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from the previous layer xi−1 ∈ Rni−1 and its output can be
described as:

xi = σ(Wi · xi−1 + bi)

We use “ · ” to denote standard matrix multiplication.

Problem statement Now consider two deep learning mod-
els A and B with the same architecture. We are interested in
the problem of merging the parameters from models A and
B in a layer-by-layer fashion. As mentioned in Sec. 2, sim-
ply interpolating the models parameters typically doesn’t
work when the models are trained from scratch from dif-
ferent initializations. We therefore need to align the two
models’ features before averaging them. We use the term
“feature” in our work to refer to the individual outputs of a
hidden layer neuron within a neural network. We sometimes
also use the term “neuron” to refer to its learned feature or,
vice-versa, we might use the term “feature” to refer to a neu-
ron and its parameters. Mathematically, we are looking for
linear transformations Ti ∈ Rni×ni which can be applied at
the output level of model B layer i parameters to maximize
the alignment with model A’s parameters and minimize the
interpolation error. The output of the transformed layer i of
B is then:

xB
i = σ(Ti ·WB

i · xB
i−1 +Ti · bB

i )

We therefore also need to apply the inverse of Ti at the
input level of the following layer’s weights to keep the flow
of information consistent inside a given model:

xB
i+1 = σ(WB

i+1 ·T−1
i · xB

i + bB
i+1)

After finding transformations {Ti}i=1 for every merging
layer in the network we can merge the two model’s parame-
ters at every layer:

Wi =
1

2
(WA

i +Ti ·WB
i ·T−1

i−1) (1)

For the biases we have bi = 1
2 (b

A
i + Ti · bB

i ). The lin-
ear transformations T therefore need to be invertible so we
can undo their changes at the input level of the next layer
and they need to properly align the layers of models A and
B. This problem statement is a generalization of the one
considered in past works where transformations T were con-
strained to being permutations (Tatro et al., 2020; Entezari
et al., 2022; Ainsworth et al., 2023; Jordan et al., 2023).

We note that while artificial neural networks are invariant
to permutations in the order of their neurons, this is not the
case for general invertible linear transformations. Therefore,
after applying the transformations to model B to align it to A
its functionality might be altered. However, our results (Sec.
4) seem to suggest that the added flexibility of merging linear
combinations of features outweighs the possible negative
effects of this loss in functionality.

Practical considerations In practice, it is often easier to
keep model A fixed and to find a way to transform model
B such that the average of their weights can yield good
performance, as opposed to transforming the parameters of
both models. Also, depending on the model architecture,
it might not be necessary to compute transformations after
each single layer, for example, skip connections preserve
the representation space, and the last layers of models are
already aligned by the training labels. Therefore we refer to
the specific layers in a network where transformations must
be computed as “merging layers”.

Merging multiple models In the case where multiple
models are being merged there is a simple way of extending
any method which aligns features between two models to
the multiple models scenario. Suppose we have a set of
models {Mi}ni=1 which we want to merge. We can pick
one of them, say Mj for 1 ≤ j ≤ n, to be the reference
model. Then we can align the features of every other model
in the set to those of the reference model and average the
weights. While this “all-to-one” merging approach is quite
straightforward it seems to work well in practice.

3.2. CCA Merge: Merging models with CCA

The “best” way to align two layers from two different deep
learning models and compute the transformations T is still
an open-question and has been the main differentiating fac-
tor between past works (see the baselines presented in Sec.
4.3 and “Model merging through alignment” in Sec. 2).

We propose the use of Canonical Correlation Analysis
(CCA) to find the transformations which maximize the corre-
lations between linear combinations of the original features
from models A and B. Let XM

i ∈ Rm×ni denote the set
of outputs (internal representations or neural activations)
of the i-th layer of model M ∈ {A,B} in response to m
given input examples. We center XM

i so that each column
(feature or neuron) has a mean of 0.

CCA finds projection matrices PA
i and PB

i which bring
the neural activations XA

i and XB
i respectively from their

original representation spaces into a new, common, repre-
sentation space through the multiplications XA

i · PA
i and

XB
i ·PB

i . The features of this new representation space are
orthogonal linear combinations of the original features of
XA

i and XB
i , and they maximize the correlations between

the two projected sets of representations.

Once the two projection matrices PA
i and PB

i aligning XA
i

and XB
i respectively have been found through CCA, we

can define the transformation Ti =
(
PB

i ·PA
i
−1

)⊤
. This

transformation can be thought of as first bringing the acti-
vations of model B into the common, maximally correlated
space between the two models by multiplying by PB

i and
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then applying the inverse of PA
i to go from the common

space found by CCA to the embedding space of model A.
The transpose here is simply to account for the fact that Ti

multiplies Wi on the left while the PM
i ’s were described

as multiplying XM
i on the right, for M ∈ {A,B}. The

averaging of the parameters of model A and transformed B
can then be conducted following Eq. 1.

Background on CCA In this section we omit the layer
index i since it is implicit. CCA finds the projection matrices
PA and PB by iteratively defining vectors pA and pB in
Rn such that the projections XA · pA and XB · pB have
maximal correlation and norm 1.

Let SAA = (XA)⊤ · XA, SBB = (XB)⊤ · XB and
SAB = (XA)⊤ ·XB denote the scatter matrix of XA, the
scatter matrix of XB and the cross-scatter matrix of XA and
XB respectively.

pA,pB = argmax
pA,pB

(pA)⊤SABpB

s.t. ∥XA · pA∥2 = (pA)⊤ · SAA · pA = 1

∥XB · pB∥2 = (pB)⊤ · SBB · pB = 1

Since these vectors pA and pB are defined iteratively they
are also required to be orthogonal to the vectors found previ-
ously in the metrics defined by SAA and SBB respectively.
Formulating this as an ordinary eigenvalue problem and
making it symmetric by a change of variables allows us to
find the closed-form solutions as being the vectors in PA

and PB defined by:

U,S,V⊤ = SVD((SAA)−1/2 · SAB · (SBB)−1/2)

PA = (SAA)−1/2 ·U and PB = (SBB)−1/2 ·V

In practice we use Regularized CCA to make the computa-
tion of PA and PB more robust (see App. A.2). For more
details we direct the reader to De Bie et al. (2005) from
which this section was inspired.

4. Results
4.1. Experimental Details
We trained VGG11 models (Simonyan & Zisserman, 2015)
on CIFAR10 (Krizhevsky & Hinton, 2009), ResNet20 mod-
els on CIFAR100 and ResNet18 models on ImageNet (Rus-
sakovsky et al., 2015). We trained models of different
widths, multiplying their original width by w ∈ {1, 2, 4, 8}.
The models were trained either using the one-hot encodings
of the labels or the CLIP (Radford et al., 2021) embeddings
of the class names as training objectives. This last setting is
similar to the one used by Stoica et al. (2024) and we found
it to yield better learned representations and performances
on the task as well as less variability between random ini-
tializations.

4.2. CCA’s flexibility allows it to better model relations
between neurons

We first aim to illustrate the limits of permutation based
matching and the flexibility offered by CCA Merge. Sup-
pose we want to merge two models, A and B, at a specific
merging layer, and let {zMi }ni=1 denote the set of neurons
of model M ∈ {A,B} at that layer. We note here that, in
terms of network weights, zMi simply refers to the i-th row
of the weight matrix WM at that layer. Given the activa-
tions of the two sets of neurons in response to a set of given
inputs, we can compute the correlation matrix C where el-
ement Cij is the correlation between neurons zAi and zBj .
For each neuron zAi , for 1 ≤ i ≤ n, the distribution of its
correlations with all neurons from model B is of key interest
for the problem of model merging. If, as the permutation
hypothesis implies, there exists a one-to-one mapping be-
tween {zAi }ni=1 and {zBi }ni=1, then we would expect to have
one highly correlated neuron for each zAi – say zBj for some
1 ≤ j ≤ n – and all other correlations Cik, k ̸= j, close
to zero. On the other hand, if there are multiple neurons
from model B highly correlated with zAi , this would indicate
that the feature learned by zAi is distributed across multiple
neurons in model B – a relationship that CCA Merge would
capture.

In the left column of Fig. 2, we plot the distributions of
the correlations between two ResNet20x8 models (i.e., all
the elements from the correlation matrix C) for 2 differ-
ent merging layers. The vast majority of correlations have
values around zero, as expected, since each layer learns
multiple different features. In the right column of Fig. 2
we use box plots to show the values of the top 5 correlation
values across all {zAi }ni=1. For each neuron zAi , we select
its top k-th correlation from C and we plot these values
for all neurons {zAi }ni=1. For example, for k = 1, we take
the value max

1≤j≤n
Cij , for k = 2 we take the second largest

value from the i-th row of C, and so on. We observe the top
correlations values are all relatively high but none of them
approaches full correlation (i.e., value of one), suggesting
that the feature learned by each neuron zAi from model A is
distributed across multiple neurons from B – namely, those
having high correlations – as opposed to having a single
highly correlated match.

Given the flexibility of CCA Merge, we expect it to better
capture these relationships between the neurons of the two
networks. We recall that CCA Merge computes a linear
transformation T that matches to each neuron zAi a linear
combination zAi ≈

∑n
j=1 Tijz

B
j of the neurons in B. We

expect the distribution of the coefficients (i.e., elements of
T) to match the distribution of the correlations (Cij ele-
ments), indicating the linear transformation found by CCA
Merge adequately models the correlations and relationships
between the neurons of the two models. For each neuron
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zAi , we select its top k-th, for k ∈ {1, 2}, correlation from
the i-th row of C and its top k-th coefficient from the i-th
row of T and we plot a histogram of these values for all
neurons {zAi }ni=1 in Fig. 3. Indeed, the distributions of the
correlations and those of the CCA Merge coefficients are
visually similar, albeit not fully coinciding. To quantify this
similarity we compute the Wasserstein distance between
these distributions, normalized by the equivalent quantity if
the transformation was a permutation matrix. For a permuta-
tion matrix, the top 1 values would be of 1 for every neuron
zAi and all other values would be 0. We can see that CCA
Merge finds coefficients that closely match the distribution
of the correlations, more so than simple permutations, since
the ratio of the two distances are 0.15 and 0.04, respectively,
for top 1 values in the two considered layers and 0.35 and
0.23 for top 2 values.

Figure 2: Left column: distribution of correlation val-
ues between the neurons {zAi }ni=1 and {zBi }ni=1 of two
ResNet20x8 models (A and B) trained on CIFAR100 at
two different merging layers; Right column: for k ∈
{1, 2, 3, 4, 5} the distributions of the top k-th correlation
values for all neurons in model A at those merging layers.

Furthermore, when using permutations to merge 2 models,
A and B, a large percentage (25-50%) of the neurons from
model A do not get matched with their highest correlated
neuron from model B by the permutation matrix, we call
these non-optimal matches. In such cases, the relationship
between these highly correlated but not matched neurons
is completely ignored during merging. CCA Merge on the
other hand consistently assigns high transformation coeffi-
cients to the top correlated neurons. See App. B for more
details.

4.3. Models merged with CCA Merge achieve better
performance

In Table 1 we show the test accuracies of merged VGG11
and ResNet20 models of different widths trained on CI-
FAR10 and CIFAR100 respectively for CCA Merge and
multiple other popular model merging methods. The num-
ber of models being merged is 2 and for each experiment,
we report the mean and standard deviation across 4 merges
where the base models were trained with different initial-

Figure 3: Distributions of top 1 (left column) and 2 (right
column) correlations (blue) and CCA Merge transformation
coefficients (orange) across neurons from model A at two
different merging layers. In the left column for example,
for each neuron zAi we have one correlation value corre-
sponding to max1≤j≤n Cij and one coefficient value corre-
sponding to max1≤j≤n Tij where C is the cross-correlation
matrix between neurons of models A and B, and T is the
CCA Merge transformation matching neurons of B to those
of A. Wasserstein distance between the distributions of top
k ∈ {1, 2} correlations and top k Merge CCA coefficients
are reported, relative to equivalent distances between corre-
lations and Permute transforms (all top 1 values are 1, and
top 2 values are 0).

ization, data augmentation, and data order seeds. Results
for more widths can be found in App. C. We report the
average accuracies of the base models being merged under
the label “Base models avg.” (i.e. each model is evaluated
individually and their accuracies are then averaged) as well
as the accuracies of ensembling the models (the logits of
the different models are averaged and the final prediction is
the argmax). Ensembling is considered to be the upper limit
of what model fusion methods can achieve. Also, since the
models being merged were trained on the same data, we do
not expect the merged models to outperform the endpoint
ones in this particular setting, see App. G for more details.
We compare CCA Merge with the following methods:

• Direct averaging: averaging the models’ weights without
applying any transformation to align neurons. This is
equivalent to T = T−1 = I, the identity matrix.

• Permute: permuting model weights to align them, the
permutation matrix is found by solving the linear sum
assignment problem consisting of maximizing the sum
of correlations between matched neurons. This method
is equivalent to the “Matching Activations” one from
Ainsworth et al. (2023), the “Permute” method considered
in Stoica et al. (2024) and the neuron alignment algorithm
proposed by Li et al. (2015); Tatro et al. (2020) and used
in Jordan et al. (2023).
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• OT Fusion: Using optimal transport to align neurons.
This is the method presented in Singh & Jaggi (2020).

• Matching Weights: permuting model weights by di-
rectly minimizing the distance between the two model
weights by solving a sum of bilinear assignments problem
(SOBLAP). This is the main method from Ainsworth et al.
(2023).

• ZipIt!: model merging method proposed by Stoica et al.
(2024). We note that ZipIt! also allows the merging
of neurons from the same network which results in a
redundancy reduction effect that the other methods do not
have. Also, it isn’t strictly speaking a permutation-based
method although similar.

The models were trained from scratch from different ini-
tializations, the merging was based on the training data (to
compute activation statistics) but all accuracies reported are
on the test set. For ResNets, we recompute the BatchNorm
statistics after the weight averaging and before evaluation as
suggested by Jordan et al. (2023) to avoid variance collapse.

VGG11 models merged with CCA Merge have signifi-
cantly higher accuracies than models merged with any other
method, and this is true across all model widths considered.
Differences in accuracy ranging from 10% (×8 width) up
to 25% (×1 width) can be observed between CCA Merge
and the second-best performing method. Furthermore, CCA
Merge is more robust when merging smaller width models,
incurring smaller accuracy drops than other methods when
the width is decreased from ×8 to ×1; 1.71% drop for CCA
Merge versus 18.34% for Matching Weights and 8.19% for
Permute. Lastly, CCA Merge seems to be more stable across
different initializations, the accuracies having smaller stan-
dard deviations than all other methods for the same width
except for Matching Weights for ×8 width models. We note
that for VGG models with width multipliers above ×2, we
ran into out-of-memory issues when running ZipIt!, which
is why those results are not present. The same conclusions
seem to hold for ResNets20 trained on CIFAR100, although
the differences in performance here are less pronounced.

In Table 2 we present the performance of merged ResNet18
models of width 4 trained on ImageNet. In this setting we
ran into OOM issues with ZipIt! therefore we only compare
with Direct averaging, Permute, OT Fusion and Matching
Weights, the four of which are significantly outperformed by
CCA Merge. CCA Merge reduces the gap between model
merging methods and model ensembles.

For both VGG and ResNet architectures as well as for all
considered datasets the added flexibility of CCA Merge over
permutation-based methods seems to benefit the merged
models. Aligning models using linear combinations allows
CCA Merge to better model relationships between neurons
and to take into account features that are distributed across

multiple neurons. In addition to the raw performance bene-
fits, CCA Merge seems to be more stable across different
model widths as well as across different random initializa-
tions and data order and augmentation.

4.4. CCA merging finds better common representations
between many models

In this section, we present our results related to the merging
of many models, a significantly harder task. This consti-
tutes the natural progression to the problem of merging
pairs of models and is a more realistic setting for distributed
or federated learning applications where there are often
more than 2 models. Furthermore, aligning populations of
neural networks brings us one step closer to finding the com-
mon learned features that allow different neural networks
to perform equally as well on complex tasks despite having
different initializations, data orders, and data augmentations.

As previously mentioned, the problem of merging many
models is often ignored by past works except for the set-
tings in which linear mode connectivity is easily obtained.
Ainsworth et al. (2023) introduced “Merge Many”, an adap-
tation of Matching Weights for merging a set of models. In
Merge Many each model in the set is sequentially matched
to the average of all the others until convergence. A simpler
way of extending any model merging method to the many
models setting is to choose one of the models in the group
as the reference model and to align every other network in
the group to it. Then the reference model and all the other
aligned models can be merged. It is by using this “all-to-
one” merging that we extend CCA Merge, Permute, OT
Fusion and Matching Weights to the many model settings.
ZipIt! is naturally able to merge multiple models since it
aggregates all neurons and merges them until the desired
size is obtained.

In Fig. 4 we show the accuracies of the merged models as
the number of models being merged increases. For both
VGG and ResNet architectures aligning model weights with
CCA continues to yield better performing merged models.
In fact, models merged with CCA Merge applied in an all-
to-one fashion maintain their accuracy relatively well while
the ones merged with other methods see their accuracies
drop significantly. In the VGG case, the drop for other
methods is drastic, all merged models having less than 20%
accuracy when more than 3 models are being merged which
constitutes a decrease of more than 25% from the 2 models
merged scenario. CCA Merge on the other hand suffers a
drop in accuracy of less than 3% when going from merging
2 models to 5, staying around the 80% mark. We also
note that despite being designed specifically for the many
models setting, Merge Many performs only slightly better
than its 2 model counterpart (Matching Weights applied in
an all-to-one fashion).
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VGG11×1 VGG11×8 ResNet20×1 ResNet20×8
Method CIFAR10 CIFAR10 CIFAR100 CIFAR100

Base models avg. 87.27 ±0.25% 88.20 ±0.45% 69.21 ±0.22% 78.77 ±0.28%
Ensemble 89.65 ±0.13% 90.21 ±0.24% 73.51 ±0.20% 80.98 ±0.21%

Direct averaging 10.54 ±0.93% 10.45 ±0.74% 1.61 ±0.16% 14.00 ±1.66%
Permute 54.39 ±6.45% 62.58 ±3.31% 28.76 ±2.20% 72.90 ±0.08%
OT Fusion 53.86 ±10.4% 68.32 ±3.13% 29.05 ±2.55% 72.45 ±0.08%
Matching Weights 55.40 ±4.67% 73.74 ±1.77% 21.38 ±4.36% 74.29 ±0.51%
ZipIt! 52.93 ±6.37% - 25.26 ±2.30% 72.47 ±0.41%
CCA Merge (ours) 82.65 ±0.73% 84.36 ±2.09% 31.79 ±1.97% 75.06 ±0.18%

Table 1: VGG11 trained on CIFAR10 & ResNet20 trained on CIFAR100 - Accuracies and standard deviations from 4
different merges of 2 models are presented. Models averaged with CCA Merge notably outperform models merged with
other methods, narrowing the gap between merged models and model ensembles. Model ensembles are significantly more
memory and compute expensive and represent the upper bound of attainable performance for model merging methods.

Method Top 1 Acc. (%) Top 5 Acc. (%)

Base models avg. 75.44 ±0.06 92.17 ±0.05
Ensemble 77.62 ±0.07 93.48 ±0.01

Direct averaging 0.12 ±0.03 0.64 ±0.01
Permute 51.45 ±1.02 76.96 ±0.76
OT Fusion 50.55 ±0.98 76.35 ±0.97
Matching Weights 45.41 ±0.33 72.78 ±0.42
CCA Merge (ours) 63.61 ±0.22 85.41 ±0.25

Table 2: ResNet18x4 trained on ImageNet - Accuracies and
standard deviations from 3 different merges of 2 models are
presented. Even on this significantly harder image classifi-
cation task CCA Merge outperforms past model merging
methods for both top 1 and top 5 accuracies, helping to
reduce the gap between model merging methods and model
ensembles.

For ResNets, the accuracy of models merged with Permute
drops by ~15% when going from merging 2 models to 20.
While less drastic than in the VGG case this decrease in
performance is still significant. ZipIt! displays a slightly
more pronounced drop when going from 2 models merged
to 5. CCA Merge on the other hand is a lot more robust,
incurring a less than 4% drop in accuracy even as the number
of merged models is increased to 20. Additionally, accuracy
values for models merged by CCA Merge seem to plateau
sooner than those for Permute.

These results suggest that CCA Merge is significantly better
than past methods at finding the “common features” learned
by groups of neural networks and aligning them. The limita-
tions of permutation-based methods in taking into account
complex relationships between neurons from different mod-
els are highlighted in this context. Here it is harder to align
features given that there are more of them to consider and
therefore easier to destroy the features when averaging them.

Figure 4: Accuracies of averaging multiple models after
feature alignment with different merging methods. Mean
and standard deviation across 4 random seeds are shown.

Permutations and feature mismatches To explain the
success of CCA Merge in the multi-model setting, we have
examined feature mismatches between networks. When
merging models A, B and C, we choose one reference model,
say model A, align B and C to A and then merge by aver-
aging. This results in an indirect matching of models B
and C through the reference model A. Neurons i from B
and j from C are matched indirectly through A if they both
are matched to the same neuron k from A. Ideally, this
indirect matching should be the same as the direct matching
resulting from aligning B and C directly. This would mean
that the same features from B and C are matched regardless
of whether they are merged together or with a third model.
However, this does not seem to be the case for permutation-
based methods: over 50% of the neurons from B don’t get
matched to the same neuron from C when aligned directly
or indirectly through A. Additionally, the Frobenius norm
of the differences between the direct and indirect matching
matrices is significantly lower for CCA Merge than for a
permutation-based method. This suggests CCA Merge gen-
erates fewer feature mismatches in the multi-model setting,
explaining in part its success over permutation-based meth-
ods. For detailed results and further information see App.
E.
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Method (1) 80%-20% (2) Dirichlet (3) 50 classes

Base models avg. 65.66 ±0.71% 59.98 ±1.80% 41.42 ±0.54%
Ensemble 77.84 ±0.23% 73.77 ±0.44% 69.91 ±0.49%

Direct averaging 11.40 ±1.62% 20.55 ±3.07% 16.90 ±2.02%
Permute 62.11 ±0.30% 58.45 ±1.76% 43.82 ±1.31%
OT Fusion 61.56 ±0.21% 57.67 ±1.49% 43.02 ±1.27%
Matching Weights 58.18 ±0.68% 55.87 ±1.80% 41.15 ±1.45%
ZipIt! 61.41 ±0.51% 57.97 ±1.29% 55.08 ±0.70%
CCA Merge (ours) 66.35 ±0.19% 60.38 ±1.68% 46.57 ±0.76%

Table 3: ResNet20×8 trained on 3 different splits of CIFAR100 - Accuracies and standard deviations from 4 different
merges of 2 models are presented. When the models being merged have learned different features from disjoint sets of the
training data but with all the classes (splits 1 and 2) CCA Merge is the only model merging method which outperforms the
average of the base models. In the case where the models being merged were trained on disjoint subsets of the classes (split
3) CCA Merge still outperforms past model merging methods except for ZipIt!. However ZipIt! allows same-model neuron
merging, making a direct comparison with the other methods, including ours, somewhat unfair.

4.5. CCA Merge is better at combining learned features
from different data splits

In this section we consider the more realistic setting where
the models are trained on disjoint splits of the data, therefore
they’re expected to learn (at least some) different features.
Such a set-up is natural in the context of federated or dis-
tributed learning. We consider ResNet20 models trained on
3 different data splits of the CIFAR100 training dataset. The
first (1) data split is the one considered in Ainsworth et al.
(2023); Jordan et al. (2023) where one model is trained on
80% of the data from the first 50 classes of the CIFAR100
dataset and 20% of the data from the last 50 classes, the
second model being trained on the remaining examples. In
the second (2) data split we use samples from a Dirichlet
distribution with parameter vector α = (0.5, 0.5) to subsam-
ble each class in the dataset and create 2 disjoint data splits,
one for each model to be trained on. Lastly, with the third
(3) data split we consider the more extreme scenario from
Stoica et al. (2024) where one model is trained on 100% of
the data from 50 classes, picked at random, and the second
one is trained on the remaining classes, with no overlap. For
this last setting, in order for both models to have a common
output space they were trained using the CLIP (Radford
et al., 2021) embeddings of the class names as training ob-
jectives. In Table 3 we report mean and standard deviation
of accuracies across 4 different model pairs.

For the first two data splits CCA Merge outperforms the
other methods, beating the second best method by ~4% and
~2% on the first and second data splits respectively. For the
third data split CCA Merge is the second best performing
method after ZipIt!. However, ZipIt! was designed for this
specific setting and, as we previously noted, it allows the
merging of features from the same network to reduce redun-
dancies, thus making it more flexible than the other methods
which only perform “alignment”. In all cases CCA Merge
outperforms or is comparable with the base models average

indicating that, to some extent, our method successfully
combines different learned features from the two models.

5. Discussion and Conclusion
Recent model fusion successes exploit inter-model relation-
ships between neurons by modelling them as permutations
before fusing models. Here, we argue that, while assuming a
one-to-one correspondence between neurons yields interest-
ing merging methods, it is rather limited as not all neurons
from one network have an exact match with a neuron from
another network. Our proposed CCA Merge takes the ap-
proach of linearly transforming model parameters beyond
permutation-based optimization. This added flexibility al-
lows our method to outperform recent competitive baselines
when merging pairs of models trained on the same data or on
disjoint splits of the data (Tables 1, 2 and 3). Furthermore,
when considering the harder task of merging many models,
CCA Merge models showcase remarkable accuracy stability
as the number of models merged increases, while past meth-
ods suffer debilitating accuracy drops. This suggests a path
towards achieving strong linear connectivity between a set
of models, which is hard to do with permutations (Sharma
et al., 2024). One limitation of our method is that it requires
input data to align the models. The forward pass to compute
the activations increases computational costs and in some
settings such a “shared” dataset might not be available. We
discuss this further in App. F.

Merging many models successfully, without incurring an
accuracy drop, is one of the big challenges in this area of
research. Our method, CCA Merge, makes a step in the
direction of overcoming this challenge. As future work, it
would be interesting to further study the common represen-
tations learned by populations of neural networks. Also,
an interesting future research avenue is to test CCA Merge
with models trained on entirely different datasets, to test its
limits in terms of combining different features.
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A. Additional Practical Considerations for CCA Merge
A.1. Aligning B to A rather than transforming both

Given that CCA naturally finds a common representation space which maximally correlates the activations of both models
being merged, XA and XB, it is natural to consider merging the models in this common space. This would be done by
transforming the parameters of model A with the found transformations PA

i and transforming the parameters of model B
with transformations PB

i and then averaging both transformed models. However, the reason for applying transformation
T =

(
PB ·PA)⊤ to model B to align it to A and merging both models in the representation space of model A instead of

transforming both the weights of model A and model B and merging in the common space found by CCA is because of the
ReLU non-linearity. The common representation space found by CCA has no notion of directionality, and might contain
important information even in negative orthants (high-dimensional quadrants where at least one of the variables has negative
values) that might get squashed to zero by ReLU non-linearities. The representation space of model A doesn’t have this
problem.

A.2. Regularized CCA

The closed form CCA solution requires inverting the scatter matrices SAA and SBB which can lead to poor performance
and instability when the eigenvalues of these matrices are small. To make CCA more robust, the identity matrix I scaled by
a regularization hyper-parameter γ is added to the two scatter matrices. Therefore to complete the CCA computation the
matrices SAA + γI and SBB + γI are used instead of SAA and SBB.

To chose the hyper-parameter γ for any experiment, i.e. a combination of model architecture and data set / data split, we
train additional models from scratch and conduct the merging with different γ values. The γ value leading to the best merged
accuracy is kept and applied to the other experiments with CCA Merge. The models used to select γ are discarded to avoid
over-fitting and the CCA Merge accuracies are reported for new sets of models.

B. Further empirical analysis of matching matrices
B.1. Non-optimal matches of permutation-based methods

When merging 2 models, A and B, with Permute, a large percentage (25-50%) of the neurons from model A do not get
matched with their highest correlated neuron from model B by the permutation matrix, we call these non-optimal matches.
In other words, for neurons in A that have a non-optimal match, a higher correlated neuron from B exists to which that
A neuron isn’t matched. Since permutation-based methods aim to optimize an overall cost, the found solutions match
some neurons non-optimally in order to obtain a better overall score. However, since permutation-based methods either
completely align two features (value of 1 in the matching matrix) or not at all (value of 0), the merging completely ignores
the relationship between these highly correlated but not matched neurons.

In Fig. 5 we present the percent of neurons from net A that get non-optimally matched to a neuron from net B for all merging
layers inside a ResNet20 trained on CIFAR100. We can see from these results that the limiting nature of permutations
causes Permute to disregard some meaningful relationships between learned features, hindering the merged model accuracy.

B.2. Highest correlated neurons are associated to top CCA Merge transformation coefficients

Since CCA Merge combines linear combinations of neurons instead of just individual ones, we can’t run the exact same
analysis as we did in the previous section for Permute. However, we have looked at whether or not, for each neuron from
model A, the top 1 and top 2 correlated neuron from model B (i.e. neurons with the highest or second highest correlations
respectively) get assigned high coefficients in the CCA Merge transformation matrices. We report these values in the Fig. 6.

In the vast majority of cases the highest correlated neuron from model B gets assigned one of the 5 highest coefficients in
the CCA Merge transform, and the top 2 correlated neuron gets assigned one of the 10 highest coefficients of the transform.
These results showcase how CCA Merge better accounts for the relationships between neurons of different models during
the merging procedure.
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Figure 5: Percent (%) of non-optimal matches when merging ResNet20x8 models trained on CIFAR100. The mean and
standard deviation across 15 possible 2-model merges out of a group of 6 models fully trained from different initializations
are shown.

C. Additional Results
Here we present the extended Table 1 results, where we also include results for widths ×2 and ×4 for both VGG and ResNet
models. The same overall conclusions hold with CCA Merge performing generally better than all other considered baselines.
CCA Merge’s standard deviation isn’t always the lowest however as width increases but it’s comparable with the other
methods. As noted in the main text we ran into out-of-memory issues when running ZipIt! for VGG models with width
greater than ×2.

Table 4: VGG11/CIFAR10 - Accuracies and standard deviations after merging 2 models

Width multiplier ×1 ×2 ×4 ×8

Base models avg. 87.27 ±0.25% 87.42 ±0.86% 87.84 ±0.21% 88.20 ±0.45%
Ensemble 89.65 ±0.13% 89.74 ±0.44% 90.12 ±0.16% 90.21 ±0.24%

Direct averaging 10.54 ±0.93% 10.28 ±0.48% 10.00 ±0.01% 10.45 ±0.74%
Permute 54.39 ±6.45% 63.32 ±1.12% 64.81 ±1.99% 62.58 ±3.31%
OT Fusion 53.86 ±10.4% 65.97 ±2.13% 66.34 ±3.17% 68.32 ±3.13%
Matching Weights 55.40 ±4.67% 66.98 ±1.96% 71.92 ±2.21% 73.74 ±1.77%
ZipIt! 52.93 ±6.37% 60.73 ±2.07% - -
CCA Merge (ours) 82.65 ±0.73% 83.31 ±1.05% 85.54 ±0.51% 84.36 ±2.09%

D. VGG Results with REPAIR
In this section, specifically in Table 6, we present the results for merging VGG networks with REPAIR (Jordan et al., 2023)
applied to mitigate the variance collapse phenomenon. Since the standard VGG architecture doesn’t contain normalization
layers it isn’t as straightforward as just resetting the BatchNorm statistics as it was for ResNets. Applying REPAIR seems to
greatly help past methods and all methods are now comparable in terms of accuracy, with Matching Weights (Ainsworth
et al., 2023) being slightly better, but the standard deviations overlapping with CCA Merge. The great performance of CCA
Merge without REPAIR suggests that perhaps models merged with our method do not suffer from variance collapse to
the same extent as models merged with permutation-based methods. One interesting thing to note is that REPAIR also
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Figure 6: Percent (%) of top 1 and top 2 correlated neurons that have top 5 and top 10 CCA Merge coefficients respectively
when merging ResNet20x8 models trained on CIFAR100. The mean and standard deviation across 15 possible 2-model
merges out of a group of 6 models fully trained from different initializations are shown.

Table 5: ResNet20/CIFAR100 - Accuracies and standard deviations after merging 2 models

Width multiplier ×1 ×2 ×4 ×8

Base models avg. 69.21 ±0.22% 74.22 ±0.14% 77.28 ±0.34% 78.77 ±0.28%
Ensemble 73.51 ±0.20% 77.57 ±0.19% 79.90 ±0.08% 80.98 ±0.21%

Direct averaging 1.61 ±0.16% 2.67 ±0.16% 5.13 ±0.52% 14.00 ±1.66%
Permute 28.76 ±2.20% 49.45 ±0.41% 64.65 ±0.34% 72.90 ±0.08%
OT Fusion 29.05 ±2.55% 48.74 ±1.11% 64.07 ±0.38% 72.45 ±0.08%
Matching Weights 21.38 ±4.36% 44.85 ±0.66% 64.66 ±0.45% 74.29 ±0.51%
ZipIt! 25.26 ±2.30% 47.72 ±0.53% 63.69 ±0.31% 72.47 ±0.41%
CCA Merge (ours) 31.79 ±1.97% 54.26 ±1.00% 68.75 ±0.22% 75.06 ±0.18%

significantly helps Direct Averaging, where the networks aren’t aligned before merging. Without REPAIR, Direct Averaging
performed no better than random, however with REPAIR the ×8 models achieve > 70% accuracy even without any sort of
alignment.

Since CCA Merge uses general invertible linear transformations for alignment instead of permutations, the model being
aligned can have its functionality altered post alignment. Therefore, when applying REPAIR to models merged with CCA
Merge, we do not set the mean and standard deviation of the averaged model’s activations to be the average of the mean
and standard deviation of the models being merged (standard REPAIR). Instead, we simply reset the mean and standard
deviation of the neurons to be the same as the ones of the reference model, i.e. the one to which no transformation is applied
and therefore its functionality wasn’t altered. To make sure that the comparison to the other methods is fair we have also
tried doing this for all the other methods, with the results being around 1% worse than simply applying standard REPAIR
(results show in Table 6).
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Table 6: VGG11/CIFAR10 - Accuracies and standard deviations after merging 2 models with REPAIR

Width multiplier ×1 ×2 ×4 ×8

Base models avg. 87.27 ±0.25% 87.42 ±0.86% 87.84 ±0.21% 88.20 ±0.45%
Ensemble 89.65 ±0.13% 89.74 ±0.44% 90.12 ±0.16% 90.21 ±0.24%

Direct averaging 29.89 ±0.58% 43.16 ±5.19% 56.83 ±4.34% 73.75 ±3.12%
Permute 84.56 ±0.30% 85.72 ±0.87% 87.57 ±0.13% 88.35 ±0.62%
OT Fusion 83.33 ±0.32% 84.18 ±1.12% 86.34 ±0.38% 87.09 ±0.30%
Matching Weights 85.62 ±0.38% 86.98 ±0.34% 88.68 ±0.18% 88.94 ±0.14%
CCA Merge (ours) 85.02 ±0.27% 86.51 ±0.37% 87.38 ±0.55% 88.17 ±0.67%

E. Why does CCA Merge outperform permutation-based methods in the multi-model setting?
E.1. When merging multiple models, feature mismatches of permutation-based methods get compounded

When merging more than two models, say A, B and C in the 3-model case, we choose one reference model, WLOG model
A, align all other models to that one and then merge by averaging (all-to-one merging). Let TBA denote the transformation
aligning a given layer of model B to the same layer of model A and TCA the transformation aligning C to A at that same
layer, we can also align A to B (resp. C) by taking the inverse of TBA (resp. TCA) which we denote TAB = T−1

BA (resp.
TAC = T−1

CA). This alignment to A also gives rise to an indirect matching between models B and C through A, since we can
align C to A with TCA and then apply the transformation TAB to align it to B, we use TCAB to denote the transformation
of this indirect alignment. In other words, neurons i from B and j from C are matched indirectly through A if they both
are matched to the same neuron k from A. To see why multi-model merging fails for permutations we can look at how
this indirect matching of B and C (TCAB) compares to the direct matching of B and C found by directly optimizing for the
transformation matrix TCB. It turns out that for permutation-based methods these matrices differ significantly, in fact the
majority of neurons from net C, between 50-80% on average, do not get matched with the same neuron from B if we use
TCAB versus if we use the direct matching TCB.

In Fig. 7 we present the percent of neurons getting mismatched in this way by Permute for all merging layers inside a
ResNet20 trained on CIFAR100. These results help explain why permutations-based methods suffer a drastic drop in
accuracy as the number of models being merged increases since there are severe mismatches between the features being
aligned that get compounded.

E.2. The direct and indirect matching matrices (TCB and TCAB resp.) are closer for CCA Merge than for Permute

We can also look directly at the Frobenius norm of the difference between TCAB and TCB for CCA Merge and Permute to
see for which method the indirect matching between C and B (TCAB) and the direct matching between C and B (TCB) are
the most similar. We report the results for the same 20 merges considered above in Fig. 8. We see that the indirect and direct
matching matrices between C and B are significantly closer for CCA Merge than for Permute, which helps explain why
CCA Merge outperforms permutation-based methods in the multi-model setting.

We have run these analyses using the Permute matching method since it is the most straightforward to analyze and we have
seen from our empirical results that it constitutes a strong baseline. However we expect all permutation-based methods to be
susceptible to these types of non-optimal merging and mismatches because of their permutation matching matrices and since
their accuracies behave similarly as the number of models being merged increases (for the multi-model scenario).

F. Analysis of computational costs
We have tracked the runtime for 5 different 2-model merges of ResNet20x8 models trained on CIFAR100 and we report
these values in the table below.

The merging for methods relying on data (Permute, ZipIt!, CCA Merge) can be split into 2 parts, computing the metrics
(eg. covariances or correlations) and computing the transformations. Computing the metrics is by a large margin the most
time-expensive part of the procedure, taking on average 33.44s when using the entire CIFAR100 training set. Computing the
transforms on the other hand takes less than a second for Permute and CCA Merge and 3.77s for ZipIt!, which represents
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Figure 7: Percent (%) of neurons getting mismatched when merging ResNet20x8 models trained on CIFAR100. The
mean and standard deviation across 20 possible 3-model merges out of a group of 6 models fully trained from different
initializations are shown.

Table 7: Runtime for 5 different 2-model merges of ResNet20x8 models trained on CIFAR100

Permute ZipIt! CCA Merge Matching Weights
Time for the whole merging (s) 33.63±0.08 37.39±0.34 34.50±0.57 3.07±0.27
Time for computing the transforms (s) 0.05±0.01 3.77±0.35 0.93±0.57

≤ 3% (for Permute and CCA Merge) and 10% (for ZipIt!) of the time required for the entire merging. Among all data-based
merging methods, CCA Merge performs the best in accuracy with comparable computation time, therefore it should be
prioritized over other such methods. Matching Weights, which doesn’t require data, takes 3.07s to complete, however it
performs worse than CCA Merge in terms of accuracy in practice.

It is also valuable to describe how these costs scale with model and dataset size. Computing the correlations scales
quadratically with the number of neurons in a layer and linearly with the dimension of the activations (which takes into
account the size of the input images and the number of examples used to compute the metrics).

G. Merged Models vs. Endpoint Models Accuracies
In past works such as Ainsworth et al. (2023) or Jordan et al. (2023), the merged ResNet models achieving the same accuracy
as the endpoint models (or close to) when training on the full train datasets have been extremely wide ones. Specifically,
for the ResNet20 architecture on CIFAR10 those results were obtained for models of widths ×16 or greater. Zero barrier
merging was not achieved for the model widths considered in our work. Exploring the very wide model setting is not an
objective of ours since the effect of model width on merging is already well understood, with wider models leading to better
performing merges (Entezari et al., 2022; Ainsworth et al., 2023; Jordan et al., 2023). Therefore we only trained models of
width up to ×8, which are more likely to be encountered in practice. For the model widths reported in our work the accuracy
barriers are consistent with those reported in Jordan et al. (2023) for Permute (solving the linear sum assignment problem
maximizing the correlation between matched neurons), with CCA Merge outperforming those results.

Furthermore, our ResNet20 results are reported on the CIFAR100 dataset which is a harder classification task than CIFAR10,
therefore it is harder to achieve zero-barrier merging. Also, in all the disjoint training scenarios presented in Table 3 we do
achieve greater accuracy than the endpoint models and outperform past methods, not only in settings considered by past
works such as 80%-20% training splits but in novel settings as well, such as Dirichlet training splits.
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Figure 8: Frobenius norm of the difference between the transformation matrices TBAC , aligning B and C through A, and
TBC aligning B and C directly. The mean and standard deviation across 20 possible 3-model merges out of a group of 6
models fully trained from different initializations are shown.
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