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Abstract
When users stand to gain from certain predictive
outcomes, they are prone to act strategically to
obtain predictions that are favorable. Most current
works consider strategic behavior that manifests
as users modifying their features; instead, we
study a novel setting in which users decide
whether to even participate (or not), this in re-
sponse to the learned classifier. Considering learn-
ing approaches of increasing strategic awareness,
we investigate the effects of user self-selection
on learning, and the implications of learning on
the composition of the self-selected population.
Building on this, we propose a differentiable
framework for learning under self-selective
behavior, which can be optimized effectively.
We conclude with experiments on real data and
simulated behavior that complement our analysis
and demonstrate the utility of our approach.

1. Introduction
Machine learning is increasingly being used for inform-
ing decisions regarding humans; some common examples
include loan approvals, university admissions, job hiring,
welfare benefits, and healthcare programs. In these domains,
learned models often serve as ‘gatekeepers’, used for screen-
ing potential candidates in order to determine their qualifi-
cation (e.g., for a job, loan, or program). This approach is
based on the premise that more accurate models should pro-
vide better screening—which in turn should enable better
decisions regarding additional costly testing (e.g., who to in-
terview or to recruit for a try-out period) and consequent ac-
tions (e.g., who to hire). But conventional learning methods
optimize for accuracy on the distribution of input data, i.e.,
the train-time population of candidates; this overlooks the
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important fact that who will apply after model deployment—
and who will not—often depends on the screening rule itself.

In this work we study classification of strategic agents that
choose whether to apply or not in response to the learned
classifier. Strategic candidates apply only if the expected
utility from passing screening outweighs associated costs;
thus, application choices derive from beliefs regarding clas-
sification outcomes. Since these choices in aggregate deter-
mine the test-time distribution, learning becomes susceptible
to self-selection—namely selection that is carried out by the
agents which predictions target. Our goal in this paper is to
study learning under such self-selective behavior, which we
believe is prevalent in many application domains. We seek
to: (i) establish the ramifications of self-selection on conven-
tional learning methods; (ii) propose a strategically robust
method that is accurate on the self-selective distribution it
induces; (iii) study the power of such methods to influence
choices and shape the applicant population; and (iv) propose
means for regulating and mitigating potential ill effects.

Our setting considers a firm which trains a classifier to be
used for screening, where applicants who pass screening
then partake in an accurate but costly test (e.g., trial period)
that determines final outcomes (e.g., hiring). Candidates
would like to pass the test, but also to avoid unnecessary
testing costs; the challenge for them is that they do not know
a-priori whether or not they will pass screening, making
their decisions regarding application inherently uncertain.
To cope with this, candidates can make use of relevant statis-
tics regarding their chances of being hired. We imagine
these as being made public either by a third party (e.g., audi-
tor, media outlet), or by the firm itself, e.g. due to regulation
on transparency (Matthews & Murphy, 2023) or as a service
to prospective candidates.1 The statistics we consider rely
on a subset of (categorical) features describing candidates
that provide semi-individualized, group-level information,
useful to them for making informed application decisions.
Since the choice of classifier determines the reported statis-
tics, these become the interface through which learning in-
fluences applications. This process is illustrated in Figure 1.

The goal of learning in our setting is to train a classifier
that will be accurate on the induced applicant distribution—

1This is similar in spirit to e.g. credit calculators, that based on par-
tial information provide an estimated range of likely credit scores.
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as determined by the classifier, indirectly through how it
shapes self-selection. We study how learning approaches of
increasing strategic sophistication affect, and are affected
by, the process of self-selection. We begin by showing that
whereas learning optimizes for accuracy, candidates benefit
from the classifier’s precision, which governs their deci-
sions regarding application. A classifier’s performance on
the induced (test-time) distribution therefore depends on
how it balances accuracy and precision. This also means
that a strategic learner can maximize induced accuracy by
carefully controlling its precision for different candidates as
a means for shaping the population of eventual applicants.
Our results show that this, coupled with the firm’s informa-
tional advantage, provides it with much power: under mild
conditions, learning can fully determine for each group in
the population whether its members will apply, or not.

To restrict this power, we propose to enforce a certain
independence criterion, which draws connections to the lit-
erature on fairness. Our main result here is that this ensures
that applications adhere to a natural, classifier-independent
‘ordering’, which relies only on the innate group-level base
rate. We show how this can allow a social planner to im-
plement affirmative action policies using targeted subsidies.

We then switch gears and turn to proposing a practical
method for learning under strategic self selection. Our
method is differentiable and so can be optimized using gra-
dient methods. Our first step is to model self-selection in the
objective using per-example weights, where wi = 1 if candi-
date i applies, and wi = 0 if she does not; importantly, these
weights depend on the learned classifier. We then show how
weights can be effectively ‘smoothed’, so that gradients can
be passed through application decisions. The challenge is
that applications depend on precision, which in turn depends
on the predictions of the classifier that is being optimized.
For this we propose a differentiable proxy for (conditional)
precision, and provide an effective implementation. We
conclude with an empirical demonstration of our approach
in a semi-synthetic experimental setting that uses real data
and simulated self-selective behavior. Code is publicly
available at https://github.com/Ysommer/GKSC-ICML.

1.1. Related work

Strategic classification. Our work is tightly connected
to the growing literature on strategic classification (Hardt
et al., 2016; Brückner et al., 2012), in which learning must
cope with agents that can strategically modify their features
(at a cost) in order to obtain preferred predictive outcomes.
There is an ongoing effort to extend and generalize beyond
the original problem setting; examples include support for
richer models of user behavior (Jagadeesan et al., 2021;
Sundaram et al., 2021; Levanon & Rosenfeld, 2022; Eilat
et al., 2023), relaxing informational assumptions (Ghalme
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Figure 1: The application process. Candidates who apply
must first pass a screening classifier; if successful, they ad-
vance to take a costly qualifying test. Candidates are strate-
gic, and apply only if it is cost-effective. Since their likeli-
hood of passing screening depends on the classifier (through
its conditional precision on past data), learning has the
power to shape the composition of the applicant population.

et al., 2021; Bechavod et al., 2022; Barsotti et al., 2022;
Lin & Zrnic, 2023; Shao et al., 2023; Lechner et al., 2023;
Harris et al., 2023; Rosenfeld & Rosenfeld, 2023), and
introducing causal elements (Miller et al., 2020; Chen et al.,
2023; Horowitz & Rosenfeld, 2023; Mendler-Dünner et al.,
2022). These works, as well as the large majority of others
in the field, focus on feature modification as the action that
users can take (one notable exception is Krishnaswamy
et al. (2021), who allow users to withhold certain features).
In contrast, our work extends the literature by considering
a drastically different type of action—namely the initial
choice of users regarding whether to participate or not.

Screening, selection, and self-selection. The study of
self-selection has a significant history in economics; some
recent works that are relevant to our context include Lagziel
& Lehrer (2021) and Lagziel & Lehrer (2019) who analyze
signal distributions in filtering mechanisms and identify
conditions leading to inefficiencies from excessive filtration
steps in selection processes; Carroll (2017) who focuses
on screening in principal-agent models; and Courty & Hao
(2000) who investigates dynamic pricing as a tool to screen
consumers with low willingness to pay. Most related to
ours is Koren (2024), which establishes the connection
between hiring and self-selection, as mediated by the
quality of screening. In machine learning, several recent
works study the use of classifiers for screening (Wang
et al., 2022), also for strategic agents (Cohen et al., 2023;
Beyhaghi et al., 2023), and with connections to fairness
(Khalili et al., 2021; Blum et al., 2022; Okati et al., 2023).
Other works study learning in settings with self-selection,
although in different contexts and with differing goals.
Zhang et al. (2021) consider a sequential screening setting
where applicants can decide when (and if) to quit, and
show how self-selection can be exploited. Ben-Porat et al.
(2022) model user attrition in recommendation systems as a
bandit problem with ‘departing’ arms. Cherapanamjeri et al.
(2023) give algorithms for endogenous self-selection that
controls realized labels (rather than participation). These
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works have a strong game-theoretical emphasis; in contrast,
our focus is primarily on learning aspects.

2. Problem setup
Consider a firm interested in training a classifier to be used
for screening job applicants. Prospective candidates are
represented by features x and a binary label y ∈ {0, 1} indi-
cating whether the candidate is qualified or not. We assume
that x includes at least some categorical features, but allow
the other features to be of any type or modality (e.g., vectors,
images, text). Candidates are assumed to be sampled iid
from some unknown joint distribution as (x, y) ∼ p. Given
a sample set S = {(xi, yi)}mi=1 ∼ pm, the firm seeks to
train a classifier ŷ = f(x) to accurately predict labels y
for unseen future candidates x. Typically we will have that
f(x) = 1{ϕ(x) > 0} where ϕ is a learned score function.
Once f is obtained, it is used by the firm as a ‘gatekeeper’ for
screening: any candidate predicted to be qualified (i.e., has
ŷ = 1) is invited to partake in an accurate (but costly) qualifi-
cation test or trial period which reveals her true y.2 The firm
then hires any candidate deemed qualified, i.e., has y = 1.

Strategic application. Candidates would like to be hired,
but also to avoid incurring the possibly unnecessary costs
of potential testing. Assuming w.l.o.g. that candidates gain
unit utility from being hired (which occurs iff y = 1), let
c ∈ [0, 1] be the cost candidates incur when taking the
test. We assume candidates are strategic, and hence make
informed decisions regarding whether to apply, denoted
a ∈ {0, 1}. These are made on the basis of information
regarding the screening process, as it depends on the learned
f . Since testing takes place only if a candidate applies and
passes screening (i.e., obtains ŷ = 1), utility is given by:

u(a) = a · ŷ · (y − c) (1)

Candidates would like to apply only if this admits positive
utility, i.e., if u(1) ≥ 0 (note u(0) = 0). The firm, how-
ever, does not provide pre-application access to individual
predictions ŷ—i.e., candidates cannot know with certainty
whether they will pass screening or not. This, coupled with
candidates not knowing their true y, means that u(a) cannot
be computed (nor optimized) exactly. To cope with this un-
certainty, we model candidates as rational decision-makers,
who choose to apply iff this maximizes their expected utility:

a∗ = argmaxa∈{0,1}Ep̃(y,ŷ|x)[u(a)] (2)

where p̃(y, ŷ | x) encodes their beliefs regarding the joint
uncertainty in y and ŷ, conditional on x (which they know).
We refer to candidates who select to apply via a∗ = 1 as
applicants. We next discuss what constitutes these beliefs.

2This is similar to the screen-then-test setup of Blum et al. (2022).
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Figure 2: prcz under optimal f∗ for high and low base rates.

Decision-making under uncertainty. To facilitate in-
formed decision-making, we assume that the firm publishes
coarse aggregate statistics concerning y and ŷ, which candi-
dates then use to form beliefs p̃. In particular, let z ⊂ x be
a subset of (categorical) features of size k, and denote by K
the number of distinct values z can take.3 Then we assume
the system makes public the conditional precision metrics:

prcz = PS(y = 1 | ŷ = 1, z) ∀z (3)

where PS is the empirical distribution over the training set
S. Note that prcz depends on the classifier f through the
conditioning on (positive) predictions ŷ = f(x).

Precision provides candidates a rough estimate of their likeli-
hood of being hired, given that they pass the screening phase.
By partitioning all candidates into K ‘groups’, as deter-
mined by z, candidates can obtain partially-individualized
group-level information by querying prcz .4 Interestingly,
precision turns out to be sufficient for decision-making.
Proposition 1. Given a classifier f , the utility-maximizing
application rule in Eq. (2) admits the following simple form:

a∗ = 1{prcz ≥ c} (4)

We defer all proofs to Appendix A. Eq. (4) holds under
the mild condition that PS(ŷ = 1 | z) > 0, i.e., as long
as in each z, not all candidates are classified as negative.
Importantly, once beliefs are shaped by prcz , who
applies—and who does not—becomes dependent on the
learned f .5 This idea is illustrated in Fig. 2. When needed,
we will use a∗z to denote applications under z. Note Eq. (4)
implies that a∗ does not depend on screening outcomes.

Learning under self-selection. Since the goal of screen-
ing is to reduce the load on testing, screening needs to be

3Group variables z can correspond to sensitive or protected vari-
ables, but are not necessarily such—rather, we think of them
simply as the set of variables for which the firm chooses to (or
must, e.g. due to regulation) report conditional statistics.

4One reason for having variables x \ z that are not conditioned on
is that they materialize only after application: for example, in the
academic job market, whether a submitted paper is accepted or
not, or the contents of a recommendation letter.

5Note that precision accounts for a strict subset of the information
in p̃(y, ŷ | z), which is generally required for a∗ in Eq. (2).
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accurate on the pool of applicants—not on the entire popu-
lation of candidates. For a given classifier f , denote by pf

its induced distribution over applicants, defined as:

pf (x, y) =

{
1
Ap(x, y) if a∗ = 1

0 otherwise
(5)

where A=
∫
a∗p(x, y) dxdy is the normalizing constant. In

other words, the probability of sampling a candidate from
pf remains proportional to p (with respect to all applicants)
if the applicant applies, and zero otherwise. We refer to
pf as the self-selective distribution induced by f (Fig. 3).
Given this, the goal in learning is to minimize predictive
error on this induced applicant distribution:

argminf∈F Epf (x,y)[1{y ̸= f(x)}] (6)

where F is some chosen model class (e.g., linear classifiers
or neural networks). Note that in Eq. (6), both the loss
and the distribution in the expectation depend on the
optimized f , making it an instance of learning under
decision-dependent distribution shift (Drusvyatskiy & Xiao,
2022). Our goals will be to devise a method for optimizing
Eq. (6) effectively, and to study the effects of different
learning approaches on application outcomes.

2.1. Preliminaries

Before turning to our main results, we begin with some basic
analysis which sheds light on important aspects of our setup.

The role of precision. Since the decisions of candidates
are based on (conditional) precision, a key question is
whether higher precision is beneficial for them. Generally,
the answer is yes—this is since increased precision can
enable a∗ = 1, which implies that the utility gained is
positive (vs. u = 0 for a∗ = 0). However, this connection is
more nuanced, and is made precise by the following result:

Proposition 2. For any group z, its expected utility is mono-
tonically increasing in conditional precision prcz , as long
as its positive prediction rate PS(ŷ = 1 | z) is kept fixed.

Nonetheless, and perhaps surprisingly, higher precision
does not always entail better outcomes for applicants:

Proposition 3. There exist classifiers f1, f2 where f1 has
higher precision, but f2 entails higher utility for applicants.

The proof is constructive, and relies on a simple contingency
table. Thus, the choice of classifier not only determines
who applies, but also the potential benefit of applying.

Incentive alignment. Since learning optimizes for accu-
racy, but users generally seek higher precision, it is natural
to ask how these two incentives relate. While not precisely
aligned, our next result shows that they are tightly connected.
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Figure 3: Self-selective distributions. Absent strategic
behavior, all groups in the population are assumed to partic-
ipate (left). But when applications depend on the learned
classifier (here, f1 vs. f2), self-selection shapes the target
distribution that the classifier will face (center vs. right).

For a group z, let µz = PS(y = 1 | z) denote its base rate
(which does not depend on f ), and accz = PS(y = ŷ | z)
denote its empirical accuracy (which does).

Proposition 4. Fix c, and consider some group z.

• If accz < 1−µz max{1, 1
c−1}, then necessarily a∗z = 0.

• If accz ≥ 1−µz min{1, 1
c −1}, then necessarily a∗z = 1.

Prop. 4 shows that excessively low accuracy can impede
application, and that high enough accuracy can enable it
(see Fig. 7 in Appx. A for an illustration of these relations).
Thus, disparity across group accuracies accz can translate
to disparity in applications a∗z . One worrying implication is
that the firm, by controlling accuracy, can indirectly control
for which groups applying is cost-effective. Fortunately,
there are regimes in which learning is devoid such power.

Corollary 1. Fix accz . If neither conditions from Prop. 4
hold, then a∗z is unconstrained: there exist f1, f2 that both
attain accz , but a∗z = 0 under f1, and a∗z = 1 under f2.

Prop. 4 also reveals the roles of µz and c as mediating factors.
On the one hand, for fixed c, if some groups have low base
rates µz , then this becomes an innate obstacle to equitable
application. On the other hand, if costs can be reduced
for those groups, then this disparatiy can be corrected—
motivating our discussion on targeted subsidies in Sec. 3.4.

3. Analysis
In this section we consider the implications and possible
outcomes of learning in the face of model-induced self-
selection. We begin with a simple form of learning, and then
proceed to consider increasingly more informed approaches.

3.1. Naïve non-strategic learning

The constructive relation between accuracy and precision
discussed in Sec. 2.1 suggests that perhaps it may suffice
to employ a conventional learning approach that naïvely
maximizes predictive accuracy on the original distribution p,
despite this being oblivious to self-selection. This may also
seem to favor users: notice that if we discard a, then user util-
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ity, given by Ep[ŷ(y − c)], correlates with accuracy, which
can be written as Ep[(2ŷ − 1)(2y − 1))], since one is ob-
tained from the other via linear transformations of y and ŷ.

The crux, however, is that once a is accounted for, this global
correlation pattern breaks, as does the relation between per-
group accuracy and precision. The result is a disconnect
between the accuracy the model is assumed to obtain (w.r.t.
p), and its actual accuracy at test time (i.e., on the induced
pf ). This is demonstrated through a constructive example
in Appx. C.1: let K = 2, and for each z ∈ {1, 2}, define
p(x, y|z) to be composed of two per-class Gaussians over
x, each centered at their corresponding y. Then by varying
the base rate µ2 (and keeping µ1 fixed), where by varying
a single µz , we are able to generate arbitrary outcomes,
where assumed (i.e., standard) accuracy is either: worse than
induced accuracy; appears to be better; or remains the same.

3.2. Semi-strategic learning: varying the threshold

Since precision determines applications, a slightly more so-
phisticated “semi-stretegic” approach is to take a pre-trained
‘naïve’ model and then tune its precision strategically to max-
imize induced accuracy. For threshold classifiers fϕ,τ (x) =
1{ϕ(x) > τ} with score function ϕ and threshold τ , here
we build on the common practice of first training f for accu-
racy, and then varying τ (with ϕ fixed) to control precision.

Monotonicity. Generally, precision is expected to increase
with τ , but this does not occur monotonically.6 To simplify
our analysis, we present a condition which guarantees mono-
tonicity; this will ensure that when τ is increased, applica-
tions can transition from a = 0 to a = 1 at most once.

Definition 1 (Calibrated score function). Let ϕ be a score
function such that p(ϕ(x), y) is a well-defined density, and
for which ϕ has full support on [α, β]. We say ϕ is a cali-
brated score function w.r.t. p if for all τ ∈ [α, β):

P (y = 1 | ϕ(x) > τ) ≥ P (y = 1 | ϕ(x) = τ)

Intuitively, ϕ is calibrated if it captures the ‘direction’ in
which P (y = 1|x) increases.7 And while optimizing f for
accuracy does not guarantee calibration, it is a desirable
property which we can hope will emerge (perhaps approx-
imately). Note score function calibration is a weaker condi-
tion (and is implied by) standard calibration (see Appx. B.1).
Our next result links calibration and monotonicity.

Lemma 1. Let ϕ be a score function. Then ϕ is calibrated
if and only if the precision of its corresponding fϕ,τ , namely
P (y = 1 | fϕ,τ (x) = 1), is monotonically increasing in τ .

6Intuitively, the reason is that τ , which determines ŷ, appears in the
denominator: prc = P (y=1,ŷ=1)

P (ŷ=1)
. Recall, however, is monotone.

7A similar definition appears in Okati et al. (2023) in the context of
fairness, but is stronger (Appx. B.2) and used for different ends.
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Figure 4: Precision and application. For a fixed score func-
tion ϕ and varying threshold τ , different groups (K = 10,
colored lines) exhibit different precision curves. Though ϕ is
not mutually calibrated, most curves are roughly monotone
and cross the cost c (dashed line) at most once. This induces
an ordering ⪯ϕ over applications a∗ (lower plot). A semi-
strategic learner can affect a∗ only by thresholding on ⪯ϕ.

We say a score function is calibrated for group z if it is
calibrated w.r.t p(· |z). This ensures that prcz is monotonic,
which in turn determines how varying τ affects applications:

Corollary 2. Consider some group z. If ϕ is calibrated w.r.t.
z, then a∗z is either a step function in τ , or is constant.

Thresholds and ordering. We say that ϕ is mutually cal-
ibrated if it is calibrated for all z.8 When this holds, Cor. 2
implies that ϕ induces an ordering over groups, and τ serves
to ‘threshold’ applications w.r.t. that ordering. Let cz be the
minimal τ s.t. prcz ≥ c, and define z ⪯ϕ z′ iff cz ≤ cz′ .

Corollary 3. Let ϕ be mutually calibrated, and consider
some z, z′ for which z ⪯ϕ z′. Then for any τ under which
candidates from z′ apply, candidates from z apply as well.

This idea is exemplified in Fig. 4, which plots per-group
precisions prcz as a function of τ for a standard logistic
regression model trained on simple synthetic data (K = 10,
class-conditional Gaussians p(x|y, z) per group z; details in
Appendix C.3). As can be seen, mutual calibration does not
hold, but nonetheless most prcz are generally increasing,
and cross c at most once, which enables the ordering ⪯ϕ.

This points to an inherent limitation of semi-strategic learn-
ing: once ϕ is fixed, applications that result from tuning
τ must comply with the constraints imposed by ⪯ϕ. On
the one hand, this provides an innate restraint on the firm’s
power to determine who applies and who does not. On the

8Works discussing standard calibration across groups includes in
Pleiss et al. (2017) in the context of fairness and in Wald et al.
(2021) in the context of out-of-distribution generalization.
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other hand, it impedes the firm’s ability to obtain its predic-
tive goals: Appendix C.2 shows an example with K = 2
where any reasonable classifier induces an ordering z1 ⪯ z2,
but optimality w.r.t. induced accuracy necessitates z1 ≻ z2.

Base rates and applications. Notice that for the minimal
τ , it holds that prcz = µz; this is since all predictions are
positive, and therefore conditioning on ŷ = 1 is vacuous.
Coupled with calibration, this has concrete implications:

Corollary 4. Let z with µz ≥ c. If ϕ is calibrated w.r.t. z,
then z always applies, i.e., has a∗z = 1 for any value of τ .

One consequence is that a semi-strategic firm wishing to
favor ‘quality’ groups (i.e., having high µz) can easily do
so by revoking screening altogether (via τ = −∞), so that
a∗ = 1{µz ≥ c}: this creates an appearance of equal oppor-
tunity, but in effect discriminates against low-µz candidates
by exploiting their need to overcome a larger cost gap.

Nonetheless, for general τ , the restraining effect of µz can
weaken. Note how in Fig. 4 curves differ in their intercepts
(equal to µz), but also in their ‘slopes’. Slopes are given by
the part of prcz that does not depend on µz—using Bayes,
we can write:9

prcz =
P (ŷ = 1 | y = 1, z)

P (ŷ = 1 | z) µz (7)

This shows how low-µz groups can apply ‘before’ (i.e.,
under lower τ ) other groups with higher base rates. For
example, in Fig. 4, note how z9 has low base rate, but its
precision curve rises quickly, and it applies early in ⪯ϕ.
Another example are z5 and z6 who have similar base rates
and therefore begin similarly, but end up very differently in
the ordering.

3.3. Strategic learning: anticipating self-selection

If the firm is aware of self-selection, then it should benefit
from encoding this directly into the learning objective. A
natural objective for a strategic firm is therefore:

argmin
f∈F

1

mf

∑
i
a∗i ℓ(yi, f(xi)) (8)

which is the empirical analog of Eq. (6). Here, ℓ is some
proxy loss (e.g., log-loss or hinge loss), a∗i is the application
decision of candidate i (recalling this depends on f ), and
mf =

∑
i a

∗
i is the total number of applicants under f .10

Strategic power. Once learning accounts for self-
selection, it can utilize its informational advantage over

9This slope term is sometimes referred to as ‘normalized’ recall.
10Technically, Eq. (8) is ill-defined if a∗

i = 0 for all i. To cir-
cumvent this outcome, we can define 0

0
= ∞; in practice, we

implement this using an additive penalty term (see end of Sec. 4).

candidates: the learner knows y and can compute ŷ for any
x ∈ S, whereas candidates only have access to prcz . A key
question is: what are the reaches of this power? Our next
result shows that the firm’s control can be quite extensive.
Proposition 5. Let F be any class of functions with group-
specific ‘offset’ terms vz , i.e., are of the form f(x) =
g(x) + v⊤z. If all groups have µz < c, then the optimal f
for Eq. (8) is such that only a single group applies. Other-
wise, f is such that of all groups with µz < c, only at most
one group applies. In both cases, this group is that which at-
tains the highest accuracy had it been trained on separately.

The proof is constructive, giving an algorithm that could
theoretically obtain the optimal f . Intuitively, Prop. 5
holds since linear models w⊤x + b have coefficients wz

associated with each z (encoded as 1-hot); thus, f can be
constructed to ensure that only a specific target group z
applies by setting wz = 0; setting wz′ = −∞ for all other
z′ ̸= z; and training the remaining coefficents wx\z and b to
predict well on examples from z in S, subject to prcz ≥ c.

Prop. 5 asserts that even with simple models, strategic learn-
ing has the capacity to designate a single group—that which
enables the highest accuracy—and block all others candi-
dates from applying. But this power extends further: if the
firm has in mind goals other than accuracy, it can essentially
shape applications, through self-selection, as it sees fit.
Corollary 5. Let F include functions with group-specific
offsets vz as before, and consider some f ∈ F . Then for
any set of groups A = {z : µz < c} ⊆ [K], it is possible
to construct an f ′ which agrees with f on all x with z /∈ A,
but prevents application from all candidates in any z ∈ A.

Taming strategic learning. The power to determine ap-
plication outcomes derives from the ability to influence each
group individually. To restrict this power, one idea is to sim-
ply remove z from the set of features. The caveat in this ap-
proach is that even if z is not used explicitly, if the remaining
features x\ z are informative of z, then z could be exploited
implicitly. To ensure that learning is entirely agnostic to
group memberships, we propose to augment the objective
in Eq. (6) with a constraint enforcing independence:

argminf∈F Epf [1{y ̸= f(x)}] s.t. f(x) ⊥ z (9)

In the fairness literature, this constraint is known as sta-
tistical parity (Dwork et al., 2012). Note that independence
must be enforced on the training distribution p, rather than
on the induced pf (i.e., after the fact); otherwise, a strategic
learner could ‘choose’ to discard any z for which satisfying
Eq. (9) is either difficult or hurts predictive performance.

Our next result shows that statistical parity limits the power
of strategic learning in a particular way—by inducing an or-
dering over group applications. Let ⪯µ be an ordering over
groups by decreasing base rate, namely z ⪯µ z′ if µz ≥ µz′ .

6
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Proposition 6. Let f , and assume f(x) ⊥ z. For any z, z′

with z ⪯µ z′, if z′ applies under f , then z also applies.

Thus, if f satisfies statistical parity, then applications must
comply with ⪯µ; in other words, f can still determine who
applies, but now only by thresholding on µ. Note this order-
ing is independent of f (c.f. ⪯ϕ from Cor. 3, which is). This
follows from precision now admitting the following form:

prcz = PS(y = 1 | ŷ = 1)
PS(y = 1 | z)
PS(y = 1)

= prc
µz

µ
(10)

where prc and µ are the global precision and base rate,
respectively (see proof in Appendix A). Applications can
therefore be rewritten as a∗ = 1{prc ≥ c · µ

µz
}, and since

f only affects prc, and does so globally, high µz can be in-
terpreted as reducing ‘effective’ per-group application costs.

3.4. Affirmative action

Consider a social planner who wishes to promote the ap-
plication of some group z. If statistical parity holds, then
the social planner can grant targeted subsidies, sz ≥ 0, to
reduce costs for candidates in z. The decision rule becomes:

a∗z = 1{prcz ≥ cz} where cz = c− sz (11)

Here, per-group costs cz correct for low µz (in units of µ) as:

prcz(sz) := prc
µz(sz)

µ
, µz(sz) := µz + szµ (12)

Subsidies can be used to ‘bump up’ the target group in the or-
dering ⪯µ (Prop. 6). Nonetheless, a promoted group will ap-
ply only if its inclusion does not degrade potential accuracy,
given its new position. With calibration, z can be guaranteed
to apply if sz is sufficiently large so that µz > cz (Cor. 4).

4. Method
We now turn to describing an effective method for optimiz-
ing the strategic learning objective in Eq. (8). This objective
differs from the standard ERM objective in that the classifier
f determines for each example not only its prediction, but
also, through a∗, whether it should be ‘turned on’ or not.
The challenge is therefore to account for the dependence of
application decisions a∗ on the classifier f being optimized.
This is further complicated by the fact that a∗ is discrete.

Our solution, which jointly addresses both problems, is to
replace a∗i ∈ {0, 1} with a continuous surrogate ãi ∈ [0, 1]
that is differentiable in the parameters of f . These, together
with the normalizing factor, are used to define differentiable
per-example weights, wf

i = ãi/m̃
f , where m̃f =

∑
i ãi,

so that
∑

i w
f
i = 1 always. Our proposed objective is:

argminf∈F

∑
i
wf

i ℓ(yi, f(xi)) + λR(f) (13)

where R is an (optional) regularization or penalty term. We
now describe how to effectively implement each component.

Differentiable applications. Recall that for a candidate i
with zi = z, her application decision is a∗i = 1{prcz ≥ c}
(see Eq. (4)). A natural first step is to replace the indicator
function with a smooth sigmoidal function ξ, so that:

ãi = ξ(prcz − c) (14)

Note however that the standard sigmoid is inappropriate,
since its domain is the real line, whereas prcz and c are
both in [0, 1]. A proper alternative should satisfy the
following properties: (i) have ξ(−c) = 0 for prcz = 0, and
ξ(1− c) = 1 for prcz = 1; (ii) be indifferent at prcz = c,
i.e., ξ(0) = 0.5; (iii) include a temperature parameter τ s.t.
limτ→∞ ξτ = 1. We propose the following sigmoid:

ξτ (r; c) =

(
1 +

(
(r + c)(1− c)

c(1− (r + c))

)−τ )−1

(15)

where τ ≥ 1. Eq. (15) is differentiable and satisfies all
three criteria, as illustrated in Appx. B.3. Note how the
domain is [−c, 1 − c], which shifts with c. In practice
we add tolerance as c + ε to safeguard against statistical
discrepancies between train and test.

Differentiable precision proxy. For ãi in Eq. (14) to be
differentiable, prcz must also be differentiable. Note that:

prcz = PS(y = 1 | ŷ = 1, z) =

∑
j:zj=z yj ŷj∑
j:zj=z ŷj

(16)

Thus, it suffices to replace ‘hard’ predictions ŷ with ‘soft’
probabilistic predictions ỹ ∈ [0, 1]. For the common case
where ŷ = 1{ϕ(x) > 0}, we can replace the indicator with
the standard sigmoid σ, e.g., σ(r) = (1 + e−r)−1, giving:

p̃rcz =

∑
j:zj=z yj ỹj∑
j:zj=z ỹj

, ỹ = σ(ϕ(x)) (17)

While sound, this approach suffers from a subtle form of
bias, which makes it ineffective for our purposes. To see this,
consider that the nominator sums only over positive exam-
ples (i.e., with yj = 1). For a reasonably accurate f (which
implies y, ŷ are correlated), since ỹj ≤ ŷj , we can expect the
nominator of p̃rc to be consistently smaller than that of prc;
if the denominator is only mildly affected (which is reason-
able to assume), then p̃rc as a proxy becomes negatively bi-
ased. More worrying is the fact that this bias becomes worse
as accuracy improves—a phenomena we’ve observed repeat-
edly in our empirical investigations. Thus, it becomes harder,
through this proxy, to enable application for high-accuracy
groups—which goes precisely against our learning goals.
To remedy this, we propose to apply a corrective term:

p̃rcz =

∑
j:zj=z yj ỹj∑

j:zj=z ỹj −B
, B =

1

c

∑
i
(yi − c)(ŷi − ỹi)

7
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Table 1: Experimental results. For representative c ∈ {0.7, 0.8} and averaged over 10 random splits, results show: induced
accuracy (±stderr), number of applying groups, and the r2 between the ideal ⪯µ and the actual ranking based on prcz .

adult (c = 0.7) adult (c = 0.8) bank (c = 0.7) bank (c = 0.8)

ind. acc. apply rank r2 ind. acc. apply rank r2 ind. acc. apply rank r2 ind. acc. apply rank r2

naïve 85.2±0.3 3.0/4 0.219 (87.8) 0.1/4 (0.219) (80.9) 5.4/10 (0.066) - 0/10 -
semi 87.4±0.6 2.1/4 0.135 90.1±0.5 1.2/4 0.300 90.0±0.4 1.5/10 0.068 86.4±0.6 2.4/10 0.100
stratx 91.1±0.5 1.1/4 0.076 90.5±0.5 1.0/4 0.003 90.1±0.4 1.8/10 0.177 88.7±0.4 1.1/10 0.238
stratx\z 86.0±0.4 2.5/4 0.244 89.0±0.5 1.0/4 0.029 87.9±0.4 6.7/10 0.170 87.0±1.1 1.5/10 0.121
stratŷ⊥z 86.5±0 0.6/4 0.85 88.5±0 0.4/4 0.537 87.3±0.6 0.9/10 0.343 88.2±0.5 1.3/10 0.361

Appendix B.4 shows how B serves to de-bias p̃rc. In prac-
tice, we clip p̃rc to be in [0, 1] so that it will be well-defined.

The downside is that the corrected p̃rc is no longer differ-
entiable (since it now includes hard predictions ŷ). Our
solution is to fix at each epoch the values of ŷi from the
previous iteration, and update them after each gradient step.
Because in each step (and especially in later stages of train-
ing) only a few examples are likely to flip predictions, and
since B sums over all examples, we expect this to only
marginally affect the resulting gradient computations.

Ensuring application and well-defined precision. One
issue with precision is that it is undefined if ŷ = 0 for all
examples. Although this does not affect our continuous
proxy, we would still like to ensure that at test time the true
precision is well-behaved. Similarly, it is important that at
least one group applies. Our solution is regularize via:

Rapp(ϕ;S) = − 1

K

∑
z
logmax

i∈z
ỹi − logmax

z
ãz (18)

As we will see, one drawback of non-strategic approaches is
that in some cases learning results in no applications at all.

Implementing independence. Enforcing statistical parity
as independence constraints is generally hard, but there are
many approximate methods (e.g., Agarwal et al. (2018)). In
line with our general differentiable framework, we opt for a
simple approach and add to the objective the penalty:

R⊥(ϕ;S) =
1

K

∑
z

(
E[ỹ = 1 | z]−E[ỹ = 1]

)2
(19)

5. Experiments
We now turn to our experimental analysis based on real
data and simulated self-selective behavior. We use two
public datasets: (i) adult and (ii) bank, both of which are
publicly available, commonly used for evaluation in the fair-
ness literature (Le Quy et al., 2022), and appropriate for
our setting. As group variables, we use ‘race’ for adult
(K = 4) and ‘job’ for bank (K = 10). We experiment with
c ∈ [0.65, 0.85], since this range includes all significant vari-
ation in application outcome. Data is split 70-30 into train

and test sets. Results are averaged over 10 random splits
and include standard errors. Appendix D provides further
details on data and preparation, methods, and optimization.

Methods. We compare between three general approaches,
as discussed in Sec. 3: (i) naïve, which trains a classifier
conventionally and is agnostic to self-selective behavior;
(ii) semi, which implements the semi-strategic approach
of first training a naïve classifier and then tuning its thresh-
old strategically; and (iii) strat, which trains using our
strategically-aware objective (Sec. 4). For the latter, we con-
sider three variants: (iii.a) stratx, which uses all informa-
tion in x; (iii.b) stratx\z , which discards group features z;
and (iii.c) stratŷ⊥z , which encourages statistical parity via
regularization. All methods are based on linear classifiers.

Optimization. For a clean comparison, all methods are
based on the same core implementation (pytorch) and op-
timized in a similar fashion.11 We used vanilla gradient de-
scent with learning rate 0.1 and trained for a predetermined
and fixed number of epochs. Coefficients for Rapp and R⊥
(when used) were chosen to be small yet still ensure fea-
sibility and (approximate) independence, respectively, but
overall performance was not very sensitive to chosen values.

Main results. Table 2 shows induced accuracies, applica-
tion rates, and correlations between ranks based on prcz and
⪯µ for representative c = 0.7, 0.8 (full results in Appx. E).
Note all accuracies are relatively high and in a narrow range;
this is since both datasets have inherently low base rates
(µadult = 0.24, µbank = 0.16) and so even a few percentage
points in accuracy are significant. The naïve approach is
clearly suboptimal; moreover, in some cases it leads to no
groups applying at all (parentheses/hyphen indicate no ap-
plications in some/all splits). Meanwhile, across all settings,
stratx obtains the highest induced accuracy. Notice how,
as suggested by Prop. 5, this follows from the number of
applying groups being to be close to 1. Interestingly, semi
does rather well, albeit inconsistently; more importantly, it
does not support constraining for statistical parity, which is

11We also compared our implementation of naïve to a vanilla
sk-learn implementation, ensuring that they performed similarly.
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Figure 5: Social cost per cost c for different methods.

necessary for enabling affirmative action. As expected, dis-
carding features in stratx\z and further adding constraints
in stratŷ⊥z reduces their performance. However, in line
with Prop. 6, the large r2 values suggest that in most cases
stratŷ⊥z is able to approximately enforce the ordering ⪯µ,
this effectively limiting the learner’s power (results for bank
were highly variate for larger c). In contrast, note how the
excessive power of stratx pushes rankings away from ⪯µ.

Detailed analysis. Fig. 6 shows accuracy and precision
curves for varying c on a typical bank instance. Results
show how strat is able to consistently perform well by
ensuring that only two quality groups apply: z1 (orange),
which provides high accuracy, and z9 (cyan), which has
lower accuracy but maintains its high precision. Since z1 in-
cludes significantly more data points than z9, it becomes the
dominant component of the overall induced accuracy (black
line). Note how strat increases prc1, prc9 to be above the
application threshold as c increases; all other prcz are sub-
stantially lower (see scatterplot). In contrast, since naïve
does not account for c, the order in which groups apply
remains fixed to the order induced by prcz; as c increases,
less groups apply, and accuracy varies arbitrarily. Mean-
while, stratx\z is able to push prc9 higher, but struggles
for the more important prc1—succeeding for c ≤ 0.725,
but failing above. In general, the unavailability of z as a
feature greatly limits its capacity to control individual prcz .

Fig. 5 shows social costs, defined as the ratio of qualified
applicants (y = 1) that did not apply (a = 0) over all
groups, for increasing costs c and average over splits. As
expected, for stratx the social cost is high since the
number of applications is very low. And whereas semi
and stratŷ⊥z display similar trends, it is stratx\z that
shows favorable costs for low c. These are even lower that
naïve where costs are obtained simply by thresholding on
the non-adjusting prcz values, and are therefore zero for
the lowest c = 0.65. Together, results suggest that accuracy
for the firm comes at a social cost, which is not mitigated
by statistical parity. This calls for other means for ensuring
that qualified candidates apply across all groups—which
should benefit both the firm and the candidate population.

0.7

0.8

0.9

ac
cu

ra
cy

stratx

induced acc. (when apply)

assumed acc. (naive)

per-group accz (a∗z = 1)

per-group accz (a∗z = 0)

0.7

0.8

0.9

ac
cu

ra
cy

stratx\z

0.65 0.70 0.75 0.80

cost (c)

0.7

0.8

0.9

ac
cu

ra
cy

naive

z0
z1
z2
z3
z4

z5
z6
z7
z8
z9

0.65 0.70 0.75 0.80

0.6

0.8

pr
ec

is
io

n

stratx

per-group prcz

application thresh (=c)

a∗ = 0

0.65 0.70 0.75 0.80

0.6

0.8

pr
ec

is
io

n

stratx\z

0.65 0.70 0.75 0.80

cost (c)

0.6

0.8

pr
ec

is
io

n

naive

accuracy and precision curves (bank)

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

p
er

-g
ro

u
p

pr
ec

is
io

n
(p
rc
z
)

stratx

c = 0.7

0.1 0.3 0.5 0.7 0.9

per-group accuracy (accz)

stratx\z

c = 0.7

precision vs. accuracy (c=0.7)

0.1 0.3 0.5 0.7 0.9

naive

c = 0.7

a∗z = 1

a∗z = 0

Figure 6: (Top:) Accuracy and precision curves on an
instance of bank. (Bottom): Precision vs. accuracy per z.

6. Discussion
This work studies classification under strategic self-
selection, a setting in which humans—as the subjects of
prediction—choose if to participate or not, this in response
to the learned classifier used for screening. Self-selection is
a well-studied, well-documented phenomena that is highly
prevalent across many social domains; given its significant
role in determining the eventual composition of the apply-
ing sub-population in job hiring, school admissions, welfare
programs, and other domains, we believe it is important to
understand how self-selection affects, and is affected, by
deployed predictive models. Our work focuses on classi-
fiers used in a particular screening setting, but learning can
influence self-selection in broader manners as well. One
avenue for future work is to enable more fine-grained indi-
vidualized decisions, e.g., based on private information or
beliefs. Another path is to consider self-selective dynamics
(e.g., in a performative prediction setting). Yet another path
is to determine how to best choose which statistics to reveal.
We leave these for future investigation.
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Impact Statement
A basic assumption in conventional machine learning is that
data is drawn from a fixed underlying distribution. Our
work challenges this assumption by positing that in social
settings, the distribution in practice will be shaped by which
users choose to participate, this in response to the learned
classifier. We believe this applies widely in settings where
learning is used to support downstream decisions regarding
humans, such as in hiring, admissions, or loan approval. Our
work suggests that overlooking how the learned classifier
influences participation can result in unexpected or even
undesired outcomes, and propose means for learning in a
way that anticipates and accounts for strategic self-selection.
Our hope is that this will enable firms, governments, and
public institutions to learn in ways which balance their goals
with those of their potential users.

One implication of our work relates to algorithmic bias.
Amounting evidence suggests that learning systems have
the capacity, and often the tendency, to perpetuate social
biases that exist in the data. This is often seen as an unde-
sired artifact of blindly pursuing learning objectives (e.g.,
maximizing accuracy) without any social considerations.
And whereas much effort has been devoted to developing
methods that reduce such data-driven biases (e.g., by enforc-
ing fairness constraints), our work’s perspective provides a
possible explanation for how such biases came to be, i.e.,
why the data we observe is biased to begin with. For ex-
ample, note it is possible to construct a classifier that is
entirely ‘fair’ (under any reasonable notion) when measured
on the induced test distribution; but where this is so only be-
cause the classifier prevented certain groups from applying—
groups which otherwise would have made it difficult (or
impossible) to achieve fairness. This alludes to a more sub-
tle form of ‘implicit’ inequity in which classifiers exploit the
fact that users make decisions under uncertainty to create an
illusion of fairness and thus circumvent accountability.

A second implication of our work considers its scope. Note
that many of our conclusions relate to the possible discrepan-
cies between learning in a way that is aware of self-selective
behavior, compared to ways that are not. It is however im-
portant to emphasize that these conclusions hold under the
simplified setting we consider, and in particular, under ratio-
nal strategic behavior. Thus, while we believe our work car-
ries practical implications for learning and policy-making,
these must be considered with much care and deliberation
as to the feasibility of our assumptions in reality. We are
also hopeful that future work will extend beyond our focal

setting, whether by considering more general behavioral
models, other learning settings, or broader economic envi-
ronments. As for the latter, note our work applies mostly
to markets where there is scarcity in supply (e.g., jobs) and
a relative abundance of demand (e.g., qualified workers).
This justifies why firms in our setting need not worry about
‘missing’ potential candidates—only about hiring good ones.
And while many markets are such (e.g., academic positions,
executive managers, academic publishing, and in some cases
loans), clearly there are markets (or times) in which demand
is scarce and supply is abundant (e.g., many jobs but few
qualified candidates). This distinction has implications not
only in utilitarian terms, but also in terms of welfare and the
role of learning in determining such outcomes.

A final implication regards transparency and the need for
responsible usage of learning in social settings. Our results
suggests that, under the setting we consider, learning has
the capacity to determine the eventual user population. This
grants learning much power that should not be taken lightly.
As we show, when learning simply pursues the conventional
goal of optimizing accuracy, this can come at the expense
of preventing most groups from applying (indirectly, by re-
ducing the cost-effectiveness of application). Since such
undesirable outcomes arise even unintentionally—simply
as a result of deploying a classifier—any firm that seeks to
employ learning for improving decision-making should do
so responsibly and transparently. The latter is crucial given
the key role information plays in our setting, in the forms
of what statistics are made public by the firm and therefore
shared with potential candidates (e.g., conditional precision
metrics). Note that what information is revealed is a choice—
one that has major implications on outcomes. Whereas our
work considers this choice as a given, in practice, we believe
that it offers a valuable entry point for a social planner or reg-
ulator to implement social policy—although how to do this
precisely and effectively requires further research efforts.

Overall, we hope our work aids in raising awareness to self-
selection in social settings, its likely prevalence, and the
potential capacity of learning to affect it.
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A. Proofs
Proposition 1:

Proof. If candidates base their beliefs p̃(y, ŷ | x) on valid information, which in this case amounts to the aggregate per-group
statistics published by the firm, namely PS(y, ŷ | z),12 then we can rewrite the decision rule as:

a∗ = argmaxa∈{0,1}Ep̃(y,ŷ|x)[u(a)]

= argmaxa∈{0,1}Ep(y,ŷ|z)[u(a)]

= 1{Ep(y,ŷ|z)[u(1)] ≥ 0}
= 1{Ep(y,ŷ|z)[ŷ · (y − c)] ≥ 0}

(20)

Computing the expectation directly, we get:

Ep(y,ŷ|z)[ŷ · (y − c)] =
∑

y,ŷ∈{0,1}

p(y, ŷ | z) · ŷ · (y − c)

=
∑

y∈{0,1}

p(y, ŷ = 0 | z) · 0 · (y − c) + p(y, ŷ = 1 | z) · 1 · (y − c)

=
∑

y∈{0,1}

p(y, ŷ = 1 | z) · (y − c)

= p(y = 0, ŷ = 1 | z) · (0− c) + p(y = 1, ŷ = 1 | z) · (1− c)

= p(y = 1, ŷ = 1 | z)− c · (p(y = 0, ŷ = 1 | z) + p(y = 1, ŷ = 1 | z))
= p(y = 1, ŷ = 1 | z)− c · p(ŷ = 1 | z)
= p(ŷ = 1 | z)· (y = 1|ŷ = 1, z)− c · p(ŷ = 1 | z)
= p(ŷ = 1 | z) (p(y = 1|ŷ = 1, z)− c)

= p(ŷ = 1 | z) (prcz − c) (21)

Plugging this back into Eq. (20), we get:

a∗ = 1{p(ŷ = 1 | z) (prcz − c) ≥ 0}

=

{
1{prcz ≥ c} if p(ŷ = 1 | z) > 0

0 o.w.
(22)

which under the assumption that p(ŷ = 1 | z) > 0 always simplifies to a∗ = 1{prcz ≥ c}.

Proposition 2:

Proof. Immediate from Eq. (21)

Proposition 3:

Proof. Proof by construction. Let c = 0.5, fix m = 15, and consider the following contingency tables:

f1 y = 0 y = 1
ŷ = 0 2 3
ŷ = 1 3 7

f2 y = 0 y = 1
ŷ = 0 0 0
ŷ = 1 5 10

Precision values are 7/(3+7) = 0.7 for f1 and 10/(5+10) = 2/3 < 0.7 for f2, so higher for f1. Recall u(a) = aŷ(y− c),
then utilities are:

u1(1) = − 2

15
· 0 · 1

2
− 3

15
· 1 · 1

2
+

3

15
· 0 · 1

2
+

7

15
· 1 · 1

2
= 0.133

u2(1) = − 0

15
· 0 · 1

2
− 5

15
· 1 · 1

2
+

0

15
· 0 · 1

2
+

10

15
· 1 · 1

2
= 0.166

12In particular, we assume that candidates do not hold any private information, other than x itself, that is further informative of p(y, ŷ | z).
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Figure 7: Regions of application. Plots show for different base rates µ the relations between a classifier’s accuracy accz on
group z and that group’s application a∗. In red regions a∗ = 0, in green regions a∗ = 1, and elsewhere a∗ is unconstrained.

and so higher for f2.

Proposition 4 and Corollary 1:

Proof. Our proof relies on the main Theorem from Alvarez (2002) that makes precise the relation between base rate,
accuracy, precision, and recall (denoted rcl) of any classifier. The result states that:

µ · rcl+ (µ− err)prc = 2 · µ · rcl · prc (23)

In what follows, for clarity we will omit the subscript z. Extracting prc gives:

prc =
µ · rcl

µ(2rcl− 1) + err

For the first statement, bounding the RHS from above by c will guarantee prc ≤ c and therefore a∗ = 0. Rearranging gives:

acc ≤ 1− µ(rcl(
1

c
− 2) + 1)

The RHS is linear in rcl, is increasing if c > 1/2, and decreasing if c < 1/2 (and constant otherwise). It can therefore be
bounded from above by plugging in rcl = 0 and rcl = 1, and taking the minimum. This gives:

acc ≤ min{1− µ, 1− µ
1− c

c
} = 1− µmax{1, µ(1

c
− 1)} ⇒ a∗ = 0

For the second statement, we can bound the RHS in 23 from below by c; this will guarantee prc < c, and therefore a∗ = 1.
Similarly, we can take the minimum from rcl = 0 and rcl = 1, which gives:

acc > max{1− µ, 1− µ
1− c

c
} = 1− µmin{1, µ(1

c
− 1)} ⇒ a∗ = 1 (24)

For the corollary, note that the above effectively makes use of rcl as the only degree of freedom; thus, for any acc satisfying:

1− µmax{1, µ(1
c
− 1)} < acc ≤ 1− µmin{1, µ(1

c
− 1)}

then as long as F is sufficiently expressive, a∗ remains unconstrained.

Lemma 1:

Proof. Let fϕ,τ (x) = 1{ϕ(x) > τ} where ϕ : X → [α, β]. Denote the random variable φ = ϕ(x) and assume that p(φ, y)
is a well defined density function, so that the marginal and conditional density functions pφ and pφ|y are also well-defined,
and further assume that supp(pφ) = [α, β] (this to ensure that φ also induces a well-defined density). Denote by prc(τ) the
precision of fϕ,τ (x) as a function of the threshold τ ∈ [α, β), i.e.:

prc(τ) = P (y = 1|ϕ(x) > τ) = P (y = 1|φ > τ)
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Note that prc(τ) is well defined for all τ < β, because for these values of τ , P (φ > τ) > 0 since supp(pφ) = [α, β]. With
Bayes theorem we can write:

prc(τ) = P (y = 1) · P (φ > τ |y = 1)

P (φ > τ)

If P (y = 1) = 0, then prc(τ) = 0 for any τ , therefore prc(τ) is (weakly) monotonically increasing.

Now, assume that P (y = 1) > 0. Since p(φ, y) is a well-defined density function, P (φ > τ |y = 1) and P (φ > τ) are
differentiable, therefore prc(τ) is differentiable. Therefore, prc(τ) is monotonically increasing ⇔ prc′(τ) ≥ 0. Since
P (y = 1) is a constant, the derivative is:

prc′(τ) = P (y = 1) ·
(
P (φ > τ |y = 1)

P (φ > τ)

)′

Since P (y = 1) > 0, prc′(τ) ≥ 0 ⇔
(

P (φ>τ |y=1)
P (φ>τ)

)′
≥ 0. Using the quotient rule, we get that(

P (φ > τ |y = 1)

P (φ > τ)

)′

=
(P (φ > τ |y = 1))′ · P (φ > τ)− P (φ > τ |y = 1) · (P (φ > τ))′

(P (φ > τ))2

Since P (φ > τ) > 0, the denominator is positive, therefore(
P (φ > τ |y = 1)

P (φ > τ)

)′

≥ 0 ⇔ (P (φ > τ |y = 1))′ · P (φ > τ)− P (φ > τ |y = 1) · (P (φ > τ))′ ≥ 0 (25)

Using the connection between CDF and PDF, we get

(P (φ > τ))′ = (1− P (φ ≤ τ))′ = −pφ(τ)

and
(P (φ > τ |y = 1))′ = (1− P (φ ≤ τ |y = 1))′ = −pφ|y=1(τ)

Plugging these in Eq. (25):

prc′(τ) ≥ 0 ⇔ −pφ|y=1(τ) · P (φ > τ) + pφ(τ) · P (φ > τ |y = 1) ≥ 0

With Bayes theorem applied to P (φ > τ |y = 1), we get that this holds iff:

− pφ|y=1(τ) · P (φ > τ) + pφ(τ) · P (φ > τ) · P (y = 1|φ > τ)

P (y = 1)
≥ 0

⇔ P (φ > τ) ·
(
−pφ|y=1(τ) + pφ(τ) ·

P (y = 1|φ > τ)

P (y = 1)

)
≥ 0

Since P (φ > τ) > 0, this holds iff:

− pφ|y=1(τ) + pφ(τ) ·
P (y = 1|φ > τ)

P (y = 1)
≥ 0

With Bayes theorem applied to pφ|y=1(τ), we get that this holds iff:

− pφ(τ) ·
P (y = 1|φ = τ)

P (y = 1)
+ pφ(τ) ·

P (y = 1|φ > τ)

P (y = 1)
≥ 0

⇔ pφ(τ)

P (y = 1)
·
(
− P (y = 1|φ = τ) + P (y = 1|φ > τ)

)
≥ 0

and since pφ(τ) > 0 and P (y = 1) > 0, we further get that this holds iff:

− Pr(y = 1|φ = τ) + P (y = 1|φ > τ) ≥ 0

⇔ P (y = 1|φ > τ) ≥ P (y = 1|φ = τ)

⇔ P (y = 1|ϕ(x) > τ) ≥ P (y = 1|ϕ(x) = τ)

Overall, we get that prc′(τ) ≥ 0 ⇔ P (y = 1|ϕ(x) > τ) ≥ P (y = 1|ϕ(x) = τ), i.e. prc is monotonically increasing if
and only if ϕ is a calibrated score function.
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Corollary 2:

Proof. Let z be some group, and let ϕ be a score function with range [α, β] that is calibrated w.r.t. z. Denote a∗z(τ) =
1{prcz(τ) ≥ c} as the optimal application function of z w.r.t. the classifier fϕ,τ (x). From Lemma 1 we get that prcz(τ)
is monotonically increasing in τ . Assume that a∗z(τ) is neither a constant or a step function. Therefore, there exists
α ≤ τ1 < τ2 < τ3 < β, such that a∗z(τ1) ̸= a∗z(τ2) and a∗z(τ2) ̸= a∗z(τ3).

• If a∗z(τ2) = 1, then a∗z(τ3) = 0. Therefore, prcz(τ2) ≥ c and prcz(τ3) < c, hence prcz(τ2) > prcz(τ3), and since
τ3 > τ2 this is a contradiction of the monotonicity of prcz(τ).

• If a∗z(τ2) = 0, then a∗z(τ1) = 1. Therefore, prcz(τ1) ≥ c and prcz(τ2) < c, hence prcz(τ1) > prcz(τ2), and since
τ2 > τ1 this is a contradiction of the monotonicity of prcz(τ).

Therefore, a∗z(τ) is either a constant or a step function.

Corollary 3:

Proof. Let ϕ be a mutually calibrated score function with range [α, β], and let z, z′ such that z ⪯ϕ z′. From the definition
of ⪯ϕ, this implies that cz ≤ cz′ . Let τ ∈ [α, β] be such that candidates from z′ apply, i.e. a∗z′(τ) = 1. Therefore,
prcz′(τ) ≥ c, and from the definition of cz′ we get τ ≥ cz′ ≥ cz . Since ϕ is mutually calibrated, it is calibrated w.r.t.
z, and from Lemma 1, prcz(τ) is monotonically increasing, therefore prcz(τ) ≥ prcz(cz). From the definition of cz ,
prcz(cz) ≥ c, therefore prcz(τ) ≥ c. Therefore a∗z(τ) = 1, i.e. candidates from z apply.

Proposition 5:

Proof. Consider first the case where all z are such that µz < c. As we have shown, if for some group z we have ŷ = 1 for
all x in that group, then prcz = µz , and as a result, a∗z = 0. To obtain the optimal classifier: (i) go over all groups, and
for each group z, train fz on the subset of data from z alone; (ii) find z∗ such that fz∗

has the highest accuracy; and (iii)
construct the final classifier f(x) = g(x) + v⊤z as g = fz∗

, vz∗ = 0, and vz = −∞ for all z ̸= z∗. This ensures that only
z∗ applies, and f obtains the same accuracy (on this group, and hence on all applicants) as fz∗

. Note that any other f ′ for
which other groups apply can have accuracy at most that of fz∗

, since this would include averaging over additional groups.
Hence, the constructed f is optimal. In the more general case where some groups may have µz > c, it is impossible to
guarantee that only a specific group applies (in particular when monotonicity does not hold); however, for all groups that do
have µz < c, the same reasoning as before still applies. Note that in this case the proof is not constructive, since the task of
inferring the optimal subset of groups becomes combinatorially challenging.

Corollary 5:

Proof. Let f . As before, if for some group z with µz < c we set vz = −∞, then this group will not apply. Furthermore, the
behavior of f on any x from other z′ ̸= z will remain the same.

Proposition 6:

Proof. Let f , and assume f(x) ⊥ z, therefore ŷ ⊥ z. Let z, z′ such that z ⪯µ z′, i.e. µz ≥ µz′ . Assume that z′ applies
under f , i.e. prcz′ ≥ c. For clarity we will write P to mean PS . With Bayes theorem can express prcz as:

prcz = P (y = 1 | ŷ = 1, z) = P (ŷ = 1 | y = 1, z)
P (y = 1 | z)
P (ŷ = 1 | z)

= P (ŷ = 1 | y = 1, z)
µz

P (ŷ = 1 | z)

Since ŷ ⊥ z, P (ŷ = 1 | z) = P (ŷ = 1) and P (ŷ = 1 | y = 1, z) = P (ŷ = 1 | y = 1), so we get:

prcz = P (ŷ = 1 | y = 1)
µz

P (ŷ = 1)
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Using Bayes theorem again on P (ŷ = 1 | y = 1), we get:

prcz = P (y = 1 | ŷ = 1)
P (ŷ = 1) · µz

P (y = 1) · P (ŷ = 1)

= P (y = 1 | ŷ = 1)
µz

P (y = 1)

= prc
µz

µ

where prc and µ are the global precision and base rate, respectively. In the same way, prcz′ = prc
µz′
µ . Therefore,

prcz = prc
µz

µ
≥ prc

µz′

µ
= prcz′

And since prcz′ ≥ c, we get that prcz ≥ c, i.e. z applies.

B. Additional results and illustrations.
B.1. Calibrated score functions vs. calibrated classifiers

Our next result connects score function calibration (Definition 1) to the standard notion of calibration for probabilistic
classifiers. In particular, we show that under the assumption that p(ϕ(x), y) is a well-defined density, score function
calibration is a weaker requirement, and is therefore implied by standard calibration.

Lemma 2. Let g(x) = p̂(y = 1|x) be a calibrated probabilistic classifier, i.e., satisfies P (y = 1 | p̂ = τ) = τ . Then ϕ = g
is a calibrated score function (with range [0, 1]).

Proof. Let φ = ϕ(x) be a random variable depicting scores, and assume that p(φ, y) is a well defined density function, so
that the marginal density function pφ is also well-defined. If we think of ϕ as a probabilistic classifier h, then from the
definition of classifier calibration we get P (y = 1|φ = τ) = τ , where τ ∈ [0, 1]. Therefore, by the definition of conditional
probability we get:

py,φ(y = 1, φ = τ) = τ · pφ(τ) (26)

Using the definition of conditional probability again, we get:

P (y = 1|φ > τ) =
Pr(y = 1, φ > τ)

P (φ > τ)

Using the law of total probability, we get:

P (y = 1, φ > τ)

P (φ > τ)
=

∫ 1

t=τ
py,φ(y = 1, φ = t) dt

P (φ > τ)

Plugging in Eq. (26), we get:∫ 1

t=τ
py,φ(y = 1, φ = t) dt

P (φ > τ)
=

∫ 1

t=τ
t · pφ(t) dt

P (φ > τ)
≥

∫ 1

t=τ
τ · pφ(t) dt

P (φ > τ)
=

τ · P (φ > τ)

P (φ > τ)
= τ

Finally, this gives:
P (y = 1|ϕ(x) > τ) ≥ τ = P (y = 1|ϕ(x) = τ)

which means that ϕ is a calibrated score function over [0, 1].

B.2. Calibrated score functions vs. within group monotone classifiers

Our next result connects score function calibration (Definition 1) to the definition of within-group monotonicity from Okati
et al. (2023). Using our notations, their definition can be stated as:
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Definition 2 (Within-group monotonicity). Let ϕ be a score function with range [α, β]. Then ϕ is within-group monotone if
for any z and for any α ≤ τ < τ ′ < β such that p(z | ϕ(x) = τ) > 0 and p(z | ϕ(x) = τ ′) > 0, it holds that :

P (y = 1 | ϕ(x) = τ, z) ≤ P (y = 1 | ϕ(x) = τ ′, z)

In some sense, this definition is more general than our definition of mutually calibrated score functions, because it does not
require a well-defined density p(ϕ(x), y). However, we show that within our setting (in which we do assume that p(ϕ(x), y)
is a well-defined density), our notion of score function calibration turns out to be a strictly weaker requirement than within-
group monotone, and is implied by it. For simplicity, and w.l.o.g., we will prove this for a version within-group monotonicity
that considers a general distribution p, i.e., absent the conditioning on z: P (y = 1 | ϕ(x) = τ) ≤ P (y = 1 | ϕ(x) = τ ′).13

We begin by showing that monotonicity implies calibration, and then providing an example of a score function that is
calibrated but is not monotone.

Lemma 3. Let ϕ(x) be a score function with range [α, β], such that p(ϕ(x), y) is a well-defined density, and ϕ has full
support on [α, β] under p. Then if ϕ is within-group monotone, it is also a calibrated score function.

Proof. Let φ = ϕ(x) be a random variable depicting scores, and denote its density function by pφ. Let τ ∈ [α, β). Using
Bayes theorem we can write:

P (y = 1 | φ > τ) =
P (y = 1)

P (φ > τ)
P (φ > τ | y = 1)

=
P (y = 1)

P (φ > τ)

∫ β

t=τ

pφ|y=1(t) dt

Using Bayes theorem again on pφ|y=1,z(τ) we get:

P (y = 1 | φ > τ) =
P (y = 1)

P (φ > τ)

∫ β

t=τ

P (y = 1 | φ = t)
pφ(t)

P (y = 1)
dt

=
1

P (φ > τ)

∫ β

t=τ

P (y = 1 | φ = t) · pφ(t) dt

Since ϕ is within-group monotone, for all t > τ it holds that P (y = 1 | φ = t) ≥ P (y = 1 | φ = τ), therefore:

P (y = 1 | φ > τ) ≥ 1

P (φ > τ)

∫ β

t=τ

P (y = 1 | φ = τ) · pφ(t) dt

=
P (y = 1 | φ = τ)

P (φ > τ)

∫ β

t=τ

pφ(t) dt

=
P (y = 1 | φ = τ)

P (φ > τ)
P (φ > τ)

= P (y = 1 | φ = τ)

Therefore ϕ is a calibrated score function.

Lemma 4. If p(ϕ(x), y) is well-defined, then within-group monotonicity is strictly stronger than score function calibration.

The proof is based on a constructive example of a score function that is calibrated, but is not within-group monotone. Let
x ∈ R, such that x ∼ U(0, 1), and let P (y = 1, x) = (x− 1

3 )
2 + 1

3 for x ∈ [0, 1]. Let ϕ(x) = φ = x be the identity score
function. We get that for τ ∈ [0, 1),

P (y = 1 | φ = τ) =
P (y = 1, x = τ)

px(τ)
=

(
τ − 1

3

)2
+ 1

3

1
=

(
τ − 1

3

)2

+
1

3

13Given this proof, the proof for Lemma 2 can be simplified, since a calibrated probabilistic classifier is a special case of a within-group
monotone classifier, thus it implies score function calibration.
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For τ = 0 and τ ′ = 1
3 , we get that τ < τ ′, but

P (y = 1 | φ = τ) =
1

3
+

1

9
>

1

3
= P (y = 1 | φ = τ ′)

therefore ϕ is not within-group monotone. However, ϕ is a calibrated score function:

P (y = 1 | φ > τ) =
P (y = 1, x > τ)

P (x > τ)
=

∫ 1

x=τ

(
x− 1

3

)2
+ 1

3 dx

1− τ
=

−3τ3 + 3τ2 − 4τ + 4

9(1− τ)

As can be seen in Figure 8 below, P (y = 1 | φ > τ) ≥ P (y = 1 | φ = τ) for all τ ∈ [0, 1).

Figure 8: A calibrated score function. Plot shows data distribution with a
score function ϕ(x) = φ = x, where P (y = 1 | φ = τ) =

(
τ − 1

3

)2
+ 1

3 ,
and P (y = 1 | φ > τ) = −3τ3+3τ2−4τ+4

9(1−τ) . Under this distribution, ϕ is
a calibrated score function: P (y = 1 | φ > τ) ≥ P (y = 1 | φ = τ) for
all τ ∈ [0, 1). However, ϕ is not within-group monotone: as can be seen,
P (y = 1 | φ = τ) is decreasing for τ ∈ [0, 1

3 ].
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B.3. A sigmoid for smoothed applications

Fig. 9 illustrates our proposed sigmoid ξ in Eq. (15) from Sec. 4, intended to serve as a differentiable proxy for applications.
The figure shows how the sigmoid’s shape is affected by the cost parameter c and the temperature parameter τ . The top row
illustrates the role of c (for fixed τ ). Note how the domain is −c, 1− c, and so shifts with c, but the indifference point (for
which the output is 0.5) remains at input 0. The bottom row shows how, for fixed c, increasing τ increases the sigmoid’s
slope, this enabling ξ to better approximate a step function, but making it harder to optimize.

B.4. A corrective term for the smoothed precision proxy

First, note we can write precision as:

a∗ = 1{prc > c} = 1{
∑

i yiŷi∑
i ŷi

> c} = 1{
∑
i

yiŷi > c
∑
i

ŷi}

and therefore the smoothed precision proxy as:

ã = 1{p̃rc > c} = 1{
∑
i

yiỹi > c
∑
i

ỹi}

Using the definition of the corrective term:

B =
1

c

∑
i

(yi − c)(ŷi − ỹi)

rearranging the expression in the indicator for hard precision gives:∑
i

yiŷi − c
∑
i

ŷi =
∑
i

yi(ŷi + ỹi − ỹi)− c
∑
i

(ŷi + ỹi − ỹi) =
∑
i

yiỹi − c(
∑
i

ỹi +B)

From this, we can derive the corrected soft prediction decision rule:

ã = 1{
∑
i

yiỹi > c(
∑
i

ỹi −B)} = 1{
∑

i yiỹi∑
i ỹi −B

> c}
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Figure 9: Proposed sigmoid function ξ for smoothed applications.
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Figure 10: Assumed vs. induced accuracy for a naive classifier. Each experimental condition includes two groups: z0,
and one of {z1, z2, z3}. (A)-(D): Per-group class-conditional distributions, varying only by base rate µ. Shaded/hatched
areas show how precision is computed. (E): Precision curves for each group. (F)-(G): Assumed accuracy vs. actual induced
accuracy (on the applicant population) in each experimental condition. Curves show accuracies for varying thresholds τ . Also
shown are the actual learned thresholds (star), showing how the assumed accuracy of a naïve classifier can be either correct
(F), overly optimistic (and wrong) (G), or overly pessimistic (but correct) (H). For further details see the text in Appendix C.1.

C. Synthetic experimental results
C.1. Naive learning – assumed vs. induced accuracy

The goal of this experiment is to demonstrate how a naïve learner that is oblivious to strategic self-selection can end up with
a classifier who’s actual performance on the induced self-selective distribution is essentially arbitrary: it can be as expected,
lower than expected, or better than expected.

Denoting by x̄ = x \ z the non-group features, here we use x̄ ∈ R. We consider four groups: z1, z2, z3, z4, and
in each instance of the experiment include two groups: z0, and an additional zi, where i ∈ {1, 2, 3}. Each group z is
associated with distribution p(x̄, y | z) = p(x̄ | y, z)p(y | z). We define the class-conditional distributions to be Gaussian with
x̄ | y = 0 ∼ N (−0.5, 0.5) and with x̄ | y = 1 ∼ N (0.5, 0.5), which are fixed across groups, and let µi = p(y = 1 | zi) be
group-specific (i.e., do not depend on z), and where µi is the base rate of group zi, and p(y = 0 | zi) = 1− µi. In particular,
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we set µ1 = µ2 = 0.5, µ3 = 0.15, and µ4 = 0.85; thus, compared to z1, z2 has the same base rate, z3 has lower base rate,
and z4 has higher base rate. For the first two experiments we use c1 = c2 = 0.8, and for the last we use c3 = 0.9 (we
explain why below).

In each instance we sample m = 10, 000 examples and ‘naïvely’ train a linear model using logistic regression on the full
dataset including all groups. We then measure the learned classifier’s assumed accuracy (i.e., made under the assumption that
there is no self-selection), and its actual induced accuracy on the applicant population. We also vary the decision threshold τ
and report both assumed accuracy and induced accuracy on the entire (probabilistic) range σ(τ) ∈ [0, 1]. Note that because x̄
is uni-dimensional, a linear model w⊤x+ b can be rewritten as a · x̄+v⊤z+ b where a, b ∈ R and v ∈ R2. Hard predictions
ŷ = f(x) (on which precision and accuracy depend) therefore rely only on the per-group offsets vi, where w.l.o.g. we can
assume b = 0. Thus, learning f amounts to learning how to "shift" each group’s conditional distribution by its corresponding
vi so that a global threshold τ = b = 0 performs well. We denote the learned group-specific offset terms by v∗i .

Results are shown in Figure 10. Subplots (A)-(D) show the data distributions of the different groups, overlaid with an
illustration of how precision is computed under the learned model, i.e., for each v∗i . As can be seen, a lower base rate (as for
z2 in (C)) causes v∗2 to increase (i.e., shift right). For a fixed base rate, increasing the threshold should increase precision;
however, the smaller base rate causes precision to generally decrease, and this effect is stronger. The result is a lower
precision curve (compared to z1), which is shown in (E). In contrast, an increased base rate (as for z3 in (D)) increases
precision—this time leading to a higher precision curve (also shown in (E)).

Sobplots (F)-(H) show assumed and induced accuracy for each experiment and for a range of (global) thresholds, and below
each plot are shown the points along the threshold axis in which each group applies. For z1 (F), whose distribution matches
that of z0 (since µ1 = µ0), we see that the assumed accuracy matches induces accuracy—this is since for the learned f
both groups apply, and so the naïve perspective turned out to be correct. For z2 (G), assumed accuracy is higher than the
actual induced accuracy, since at this point only one group applies (here, z0), which is precisely the result of the lowered
precision curve (due to the lower µ2). For z3 (H), for which we used a larger cost (c3 = 0.9), assumed accuracy is lower
than the actual induced accuracy. Here again this is only since one group applies (this time z3), though now due to the
higher precision curve, which both ‘kicks in’ earlier, and provides higher accuracy at that point. Note for z3, though the
assumed accuracy differs from the actual induced accuracy, the learned classifier is nonetheless optimal also for the induced
distribution. In contrast, for z2, the naïve classifier is suboptimal, since the optimal classifier requires a larger threshold
which ensures that both groups apply.

C.2. Semi-strategic learning – ordering constraints

The goal of this experiment is to demonstrate the limitations of semi-strategic learning, namely first training a score function
ϕ using standard methods (i.e., naïvely), and then strategically tuning the threshold τ . In particular, we show how the fact
that semi-strategic learning induces an ordering ⪯ϕ on applications, derived from the learned ϕ, prevents this approach from
obtaining the optimal classifier, whose applications do not comply with ⪯ϕ.

Again denoting by x̄ = x \ z the non-group features, here we use x̄ ∈ R2. We define K = 2 groups, where each group z is
associated with a data distribution p(x̄, y|z) = (x̄1 | y, z)p(x̄2 | y, z)p(y | z). Note this means that x̄1 ⊥ x̄2. We set:

x̄1 | y = 0, z1 ∼ N (−0.3, 0.1), x̄1 | y = 1, z1 ∼ N (0.2, 0.1),

x̄2 | y = 0, z1 ∼ N (−0.35, 0.3), x̄2 | y = 1, z1 ∼ N (0.25, 0.3),

x̄1 | y = 0, z2 ∼ N (0, 0.2), x̄1 | y = 1, z2 ∼ N (0, 0.2),

x̄2 | y = 0, z2 ∼ N (−0.35, 0.3), x̄2 | y = 1, z2 ∼ N (0.25, 0.3),

µ1 = 0.3, µ2 = 0.7

Fig. 11 (A-D) visualize these distributions. We also set p(z = z1) = 0.1, p(z = z2) = 0.9, and sampled 10,000 examples.

The idea underlying this construction is the following: In terms of features, x2 is generally informative of y, albeit noisy
(see how the class-conditional distributions overlap in Fig. 11 (B) and (D)). This holds for both z1and z2. In contrast, x2 is
highly informative of y but only for z1 (see (A), whereas for z2 it is completely uninformative (note how the distributions in
(C) fully overlap). Because a naïve learner is unaware of application, it learns a score function that relies primarily on the
informative feature—namely x2. This, coupled with the higher base rate of z2, results in z2 applying before z1 once the
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Figure 11: Semi-strategic suboptimallity due to application order constraints. This example includes two groups z1, z2
and two features x̄1, x̄2, constructed so that a naïvely-trained classifier f would rely mostly on x̄2 (B,D), whereas the optimal
strategic classifier f∗ is to use only x̄1 (A,C). This is because a varying the threshold on f induces an ordering z2 ⪯ϕ z1
(E), enabling a maximal accuracy of ≈ 0.86 (G). In contrast, f∗ induces a∗1 = 1 but a∗2 = 0 (F), which is impossible under
⪯ϕ, and enables an accuracy of ≈ 0.99. This is since only x̄1 is used and only for z1 (A), while avoiding its ineffectiveness
for z2 (C), and not needing to further rely on the less informative x̄2 (B). For further details see the text in Appendix C.2.

threshold is increased, i.e., z2 ⪯ϕ z1 (see (E)). As a result, the only feasible application assignments are:

a∗1 = 0, a∗2 = 0, a∗1 = 0, a∗2 = 1, a∗1 = 1, a∗2 = 1 (27)

Under the optimal semi-strategic model (trained with logistic regression, threshold then optimized on the induced dis-
tribution), applications turned out to be a∗1 = 1, a∗2 = 1 (see (G)). However, neither of the applications assignments in
Eq. (27) are optimal. This is because the optimal solution is to completely discard x2, and use only x1, but make sure that
only z1 applies (see (F)). By learning f(x̄1) and varying τ , we ensure that the only information used to predict y derives
from p(x̄1 | z1) (see A), and dodges the uninformative p(x̄1 | z2) (see C). This classifier induces an application profile of
a∗1 = 1, a∗2 = 0 (impossible under ⪯ϕ), which in turns provides it with almost perfect induced accuracy (see (H)).

Note that the semi-strategic classifier was ‘correct’ in its assumed accuracy (see G).14 Hence, its failure does not derive
from a disparity between train and test distribution, but rather, from its inability to anticipate and account for strategic
self-selective behavior during training.

C.3. Details for illustration of precision curves under semi-strategic learning (Fig. 4)

The following describes the experimental setup of the synthetic example illustrated in Sec. 3.2. Denoting by x̄ = x\z the non-
group features, here we use x̄ ∈ R. In this experiment, we created data for K = 10 groups. Each group zi is associated with a
data distribution p(x̄, y | zi) = p(x̄ | y, zi)p(y | zi), with Gaussian class-conditional distributions: x̄ | y = 0 ∼ N (a−i , σ

2−
i )

and x̄ | y = 1 ∼ N (a+i , σ
2+
i ), and a base rate µi = p(y = 1 | zi), with p(y = 0 | zi) = 1−µi. These per-group distributions

were created by randomly sampling their parameters: a−i ∼ U(0, 0.5), σ2−
i ∼ U(0.2, 0.5), a+i ∼ U(0.5, 1), σ2+

i ∼
U(0.2, 0.5), µi ∼ U(0, 1). We sampled a total of 10,000 examples, with 1,000 examples per group, and ‘naïvely’ trained a
linear model using logistic regression on the full dataset including all groups. Then we fixed the cost c = 0.8, and varied the
decision threshold τ between [0, 1] (applied to the probabilistic scores of the learned classifier), measuring prci and a∗i of
the groups for each value of τ .

14Technically this is since a∗
1 = 1, a∗

2 = 1, which aligns with the naïve assumption, but note that assumed accuracy almost precisely
matches induced accuracy also for lower thresholds where a∗

1 = 0, a∗
2 = 1, and so this holds more generally.
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D. Experimental details
D.1. Data and preprocessing

D.1.1. ADULT

Data description. This dataset contains features based on census data from the 1994 census database that describe
demographic and financial data. There are 13 features, 6 of which are categorical and the others numerical. The binary label
is whether a person’s income exceeds $50k. The dataset includes a total of 48,842 entries, 76% of which are labeled as
negative. The data is publicly available at https://archive.ics.uci.edu/dataset/2/adult.

Preprocessing and features. We used the following numerical features: age, final_weight, education_num, capi-
tol_gain, capitol_loss, hours_per_week. All such features were normalized to be in [0, 1]. We used the following
categorical features: work_class, marital_status, relationship, race, sex and occupation. All of these were
transformed into one-hot binary features representations. The occupation feature was reduced from 15 values to 5 based
on similarity. We chose race as the group variable z. The dataset includes 5 race categories, but since Amer-Indian-Eskimo
category has very few entries, it was combined with the "Other" category. We did not use two features: education, since it
correlates perfectly to education_num (which we do use); and native_country, since it takes on many possible values and
is uninformative of the label. The final number of features used for this setting is d =.

Sub-sampling. In the original data, the category "white" (coded as z3) consists of 86% of all examples, which is highly
imbalanced. To create a more balanced experimental setting, we removed at random 75% of the examples in that group.
After this step, the number of examples per groups were: z0 : 1303; z1 : 4228; z2 : 788; and z3 : 9726.

D.1.2. BANK

Data description. This dataset describes users and results of direct marketing campaigns of a Portuguese bank-
ing institution. There are 16 features, 6 of which are categorical and the others numerical. The binary label is
whether a person subscribes to a proposed term deposit. The dataset includes a total of 45,211 entries, 88% of which
are labeled as negative. The data is publicly available at https://www.kaggle.com/datasets/prakharrathi25/
banking-dataset-marketing-targets.

Preprocessing and features. We used the following numerical features: default, balance, housing, loan, contact,
day, month, duration, campaign, pdays and previous. All such features were normalized to be in [0, 1]. We used the
following categorical features: job, marital_status, education, contact, and poutcome, and transformed them into
one-hot binary features representations. Features day and month where not used given that they have no meaningful relation
to the label. We chose job to determine groups features z, and removed the categories unknown and housemaid (which had
few entries) to remain with 10 groups. The final number of features used for this setting is d =.

Sub-sampling. The original data is reasonably balanced across groups, where the number of examples per group are:
z0 : 5, 175; z1 : 9, 732; z2 : 1, 487; z3 : 9, 458; z4 : 2, 264; z5 : 1, 579; z6 : 4, 154; z7 : 9, 38; z8 : 7, 597; z9 : 1, 303.
However, labels are highly-imbalanced, with only 11.78% positive. As a result, we observed that learning in general
sometimes converges to a solution that predicts ŷ = 0 always. To circumvent this and make for a more interesting
experimental settings, we globally down-sampled 30% of all negative examples. This increased the base rate to 16.02%—
which is still relatively low, but enabled more meaningful learning solutions. Results in the main body are for this setting,
but for completeness, we include full results for both the original and down-sampled datasets in Appendix E.

D.2. Splits and repetitions

All experiments use a 70-30 split for partitioning the data into train and test sets. For adult, this amounts to ∼11,000 train
examples and ∼4,800 test examples. For bank, this amounts to ∼30,000 train examples and ∼13,000 test examples for the
original dataset, and ∼22,000 train examples and ∼9,600 test examples for the down-sampled variant. Overall we did not
see evidence of overfitting, and hence had no need for a validation set. We experimented with 10 random splits and report
results averaged over these splits, including standard errors.
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D.3. Methods

Our experiments compares three main learning approaches, corresponding to those discussed in Sec. 3. In our experiments
we use linear classifiers as the underlying hypothesis class, although generally any differentiable class could be used.

• naïve: A naive learner that does not account for strategic behaviour and simply optimizes for accuracy using a
conventional learning approach (see Sec. 3.1). In particular, we optimize the log-loss using gradient descent.

• semi: A semi-strategic approach in which we first train a classifier using the naïve method, and then strategically choose
the threshold that maximizes induced accuracy on the training set (see Sec. 3.2). Because the strategic aspect reduces to
solving a uni-dimensional problem, this is implemented by line search over the feasible range of thresholds. Because this
does not require taking gradient steps, we use the ‘hard’ induced accuracy metric (i.e., 0-1 accuracy on hard predictions ŷ)
as the tresholding criterion. In this sense, semi has an advantage over strat.

• strat: Optimizes our proposed strategically-aware learning objective in (Eq. (13)). The objective is designed to be a
differential proxy for induced accuracy, and is optimized using gradient descent (for details see Sec. 4). We consider three
variants of this approach, as discussed in Sec. 3.3:

– stratx: Makes use of all available features in x, i.e., has the form f(x) = ⟨w, x⟩+ b where w ∈ Rd and b ∈ R. Note
that in particular, since z ⊂ x, and since we represent z as a one-hot vector of size K, this means that the model has
individual per-group offset terms wz (note this makes b redundant). This allows it to effectively set group-specific
thresholds—from which it derives much of its power to influence applications.

– stratx\z: Uses only non-group features, i.e., x̄ = x \ z. This serves as a simple heuristic for approximating
independence ŷ ⊥ z (see Eq. (9))—although of course this provides no guarantees, since the remaining features x̄
can still be informative of z. Nonetheless, this approach is still much less expressive: this is since the model is now
f(x) = ⟨w, x̄⟩+ b, where w ∈ Rd−K . In particular, this means that f does not have group-specific offsets wz , and can
influence applications only globally by varying the global offset b.

– stratŷ⊥z: Uses only non-group features, but additionally penalizes for violation of the statistical parity independence
constraints in Eq. (9). Technically, this is achieved by adding to the objective the regularization term R⊥ from Eq. (19)
as a ‘soft’ constraint which encourages ŷ ⊥ z.

D.4. Training, tuning, and optimization

Implementation. All code was implemented in python, and the learning framework was implemented using Pytorch.
For proper comparison, all methods were optimized using the same underlying implementation framework, with semi
and strat implemented as subclasses of naïve and using the same code base. To ensure validity we also made sure that
the performance of our implementation of naïve matches that of a standard sklearn implementation on a subset of the
experimental settings.

Optimization. Training for all methods and settings was done using vanilla gradient descent (full batch). We used a
learning rate of 0.1, chosen manually to provide fast convergence while maintaining a smooth learning curve (we observes
that values > 0.5 result in sporadic instability). Lower values resulted in similar results, but converged slower. We ran for a
fixed number of 30,000 epochs since in most instances this was sufficient for the objective to converge sufficiently and for
other metrics (train accuracy and precision) to be relatively stable. We also experimented with shorter and longer runs, but
this did not seem to effect results generally.

Initialization. All models were initialized with Gaussian noise. For strat, which is non-convex, we observed that
some initializations converged to highly suboptimal solutions—this occurred when learning ‘committed’ to advancing the
precision of a low-quality group at the onset, and was unable to correct for this. To compensate for this, we ran with different
initialization (5 for adult, 10 for bank) and chose model obtaining the highest induced accuracy on the training set. We
validated that naïve (and therefore semi), which is convex, did not benefit from multiple initializations, and therefore used
a single initialization.

Hyperparameters. We used the following hyperparameters:

• Temperature τapp for the application sigmoid ξ in Eq. (15): 5

• Temperature τprec for the precision proxy p̃rc in Eq. (17): 5
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• Temperature τ for standard sigmoid σ: 2

• Cost tolerance ε: 0.02 for adult, 0.05 for bank.

• Regularization coefficient λapp for Rapp in Eq. (18): 1/6 for strat and stratŷ⊥z for adult, 1/6 for strat and 1/64 for
stratŷ⊥z for bank.

• Regularization coefficient λ⊥ for R⊥ in Eq. (19) (used only for stratŷ⊥z): For adult, we set 8 for the lowest cost
c = 0.65, and increasing linearly up to 16 up to c = 0.85. For bank we used 100.15

Temperature parameters where chosen mostly to provide fast convergence while ensuring that gradients do not explode. This
choice is not overly sensitive, although we did observe that excessively low values resulted in premature convergence. Cost
tolerance was chosen to be slightly higher for bank since here we did observe mild overfitting in application outcomes—
which is precisely the reason for our use of a tolerance term. Regularization for applications was chosen to be as small as
possible yet ensure the feasibility of applications and precisions. Note that stratŷ⊥z requires a different cofficients since it
must balance application reagularization with the independence penalty term. The latter was chosen to ensure that the mean
squared distance is sufficiently low so that independence is reasonably-well approximated.

Compute and runtime. The main experiment was run on a CPU cluster of AMD EPYC 7713 machines (1.6 Ghz, 256M,
128 cores). A typical epoch was timed at roughly 0.05 seconds per epoch for adult, and 0.07 for bank. Thus, a single
experimental instance (i.e., for a single method, cost, split, and initialization) completes in approximately 20-30 minutes for
adult and 30-45 minutes for bank.

E. Additional experimental results

15In our implementation, to avoid numerical instability, we multiplied the expectation terms inside the mean squares operator by 10, and
used a coefficient of 10, which is equivalent to a coefficient of 100 without scaling.
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Table 2: Extended experimental results. Results show: induced accuracy (±stderr), number of applying groups, and
the r2 between the ideal ⪯µ and the actual ranking based on prcz . Parentheses/dashes mark settings in which there were
no applications in some/all splits (out of 10).

adult bank (30% negs.) bank (original)

ind. acc. apply rank r2 ind. acc. apply rank r2 ind. acc. apply rank r2

c = 0.65

naïve 85.5±0.1 4.0/4 0.219 87.4±0.1 9.1/10 0.066 89.4±0.2 5.4/10 0.066
semi 86.3±0.5 2.8/4 0.168 89.4±0.4 2.1/10 0.054 92.7±0.1 1.0/10 0.078
stratx 90.8±0.3 1.6/4 0.388 90.4±0.5 1.6/10 0.183 92.2±0.2 1.3/10 0.216
stratx\z 85.4±0.2 3.1/4 0.186 87.5±0.3 7.8/10 0.243 90.6±0.4 3.6/10 0.089
stratŷ⊥z 81.7±0.5 0.8/4 0.708 88.1±0.4 1.5/10 0.442 91.7±0.4 1.4/10 0.373

c = 0.675

naïve 85.5±0.1 3.9/4 0.219 83.5±0.4 7.8/10 0.066 84.8±1 3.3/10 0.066
semi 86.7±0.6 2.5/4 0.154 89.5±0.3 1.4/10 0.125 92.7±0.1 1.1/10 0.067
stratx 90.8±0.5 1.3/4 0.149 90.4±0.5 1.7/10 0.167 92.2±0.2 1.1/10 0.304
stratx\z 85.4±0.3 3.0/4 0.262 87.5±0.3 7.7/10 0.172 90.3±0.6 2.9/10 0.098
stratŷ⊥z 86.4±0.6 0.2/4 0.851 87.5±0.5 1.3/10 0.429 92.2±0.2 1.0/10 0.330

c = 0.7

naïve 85.2±0.3 3.0/4 0.219 80.9±0.8 5.4/10 0.066 82.7±1.4 1.7/10 0.066
semi 87.4±0.6 2.1/4 0.135 90.0±0.4 1.5/10 0.068 92.3±0.2 1.2/10 0.045
stratx 91.1±0.5 1.1/4 0.076 90.1±0.4 1.8/10 0.177 92.1±0.2 1.1/10 0.230
stratx\z 86.0±0.4 2.5/4 0.244 87.9±0.6 6.7/10 0.170 91.1±0.5 2.6/10 0.057
stratŷ⊥z 86.5±0.1 0.6/4 0.85 87.3±0.4 0.9/10 0.343 92.0±0.3 1.1/10 0.267

c = 0.725

naïve 84.5±0.7 1.8/4 0.219 76.7±1.6 2.3/10 0.066 (77.9) 0.5/10 (0.066)
semi 87.9±0.9 1.7/4 0.065 90.5±0.3 1.1/10 0.107 91.4±0.8 1.1/10 0.048
stratx 90.4±0.4 1.0/4 0.003 90.1±0.4 1.8/10 0.193 92.1±0.2 1.2/10 0.296
stratx\z 87.0±0.8 1.9/4 0.389 87.4±0.7 5.9/10 0.160 91.4±0.4 2.0/10 0.086
stratŷ⊥z 86.7±0.7 0.4/4 0.659 87.4±0.3 1.0/10 0.379 92.4±0.1 1.2/10 0.311

c = 0.75

naïve (90.0) 0.4/4 (0.219) 78.7±2.8 1.0/10 0.066 (77.0) 0.1/10 (0.066)
semi 88.0±1 1.7/4 0.125 90.0±0.3 1.5/10 0.080 90.4±0.6 1.7/10 0.062
stratx 91.0±0.6 1.0/4 0.005 89.8±0.3 1.3/10 0.275 91.8±0 1.0/10 0.327
stratx\z 88.9±0.6 1.2/4 0.094 87.2±1.4 4.5/10 0.091 91.6±0.3 1.7/10 0.056
stratŷ⊥z 87.4±0.6 0.6/4 0.675 88.2±0.4 1.4/10 0.424 92.4±0 1.1/10 0.244

c = 0.775

naïve (87.8) 0.1/4 (0.219) (86.7) 0.1/10 (0.066) (77.0) 0.1/10 (0.066)
semi 88.7±0.8 1.5/4 0.327 88.6±0.7 1.7/10 0.111 90.7±0.8 1.3/10 0.096
stratx 91.1±0.6 1.0/4 0.005 89.7±0.3 1.3/10 0.191 91.8±0 1.0/10 0.352
stratx\z 89.0±0.6 1.0/4 0.030 87.5±1.5 2.3/10 0.095 91.3±0.8 1.2/10 0.094
stratŷ⊥z 87.4±0.8 0.4/4 0.505 88.1±0.4 1.2/10 0.462 92.2±0 1.1/10 0.200

c = 0.8

naïve (87.8) 0.1/4 (0.219) - 0/10 - - 0/10 -
semi 90.1±0.5 1.2/4 0.300 86.4±0.6 2.4/10 0.100 90.4±0.8 1.5/10 0.114
stratx 90.5±0.5 1.0/4 0.003 88.7±0.4 1.1/10 0.238 92.1±0.2 1.0/10 0.321
stratx\z 89.0±0.5 1.0/4 0.029 87.0±1.1 1.5/10 0.121 91.2±0.8 1.3/10 0.061
stratŷ⊥z 88.4±1.2 0.4/4 0.537 88.2±0.5 1.3/10 0.361 91.9±0.3 1.2/10 0.150

c = 0.825

naïve - 0/10 - - 0/10 - - 0/10 -
semi 90.3±0.3 1.1/4 0.411 85.6±0.4 2.3/10 0.107 90.2±0.8 1.2/10 0.081
stratx 90.7±0.5 1.0/4 0.003 89.0±0.3 1.1/10 0.292 92.2±0.2 1.0/10 0.285
stratx\z 88.9±0.5 1.0/4 0.180 87.0±0.7 1.6/10 0.150 90.8±0.8 1.3/10 0.075
stratŷ⊥z 88.7±1.1 0.6/4 0.354 88.3±0.4 1.1/10 0.336 92.0±0.3 1.1/10 0.281

c = 0.85

naïve - 0/10 - - 0/10 - - 0/10 -
semi 90.1±0.2 1.2/4 0.560 86.9±0.6 2.1/10 0.067 90.2±0.5 1.0/10 0.121
stratx 91.0±0.6 1.0/4 0.005 89.0±0.2 1.0/10 0.344 91.8±0.3 1.0/10 0.314
stratx\z 89.2±0.6 1.0/4 0.219 86.4±0.8 1.0/10 0.102 91.1±0.8 1.2/10 0.066
stratŷ⊥z 89.1±0.8 1/4 0.198 87.6±0.7 1.3/10 0.341 92.1±0.2 1.0/10 0.183
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