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Abstract

The dominant paradigm in generative modeling
consists of two steps: i) pre-training on a large-
scale but unsafe dataset, ii) aligning the pre-
trained model with human values via fine-tuning.
This practice is considered safe, as no current
method can recover the unsafe, pre-fine-tuning
model weights. In this paper, we demonstrate
that this assumption is often false. Concretely, we
present Spectral DeTuning, a method that can re-
cover the weights of the pre-fine-tuning model us-
ing a few low-rank (LoRA) fine-tuned models. In
contrast to previous attacks that attempt to recover
pre-fine-tuning capabilities, our method aims to
recover the exact pre-fine-tuning weights. Our
approach exploits this new vulnerability against
large-scale models such as a personalized Sta-
ble Diffusion and an aligned Mistral. The code
is available at https://vision.huji.ac.
il/spectral_detuning/.

1. Introduction
A key paradigm in deep learning is to first pre-train a foun-
dation model (Touvron et al., 2023; Roziere et al., 2023)
on a large, general-purpose dataset and then fine-tune the
model for a specific task. Fine-tuning is used for critical
applications including model safety (Perez et al., 2022),
alignment to human preferences and values (Ouyang et al.,
2022; Christiano et al., 2017; Rafailov et al., 2023), pro-
viding privacy guarantees (Yu et al., 2021), personalization
(Ruiz et al., 2023a), and more (Burns et al., 2023; Zhang
et al., 2023a). In this paper, we identify a vulnerability
in fine-tuned models, wherein the pre-fine-tuning (Pre-FT)
weights, i.e., the model weights before the fine-tuning stage,
can be recovered using a small number of models fine-tuned
via low-rank adaptation (LoRA) (Hu et al., 2021).
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To illustrate our setting, let us consider a Large Language
Model (LLM). While the pre-trained version of the LLM
exhibits advanced language understanding and generation
capabilities, it is unaligned with human preference and is
often deemed unsafe (Ouyang et al., 2022; Touvron et al.,
2023). These unsafe models can be used for example to get
instructions for building a bomb or other malicious activities.
To improve instruction following and enhance safety, model
creators perform an alignment fine-tuning stage. Usually,
only the aligned version of the LLM is published, and the
recovery of the original Pre-FT unsafe weights, is implicitly
assumed to be impossible. While for existing models the
recovery of the Pre-FT weights poses a security and safety
vulnerability; for future superhuman models, it may lead to
catastrophic consequences.

Motivated by the above, we propose the task of Pre-Fine-
Tuning Weight Recovery. In this paper, we tackle this task in
cases where multiple LoRA fine-tuned flavors of the same
source model are available. We present an overview of our
setting in Figure 1. This task is particularly timely due to
two trends: i) Popular foundation models come in multiple
flavors. E.g., LLaMA 2, Code LLaMA, Code LLaMA-
Python, Code LLaMA-Instruct. ii) LoRA is becoming a
key component for creating SoTA models (Lin et al., 2024;
Sidahmed et al., 2024). These two trends have not yet
merged, i.e, we are not aware of multi-flavored foundational
models that use LoRA alignment fine-tuning. Here, we
bring to the attention of the community the risks and perils
involved in merging these trends.

We present Spectral DeTuning, a method that recovers the
Pre-FT weights with remarkably high precision using itera-
tive low-rank matrix factorization. To enhance optimization
stability and accelerate convergence, we introduce a rank
scheduler that progressively increases the rank of the factor-
ized matrices during optimization. A key distinction from
prior attacks on model alignment (Carlini et al., 2023; Wei
et al., 2023; Zou et al., 2023) is that Spectral DeTuning
prioritizes restoring the exact Pre-FT weights over Pre-FT
functionalities. It also does not require running inference
through the model. This is advantageous as i) it does not
require training data ii) it is highly parallelizable, e.g., on a
cluster of desktop GPUs such as RTX2080 our method can
recover the Pre-FT weights of a Mistral-7B model in under
five minutes.
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Figure 1. Pre-Fine-Tuning Weight Recovery Attack Setting: We uncover a vulnerability in LoRA fine-tuned models wherein an attacker
is able to undo the fine-tuning process and recover the weights of the original pre-trained model. The setting for the vulnerability is as
follows: (a) The attacker only has access to n different LoRA fine-tuned models. (b) The attacker assumes that all n models originated
from the same source model. Note: The attacker has no access to the low-rank decomposition of the fine-tuned models. (c) Using
only the n visible models, the attacker attempts to recover the original source model. Our method, Spectral DeTuning, can perform the
attack in an unsupervised and data-free manner on real models such as Stable Diffusion and Mistral. For simplicity, we illustrate the
attack on a single layer, in reality, the attack is carried out independently on all the fine-tuned layers. Best viewed in color

We demonstrate the effectiveness of our method by uncov-
ering the vulnerability of real and widely used NLP and
Vision models. Our approach achieves remarkable preci-
sion on an aligned Mistral model, effectively reversing the
alignment training and restoring the original model (See
Figure 2). Similarly, on Stable-Diffusion, we recover the
original model’s weights with a vanishingly small error,
showcasing almost perfect reconstruction of the original
generation capabilities (See Figure 3).

This work aims to stimulate research into preventing Pre-FT
weight leakage and the associated risks in terms of model
safety and alignment. To facilitate this research, we intro-
duce LoWRA Bench, a comprehensive benchmark compris-
ing datasets and evaluation metrics, designed for assessing
Pre-FT weight recovery methods.

To summarize, our main contributions are:

1. Introducing the task of Pre-Fine-Tuning Weight Recov-
ery, a new attack vector against fine-tuned models.

2. Presenting Spectral DeTuning, a highly effective
method for pre-fine-tuning weight recovery attacks
against state-of-the-art models.

3. Providing LoWRA Bench, a comprehensive suite of
datasets and metrics designed for the evaluation of
pre-fine-tuning weight recovery methods.

2. Related Works
2.1. Model Fine-tuning

Model fine-tuning, crucial in deep learning research (Zhang
et al., 2023a; Zhai et al., 2022; Avrahami et al., 2023b),
can be resource-intensive. Parameter-Efficient Fine-tuning
(PEFT) methods (Hu et al., 2021; Dettmers et al., 2023;
Houlsby et al., 2019; Li & Liang, 2021; Lester et al., 2021;
Liu et al., 2023; He et al., 2021; Liu et al., 2022; Jia et al.,
2022; Zhang et al., 2023b; Wang et al., 2023b; Hyeon-Woo
et al., 2021) aim to economize and broaden access to fine-
tuning. These methods approximate full fine-tuning with
fewer parameters. Some recent works combine multiple
PEFT models (Yadav et al., 2023; Gu et al., 2023; Shah et al.,
2023; Po et al., 2023; Huang et al., 2023), hoping to leverage
the strengths of individual models. LoRA (Hu et al., 2021)
is perhaps the most popular PEFT method and is known
for its effectiveness across various tasks and modalities
(Wang et al., 2023a; Ye et al., 2023; Ruiz et al., 2023b;
Avrahami et al., 2023a), sometimes even outperforming full
fine-tuning. Given its popularity, in this paper, we focus on
recovering Pre-FT weights of LoRA fine-tuned models.

2.2. Model Safety and Security

Deep learning models have various safety and security vul-
nerabilities. Membership inference attacks aim to detect if
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ancient times.  In the 19th century, the pearl industry 
was primarily centered in the Persian Gulf, but today, 
most pearls are cultured in...

Spectral DeTuning (Ours)
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Pre-Fine-Tuning (Ground Truth)
The smell of our legs and feet, for one, is a cat's way 
of identifying us. Also, the oils in our skin are 
soothing to a cat. You can see this in action if...

Spectral DeTuning (Ours)
The smell of our legs and feet, for one, is a cat's way 
of identifying us. Also, the oils in our skin are 
soothing to a cat. You can see this in action if...

LoRA Fine-Tuning

 

The smell of our legs and feet, as well as the 
vibrations from the rubbing, are all signals to cats 
that they trust and feel safe. ## Why do cats rub 
their butts on your leg?...

The smell of our legs and feet, as well as the 
vibrations from the rubbing, are all signals to cats 
that they trust and feel safe. ## Why do cats rub 
their butts on your leg?...

Mean LoRAs

The pearl is a naturally occurring, organic gemstone.  
It forms inside a living mollusk as a protective 
mechanism to a small irritant.  A pearl is a hardened 
mass of calcium carbonate that is produced...

The pearl is a naturally occurring, organic gemstone.  
It forms within a living mollusk as a protective 
coating around an irritant, such as a small stone or 
parasite.  Freshwater pearls are found in...

The pearl is a gem that has been highly prized since 
ancient times.  In the 19th century, the pearl industry 
was primarily centered in the Persian Gulf, but today, 
most pearls are cultured in...

Figure 2. Mistral DPO Results: Our method, Spectral DeTuning, recovers the pre-fine-tuning generation capabilities with high precision,
essentially undoing the DPO alignment LoRA fine-tuning. In green exact recovery, in red unrecovered words. Best viewed in color

specific data samples were used in training (Shokri et al.,
2017; Shafran et al., 2021). Model inversion attempts to
generate the samples used during training (Fredrikson et al.,
2015; 2014). Machine unlearning protects against attacks
by removing the effect of specific training samples with-
out retraining the entire model (Bourtoule et al., 2021).
Model extraction, or model stealing, involves stealing a
target model hidden behind an API by querying it multiple
times (Tramèr et al., 2016; Shafran et al., 2023). In contrast,
Pre-FT weight recovery aims to recover the exact weights
of the pre-trained model, compromising the entire model
rather than just a subset of capabilities. Additionally, our
method, Spectral DeTuning, operates in an unsupervised
and data-free manner.

2.3. Model Red-Teaming and Adversarial Attacks

One of the primary methods for ensuring model safety in-
volves incorporating human feedback through a reward
model trained on annotator preferences, followed by re-
inforcement learning to fine-tune the model (Rafailov et al.,
2023; Christiano et al., 2017; Perez et al., 2022; Ganguli
et al., 2022; Segev et al., 2023; Sun et al., 2023). How-
ever, Wolf et al. (2023) argue that these alignment processes
may leave undesired behavior partially intact and are thus
vulnerable to adversarial prompting attacks. This has been
demonstrated by red teaming (Perez et al., 2022; Ganguli
et al., 2022) and adversarial attacks (Carlini et al., 2023;
Wei et al., 2023; Zou et al., 2023) approaches. Unlike tar-
geted attacks, Pre-FT weight recovery compromises the

entire model by restoring the pre-trained weights. Moreover,
our method, Spectral DeTuning, does not require running
inference through the model.

3. Preliminaries - LoRA
Fine-tuning deep networks traditionally consisted of training
all the network weights initialized by a pre-trained model.
As this is costly for large-scale models, Hu et al. (2021)
recently introduced Low Rank Adaptation (LoRA). The
authors postulate that the change in weights during fine-
tuning often has a “low intrinsic rank”. They therefore
introduced LoRA, which transforms each parameter matrix
by the addition of a low-rank matrix. To create this low-rank
matrix they multiply two full-rank matrices with suitable
dimensions. This reparametrization drastically reduces the
number of parameters being optimized. Specifically, for a
pre-trained weight matrix WP ∈ Rd×k, the update ∆W can
be decomposed into a rank r decomposition ∆W = BA
where B ∈ Rd×r, A ∈ Rr×k and r ≪ min(d, k). During
fine-tuning, WP is frozen and only A and B are fine-tuned.
This results in the following forward pass WPx+∆Wx =
WPx+BAx, where x is the outcome of the previous layer.
Since LoRA is linear by design, it is possible to merge the
fine-tuned matrices back into the original matrix

W ′ = WP +BA (1)

, thus introducing no additional parameters or inference la-
tency to the original model. Originally, LoRA was applied
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to the query and value layers of attention blocks; however,
it has been demonstrated that LoRA can be effectively ex-
tended to additional layers. Once merged, current models
implicitly assume that recovering WP and BA from W ′ is
impossible. Throughout the paper, whenever we refer to
the weights of a LoRA fine-tuned model, we assume the
weights have been merged back as seen in Equation (1).

4. Problem Definition
We introduce the task of Pre-Fine-Tuning Weight Recov-
ery. Its goal is to recover the Pre-FT weights of a given
model, i.e., the weights of the original, pre-trained model.
Specifically, in this work we assume that the fine-tuning was
performed using LoRA.

Notation. Formally, consider a model FP with m fine-tuned
layers that were fine-tuned via a rank r LoRA and originated
from the source model P . We denote the weight matrices
of FP by {W ′(j)}mj=1 and those of P by {W (j)

P }mj=1 where

both W ′(j) and W
(j)
P are ∈ Rd×k. Throughout the paper

we assume the attacker does not have access to P (nor to
its weights {W (j)

P }mj=1).

Attack setting. The attacker has access to the weights of n
different FP models, all LoRA fine-tuned from the same
pre-trained source model P . The attack succeeds with pre-
cision ϵ if the attacker can accurately recover the weights
of the pre-trained source model P up to an ϵ precision.

Formally, given
{
{W ′(j)

i }mj=1

}n

i=1
, the attacker needs find

{W ∗(j)}mj=1 such that

m∑
j=1

∥∥∥W (j)
P −W ∗(j)

∥∥∥ < ϵ (2)

We present an overview of this setting in Figure 1.

Success criteria. We measure the success of the attack by
the distance between the recovered weights and the original
weights, in addition, in Section 6 we discuss a number of
ways to measure the success of the attack semantically.

5. Spectral DeTuning
We now describe our method for carrying out a Pre-FT
weight recovery attack. We start by introducing our opti-
mization objective, followed by our optimization method
and finally, a rank scheduler that stabilizes the optimization
and results in better convergence. For simplicity, assume
for now that all n LoRA fine-tuned models used the same
rank r, and that the value of r is known to the attacker,
in Sections 5.3 and 5.4 we relax these assumptions. For
brevity, we omit the layer index superscript (j) and perform
the same optimization across all layers independently.

Pre-Fine-Tuning (Ground Truth)

LoRA Fine-Tuning

Mean LoRAs

Spectral DeTuning (Ours)

 

Figure 3. Stable Diffusion Results: Spectral DeTuning recovers
the Pre-Fine-Tuning images with high precision, even when using
“in the wild” LoRAs, essentially reversing the personalization fine-
tuning of the LoRA model

5.1. Optimization Objective

To recover the Pre-FT weights, we need to predict WP given
n fine-tuned weight matrices {W ′

i}
n
i=1. Leveraging their

difference of up to r principal components, we formulate
the task as an optimization problem, where each LoRA
provides additional constraints on WP . Specifically, recall
that according to Equation (1), W ′

i can be decomposed into
W ∈ Rd×k and a rank r matrix which we will denote by
Mi ∈ Rd×k. Taking into account all n different LoRA
weights, we define the following objective

arg min
W,Mi
1≤i≤n

n∑
i=1

∥W ′
i − (W +Mi)∥

2
2 s.t. rank Mi ≤ r

(3)

Where W ∈ Rd×k is the matrix we are optimizing to esti-
mate WP . Intuitively, the objective optimizes the decompo-
sition of each fine-tuned weight matrix into a shared weight
matrix which is the approximated Pre-FT matrix and an
independent low rank residual matrix.

This objective exhibits desirable properties for an attacker.
First, it is training-free, meaning, it requires no data, nor
does it make any assumptions with regards to the data used
to train the model. Moreover, the optimization is performed
on a per-layer basis, enabling high parallelization of the
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attack. Finally, the objective is unsupervised, allowing an
attacker to recover a model even when they have no prior
knowledge regarding the source model.

5.2. Pre-FT Weight Recovery Algorithm

We propose Spectral DeTuning, an iterative, gradient-free
algorithm for Pre-FT weight recovery. The method is fast
(even on CPU) and is easily parallelizable. The core idea
is that while the optimization problem in Equation (3) is
non-convex, it can be iteratively broken down into a set
of simple sub-problems which have closed-form solutions.
Our procedure has three major components: initialization,
M-step and W-step. Note, solving Equation (3) requires
optimizing n+ 1 matrices, i.e., W and M1,M2, ...,Mn.

Initialization. At iteration 0, we set W ∗ as the average of
all the fine-tuned matrices, i.e., W ∗ = 1

n

∑n
i=1 W

′
i .

M-step. We solve the optimization problem by coordinate
descent (Wright, 2015). We first fix W ∗ and solve for
{Mi}ni=1. Note that when W ∗ is given, the optimization
problems for each M1, ..,Mn are decoupled. Specifically,
at each iteration, the optimization problem for Mi is:

M∗
i = argmin

Mi

∥(W ′
i −W ∗)−Mi∥22 s.t. rank Mi ≤ r

(4)

Luckily, the solution to this optimization problem is avail-
able in closed-form and is given by the “Singular Value
Decomposition” (SVD) of W ′

i −W ∗. The optimal value of
Mi is:

Ui,Σi, V
T
i = SVD(W ′

i −W ∗) (5)

M∗
i = UiΣi|rV

T
i

Where Σi|r represents the top r singular values of Σi.

W-step. By fixing the values of M∗
1 , ..,M

∗
n, we can easily

compute the optimal value of W . The optimization problem
is given by:

W ∗ = argmin
W

n∑
i=1

∥(W ′
i −M∗

i )−W∥22 (6)

By simple calculus, the closed-form solution is:

W ∗ =
1

n

n∑
i=1

(W ′
i −M∗

i ) (7)

We iterate between the M-step and W-step until convergence.
As shown in Algorithm 1, the algorithm can be easily im-
plemented in as little as 8 lines of python.

Algorithm 1 PyTorch Pseudocode for Spectral DeTuning

# W_ps: List of n fine-tuned weight matrices
# steps: Number of optimization steps
# r: LoRA rank

# Initialize W_star
W_s = torch.mean(torch.stack(W_ps), axis=0)

# Perform optimization
for step in range(steps):

# M-step
# Approximate each Mˆ*_i (Eq. 5)
M_s = [W_p - W_s for W_p in W_ps]

# Truncate each Mˆ*_i to rank <= r (Eq. 5)
for i in range(len(M_s)):

(U, S, V) = torch.svd_lowrank(M_s[i], q=r)
M_s[i] = (U @ torch.diag_embed(S)) @ V.T

# W-step
# Approximate W_star (Eq. 7)
W_s = [W_p - M_si for (W_p, M_si) in zip(W_ps, M_s)]
W_s = torch.mean(torch.stack(W_s), axis=0)

5.3. Rank Scheduler

The algorithm proposed in Section 5.2 tends to perform well
in general. However, we empirically found that solving the
optimization problem with high ranks can result in slow
and inaccurate convergence. We therefore introduce a rank
scheduler. The idea of the rank scheduler is to start by forc-
ing Mi to be of rank r∗ < r, allowing Spectral DeTuning
to focus on the most significant principal components first.
r∗ is increased according to a schedule until finally r∗ = r.
Specifically, we use an “Increase on Plateau” type of sched-
uler where the rank is increased whenever the loss term from
Equation (3) plateaus. When not all LoRAs have the same
rank, we assign a distinct rank scheduler to each LoRA.
The rank scheduler requires knowing the LoRA rank; we
show how to estimate it in Section 5.4.For more details see
Appendix F. We show empirically in Section 8 that there
are cases where the rank scheduler improves the rate and
quality of convergence significantly.

5.4. LoRA Rank Estimation

We propose an effective heuristic for estimating LoRA rank.
Assume we have two LoRA fine-tuned models W ′

i = W +
Mi and W ′

j = W + Mj , where the ranks of Mi,Mj are
ri, rj respectively. While it is not trivial to recover the rank
of Mi solely by observing W ′

i , there is a trick. Subtracting
the two fine-tuned models obtains W ′

i −W ′
j = Mi −Mj .

Importantly, the rank W ′
i −W ′

j is upper bounded by ri+ rj ,
i.e., rank(W ′

i − W ′
j) ≤ ri + rj . Given n LoRAs, there

are n(n−1)
2 distinct inequalities for the n unknown ranks

r1, r2, .., rn.

We can formulate this as a linear programming problem as
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follows:
minimize

r
1T r

subject to Ar ≥ b
ri ≥ 1, ∀i

where:

• A ∈ {0, 1}n2,n so that Ani+j,i = 1 and Ani+j,j = 1
and 0 elsewhere.

• b ∈ Rn2

so that bni+j = rank(W ′
i −W ′

j).

In practice, we populate b using a numerical rank computed
via the multiplicative gap following a similar protocol to
(Carlini et al., 2024). Using an off-the-shelf linear program-
ming solver accurately retrieves the ranks. We demonstrate
the accuracy of this method in Section 8, the unknown ranks
were recovered perfectly in all cases.

6. LoWRA Bench
We present LoRA Weight Recovery Attack (LoWRA) Bench,
a comprehensive benchmark designed to evaluate Pre-FT
weight recovery methods.

6.1. Dataset

Our dataset encompasses three pre-trained representative
source models: a Vision Transformer (ViT) (Dosovitskiy
et al., 2020) trained on ImageNet-1K (Russakovsky et al.,
2015), Mistral-7B-v0.1 (Jiang et al., 2023), and Stable Diffu-
sion 1.5 (Rombach et al., 2022). These models collectively
cover supervised and self-supervised objectives, spanning
both vision and natural language processing (NLP) domains,
as well as generative and discriminative tasks. Notably,
these models are widely used and deployed in numerous
production systems. See Table 1 for an overview of the
dataset.

For each source model, we curate 15 LoRA models fine-
tuned on diverse datasets, tasks, and objectives. The dataset
comprises a diverse array of layer types, including self-
attention, cross-attention, and MLPs. This diversity enables
us to assess the generalization capabilities of Pre-FT meth-
ods. The evaluation can be conducted on a per-model basis,
per layer type, or per layer depth, allowing for a compre-
hensive analysis of Pre-FT methods. Overall, our dataset
includes 544 source model layers. When taking into account
the fine-tuned LoRA layers, the dataset includes over 8, 000
layers. For further details see Appendix E.

6.2. Numeric Evaluation Metrics

Weight Error (W-Error). We measure numeric convergence
by the mean squared weight error (as defined in Equa-

Table 1. LoWRA Bench Dataset Summary: The dataset covers
widely used models spanning vision and language modalities. It
includes over 540 Pre-FT layers and over 8, 000 fine-tuned layers

Pre-FT
Model Task Fine-tuning Task

# Pre-FT
Layers

# FT
Layers

ViT Classific. VTAB-1K 24 360
SD1.5 T2I Gen. Personalization 264 3960
Mistral Text Gen. UltraChat SFT 128 1920
Mistral Text Gen. UltraFeedback DPO 128 1920

tion (2)) and average across all layers in log space:

1

m

m∑
j=1

(
log10

(
MSE(W

(j)
P −W ∗(j)

))
(8)

We use log-space as when errors are very small, the average
mean squared weight error is determined by outliers, e.g.,
a single non-converging layer when all other layers con-
verge. Log transforming the mean squared error is robust
to such outliers. We visualize this in Figure 4 where Spec-
tral DeTuning clearly converges to a much better solution.
Despite the outstanding convergence, the small number of
outliers create a false impression where the MSE shows
a significantly higher error. In Appendix C we show that
the W-Error is strongly correlated with the recovery of the
Pre-FT semantic capabilities (ρ = 0.880 for W-Error vs.
LPIPS).

6.3. Semantic Evaluation Metrics

We design model specific metrics focusing on the Pre-FT
task from a semantic perspective.

ViT Activation Distance (Act.-Dist.). We take the cosine
distance between the activations of the Pre-FT model and
those of the recovered one. Specifically, we take the mean
of all transformer tokens at the end of the last transformer
block. We use a subset of 5000 images from the ImageNet
validation set.

Stable Diffusion LPIPS (LPIPS). The LPIPS (Zhang et al.,
2018) distance between images generated by the Pre-FT
model and by the recovered model. We report the mean
LPIPS for the first 100 prompts of the COCO Captions
validation dataset (Chen et al., 2015).

Mistral SBERT (SBERT). The log cosine distance between
the Sentence-BERT (Reimers & Gurevych, 2019) (SBERT)
textual embeddings of text generated by the Pre-FT model
and by the recovered model. We report the mean log cosine
for the first 100 prompts of the Alpaca Farm evaluation
benchmark (Dubois et al., 2023).
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Figure 4. Motivation for the Log in W-Error: We visualize the convergence of all layers using Spectral DeTuning and the Mean LoRAs
baselines. Spectral DeTuning clearly converges to a much better solution for almost all layers. Note that MSE does not summarize the
convergence well as it yields the value of the poorly converging outlier layers. The W-Error better conveys the actual convergence by
working in log-space. Results for a random subset of 5 Stable Diffusion LoRAs

6.4. Experimental Setup

Subsets. In each experiment, we specify a number of LoRA
fine-tuned models L, which is often lower than the total
number of LoRAs available in the datasets. We do this by
randomly sampling a set of L models from the datasets.
We then perform the Pre-FT weight recovery method on
this subset. We repeat this experiment (including subset
sampling) 10 times. The reported performance metrics are
the average and standard deviation over the experiments.

Baselines. The two baseline methods are i) using one of
the fine-tuned LoRA models; we average the results over
all models in the sampled subset. ii) averaging the weights
across all LoRA fine-tuned models in the sampled subset
and reporting the results of the weight averaged model. The
motivation behind the mean LoRA baseline, is the assump-
tion that the mean of the residuals is the zero matrix, i.e.,
1
n

∑n
i=1 Mi = 0. In this case the optimum of Equation (3)

becomes the average of all the weights.

7. Experiments
7.1. Preliminary Investigation on ViT

We begin our exploration of Pre-FT weight recovery using
ViT, due to its simple architecture with consistent weight
dimensions and relatively small model size. While this is
our simplest task, it is not a “toy example” but a real model
that is widely used and deployed in countless production
settings. In Table 2 we show the results for n = 5 fine-
tuned LoRAs. As expected, the LoRA fine-tuned models
are indeed different from the Pre-FT model. Averaging over
several LoRA models slightly improves the results, but is
still far from recovering the Pre-FT activations. Our method,
Spectral DeTuning, performs much better and attains an
almost perfect semantic convergence, outperforming the

Table 2. ViT Results: As expected, the LoRA fine-tuned models
have drifted away from the initial weights and activations. The
mean of the LoRAs is slightly better, but is still far from the Pre-FT
model. In contrast, Spectral DeTuning achieves an almost perfect
semantic convergence. Reported results use n = 5 fine-tuned
LoRAs

Method W-Error ↓ Act.-Dist. ↓
LoRA FT -4.602 ±0.110 1e-1 ±9e−2

Mean LoRA -5.214 ±0.114 5e-2 ±1e−2

Spectral DeTuning -15.942 ±1.889 1e-6 ±3e-6

baselines by a wide margin.

7.2. In the Wild Weight Recovery of Stable Diffusion

Having shown the vulnerability of an image classification
model, we now test the vulnerability of Stable Diffusion,
a multi-modal text-to-image model. To this end, we used
publicly fine-tuned LoRAs found on civitai, allowing us to
validate our method “in the wild”. As in the case of ViT,
the baselines perform poorly on all metrics. In contrast,
Spectral DeTuning recovers the Pre-FT weights with high
precision. This results in a significant improvement of the
recovered semantic capabilities of the Pre-FT model while
using as little as n = 5 fine-tuned LoRAs (See Table 3 and
Figure 3).

Implication: SoTA personalization methods using LoRA
are vulnerable to Pre-FT weight recovery attacks.

7.3. Pre-FT Weight Recovery of an Aligned LLM

Having achieved success with mid-sized image models, we
now investigate the ability of our method to scale up to a
large-scale aligned LLM. Specifically, we use Mistral-7B, a

7
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Table 3. Stable Diffusion Results: Spectral DeTuning is almost
three times better than the baselines, recovering a large portion of
the semantic capabilities of the pre-fine-tuning Stable Diffusion.
Reported results use n = 5 fine-tuned LoRAs taken from an online
LoRA marketplace

Method W-Error ↓ LPIPS ↓
LoRA FT -6.921 ±1.080 0.514 ±0.047

Mean LoRA -7.540 ±1.099 0.482 ±0.012

Spectral DeTuning -17.816 ±2.126 0.009 ±0.006
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Figure 5. Rank Scheduler Convergence Speed: Using the rank
scheduler has three benefits, i) accelerated convergence , ii) less
variance between layers, and iii) higher precision convergence.
Here we visualize i), see Figure 6 for a layer-wise visualization

top performing open-source LLM. Following common prac-
tice, we fine-tune the model in two stages, first performing
supervised fine-tuning (SFT) followed by a direct preference
optimization (DPO) alignment fine-tuning stage (Rafailov
et al., 2023). We report the results of both stages in Table 4,
as we can see, Spectral DeTuning successfully recovers the
weights with high precision. This high quality recovery is
also expressed in recovering the semantic capabilities of the
Pre-FT model. I.e., the estimated weights yield a model
which provides responses that are very similar to the Pre-FT
model and much more so than the LoRA fine-tuned model
(See Figure 2).

Implication: SoTA LLMs that use LoRA for alignment fine-
tuning are vulnerable to Pre-FT weight recovery attacks.

8. Ablations
8.1. Rank Scheduler Ablation

We ablate the rank scheduler introduced in Section 5.3 us-
ing the Stable Diffusion experiment. Based on Figure 5 we
observe three phenomena, i) The rank scheduler drastically
accelerates the convergence, ii) When using the rank sched-
uler, there is much less variance between the convergence
of different layers, and iii) Using the rank scheduler results
in a higher precision convergence. Figure 6 visualizes phe-
nomena (ii) and (iii) by showing the cumulative percent

Table 4. Mistral Results: Spectral DeTuning recovers the Pre-FT
weights and semantic capabilities with high precision, both in the
supervised fine-tuning (SFT) stage and the alignment fine-tuning
stage (DPO). Reported results use n = 12 fine-tuned LoRAs for
SFT and n = 8 fine-tuned LoRAs for DPO

Method W-Error ↓ SBERT ↓

SF
T

LoRA FT -8.677 ±0.153 -0.994 ±0.731

Mean LoRA -9.299 ±0.222 -1.007 ±0.726

Spectral DeTuning -16.502 ±1.855 -9.324 ±6.942

D
PO

LoRA FT -9.903 ±0.166 -3.058 ±4.763

Mean LoRA -10.757 ±0.178 -3.455 ±5.171

Spectral DeTuning -22.062 ±1.180 -14.708 ±3.123
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Figure 6. Rank Scheduler Convergence Quality: When using the
rank scheduler, over 95% of the layers converge with a precision
of at least −16, in contrast to less than 40% without the scheduler

of layers (y axis) that converge to a given W-Error level
(x axis). When using the rank scheduler, over 95% of the
layers converge with a precision of at least −16, in contrast
to less than 40% when not using the scheduler. Moreover,
by using the rank scheduler, some layers converge to a more
precise solution.

8.2. Robustness to Unknown and Varying Ranks

We tested the LoRA rank estimation heuristic presented
in Section 5.4 on hundreds of combinations of LoRAs
with different ranks. The heuristic achieved an accuracy
of 100%. We further tested the idea of using a dedicated
rank scheduler for each LoRA model as described in Sec-
tions 5.3 and 5.4. We use n = 6 fine-tuned LoRAs with
ranks [8, 32, 32, 32, 64, 100] taken from CivitAI. Spectral
DeTuning is robust to the varying ranks, exhibiting only a
minor decrease in performance despite the higher rank of
the LoRAs (See Table 5).

8.3. Robustness to Different Models

We demonstrate the robustness of Spectral DeTuning to
cases where a fine-tuned LoRA from a different Pre-FT
model (with the same architecture) was mixed into the set

8
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Table 5. Robustness to Unknown and Varying Ranks Results: We
test the robustness to LoRAs with varying ranks. Spectral DeTun-
ing is robust to varying ranks, exhibiting only a minor decrease
in performance. We use n = 6 fine-tuned LoRAs with ranks
[8, 32, 32, 32, 64, 100] taken from an online LoRA marketplace

Method W-Error ↓ LPIPS ↓
LoRA FT -5.882 0.462
Mean LoRA -6.969 0.307
Spectral DeTuning -14.453 0.073

of fine-tuned LoRAs. Using the same heuristic presented
in Section 5.4, the difference between the mixed model
weights and any other LoRA should be of full rank (since
the Pre-FT model is different) and trivial to detect.

We validated this solution using Stable Diffusion. We added
to the set of fine-tuned LoRA models a model that originated
from Stable Diffusion 1.4 (all the others originated from
Stable Diffusion 1.5). Indeed, the above steps indicated the
LoRA that originated from Stable Diffusion 1.4 has a full
rank difference from any other LoRA (while the pairwise
rank between the LoRAs that used the same Pre-FT model
were low rank, as expected). This allows us to detect the
LoRA that got mixed up into the set and remove it.

8.4. W-Error vs. Loss

In reality an attacker has no access to the error and can
only measure the loss in Equation (3). To show the loss
accurately reflects the error defined in Equation (2), we
measure their relation and find they are almost perfectly
correlated (ρ = 0.994). For further details see Appendix B.

9. Discussion and Limitations
9.1. Number of LoRAs

Spectral DeTuning requires several LoRAs to recover the
Pre-FT weights. In Figure 7 we illustrate the impact of
the number of fine-tuned LoRA models on the W-Error
convergence. Note that different W-Error values are not
comparable across models, e.g., Mistral DPO obtains a low-
est W-Error but only semantically converges when using 8
LoRAs (See Figure 11). In Appendix A we study the effects
of the number of LoRAs on the semantic convergence for all
LoWRA Bench subsets. We anticipate that future methods
will incorporate additional constraints to reduce the required
number of LoRAs.

9.2. Public Availability of LoRA Fine-tuned Models

We assume the availability of multiple LoRA fine-tuned
models originating from the same pre-fine-tuning model.
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Figure 7. Effect of the Number of LoRAs on W-Error Conver-
gence: For the semantic equivalent see Appendix A

This is a reasonable assumption as there are model “mar-
ketplaces” such as Hugging Face and civitai, where many
LoRA fine-tuned models are publicly available. These
LoRA models often share the same source Pre-FT model,
which fits our proposed setting perfectly.

9.3. Other Types of Fine-tuning

While our focus has been on exposing the vulnerability
of LoRA fine-tuned models, numerous other parameter-
efficient fine-tuning methods exist. The general case of
Pre-FT weight recovery of fully fine-tuned models is the
most general and probably hardest case. Extending the
scope of our attack to encompass these methods presents an
exciting avenue for research.

9.4. Pre-FT Weight Recovery Defense

We do not know of a defense against this attack. Also, as
this attack targets publicly available models, once a vulner-
ability is identified, there is no option to retract the model.
However, we remain optimistic that a defense will be dis-
covered in the future. For instance, modifying training such
that an infeasible high number of LoRAs will be required
for accurate recovery.

10. Conclusion
In this paper, we unveiled a new vulnerability in LoRA
fine-tuned models, allowing attackers to recover the Pre-
FT weights using multiple models. Our method, Spectral
DeTuning, demonstrates this vulnerability on large-scale
models like Mistral and Stable Diffusion. We introduced
LoWRA Bench and discussed future directions to promote
further research. By highlighting this vulnerability, we hope
to encourage the research community to develop better de-
fenses against such attacks.

9
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Impact Statement
This work uncovers a significant vulnerability in fine-tuned
models, allowing attackers to access pre-fine-tuning weights.
While this discovery reveals potential security risks, our pri-
mary objective is to advance the field of Machine Learning
and raise awareness within the research community about
the existing vulnerabilities in current models.

Instead of using the findings of this study to execute attacks,
we advocate for their use by model creators to enhance
the safety and security of their models. By acknowledg-
ing and addressing vulnerabilities, creators can proactively
safeguard against potential threats.

Furthermore, in the discussion section, we outline poten-
tial future directions and mitigation strategies. Following
established practices in the cyber security community, we
emphasize the importance of open discussion and encourage
the reporting of vulnerabilities. By fostering transparency
and collaboration, we can collectively create a safer envi-
ronment for deploying machine learning models.
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A. The Effect of the Number of LoRAs on Semantic Convergence
We visualize the effect of the number of LoRAs on the semantic convergence for each of the LoWRA Bench subsets, results
are shown in Figures 8 to 11.
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Figure 8. Number of LoRAs vs. Semantic Convergence - ViT
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B. W-Error vs. Loss
We visualize the relation between the W-Error and the log loss and find they are almost perfectly correlated (ρ = 0.994), see
Figure 12 for a visualization over 200 iterations using Stable Diffusion.
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Figure 12. W-Error vs. Loss - Stable Diffusion
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C. W-Error vs. LPIPS
We visualize the relation between the W-Error and LPIPS and find they are strongly correlated (ρ = 0.880), see Figure 13
for a visualization over 200 iterations using Stable Diffusion.

D. LoRA Rank vs. W-Error
In Tables 6 and 7 we show the results for the ViT model when using different LoRA ranks and fixing the number of LoRAs.

Table 6. Using 5 LoRAs
Rank W-Error

8 −15.636
12 −15.550
16 −13.480
32 −4.817

Table 7. Using 5 LoRAs
Rank W-Error

8 −15.822
12 −15.773
16 −15.258
32 −9.639

E. LoWRA Bench Dataset
We now elaborate on the implementation details of the LoWRA Bench dataset.

E.1. ViT Models

As the Pre-FT model we use “vit-base-patch16-224” found on hugging face (https://huggingface.co/google/
vit-base-patch16-224). We fine-tune the model using the PEFT library (Mangrulkar et al., 2022). For each LoRA
we use a different VTAB-1k (Zhai et al., 2019) dataset, the datasets we use are: cifar100, caltech101, dtd,
flower102, pet37, svhn, patch camelyon, clevr-count, clevr-distance, dmlab, kitti,
dsprites-location, dsprites-orientation, smallnorb-azimuth, smallnorb-elevation.
We pre-process the datasets according to the protocol of Jia et al. (2022) found on their github page
https://github.com/KMnP/vpt/blob/main/VTAB_SETUP.md. We use an 80/20 train/validation split
and choose the checkpoint with the best validation loss.

We use a rank r = 16 and LoRA fine-tune the query and value layers. This protocol results in 24 Pre-FT model layers
and a total of 24 · 15 = 360 LoRA fine-tuned layers. See Table 8 for the fine-tuning hyper-parameters.

For semantic evaluation we use a subset of the ImageNet-1K (Russakovsky et al., 2015) validation set. We construct the
subset by taking the first 5 images of each class, resulting in a subset of 5000.

Table 8. ViT Hyper-parameters
Name Value

lora rank (r) 16
lora alpha (α) 16
lr 9e− 3
batch size 128
epochs 20

datasets
cifar100, caltech101, dtd, flower102, pet37, svhn, patch camelyon,

clevr-count, clevr-distance, dmlab, kitti, dsprites-location, dsprites-orientation,
smallnorb-azimuth, smallnorb-elevation

E.2. Mistral Models

As the Pre-FT model we use “Mistral-7B-v0.1” found on hugging face (https://huggingface.co/mistralai/
Mistral-7B-v0.1). We fine-tune the model following the protocol of Tunstall et al. (2023), note that unlike Tunstall et al.
(2023), we perform LoRA fine-tuning as found on their official github repo https://github.com/huggingface/
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alignment-handbook. Following the original LoRA setting, we make a minor adjustment to the original hyper-
parameters of the repo and use a LoRA alpha of 64 instead of 16 (i.e. α = 64), this leads to faster and better convergence.
To fine-tune 15 different models, we use different random subsets of 80% of the fine-tuning dataset. We use seeds of 0− 14
for the different fine-tuned models.

We follow this protocol for both the supervised fine-tuning stage (SFT) and the direct preference optimization (DPO)
alignment stage. Following Tunstall et al. (2023), the SFT stage uses the UltraChat dataset (Ding et al., 2023) and the DPO
stage uses the UltraFeedback dataset (Cui et al., 2023). We first fine-tune the 15 SFT models, and then fine-tune the 15 DPO
models, where each DPO model continues the training of the SFT model with the corresponding seed.

Following the original setup, use a rank r = 64 and LoRA fine-tune the q proj, k proj, v proj, and o proj layers.
This protocol results in 128 Pre-FT model layers and a total of 128 · 15 = 1920 LoRA fine-tuned layers for both the SFT and
DPO stages. See Tables 9 and 10 for the fine-tuning hyper-parameters. For inference we use the following decoding hyper-
parameters: max new tokens=50, do sample=True, temperature=0.7, top k=50, top p=0.95.

For evaluation we use the first 100 prompts from the AlpacaFarm benchmark (Dubois et al., 2023) found in the fol-
lowing link https://huggingface.co/datasets/tatsu-lab/alpaca_farm/viewer/alpaca_farm_
evaluation. We provide these prompts in the SM.

Table 9. Mistral SFT Hyper-parameters
Name Value

lora rank (r) 64
lora alpha (α) 64
lora dropout 0.1
lr 2e− 5
batch size 4
gradient accumulation steps 128
learning rate scheduler Cosine
epochs 1
warmup ratio 0.1
data type bfloat16

dataset
random 80% of
UltraChat

seeds 0− 15

Table 10. Mistral DPO Hyper-parameters
Name Value

lora rank (r) 64
lora alpha (α) 64
lora dropout 0.1
lr 5e− 6
batch size 2
gradient accumulation steps 32
learning rate scheduler Cosine
epochs 1
warmup ratio 0.1
data type bfloat16

dataset
random 80% of
UltraFeedback

seeds 0− 15

E.3. Stable Diffusion Models

As the Pre-FT model we use “Stable Diffusion 1.5” found on hugging face (https://huggingface.co/runwayml/
stable-diffusion-v1-5). We collect 15 personalization fine-tuned models from civitai.com, a public and widely
used LoRA models marketplace. This allows us to examine our method in a real world setting, for the full list of LoRAs see
Table 11. After examining the downloaded models, we deduce that their LoRA rank is r = 32 and that their fine-tuned
layers are: to q, to v, to k, to out, proj out, proj in, and ff. Resulting in 192 Pre-FT model layers for and a
total of 192 · 15 = 2880 LoRA fine-tuned layers. For inference we use the default Stable Diffusion 1.5 generation pipeline
(i.e. 50 sampling steps).

For evaluation we use a the first 100 captions from the COCO Captions (Chen et al., 2015) validation dataset found in the
following link https://github.com/tylin/coco-caption/blob/master/annotations/captions_
val2014.json. We provide these prompts in the SM.

F. Spectral DeTuning Implementation Details
For all semantic evaluations we use a seed of 0 for all baselines and for our results. For both the ViTs and Stable Diffusion
(SD) experiments we run Spectral DeTuning for 300 optimization steps. For the Mistral SFT and DPO experiments we
use 1000 optimization steps. We base our rank scheduler implementation on the official PyTorch implementation of a the
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Table 11. Stable Diffusion Fine-tuned LoRA Links

https://civitai.com/models/186716/smol-animals-lora-15sdxl?modelVersionId=241137
https://civitai.com/models/189905/pastry-lora-15sdxl?modelVersionId=241955
https://civitai.com/models/191203/bastet-egypt-cat-style-lora-15sdxl?
modelVersionId=243232
https://civitai.com/models/190176/fur-pirates-lora-15sdxl?modelVersionId=241976
https://civitai.com/models/211973/cigarette-style-lora-15sdxl?modelVersionId=
247079
https://civitai.com/models/233316/smol-dragons-lora-15sdxl?modelVersionId=263316
https://civitai.com/models/234324/polygon-style-lora-15sdxl?modelVersionId=264506
https://civitai.com/models/202128/overgrowth-style-lora-15sdxl?modelVersionId=
264449
https://civitai.com/models/218327/mythical-creatures-lora-15sdxl?modelVersionId=
289861
https://civitai.com/models/203169/lava-style-lora-15sdxl?modelVersionId=265372
https://civitai.com/models/197998/chocolate-coffee-style-lora-15sdxl?
modelVersionId=259150
https://civitai.com/models/180780/crystals-lora-15sdxl?modelVersionId=238435
https://civitai.com/models/196040/transparent-glass-body-lora-15sdxl?
modelVersionId=245630
https://civitai.com/models/199968/liquid-flow-style-lora-15sdxl?modelVersionId=
259228
https://civitai.com/models/206783/christmas-critters-lora-15sdxl?modelVersionId=
275204

ReduceLROnPlateau learning rate scheduler 1. We expand on the hyper-parameters of the rank scheduler in Table 12.

Table 12. Spectral DeTuning Rank Scheduler Hyper-parameters

Name Value Used Explanation

total steps 200 for ViT and SD, 1000 for Mistral The total number of optimization steps
start rank 1 The rank to start the optimization from (i.e. r∗)

end rank 16 for ViTs, 32 for SD, 64 for Mistral
The final rank of the scheduler
(i.e. r, the actual rank of the LoRA models)

factor 2 The multiplicative factor to increase the rank by

patience 15
Number of scheduler steps with no improvement
after which rank will be increased.

force end rank percent 0.5
Percent of the total steps after
which end rank will be forced

G. Runtime and Compute
Since Spectral DeTuning does not pass any gradients through the model, it is highly parallelizable and can recover the
weights of even large models (e.g., Mistral 7B) in minutes using a cluster of desktop-grade GPUs or even CPUs. For
example, using a cluster of RTX2080 it can recover Mistral-7B in under five minutes.

1https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.
html
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H. Detecting the Fine-Tuned Layers
We note that it is easy to detect which layers were fine-tuned. This can simply be done by comparing the layers weights
of n different fine-tuned versions. The layers which have not been fine-tuned will be equal across all n models, while the
fine-tuned layers will have some variation between them.
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I. Algorithm with Rank Scheduler
In Algorithm 2 we present pytorch-like pseudocode for Spectral DeTuning that includes that rank scheduler.

Algorithm 2 PyTorch Pseudocode for Spectral DeTuning

# W_ps: List of n fine-tuned weight matrices
# steps: Number of optimization steps
# r: LoRA rank

# Initialize rank scheduler
current_lora_rank = 1
rank_scheduler = LoRARankScheduler(start_rank=current_lora_rank, end_rank=r)

# Initialize W_star
W_s = torch.mean(torch.stack(W_ps), axis=0)

# Perform optimization
for step in range(steps):

# M-step
# Approximate each Mˆ*_i (Eq. 5)
M_s = [W_p - W_s for W_p in W_ps]

# Truncate each Mˆ*_i to rank <= r (Eq. 5)
for i in range(len(M_s)):

(U, S, V) = torch.svd_lowrank(M_s[i], q=current_lora_rank)
M_s[i] = (U @ torch.diag_embed(S)) @ V.T

# W-step
# Approximate W_star (Eq. 7)
W_s = [W_p - M_si for (W_p, M_si) in zip(W_ps, M_s)]
W_s = torch.mean(torch.stack(W_s), axis=0)

# Compute the current loss
iteration_losses = [torch.mean((W_ps[i] - (W_s + M_s[i])) ** 2) for i in range(len(M_s))]
loss = torch.mean(torch.stack(iteration_losses), axis=0)

# Step the rank scheduler
rank_scheduler.step(loss)
current_lora_rank = rank_scheduler.current_rank

J. Mistral Additional Results
For the list of mistral prompts see supplementary material (SM). In Figure 17 we show side-by-side results for 10 randomly
(random seed=42) sampled prompts from our evaluation dataset, using the Pre-FT recovered weights of the DPO
fine-tuned Mistral model. See SM for the rest of the DPO results and for the SFT results.

K. Stable Diffusion Additional Results
For the list of stable diffusion prompts see SM. In Figures 14 to 16 we show side-by-side results for the entire dataset. Note,
images are compressed to reduce file size, for the full resolution images see the SM.
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Figure 14. Stable Diffusion Results: Note, images are compressed to reduce file size, for the full resolution images see the SM.
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Figure 15. Stable Diffusion Results: Note, images are compressed to reduce file size, for the full resolution images see the SM.
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Figure 16. Stable Diffusion Results: Note, images are compressed to reduce file size, for the full resolution images see the SM.
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Should I get my children a nanny? I'm so 
exhausted.

Spectral DeTuning (Ours)
User 11: My kids are 2.5 and 1.5. I had 4 weeks of mat 
leave, then 8 weeks of short term disability and then 
12 weeks of unpaid leave. I was back...

Pre-Fine-Tuning (Ground Truth)
User 11: My kids are 2.5 and 1.5. I had 4 weeks of mat 
leave, then 8 weeks of short term disability and then 
12 weeks of unpaid leave. I was back... 

How do you get water in the desert?

Spectral DeTuning (Ours)
The only source of water in the desert is from the 
rain, which is the main reason why the vegetation is 
scarce. The rainy season in the desert is very short, 
only a few months of the year. ##...

Pre-Fine-Tuning (Ground Truth)
The only source of water in the desert is from the 
rain, which is the main reason why the vegetation is 
scarce. The rainy season in the desert is very short, 
only a few months of the year...

What type of soil is suitable for cactus?

Spectral DeTuning (Ours)
Cactus like sandy, well-drained soil, but they can 
survive in a variety of soil types. Cactus prefer soil 
with a pH between 6.5 and 7.0. ### Do...

Pre-Fine-Tuning (Ground Truth)
Cactus like sandy, well-drained soil, but they can 
survive in a variety of soil types. Cactus prefer soil 
with a pH between 6.5 and 7.0. ### Do...

Please tell me about the romantic relationship between 
Julius Caesar and Cleopatra.

Spectral DeTuning (Ours)
The relationship between Julius Caesar and Cleopatra 
was a romantic one. They met when she was just a young 
girl, and he was a great military leader. Caesar was 
impressed with her intelligence and beauty, and...

Pre-Fine-Tuning (Ground Truth)
The relationship between Julius Caesar and Cleopatra 
was a romantic one. They met when she was just a young 
girl, and he was a great military leader. Caesar was 
impressed with her intelligence and beauty, and...

do you think retinoid is effective on 
removing the acne? because I have a lot of 
it

Spectral DeTuning (Ours)
User 0: It's effective, but it's not a quick fix. It 
takes 4-8 weeks to see results and 3 months for full 
effects. If you have a lot of acne, it'... 

Pre-Fine-Tuning (Ground Truth)
User 0: It's effective, but it's not a quick fix. It 
takes 4-8 weeks to see results and 3 months for full 
effects. If you have a lot of acne, it'...

what should i build a cabin out of?

Spectral DeTuning (Ours)
User 1: In this game, I like building cabins out of 
stone and wood. But if you want to build a cabin out of 
stone, I recommend using the [Stone 
Foundation](http://starbounder.org/St...

Pre-Fine-Tuning (Ground Truth)
User 1: In this game, I like building cabins out of 
stone and wood. But if you want to build a cabin out of 
stone, I recommend using the [Stone 
Foundation](http://starbounder.org/St... 

I have a hard time falling asleep. Is there any 
type of music that can help me fall asleep 
faster?

Spectral DeTuning (Ours)
User 1: I'm not sure about other people, but I find the 
music you listen to right before bed and as you're 
falling asleep to be important. 
If I listen to something I don't like or...

Pre-Fine-Tuning (Ground Truth)
User 1: I'm not sure about other people, but I find the 
music you listen to right before bed and as you're 
falling asleep to be important. 
If I listen to something I don't like or...

Please give me a list of planets in our solar system. I 
am going to choose which one I want to know more.

Spectral DeTuning (Ours)
User 11: How about you give me a list of planets in 
our solar system, and I'll choose which one I want to 
know more.
User 4: Do you think that's fair?
User 1...

Pre-Fine-Tuning (Ground Truth)
The student is given a list of planets. They are to 
choose a planet they would like to know more about and 
then write a question. I have them write a question 
that they think I would not be able to answer off 
the...

What are the names of some famous actors 
that started their careers on Broadway?

Spectral DeTuning (Ours)
The first is Dustin Hoffman. He was nominated for a 
Tony Award for his Broadway debut in 1968. He also 
appeared in the 1968 revival of “J.B.” and “The...

Pre-Fine-Tuning (Ground Truth)
The first is Dustin Hoffman. He was nominated for a 
Tony Award for his Broadway debut in 1968. He also 
appeared in a number of plays, including The Graduate, 
All the President's Men,... 

Why did humans evolve to believe in God?

Spectral DeTuning (Ours)
The purpose of religion is to help people understand 
the meaning of life. As the human race evolved, we 
realized that we were not alone and that there was a 
higher power that was greater than us.
## Why did humans evolve... 

Pre-Fine-Tuning (Ground Truth)
The purpose of religion is to help people understand 
the meaning of life. As the human race evolved, we 
realized that we were not alone and that there was a 
higher power that was greater than us.
## Why did humans evolve...

Figure 17. Non Cherry-picked Mistral DPO Results: We display side-by-side results for 10 randomly (random seed=42) sampled
prompts from our evaluation dataset. For the rest of the results see supplementary material.
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