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Abstract

We model real-world data markets, where sell-
ers post fixed prices and buyers are free to pur-
chase from any set of sellers, as a simultaneous
game. A key component here is the negative ex-
ternality buyers induce on one another due to data
purchases. Starting with a simple setting where
buyers know their valuations a priori, we charac-
terize both the existence and welfare properties
of the pure Nash equilibrium in the presence of
such externality. While the outcomes are bleak
without any intervention, mirroring the limitations
of current data markets, we prove that for a stan-
dard class of externality functions, platforms in-
tervening through a transaction cost can lead to a
pure equilibrium with strong welfare guarantees.
We next consider a more realistic setting where
buyers learn their valuations over time through
market interactions. Our intervention is feasible
here as well, and we consider learning algorithms
to achieve low regret concerning both individual
and cumulative utility metrics. Lastly, we analyze
the promises of this intervention under a much
richer externality model.

1. Introduction
Data plays a central role in machine learning, and demand
for it has grown substantially due to the increasing value
it provides. It has thus become the subject of trading, and
understanding markets for data (or more generally, informa-
tion) has gained traction in research communities in recent
years (Bergemann et al., 2018; Babaioff et al., 2012; Berge-
mann & Bonatti, 2019; Mehta et al., 2019; Agarwal et al.,
2019; 2020). Such works have largely focused on determin-
ing the “right” price for data so that it is allocated to those
who value it most (Bergemann & Bonatti, 2019; Mehta
et al., 2019; Agarwal et al., 2019; 2020). The mechanisms
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proposed here for two-sided markets are usually auction-
based, and require buyers to report their valuations for data
sources (Agarwal et al., 2019; 2020). These requirements
are challenging, if not impossible, to achieve in practice due
to the peculiar characteristics of data products. Buyers are
generally free to purchase from any combination of data
sources, and it is impractical to elicit accurate valuations
in this combinatorially large space. More importantly, a
data source’s value to a buyer largely arises from how it
can improve model performance, a metric the buyer herself
may not know before making purchases and evaluating the
results. Thus, she acts in the market with only partial or
incomplete information. It is hence not surprising that most
real-world data market platforms, such as Snowflake Data
Marketplace1 and AWS Data Exchange2, take a very simple
format: sellers use some pricing mechanism to set a price for
each dataset, and buyers can freely choose which datasets to
purchase, with platforms charging a simple transaction fee.
While sellers can change prices over time to reflect market
changes, the granularity of this is quite coarse, and prices
stay stable or fixed for some time. The simplicity of fixed-
price data markets is not just a huge operational advantage
but also arguably necessary in light of the challenges data
products pose. Such markets are the focus of our paper.

An important component of modeling data markets is ac-
counting for the (usually negative) externality one buyer’s
purchase decision has on another. In a competitive setting,
a buyer’s value for data is predicated on the relative advan-
tage it provides, with respect to their peers. Equivalently,
the value of data can depend on what others have access
to. While externality is not unique to data and is present
for other products as well, it is especially prominent in data
markets due to another salient feature: data can be replicated
at a mass scale with zero marginal cost and sold to multiple
buyers, a phenomenon that exacerbates any externality data
products induce. Replication need not even be exact: sellers
can offer different versions of the same dataset by injecting
noise or by interleaving it with something innocuous (Pei,
2020). Accordingly, real-world data markets usually give
no guarantee of unique ownership. Data externality is thus
a persistent phenomenon, and by linking one buyer’s utility
to another’s decisions, it turns the buyer interactions into

1https://www.snowflake.com/
2https://docs.aws.amazon.com/data-exchange/index.html
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a game. We thus model fixed-price data markets between
arbitrary buyers and sellers in the presence of externality
and free replicability as a game. Despite their simplicity,
which sidesteps many of the above concerns, this model has
not been formally analyzed in literature and its properties
are unknown. By leveraging the formalisms of game theory,
we systematically explore this landscape and ask:

• How well can fixed-price markets serve the purpose
of allocating data to buyers, especially with respect to
social welfare?

• How does buyer externality affect their strategy and
market performance?

• Can simple platform interventions improve the outcome
of fixed-price data markets?

• If buyers learn their value for data sources by repeatedly
interacting with a data market, can they learn to act opti-
mally, and how much social welfare can be achieved?

1.1. Our contributions

We model the interactions between buyers in fixed-price
data markets as a simultaneous game, with buyer utility
depending on the net gain derived from the purchased data,
the externality they suffer due to others’ actions, and possi-
bly some cost administered by the platform. We formally
define this in section 3. In section 4, we study the pure Nash
equilibrium (PNE) of this game and show that without any
intervention, this equilibrium has poor social welfare, con-
firming the present concerns with data markets. A market in-
tervention in the form of a transaction cost is then proposed
that significantly improves the situation by guaranteeing
a dominant strategy NE whose social welfare approaches
the optimal. Section 5 then considers the real-world setting
wherein buyers do not know valuations a priori but instead
must learn them through repeated market interactions. We
model the buyer’s learning problem as a multi-armed bandit
instance with exponentially many arms, show the proposed
platform intervention is feasible here as well, and consider
online learning algorithms for buyers in this challenging
combinatorial setting. Section 6 explores a richer model of
buyer externality, wherein not intervening does not guaran-
tee even a reasonable approximate equilibrium. In contrast,
our proposed intervention significantly improves this, guar-
anteeing a ε−pure NE with good welfare. Nonetheless, this
is a more challenging model for the learning setting, and we
discuss these along with broader extensions in section 7.

2. Related Works
Bergemann & Bonatti (2019) provide a broad overview
of the growing literature on markets for information and
data. Works here examine how to optimally sell information
according to some objectives, and take a mechanism de-

sign approach, with a focus on the seller’s pricing problem.
For instance, many works consider a monopoly information
holder directly selling a private random signal to buyers (Eso
& Szentes, 2007; Bergemann et al., 2018; Babaioff et al.,
2012; Chen et al., 2020b; Cai & Velegkas, 2020; Bonatti
et al., 2022). The seller decides on a menu of information
products (e.g. partially revealing the signal) and an associ-
ated price for each product to maximize her profit. Mehta
et al. (2019) also study selling a dataset in a monopoly seller
setting. When there are multiple sellers and multiple buy-
ers, auction-based mechanisms have also been leveraged to
design two-sided data marketplaces (Agarwal et al., 2019;
2020). In such works, the marketplaces themselves are not
profit-driven but intend to maximally facilitate the match-
ing of data to buyers. Bergemann & Bonatti (2019) and
Bergemann et al. (2022) also study profit-driven data inter-
mediaries who make a bilateral deal to purchase information
from data holders and then sell the information to data buy-
ers. Here, the data holders are consumers, and the buyers are
firms that use purchased information to price discriminate.

While determining how to price data is fundamentally im-
portant, the proposed mechanisms so far have not found
their way into real-world data markets. A menu of partially-
revealing information products can be too complex and cum-
bersome for buyers. As discussed in the introduction, buyers
are unlikely to know their valuation for data a priori, render-
ing mechanisms that solicit buyer valuations (e.g. auctions)
impractical. Our work thus takes an orthogonal direction
and steps away from the design question of how to sell data
and consider data sellers participating in a real-world fixed-
price data market. We take this market mechanism as a
given and adopt a game-theoretic approach to understanding
buyer behavior and dynamics in such markets.

A key feature of data markets that is central to our model
is buyer externality. This has been highlighted in studying
monopoly data selling (Admati & Pfleiderer, 1986; 1990;
Bimpikis et al., 2019; Bonatti et al., 2022) and data auc-
tions (Agarwal et al., 2020) in competitive environments.
These works explicitly model downstream competition (e.g.
trading in financial markets) among data buyers and the
negative buyer externality that arises therein. Our work ab-
stracts away the specifics of competitive environments to
present such externality in a general sense. Another type of
externality present in information markets is the externality
among data sellers. Naturally, the value of one’s data de-
creases when others decide to sell similar data (Bergemann
et al., 2022). Seller externality is an important phenomenon
to consider, which we leave for future work.

Lastly, our work on the online setting relaxes the assumption
that buyers know their valuations a priori. This spiritually
parallels studying learning agents in other mechanisms such
as auctions (Blum et al., 2003; Weed et al., 2015; Braver-
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man et al., 2018) and peer prediction (Feng et al., 2022).
The techniques used in the online section leverage the vast
literature on bandits, particularly bandits in metric spaces
(Kleinberg et al., 2019; Bubeck et al., 2008). We view study-
ing markets with learning agents as a step toward a more
realistic evaluation of market performance.

3. Model
Market Structure: Consider n buyers, D = {d1,
. . . , dn}, and k sellers, L = {ℓ1, . . . ℓk}, who without loss
of generality have one dataset each to sell. We consider a
market where buyers are free to purchase from any subset of
the sellers, each of whom posts a fixed price for their dataset
and cannot refuse to sell. The data offered by the sellers can
be arbitrarily correlated, and multiple buyers may buy from
the same seller. Let Γ denote the power set of the sellers,
and let γ ∈ Γ denote a specific subset of sellers (we often
refer to it as a seller set or order). We use subscripts to
distinguish between seller sets chosen by various buyers -
for example, γi refers to the set of buyers chosen by seller i
- and superscripts to distinguish or index between two seller
sets irrespective of buyers - for example, γm and γn refers
to two distinct seller sets. We consider buyers simultane-
ously submitting their orders and use S = (γ1, . . . , γn) to
denote the purchase orders of all buyers.

Buyer’s Utility: The utility of buyer i when purchas-
ing from a seller set γ is predicated on: (1) the increased
value/performance due to purchased data, denoted by the
random variable Pi(γ) with E[Pi(γ)] ≜ pi(γ), (2) the cost
charged by sellers in γ, c(γ), (3) the negative externality
caused by another buyer j’s action, denoted by the random
variable Eij(·) with E[Eij(·)] ≜ eij(·), and (4) a transac-
tion cost Ti(S) charged by the platform, which specifies the
amount that buyer i needs to pay (or receive) when the set of
purchase orders is S. Without loss of generality, we assume
Pi(γ) ∈ [0, 1] and c(γ) ∈ [0, 1], and the “buy nothing” op-
tion (γ = ∅) has 0 increased performance and 0 cost. Note
a buyer that decides to “buy nothing” and not participate
in the market, will still suffer the negative externality in-
duced by others. We primarily focus on the most externality
model in literature where buyer i’s externality from buyer
j’s action depends arbitrarily on the latter’s action: Eij(γj)
(Aseff & Chade, 2008; Li et al., 2019; Agarwal et al., 2020).
To ensure that the total externality caused by a buyer is at
most 1 and thus in the same range as performance and cost,
we assume that ∀ i,

∑
j ̸=i Eji(γi) ∈ [0, 1]. In section 6,

we consider a richer class of externality functions and in
appendix A, we include a detailed discussion on the eco-
nomic interpretations of these externality models. We now
formally define the buyer’s utility, and for brevity, combine
the performance increase Pi(γ) and seller costs c(γ) terms
into a single net gain term Gi(γ), with E[Gi(γ)] ≜ gi(γi).

Definition 1 (Utility and Welfare). For seller cost function
c, and buyer i with performance increase Pi, we define her
net gain to be Gi(γ) = Pi(γ)− c(γ), with Gi(γ) ∈ [−1, 1].
Using this, along with externality Eij ∀ j, and transaction
cost Ti, we define her stochastic utility for a complete order
profile S = (γ1, . . . , γn) to be:

Ui(S) = Gi(γi)−
∑
j ̸=i

Eij(γj)− Ti(S).

The expected buyer utility is denoted by E[Ui(S)] ≜ ui(S).
We define the expected social welfare of an order profile S as
the sum of all expected buyer utility: sw(S) =

∑
i ui(S).

Game and Solution Concept: We model buyers in the
data market as playing a simultaneous-move game to maxi-
mize their expected utility. We note that agent i’s utility, and
thus her best response, doesn’t depend on any other agent’s
net gain Gj(·), which may be beneficial. We are primarily
interested in analyzing the pure-strategy Nash equilibrium
of this game under externality and transaction costs. Beyond
the existence of such equilibria, we also aim to compare the
social welfare at equilibrium to the optimal social welfare
possible. A common notion for comparison is the price
of stability, the ratio of the optimal social welfare to the
welfare of the best equilibrium (Nisan et al., 2007; Schulz
& Moses, 2003). However, this is a multiplicative metric
and thus unamenable to additive notions of regret that are
common in the online analysis we do in section 5. As such,
we define a comparable additive notion called welfare regret
at equilibrium (WRaE) to characterize the societal cost of
self-interested behavior in games.

Definition 2 (WRaE). Let S∗ = argmaxS
∑

i ui(S) be
the optimal strategy with respect to social welfare and let
Sq be the set of all equilibrium strategies. We define the
welfare regret at equilibrium (WRaE) for our game as:
sw(S∗)−maxS∈Sq sw(S).

Known vs Unknown Utilities: Buyers may not know
their expected net gain for a dataset until using it with their
models. Thus, there are two sources of tension in the general
setting: buyers behaving strategically with respect to their
utility, and buyers learning these by interacting with the
market. Although intertwined, the former relates to game
dynamics and the latter is a learning theoretic question. To
comprehensively study both, in section 4 we start with the
simpler case of buyers knowing the expected utility for their
actions, which is standard in game theory (Prisner, 2014;
Munoz-Garcia et al., 2019; Mailath et al., 1991), and focus
on the resulting equilibrium and welfare properties. The
more general online setting wherein buyers learn their val-
uations through repeated market participation and behave
strategically based on these is studied next. Our key metrics
here are online effective and online welfare regret (see sec-
tion 5 for precise definition); these intuitively capture how
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well buyers can learn their optimal strategy, and how this
learned strategy affects welfare regret at equilibrium.

4. Data Markets Game with Known Utility
In this section, we consider the simultaneous-move data mar-
kets game wherein each buyer knows their expected net gain
and externality. This allows us to settle game/market dy-
namics questions first, before considering the more general
setting of buyers playing with learned valuations in section
5. Considering this game without any platform intervention
– i.e. buyers simply pay the seller’s cost and Ti(S) = 0 –
admits a unique, dominant-strategy equilibrium: each buyer
simply chooses the seller set with the highest net gain, since
the externality suffered depends on the others’ action. How-
ever, the welfare regret of this dominant-strategy equilib-
rium can be maximal. Intuitively, we sketch an instance
where the seller set with the highest net gain also induces a
high externality (proofs for this section are in Appendix B).

Proposition 1. For the data markets game with no interven-
tion - Ti(S) = 0, ∀i, it is a dominant strategy for any buyer
i to select γd

i = argmaxγ gi(γ). However, there exists an
instance of this game where the WRaE is maximal - (i.e.
Θ(n) upper and lower bound).

This result illustrates the very real and unsatisfactory phe-
nomenon that occurs in modern data markets. Buyers, not
incentivized to care about their impact on others, make my-
opic decisions based purely on their own net gain, to the
detriment of both the individual and the collective. This
impact is exacerbated by the easy replicability of data, al-
lowing multiple buyers to purchase the same dataset. To
address this, we consider market intervention in the form of
a transaction cost Ti(S) levied by the platform, a standard
approach in online marketplaces. We posit that platforms
can use learning models to estimate externalities(Definition
3) and propose they charge each buyer a cost proportional
to the net difference in estimated externality they are con-
tributing to and suffering from (Definition 4).

Definition 3 (Predicted Externality). For any i, j, let Êij(·)
denote the predicted version of the externality Eij(·), with
E[Êij(·)] = êij(γ) and bij(·) = eij(·)− êij(·) representing
the bias/error of the predictor. We assume predictions satisfy
the same scale – i.e.

∑
i Êji(·) ∈ [0, 1]. As shorthand, we

define ∆max
b =

∑
i ̸=j maxγ1,γ2 |bij(γ1)− bij(γ

2)|
Definition 4 (Transaction Cost). For a platform-chosen pa-
rameter α ∈ [0, 1], and a complete set of purchase orders
S, we propose the platform charge each buyer i a trans-
action cost Ti(S) = α

(∑
j ̸=i Êji(γi)−

∑
j ̸=i Êij(γj)

)
,

with α = 0 corresponding to no intervention.

Observe that we make no assumptions about the predic-
tions Êij and characterize it generally through their item-

ized bias or expected inaccuracy bij . Secondly, while the
proposed cost Ti(S) can be negative, from the platform’s
perspective this is just a redistribution and not an actual
payment, since the sum of the transaction cost is always
0 - i.e. revenue-neutral. This may be desirable since the
addition of this cost does not diminish the cumulative so-
cial welfare of the buyers. However, if platforms do wish
to extract revenue they can charge an additional constant
cost on top of this without changing any of our results. It
is also advantageous that our proposed cost only depends
on the externalities and not the net gain. We denote an
instance of our game with this intervention by the tuple
I = (gi, eij , bij , α). Lastly, the proposed transaction cost
renders each buyer i’s effective utility, the component of
their utility that depends on their action γi, to have the
following form: Gi(γi) − α

∑
j Êji(γi) ≜ Ue

i (γi), with
E[Ue

i (γ)] ≜ ue
i (γ).

With this new cost in place, Theorem 1 gives a significantly
improved result — a dominant strategy still exists, with
each buyer maximizing their expected effective utility, but
WRaE is tightly bounded by Θ(n(1−α)), as the difference
in bias parameters, ∆max

b tend toward 0. This is a strong
result since the upper bound implies that on all instances,
equilibrium has welfare regret less than n(1− α) + ∆max

b .
Crucially, this decreases linearly with α, with α → 1 lead-
ing to the equilibrium solution attaining the optimal social
welfare, up to prediction inaccuracies. The corresponding
lower bound, which is independent of the bias terms, shows
that this is essentially tight.

Theorem 1. Under the proposed transaction cost, it is
a dominant strategy for any buyer i to select γd

i =
argmaxγ gi(γ)− α

∑
j ̸=i êji(γ) = argmaxγ u

e
i (γ). Fur-

ther, WRaE is upper bounded by n(1 − α) + ∆max
b and

lower bounded by n(1− α).

Lastly, the nature of our transaction cost, which charges buy-
ers based on externality, does indeed have spiritual similari-
ties to the VCG family of mechanisms. There are however
some very key differences. VCG mechanisms are designed
for auctions wherein the platform elicits bids for items and
then determines allocations. The cost to an agent in the VCG
setting is the implied externality caused by that agent’s par-
ticipation. This fundamentally differs from the fixed-price
market interaction we model, where any buyer may pur-
chase from any seller by paying the set price. The platform
does not control this. Thus we model externality explicitly;
moreover, our transaction cost is the difference between
the externality caused and the externality suffered. The ex-
plicit modeling of externalities also gives rise to a rich set
of analysis based on its properties (this section vs section 6).
So while there are spiritual similarities with VCG, they are
fundamentally different.

4



Equilibrium of Data Markets with Externality

5. Online setting with learned valuation
We now relax the assumption that buyers know their ex-
pected valuations a priori; instead, we consider them re-
peatedly interacting with the market and acting upon values
learned during this process. This is consistent with real-
world behavior since (1) sellers usually offer their data prod-
ucts for a prescribed time-period with buyers needing to
pay anew for continued access (typical in AWS Data Mar-
ketplace) and (2) data products often capture real-time phe-
nomenon (weather or foot traffic data) leading consumers
to routinely purchase fresh data from the same source (see
Appendix C for a detailed discussion). Buyers in this online
setting face an exploration vs. exploitation problem, a di-
chotomy well modeled by the multi-armed bandit (MAB)
framework. Each time a buyer interacts with the market,
they can choose between 2k “arms”, representing the differ-
ent seller combinations at their disposal. By “pulling an arm”
they choose one of these options and observe the stochastic
gain, externality, and transaction cost associated with that
choice. At each round t, all buyers make such a decision
and note that buying nothing, γ = ∅, is a valid strategy for
any buyer at any time. The additional challenges here are
twofold: proposing a buyer learning algorithm that works
well over time given the exponential number of arms, and
showing this buyer-optimal algorithm does not degrade the
social welfare regret. Our goal in this section is to explore
the possible learning algorithms available to buyers and the
scenarios wherein they are performant.

We consider the platform charging the proposed transaction
cost Ti(S) at each round as described in definition 4. To im-
plement this, we consider the platform observing a possibly
biased sample of the externalities each time the buyers make
a decision. This sample can originate from leveraging learn-
ing algorithms to analyze downstream decision-making or
outcomes for the firms involved. The platform charges trans-
action costs based on these sampled observations 3. Note
that under the proposed transaction cost, it is the dominant
strategy of each buyer to maximize the expected effective
utility, ue

i (γ) = E[Ue
i (γ)], with γd

i being the maximizer,
and Ue

i (γ) referring to its stochastic analogue. Together,
Ue
i (γ) and ue

i (γ) are analogous to the stochastic and ex-
pected “reward” for an arm in the standard MAB setting.
Using this, we now define appropriate notions of individual
and collective regret for the online setting.

Definition 5. For instance I, the expected online ef-
fective regret for buyer i is the difference in the
effective utility between their full information domi-
nant strategy, γd

i , and their strategy at time t, γt
i :

3Our only assumption is that the outcome of this learning al-
gorithm is stationary - i.e. the bias of the predictor remains the
same over the rounds. Stationarity is a reasonable assumption to
maintain market stability and consistency.

Ri
d(T ; I) = E

[∑T
t=1 U

e
i (γ

d
i )− Ue

i (γ
t
i )
]
, which is ex-

panded as: Ri
d(T ; I) =

T∑
t=1

gi(γd
i )− gi(γ

t
i )− α

∑
j ̸=i

êji(γ
d
i )− êji(γ

t
i )


Definition 6. For an instance I , the expected online cumu-
lative welfare regret is the difference in total expected utility
(across all agents) between the social welfare maximal strat-
egy, S∗ = (γ∗

1 , . . . , γ
∗
n), and the strategy taken at time t,

St = (γt
1, . . . , γ

t
n). Since the proposed transaction cost is

revenue-neutral, this regret be expressed as: Rw(T ; I) =

N∑
i=1

T∑
t=1

gi(γ∗
i )− gi(γ

t
i )−

∑
j ̸=i

eij(γ
∗
j )− eij(γ

t
j)


5.1. Algorithms

The exponential number of seller sets available to each
buyer make learning a challenging problem. Using the
forth-coming lemma 1, one can invoke the Upper Confi-
dence Bound (UCB) algorithm to obtain Õ(

√
2kT ) effec-

tive regret for each buyer. To improve upon this, additional
structure is needed. At first glance, the linear/combinatorial
bandit framework, wherein an agent can simultaneously
pull a subset k arms at each round, may seem attractive
(Combes et al., 2015; Cesa-Bianchi & Lugosi, 2012). While
this captures buyer interactions in our setting and reduces
regret dependency from 2k to k, it assumes a linear reward
model. That is, an unknown vector x ∈ Rk specifies the
individual reward for each of the k options, and the reward
for choosing a subset γ is: γTx. In our setting, each of the
k coordinates represents a different data seller, this becomes
a strong assumption as it implies the net gain and externality
experienced by buyers when purchasing from a bundle of
sellers is uncorrelated and can be linearly decomposed. The
utility of data products is argued to be richly correlated and
this assumption may not hold (Agarwal et al., 2019).

With the linear utility assumption being too strong, we con-
sider a weaker structure. γ can be represented as a k bit
string, with bit i denoting inclusion of seller ℓi. Then for any
γ1 and γ2, define Dh(γ

1, γ2) as the normalized Hamming
distance (range is [0, . . . , 1], in increments of 1/k) between
the two, counting the number of sellers in which these sets
differ. If Dh(γ

1, γ2) is close in Hamming distance, then
the two seller sets consist of roughly the same sellers, and
it is reasonable that the gain and externalities induced by
these two will not be drastically different. We formalize this
with the following metric property: for each buyer i and
any pair (γ1, γ2): |gi(γ1) − gi(γ

2)| ≤ λgDh(γ
1, γ2) and

|
∑

j eji(γ
1) −

∑
i eji(γ

2)| ≤ λeDh(γ
1, γ2)4. We denote

4WLOG, we fix λg = λe = 1 as it only changes bounds in a
multiplicative manner
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Algorithm 1 Zooming algorithm for buyer i
Active set Ai randomly initialized with a single seller set
Confidence radius for each γ ∈ Ai is cit(γ) =

√
12 log T
ni
t(γ)+1

γ′ ∈ Ai covers γ if λDh(γ, γ
′) ≤ cit(γ

′)
for t = 1 to T do

if there is a γ uncovered by seller-sets in Ai then
Pick any uncovered choice and append to Ai

end if
Let UCBi(γ) = ue

i (γ) + 2cit(γ) for each active γ
Select arm with highest UCBi value.

end for

∆i(γi) = ue
i (γ

d
i )−ue

i (γi) as the buyer i’s expected effective
utility gap for γi, with ∆i(γi) ∈ [0, 2]. nt(γi) denotes how
often γi has been selected by buyer i. The metric property
implies that ∆i(γ

t
i ) = ue

i (γ
∗
i ) − ue

i (γ
1) ≤ 2Dh(γ

1, γ2).
Lastly, no assumptions are made across different buyers -
i.e. no relation assumed between gi(γ

1) and gj(γ
2).

The metric assumption is far weaker than linearity as it still
allows rich levels of correlation between options. A com-
mon technique in metric bandits is to uniformly cover the
space of arms and UCB over the arms in the cover (Slivkins
et al., 2019). This is practical when arms are in a continu-
ous metric space since covering can be arbitrarily dense; in
Hamming space however, any center in the covering is at
least 1

k away from an arm it covers, leading to degenerate
bounds. Kleinberg et al. (2019) propose a general purpose
zooming algorithm, which adaptively discretizes a region
proportional to its reward. It maintains a set of active arms,
each of which covers any arm falling within its confidence
radius. It ensures all arms are covered at every round, and
selects from active arms using the UCB rule. Given the near-
optimality of this algorithm in metric settings, we adapt this
for our purpose (Kleinberg et al., 2019). While our proposed
algorithm (given below) is similar to the original, obtaining
good regret bounds requires more careful analysis. The
value of γ depends on both the gain and externality which
requires a stronger concentration result. More importantly,
distance in Hamming space is quantized. This means that
any two distinct elements are at least 1

k apart and there are a
large number of elements that cannot be strictly compared.
While the zooming algorithm in pathologically worst in-
stances cannot improve upon standard algorithms, we show
that in many natural instances, it performs significantly bet-
ter. Our insights may be of independent interest in bandit
settings with exponential arms. We present the algorithm
below and continue the analysis thereafter.

5.2. Online Effective Regret

We bound the online effective regret of a buyer i under the
zooming algorithm. First, using McDiarmid’s inequality,

Lemma 1 shows sampled effective utility ue
i is concentrated

around its expected quantity ue
i with high probability. Con-

ditioned upon this clean event, Lemma 2 bounds the number
of times an active choice is selected and the distance be-
tween any two active choices, mirroring a result in Kleinberg
et al. (2019). Proofs for this section are in the Appendix D.

Lemma 1. Let ue
i (γ, h) denote the sample mean of

Ue
i (γ) with h samples, and define event E = {∀i,∀γ,∀t,

|ue
i (γ, n

t
i(γ))− ue

i (γ)| ≤ cit(γ)}. Then Pr[E ] ≥ 1− 1/T 2.

Lemma 2. If E holds, then ni
t(γ) ≤ 108 log T

∆2
i (γ)

, ∀γ, i, t.
For two active sets γ1, γ2 ∈ Ai, Dh(γ

1, γ2) ≥
max(1/k, 1/3min(∆i(γ

1),∆i(γ
2))).

With the following results, theorem 2 states a precise in-
stance dependent regret bound for each buyer. To sketch
this, all seller sets are partitioned based on how close their
effective utility is to the optimal γd

i , and add up their contri-
bution to the regret. For seller sets where the difference is
large, we appeal to lemma 2 and use a packing argument to
bound the number of active elements here. For any active
γ, their contribution to the total regret for buyer i can be
expressed using their gap ∆i(·) and the number of times
they are chosen, ni

t(·). For seller sets with utility close to
the optimal, the discrete property of the Hamming metric
makes lemma 2 too coarse, and the exact bound is instance-
dependent. We address this in subsequent results.

Theorem 2. For instance I and buyer i, let SI
i (r/k)

be the set of active sellers sets where each element γ ∈
SI
i (r/k) satisfies r/k ≤ ∆i(γ) ≤ 2r/k. Let C(·, d)

denote the maximum packing of a region with balls of
Hamming diameter d. Then for some δ > 0, expected
dominant strategy regret Ri

d(T, I) is upper bounded by:
2Tδ
k + 108k log T

(∑log
1
δ

j=−1 2
j
∣∣SI

i

(
1

2jk

)∣∣+∑log k
j=2

1
2j |C(S

I
i (

2j

k ), 2j

3k )|
)

Despite being stated from an instance-dependent perspec-
tive, this result is quite general and insightful. Observe
that the worst case occurs when all seller sets have gap
∆i(γ) < 1/k; the Hamming metric is not useful here since
its smallest non-zero value is 1/k. In this pathological case,
the regret and the algorithm devolve into UCB (Corollary 1).
The algorithm shines, however, when the gap to the optimal
is spread out evenly as a function of the Hamming distance
(Theorem 3).

Corollary 1. For any metric instance I where ∆i(γ) ≤ 1/k

for all γ, Ri
d(T ; I) ≤ O(

√
2kT log T ).

Theorem 3. For any metric instance I where ∆i(γ) ∈
[2Dh(γ

d
i , γ) − 2/k, 2Dh(γ

d
i , γ)]

5 for all γ, Ri
d(T ; I) ≤

O
(
k(
√
kT log T + 20.58k log T )

)
The result above improves upon UCB, disentangling the
dominant

√
T , from the exponential 20.58k term. The in-

52 is just a scale factor since Dh(·) ≤ 1 but ∆i(γ) ∈ [0, 2]
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stance condition that led to this can be naturally interpreted:
as seller sets γ become more distinct from the buyer’s op-
timal γd

i , a quantity captured by the Hamming metric, the
gain and externality of this diminishes accordingly. In other
words, options close to the optimal have similar gain and
externality, with those further away getting poorer. Note
that γd

i need not be known, and this only assumes a rela-
tionship with respect to γd

i and not between any arbitrary
arms. This condition can be viewed as a looser form of the
“target-set” assumption in bandit literature (Slivkins et al.,
2019; Kleinberg et al., 2019). In general, our goal here
was to sketch out possible learning algorithms for buyers
to learn their strategy, with the exponential set of options
available being a challenge. While linear bandits provide the
best regret guarantees, they require exact independence and
linearity assumptions which may be unreasonable for data
products. Correspondingly, we considered a weaker metric
assumption and adapted a state-of-the-art algorithm for our
unique Hamming metric setting. Our analysis shows that
while in the worst case it cannot outperform UCB algorithm
due to the discrete property of the Hamming metric, it can
in more natural settings. Specifically, as gain and externality
gap between an arbitrary seller set and buyer i’s optimal
becomes more correlated with their Hamming distance, cov-
ering becomes more effective, and regret drops. In general,
the zooming algorithm allows us to smoothly interpolate the
regret as the structural assumptions of the instance become
looser or tighter. UCB and Linear bandits can be seen as
extreme versions of these, with no assumptions and very
strong assumptions respectively. Lastly, from an operational
perspective, buyers rarely consider all k sellers in a market-
place; instead, they are usually deciding between a smaller
subset of sellers. In such a case, a buyer only needs to
learn valuations over this smaller set, and the regret bound
becomes proportional to that instead of k.

5.3. Online welfare regret

We observed in theorem 1 that agents playing their domi-
nant strategy under the proposed transaction cost leads to
Θ(n(1−α)) welfare regret (WRaE). Having established that
buyers can adopt online learning algorithms to learn their
dominant strategy, we consider the analogous question in
the online setting: what is the WRaE when agents play their
dominant strategy using online algorithms? We prove (proof
in appendix D) this can be decomposed into online effective
regret discussed above and the offline WRaE (Theorem 1):

Theorem 4. The online welfare regret Rw(T ; I) is upper-
bounded by: 2nT (1− α) + 2T∆max

b + nRd(T ; I).

We make a few remarks before concluding the online section.
First, any horizon (T ) dependent online algorithm for buyers
can be converted to a horizon-independent version using the
simple doubling trick (Cesa-Bianchi & Lugosi, 2006). This

entails running the algorithm in multiple phases, and in each
phase i, an instance of the algorithm is executed for T = 2i

rounds. This has another beneficial property if we consider
adjusting the intervention parameter α over the phases as
well. Observe that re-arranging the theorem above (ignoring
the bias terms) to equate nT (1− α) = nRd(T ; I), yields
α = O

(
1− Rd(T )

T

)
. For any sub-linear learning algorithm,

the ratio Rd(T )
T is initially high but diminishes as the phases

increase. In other words, for early phases when there is
significant regret due to lack of learning, α can be small.
In later phases, increasing α minimizes the WRaE that the
dominant strategy causes. As such, the platform does not
intervene strongly in early rounds when buyers know little
and are simply exploring and only does so when buyers have
learned. The online welfare regret under this schedule is
asymptotically equivalent to the total effective regret faced
by buyers. Overall, this is a nice operational property of our
intervention and holds for any learning algorithm.

6. A Richer Externality Model
With a complete picture of both the learning and game dy-
namics, we now consider an extension by analyzing a richer
externality model, termed joint externality. Under this ex-
ternality model, when buyer i purchases γi and buyer j
purchases γj , the externality buyer i suffers depends on
both buyer i’s decision, γi, and j’s decision γj : Eij(γi, γj).
To clarify notation, for two specific seller sets γ1 and γ2,
eij(γ

1, γ2) implies buyer i owning γ1 and buyer j own-
ing γ2. So in general, eij(γ1, γ2) ̸= eij(γ

2, γ1), as the
ownership is reversed. However, if we write eij(γi, γj) the
arguments already imply which buyer owns which set, and
thus notationally eij(γi, γj) = eij(γj , γi). The total ex-
pected externality suffered by buyer i from all other buyers
is thus:

∑
j ̸=i eij(γi, γj).

Observe that this is a richer class of externality than pre-
viously studied and can capture more diverse settings (see
appendix A for a detailed discussion). To our knowledge,
this work is the first to explore this more general externality
model in data markets. In this section, we focus on how this
affects the game dynamics with and without our proposed
intervention. This richer setting naturally leads to weaker
guarantees, and as such we define a weaker notion of pure
equilibrium. We then move on to our first pair of results
(proofs for this section are in Appendix E) that paint a bleak
picture of the Nash equilibrium properties under the joint
externality model without any intervention: even a good
approximate equilibrium may not always exist, and even in
settings where it does, the welfare maybe very poor 6.

6The worst-case instance in Proposition 3 can’t be captured by
the independent model. Thus with no intervention, joint externality
model does not aid the welfare properties of pure equilibrium.
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Definition 7. An action profile Sq = (γq
1 , . . . , γ

q
n) is an

ε- pure Nash Equilibrium if no agent i can increase their
utility by more than ε by unilaterally deviating from their
strategy γq

i . When ε = 0, this coincides with a PNE.
Proposition 2. Without any intervention, there are instances
wherein no ε-pure Nash Equilibrium exists for ε < 1.
Proposition 3. Without any intervention, if a joint external-
ity instance does have pure Nash Equilibria, then the WRaE
of any such equilibria can approach → n.

These two results show that the lack of intervention is
doubly bad in this richer externality model. Not only
can pure equilibrium lead to maximal welfare regret, par-
alleling the result in theorem 1, but even good approxi-
mate equilibrium may not exist in this setting. We now
consider introducing our transaction cost based on pre-
dicted externalities, which in this setting is equivalent to
Ti(S) = α(

∑
j ̸=i Êji(γi, γj) − Êij(γi, γj)); as before

Êij(γi, γj) is the predicted externality, and bij(γi, γj) is the
bias. We first show that under this cost, an ε PNE is always
possible, with ε → 0 linearly as α → 0.5 and O(b) → 0,
where O(b) denotes purely bias terms.
Theorem 5. Under the proposed transaction
cost, there always exists an ε PNE with ε =
2|α − 0.5|

∑
j ̸=i maxγi,γj

|êji(γi, γj)− êij(γi, γj)| +∑
j ̸=i maxγi,γj

|bij(γi, γj)− bji(γi, γj)|.
Corollary 2. For an instance I = (gi, eij , bij , α),
let instance Ĩ = (g̃i, ẽij , b̃ij , α̃), with α̃ = 0,
g̃i = gi, ẽij(γi, γj) = 1

2 (eij(γi, γj) + eji(γi, γj)),
and b̃ij(·, ·) = 0 for all possible values. Then for
ε = 2|α− 0.5|

∑
j ̸=i maxγi,γj

|êji(γi, γj)− êij(γi, γj)|+∑
j ̸=i maxγi,γj |bij(γi, γj)− bji(γi, γj)|, Ĩ has a potential

function whose exact PNE strategy is a ε PNE of I.

The ε in this approximate equilibrium is parameterized by
the intervention parameter α, the instance externalities, and
bias bij . With the latter bias component of ε diminishing
linearly to 0 as bias gets closer to 0 or becomes symmet-
ric, we focus on the first term. This linearly approaches 0
in two ways: either α approaches 0.5, or the externalities
become symmetric (i.e. eij ≈ eji)7. Overall, we find this
result encouraging as it implies the maximum equilibrium
deviation linearly reaches 0 either through instance property
or α close to 0.5. Further, α ≈ 0.5 is not extreme but quite
reasonable as it charges each buyer half of the predicted
net externality they induce. Corollary 2 implies that one
can obtain this approximate equilibrium by solving a cor-
responding potential game, which is operationally simple
(Roughgarden, 2010). We next study the welfare regret
of the equilibrium under our transaction cost and find the
results to be positive here as well.

7While it might seem that it suffices for êij to be symmetric, if
the underlying externalities are not, the bias terms will not go to 0

Theorem 6. For ε defined in theorem 5, there always exists
a ε-PNE with WRaE is at most n

2 .

To summarize these results, joint externality is a richer
model where the picture without any intervention is even
more grim. Theorem 2, shows the existence of instances
where even ε-PNE does not exist for ε < 1, the maximum
possible utility. Theorem 3 shows even if PNE exists, the
welfare regret is maximal. These reinforce the idea that equi-
librium properties without intervention are poor. If however
the externalities happen to be pairwise symmetric (external-
ity faced by i due to j, is the same as faced by j due to i),
then an ε pure equilibrium exists, with ε depending only on
the bias terms (this can be gleaned from the proof of theo-
rem 5). While this may not hold generally, it becomes a key
insight when we introduce our transaction cost to this richer,
since the combined externality and transaction cost exhibit
a similar phenomenon - i.e. if the combined effect can be
made symmetric, then pure equilibrium, up to bias terms,
exists. The α parameter essentially controls this symmetry,
with α = 0.5 corresponding to achieving this combined
symmetry perfectly, even if the externalities themselves are
not symmetric. As α moves away from 0.5, the exactness of
the equilibrium becomes slowly worse. Theorem formalizes
this relation: ε → 0 linearly as O(b) → 0 and α → 0.5. We
also show in theorem 6 that the quality of the equilibrium
achieved here is significantly better, with welfare regret less
than n/2.

To compare against the standard externality setting (section
4), α = 1 there represents the optimal parameter value with
respect to welfare regret since an exact Nash equilibrium
exists for all α. In the richer externality setting, α = 0.5
represents the optimal parameter value to achieve an exact
Nash equilibrium, since such an equilibrium may not exist
in general. We also note that the WRaE of the richer setting
roughly matches the tight WRaE bound for the independent
externality setting (theorem 1) with α = 0.5. This suggests
that α close to 0.5 is a silver bullet: it imposes a reason-
able cost, charging each buyer half of the net externality
they induce, while having favorable equilibrium properties
regardless of the externality model.

In Appendix F we experimentally validate our findings on
the positive impact of our proposed transaction cost across
both externality models. On a dataset derived from AWS
Data Exchange, we show a significant increase in social
welfare with increasing α for the standard externality model
(Figure 1); crucially even a small α leads to a meaningful in-
crease, with nearly maximal improvements achieved already
at α = 0.6. In the joint externality setting (Figure 2), we
see social welfare improvements concentrated at α = 0.5 as
expected, but meaningful increases at other values as well.
These results show that a range of α may lead to improved
welfare, a significant operational advantage.
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7. Discussion
Despite recent research on new market structures for data,
real-world data markets remain far simpler: sellers post
fixed prices and buyers are unfettered in their purchases.
Our work fills a gap in the literature by studying this simple
market under the unique characteristics of data: imperfect
valuations, free replicability, and negative externality. The
presence of externality allows us to naturally model buyer
interactions as a simultaneous game. While this game has
poor equilibrium properties by itself, a simple transaction
cost can greatly improve these characteristics. For a stan-
dard externality model, our intervention is nearly perfect,
guaranteeing a dominant strategy for buyers and leading
to near-optimal social welfare. This intervention also fares
well in the more realistic setting where buyers learn valua-
tions through repeated interaction. We prove that buyers can
learn to play their dominant strategy, while still achieving
low social welfare regret. Lastly, we analyze an extension
of this model by considering a richer class of externality.
Although the equilibrium guarantees we can provide in this
richer setting are naturally weaker, our proposed transaction
cost significantly improves upon the status quo here as well.

Our work illustrates that when coupled with simple interven-
tions, fixed-price data markets can be an elegant solution for
a challenging product. It also leaves open several intriguing
questions. We analyze a single transaction cost; it is un-
clear whether this is optimal or even what the space of such
interventions is. Optimizing for non-utilitarian notions of
welfare, like egalitarianism or Nash welfare is also an inter-
esting research direction (Moulin, 2004). Our intervention
leads to platforms learning or eliciting buyer externalities
since transaction cost is a simple sum of these quantities.
Designing truthful mechanisms or prediction algorithms for
this is an important research question (Chen et al., 2020a;
Kong et al., 2020; Zohar & Rosenschein, 2008). Similarly,
understanding the long-term strategic perspective of sell-
ers and their externality within this game will be insightful.
Lastly, extending the joint externality model to the online
setting with buyers playing based on learned valuations
remains an interesting open problem. This is spiritually sim-
ilar to work on learning and regret minimization in repeated
games (Cesa-Bianchi & Lugosi, 2006; Slivkins et al., 2019).
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A. A discussion on Externality Models
The externality model we primarily focus on, which we also denote as independent externality, is the model considered
in related literature (Aseff & Chade, 2008; Li et al., 2019; Agarwal et al., 2020). While simple, it is an appropriate and
important model for many real-world settings. We give two different examples. Consider two firms acquiring data to
improve their in-house models. The two firms are competitors and each firm’s utility depends on the relative performance of
their model with respect to their competitor. In this case, gi(γi) can represent the accuracy of firm i’s model due to data
purchases γi, and eij can simply be buyer i’s approximation for the improvement achieved by their competitor j due to their
data purchase γj : ĝj(γj). Note this externality is independent of i’s decision, and firm i’s utility (without transaction cost) is
then ui(γi, γj) = gi(γi)− ĝj(γj). This is called additively separable externalities in (Agarwal et al., 2020), and we note
that this is a common scenario when firms purchase data.

This model can also capture indirect competition. Consider two trading firms Ca and Cb that trade different financial
products. Ca focuses on equities and Cb focuses on Forex. They acquire data to improve their respective performance and
are targeting different data sources since they operate on different markets and products. However, they are competitors with
respect to recruiting talent and securing new investments. If Cb purchases data it deems very prescient, it still negatively
affects Ca, since a more profitable Cb can better compete in the talent and investment pool it shares with Ca. Thus
Cb’s action induces negative externality on Ca, independent of the Ca’s data purchase decision (the gain from which is
encapsulated in gi).

The joint externality model is indeed more general and can capture the above examples. In these examples, the independent
model can be seen as capturing indirect competition. However, it is possible that buyers might be competitors (and exert
externality) purely with respect to data. Consider two firms in the same consumer industry, with consumer preferences or
market data being sold. If both firm purchase the same data, they target the same group of consumers and eat into each
other’s profit. If the data they purchase don’t overlap, they each target their respective groups and stay out of each other’s
way. In this setting, externality suffered by buyer i depends on both of their actions.

B. Section 4 Proofs
B.1. Proof of Proposition 1

Proof. Note each buyer i’s utility under these conditions is: gi(γi) −
∑

j ̸=i eij(γj). The only aspect of this utility that
buyer i can affect is γi, and thus she has a dominant strategy of choosing the source with the highest gain 8. It is intuitive
that everyone adopting such a strategy will not always lead to good welfare. To see that there is an instance that achieves
maximal WRaE, suppose the number of sellers and buyers are equal (n = k). For k ∈ [1, . . . , n], define γk as the seller set
containing only seller ℓk. For a buyer i, let gi(γi) = 1 and gi(γ) = 1− ϵ for any γ ̸= γi. Further, for any buyer pair i, j,
let eij(γj = γj) = 1

n−1 and eij(γj = γ) = 0∀γ ̸= γj . In this instance, the unique dominant strategy/equilibrium is each
buyer i selecting γi, which results in 0 utility for all buyers. However, if each buyer i selects any other seller set aside from
γi, they achieve utility 1− ϵ each. Since this is the only equilibrium in this instance, the WRaE is n−nϵ → n as ϵ → 0.

B.2. Proof of Theorem 1

Proof. The expected utility under the given transaction cost is given by: gi(γi) −
∑

j ̸=i eij(γj) −
α
(∑

j ̸=i êji(γi)−
∑

j ̸=i êij(γj)
)

. Since a buyer can only influence γi, the second and last terms can essentially be
ignored, and the buyer has a dominant strategy, which is to maximize the expected effective utility, regardless of how others
act. Regarding WRaE, we first prove the upper bound, before showing a specific instance achieves this upto bias terms.

Upper bound: For an instance I , let S∗ = (γ∗
1 , γ

∗
2 , . . . , γ

∗
n) denote the social welfare optimal, and let Sd = (γd

1 , γ
d
2 , . . . , γ

d
n)

denote the dominant strategy taken by the buyers. The following is a direct implication of Sd being the dominant strategy
for all buyers: gi(γd

i )− α
∑

j ̸=i êji(γ
d
i ) ≥ gi(γ

∗
i )− α

∑
j ̸=i êji(γ

∗
i ), which implies:

∑
j ̸=i

(êji(γ
d
i )− êji(γ

∗
i )) ≤ min

(
1,

gi(γ
d
i )−gi(γ

∗
i )

α

)
(1)

8Note that choosing the empty set and not participating is a valid strategy. Buyer i suffers externality regardless of what she chooses

11
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Next, the social welfare expression (sum of all utilities) is unchanged due to transaction cost being revenue neutral; thus the
social welfare difference between S∗ and Sd is given by:

∑n
i=1 gi(γ

∗
i )−

∑
j ̸=i eij(γ

∗
j )− gi(γ

d
i ) +

∑
j ̸=i eij(γ

d
j ) which is

equal to:
n∑

i=1

∑
j ̸=i

(
êji(γ

d
i )− êji(γ

∗
i )
)
−
(
gi(γ

d
i )− gi(γ

∗
i )
)
+

∑
j ̸=i

bji(γ
d
i )− bji(γ

∗
i ) (2)

which holds since we are summing all possible externality pairs for seller sets γd and γ∗. Next, we apply inequality 1 to
upper bound the expression above:

(2) ≤ ∆max
b +

n∑
i=1

min
(
1,

gi(γ
d
i )−gi(γ

∗
i )

α

)
− (gi(γ

d
i )− gi(γ

∗
i ))

= ∆max
b +

n∑
i=1

min
(
1− (gi(γ

d
i )− gi(γ

∗
i )), (gi(γ

d
i )− gi(γ

∗
i ))

(
1
α − 1

))
Putting aside the ∆max

b term, each summand above is a min of two values, which is maximum when the two values are
equal. Let vi = (gi(γ

d
i ) − gi(γ

∗
i )). Thus we have ∀i, 1 − vi =

vi
α − vi =⇒ vi = α, and thus we can upper bound this

with:
∑n

i=1 1− α = n(1− α).

Lower bound: Consider a setting with only two sellers ℓ1 and ℓ2. For each buyer i, we have the following: ∀i, gi(∅) =
0; gi(ℓ1) = 0; gi(ℓ2) = 1−α−ϵ; gi(ℓ1∩ℓ2) = 1 and ∀i, j, i ̸= j, eij(∅) = 0; eij(ℓ1) = 0; eij(ℓ2) = 0; eij(ℓ1∩ℓ2) = 1

n−1 .
Regarding the social welfare optimal solution, note that there is no reason to choose ∅ or ℓ1; suppose S is such that k
buyers choose ℓ1 ∩ ℓ2 and n − k choose ℓ2. We thus have: sw(S) = (n − k)

[
1− α− ϵ− k

n−1

]
+ k

[
1− k

n−1

]
which

is equal to n − nα − nϵ − k
[

n
n−1 − α− ϵ

]
. As ϵ → 0, social welfare is maximized when k = 0, since α ∈ [0, 1] and

n
n−1 > 1. Thus the optimal is all agents choosing ℓ2, for a social welfare of n(1−α) as ε → 0. As for equilibrium/dominant
strategy, observe that each buyer’s dominant strategy is choosing ℓ1 ∩ ℓ2, regardless of platform’s bias. Choosing this option
guarantees them at least 1−α utility whereas choosing γ = ℓ2 gives them at most 1−α− ε utility. However, this dominant
strategy, however, has social welfare 0, leading to worst-case WRaE → n(1− α) on this instance.

12
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C. Details on Repeated Data Market Interactions
In our online setting, we consider buyers repeatedly purchasing from a set of data sellers. This captures most real-world
data market interactions due to two primary reasons. First, it is standard that buyers buy access for a limited time and
need to pay to renew their access. In AWS Data Exchange for example, sellers offer their dataset for a fixed period of
time. That is, when buyers purchase a dataset, they have access to it for this period and thereafter must pay to renew their
access. The renewal/expiration period here is extremely standardized. Out of the roughly 1600 paid datasets for offer at
AWS marketplace, the vast majority have a renewal/expiration period of 12 months. A second perspective behind repeated
interaction is that sellers are often offering some sort of “real time” data, whose efficacy/usefulness degrades over time,
leading consumers to purchase fresh data from them. This is indeed very common in for example consumer datasets (say
foot-traffic data for some large retail chain), financial data (say most common equities purchased by non-institutional
investors), or climate data. In such scenarios, it is natural for the seller to offer pay-per-use access to the data, which is
refreshed periodically. For example, this weather dataset is pay-per-access and refreshed daily: snowflake-climate-data. The
cost remains the same although the dataset sold by the seller changes daily. Note that in both settings (renewing subscription
or getting fresh real-time values), it is natural that the price, expected gain, and externality are stationary.

D. Section 5 Proofs
D.1. Proof of Lemma 1

Proof. Consider a buyer i and a seller set γ. If it is not in the active set or has never been selected, the lemma
trivially holds since nt

i(γ) = 0, implying cit(γ) > 2. If γ has been selected at least once, denote the ℓth real-
izations by yℓi , which consists of the sampled net gain and externality-based transaction cost. For the purpose of
this analysis, we care only about the following realized parameters: yℓi = (gℓi (γ), ê

ℓ
1i(γ), ê

ℓ
2i(γ), . . . , ê

ℓ
ni(γ)). Next,

we can write the empirical mean of the effective utility from the first h times γ has been selected by buyer i as
ue
i (γ;h) = ue

i (y
1
i , . . . , y

h
i ) = 1

h

∑h
ℓ=1

(
gℓi (γ)− α

∑
j ̸=i ê

ℓ
ji(γ)

)
. Observe that ue

i (y
1
i , . . . , y

h
i ) satisfies the bounded

difference property: ∀ℓ ∈ [1, . . . , h],∀yℓi , supy′ℓ
i ∈[0,1]n |ue

i (. . . , y
ℓ
i , . . . )− ue

i (. . . , y
′ℓ
i , . . . )| ≤ 2

h . This allows us to apply
McDiarmid’s inequality on the function ue

i over the random samples our h selections of γ results in, denoted by Y 1
i , . . . , Y

h
i .

We note that E[ue
i (Y1, . . . , Yh)] = gi(γ)− α

∑
j ̸=i êji(γ) = ue

i (γ). Thus, by McDiarmid’s inequality, we have:

∀i,∀γ,∀h P
[
|ue

i (γ, h)− ue
i (γ)| ≤

√
12 log(T )

h+1

]
≥ 1− 2

T 6 (3)

Thus for all h, where h is the number of times buyer i selects γ, we have the bad event (no concentration) probability is 2
T 6 .

Since h ≤ t and ni
t(γ) ≤ t, we can apply a union bound over all possible h and arrive at:

∀i,∀γ,∀t P
[
|ue

i (γ, n
i
t(γ))− ue

i (γ)| ≤
√

12 log(t)
ni
t(γ)+1

]
≥ 1− 2

T 5 (4)

By applying a union bound over all t ∈ [1, . . . , T ], we have that an event defined by Ei(γ) ={
∀t |ue

i (γ, n
i
t(γ))− ue

i (γ)| ≤
√

12 log(t)
ni
t(γ)+1

}
holds with probability greater than 1− 2

T 4 . We would like to now show that for
each buyer, this holds uniformly for all possible seller sets, and not just for a fixed γ. Since the total number of seller sets
is exponential, a naive application of union bound provides a poor bound. However, since any inactive seller set trivially
satisfies the bound with probability 1, it suffices to consider only the active seller sets for a buyer i, Ai. While this set’s size
is bounded since we add at most one arm every round, it is random in its composition. For j ∈ [1, . . . , t], let Zj

i denote the
jth arm activated by buyer i. Zj

i is a random variable and {Z1
i , . . . , Z

t
i} is the set of all activated arms9. For a seller set γ,

note that the event {Zj
i = γ} depends on the outcome of previously activated sets, whereas Ei(Zj

i ) is purely based on the
observations derived from the seller set Zj

i , whatever that happens to be. In other words, the event {Zj
i = γ} is independent

of Ei(Zj
i ). Thus we have that ∀i,∀Zj

i , the clean event holds for the Zj
i activated arm with the following probability:

P
[
Ei(Zj

i )
]
=

∑
γ

P[Ei(Zj
i )|Z

j
i = γ]P[Zj

i = γ] =
∑
γ

P[Ei(γ)]P[Zj
i = γ] ≤ 1− 2

T 4 (5)

where we note that P[Ei(γ)] is a constant and can be taken outside the sum. Thus, we have a concentration result for
each active seller set. Now we apply a union bound over the whole active set Ai. Noting that |Ai| ≤ T , we have that:

9If the number of activated arms is less than t, then for j > |Ai|, let Zj
i be the last arm activated
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∀i,P [∀ γ ∈ Ai , Ei(γ)] ≥ 1− 2
T 3 . Lastly, note that the event E =

∧n
i=1 Ei, and thus we apply a union bound over all the

buyers. Assuming that the number of buyers is smaller than T , we arrive at the statement of the lemma.

D.2. Proof of Lemma 2

Proof. Fix any buyer i, any seller set γ, and a time t. If γ is not in the active set or never selected, then this claim holds
trivially since cit(γ) > 2, allowing us to consider only active arms. Suppose seller set γ was last chosen at some time s ≤ t.
Now consider the optimal dominant strategy for buyer i, γd

i , and the two possibilities at time s: (1) Either γd
i is already

part of the active set, or (2) γd
i is covered by some other set γ′

i ∈ Ai which has confidence radius cis(γ
′
i) ≥ 1

k (the closest
element to γ′

i has to be at least 1
k away). Then the following holds at time s ≤ t for each case:

if (1): UCBi(γ) ≥ UCBi(γ
d
i ) = ue

i (γ
d
i , n

i
t(s)) + 2cis(γ

d
i ) ≥ ue

i (γ
d
i )

if (2): UCBi(γ) ≥ UCBi(γ
′
i) = ue

i (γ
′
i, n

i
t(s)) + 2cis(γ

′
i) ≥ ue

i (γ
′
i) + cis(γ

′
i) ≥ ue

i (γ
d
i )

(6)

where the last inequality in (1) follows from lemma 1 and the last inequality in (2) follows from the fact that γd
i is covered

by γ′
i (i.e. Dh(γ

′
i, γ

d
i ) ≤ cit(γ

′
i)) and thus their difference in utility is equivalently bounded by the closeness property. The

following upper-bound for UCBi(γ) holds regardless:

UCBi(γ) = ue
i (γ, n

i
t(s)) + 2cis(γ) ≤ ue

i (γ) + 3cis(γ) = ue
i (γ) + 3cit(γ) (7)

where we use that fact that cis(γ) = cit(γ) since s is the last time γ was selected. Putting the upper and lower bounds on
UCBi together, we have:

ue
i (γ) + 3cit(γ) ≥ UCBi(γ) ≥ UCBi(γ

′) or UCBi(γ
∗) ≥ ue

i (γ
∗
i ) =⇒ ∆i(γ) ≤ 3cit(γ) (8)

We now move to the second part of the lemma. First note that by property of the Hamming space, any two active seller sets
(in fact any two seller sets) must be at least 1

k apart. Consider two active choices γ1 and γ2 for buyer i, and suppose γ1

was activated (at time step t1) before γ2 (activated at time-step t2). The fact that γ2 was activated implies that it was not
covered by γ1’s confidence radius at t2, and thus Dh(γ

1, γ2) > cit2(γ
1) ≥ ∆i(γ

1)
3 . If γ2 was activated before γ1, we get

the opposite result. Combining the two, we have the Dh(γ
1, γ2) ≥ 1

3 min(∆(γ1),∆(γ2)). Putting this and the Hamming
observation of two elements being at least 1

k apart, we have the desired result.

D.3. Proof of Theorem 2

Proof. We consider the contribution of seller sets in SI
i (

r
k ) toward the total effective regret suffered by buyer i. By adding

this contribution over all values of r
k (with r < k), we can express the cumulative regret. For each active seller set

γ ∈ SI
i (

r
k ), their contribution toward DS regret is ∆i(γ) · ni

t(γ). Next, assume the clean event E holds. By lemma 2, we

have that ∆i(γ) ≤ 3ct(γ) = 3
√

12 log T
ni
t(γ)+1

which implies nt(γ) ≤ 108 log T
∆2

i (γ)
. Thus, ∆i(γ) · ni

t(γ) ≤
108 log T
∆i(γ)

≤ 108k log T
r .

Now consider three ranges of r
k : (1) r

k < δ
k , for some δ ∈ (0, 1), (2) r

k ∈
[
δ
k ,

2
k

]
, and (3) r

k ∈
[
4
k , 1

]
. For (1), we will

use a trivial upper bound and will leave δ to be appropriately selected later. For (2), observe that by lemma 2, any two
active seller sets satisfy, Dh(γ

1, γ2) ≥ 1
3 min(∆(γ1),∆(γ2)) = c

3k , where c ≤ 2. In other words, the lower bound for the
distance between any active seller is < 1

k and thus in the worst case, each seller sets only covers itself. For the elements in
(3) however, applying lemma 2 implies that any two active sets are at least r

3k apart. The maximum number of active seller
sets here is thus upper bounded by the maximal packing of the space SI

i (
r
k ) with balls of diameter r

3k . Thus, the cumulative
regret can be expressed as follows (r is expressed as powers of two: r = 2j).

Ri
d(T, I) ≤

δ

k
2T +

log
1
δ∑

j=−1

108k log Tk2j
∣∣SI

i

(
1

2jk

)∣∣+ log k∑
j=2

108k2−j log T |C(SI
i (

2j

k ), 2j

3k )| (9)

With this, we now match the bound in the theorem statement. Denote this by R(·|clean), which captures the conditioning
event. The bad event is lemma 1 not holding (probability 2

T 2 ). Thus, the expected regret is dominated by R(·|clean) since:
Ri

d(T, I) ≤ R(·|clean)(1− 2
T 2 ) + 2T 2

T 2 .
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D.4. Proof of Corollary 1

Proof. Since the gap ∆i(γ) ≤ 1
k , the third term in the expression given in theorem 2 will be 0, and we can focus on the first

two terms. Next, we note that the second term,
∑log

1
δ

j=−1 k2
j108 log T

∣∣SI
i

(
1

2jk

)∣∣, is increasing in j and maximized when

all elements belong to SI
i (δ/k). This can be expressed as: SI

i (δ/k) =
∑log

1
δ

j=−1 k2
j108 log T

∣∣SI
i

(
1

2jk

)∣∣ ≤ k2k 1
δ 108 log T .

Going back to cumulative regret, we now have two terms increasing and decreasing in δ respectively. Their sum is minimized
when we set them to be equal:

δ
k2T = k2k 1

δ 108 log T =⇒ 2δ =

√
k22k108 log T

T =⇒ Ri
d(T ) = O

(√
2kT log T

)

D.5. Proof of Theorem 3

Proof. Starting with the expression given in theorem 2, we initially focus on the first two terms. Note that the second term
considers seller sets whose gap is less than 4

k . By given property of I, seller sets who satisfy this are at most 3
k Hamming

distance away. Thus, we can write the second term as:
∑log 1/δ

j=−1 k2j108 log T
∣∣SI

i

(
1

2jk

)∣∣ which we can upper bound as:

≤
∑log 1/δ

j=−1 k2j108 log T
∑3

i=0

(
k
i

)
≤ 216 log(T )k4 1

δ . Comparing this with the δ
k2T term, we now have an increasing and

decreasing term in δ, which is minimized when we set them to be equal: δ
k2T = k4 1

δ 216 log T =⇒ δ =

√
k5216 log T

2T .
Note that δ is not an algorithm or instance parameter but used only for analysis. Putting all this together and using a standard
assumption that T > k, we can state the first two term to be upper bounded by O(k3/2

√
T log T ).

We now turn our attention to the third and last term which considers regions SI
i (

r
k ) with r

k ≥ 4
k . Our instance condition

implies the set of choices whose gap is in region SI
i (

r
k ) correspond to γ satisfying Dh(γ

d
i , γ) ∈ [ r

2k ,
r
k +

1
k ]. We are looking

to bound the maximal packing size of this region with balls of Hamming diameter r
3k . By a simple volume argument, we

have that: |C(SI
i (

r
k ),

r
3k )| ≤

∑r
j=r/2 (

k
j)∑r/6

j=0 (
k
j)

. Next, note that we wish to upper bound the sum of the packing sizes of for each

SI
i (

r
k ) region with r

k ∈ [ 4k ,
8
k , . . . ,

1
2 , 1]. These correspond to seller sets being in the following Hamming distance ranges

from γd
i : [[ 2k ,

5
k ], [

4
k ,

9
k ] . . . , [

1
4 ,

1
2 + 1

k ], [
1
2 , 1]]. We observe that the packing size upper bound (given above) is increasing in

r up to r = 1
2 , which we express as:

|C(SI
i (

1
2 ),

1
6 )| ≤

∑k/2
j=k/4

(
k
j

)
∑k/12

j=0

(
k
j

) ≤ 2k−1

2
H

(
1
12

)
k
≤ 20.58k (10)

where H(·) is the binary entropy function. Now we can sum over all the values of r
k under consideration and express this as

follows: 108k log T
∑log k

j=2 2−j |C(SI
i (

2j

k ), 2j

3k )| ≤ 108k20.58k log T . Putting this together with the bound for the first two
terms gives us the desired result.

D.6. Proof of Theorem 4

Proof. Let S∗ = (γ∗
1 , . . . , γ

∗
n) be the social optimal strategy, Sd = (γd

1 , . . . , γ
d
n) the dominant strategy of each buyer, and

St = (γt
1, . . . , γ

t
n) the strategy taken by buyers at time t. We can add and subtract the welfare at the dominant strategy to

the online welfare regret, Rw(T ), and express it as:

Rw(T ) =

T∑
t=1

N∑
i=1

(
gi(γ

∗
i )−

∑
eij(γ

∗
j )− gi(γ

d
i ) +

∑
eij(γ

d
j )
)
+
(
gi(γ

d
i )−

∑
eij(γ

d
j )− gi(γ

t
i ) +

∑
eij(γ

t
j)
)

The first part of the sum,
∑N

i=1 gi(γ
∗
i )−

∑
eij(γ

∗
j )− gi(γ

d
i ) +

∑
eij(γ

d
j ), is exactly the WRaE quantity that we upper

bounded to n(1− α) + ∆max
b in theorem 1, which we can then sum over T . Next, observe that eji(γ) = αêji(γ) + (1−
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α)êji(γ) + bji(γ) for any γ. Thus, we can re-arrange the latter sum as:

N∑
i=1

 T∑
t=1

gi(γ
d
i )−

T∑
t=1

∑
j ̸=i

αêji(γ
d
i )−

T∑
t=1

gi(γ
t
i ) +

T∑
t=1

∑
j ̸=i

αêji(γ
t
i )

 (11)

+T
∑
j ̸=i

[bji(γ
t
i )− bji(γ

d
i )] + T (1− α)

∑
j ̸=i

[eji(γ
t
i )− eji(γ

d
i )] (12)

We note that the first half of the summand is equal to online effective regret for all buyers, and is equivalent to nRd(T ; I).
The bias terms are upper bounded by T∆max

b and since total externality induced by any buyer is at most 1, the last
summation term is upper bounded by nT (1− α). Thus, the total online welfare regret is upper-bounded by 2nT (1− α) +
2T∆max

b + nRd(T ; I).
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E. Section 6 proofs
Joint externality can be represented in matrix form. For a pair i, j with i < j, the matrix Eij tabulates the externality suffered
by i due to j with Eij [ℓ, k] = eij(γi = γℓ, γj = γk); similarly, Eji[ℓ, k] = eji(γi = γℓ, γj = γk). We leverage this notation
in the following proofs.

E.1. Proof of Proposition 2

Proof. Consider 2 buyers, and let γa and γb denote two arbitrary orders with a ∈ {1, . . . , 2k}, b ∈ {1, . . . , 2k} and a ̸= b.
Then, let the externality involving γa and γb be as follows (note Eab

12 is a sub-matrix of E12):

Eab
12 =

[
e12(γ1 = γa, γ2 = γa) = 1 e12(γ1 = γa, γ2 = γb) = 0
e12(γ1 = γb, γ2 = γa) = 0 e12(γ1 = γb, γ2 = γb) = 1

]

Eab
21 =

[
e21(γ1 = γa, γ2 = γa) = 0 e21(γ1 = γa, γ2 = γb) = 1
e21(γ1 = γb, γ2 = γa) = 1 e21(γ1 = γb, γ2 = γb) = 0

]
Let the expected externality e12 and e21 be 1 for any other seller set pair not included above — that is, the full externality
matrices for this example, E12 and E21, are rank 2. Next, let the expected net gain be as follows: gi(γa) = gi(γ

b) = 1 for
i ∈ {1, 2}, with the expected net gain for all other seller sets γ /∈ {γa, γb} being 0. This clearly implies that it is strictly
dominant for both buyers to choose between γa or γb over any other choices as that leads to −1 utility. Thus, it suffices to
consider the utility for both buyers involving only these states which we can express in a matrix as follows (buyer 1 is the
row player, and buyer 2 is the column player):[

u1(γ
a, γa), u2(γ

a, γa) u1(γ
a, γb), u2(γ

a, γb)
u1(γ

b, γa), u2(γ
b, γa) u1(γ

b, γb), u2(γ
b, γb)

]
=

[
0, 1 1, 0
1, 0 0, 1

]
It is evident that for any action profile γ1, γ2 involving a and b, one of the buyers will benefit an amount 1 by deviating.
Since any other strategy involving the buyers choosing something beyond options a, b is strictly dominated also by utility 1,
the statement holds.

E.2. Proof of Proposition 3

Proof. Consider n buyers, and let γa and γb denote two arbitrary orders with a ∈ {1, . . . , 2k}, b ∈ {1, . . . , 2k} and a ̸= b.
Buyers 1 through n− 1 share the same externality whereas buyer n is different. Let the externality involving options γa and
γb be as follows:

∀i ∈ {1, n− 1},∀j : Eab
ij =

[
eij(γ1 = γa, γ2 = γa) = 1−ε

n−1 eij(γ1 = γa, γ2 = γb) = ε
n−1

eij(γ1 = γb, γ2 = γa) = 1−ε
n−1 eij(γ1 = γb, γ2 = γb) = 2ε

n−1

]

∀j : Eab
nj =

[
eij(γ1 = γa, γ2 = γa) = 1−ε

n−1 eij(γ1 = γa, γ2 = γb) = 1
n−1

eij(γ1 = γb, γ2 = γa) = 1
n−1 eij(γ1 = γb, γ2 = γb) = 0

]
Let the expected externality for all (i, j) be 1 for any other seller set pair not including either γa or γb. Next, let the expected
net gain be as follows: gi(γa) = gi(γ

b) = 1 for i ∈ {1, 2}, with the expected net gain for all other seller sets γ /∈ {γa, γb}
being 0. As such, it is strictly dominant for any buyer to select γa or γb over any other since the former will lead to a utility
of at least 0, whereas the latter has utility −1. Thus it suffices to consider strategies pertaining only to γa and γb for the
purpose of equilibrium. Next, note that for agents 1 through n − 1, choosing γa is in fact strictly dominant since they
suffer less externality as compared to choosing γb, regardless of whether buyer n choosing γa or γb. Since the first n− 1
agents will always choose γa as their dominant strategy, the only pure equilibrium consists of buyer n choosing γa as this
has strictly lower utility. Thus, all agents choosing γa is the only PNE, and we note that this has social welfare nε. Next,
consider all buyers choosing γb. This leads to social welfare 1 + (1− 2ε)(n− 1) = n− 2ε(n− 1). Thus as ε → 0, the
best case WRaE → n.

E.3. Proof of Theorem 5

Proof. For a general instance I = (gi, eij , bij , α), first consider a simpler version of this instance, Ĩ = (g̃, ẽij , b̃ij , α̃)

where g̃i = gi, ẽij(γi, γj) = 1
2 (eij(γi, γj) + eji(γi, γj)), α̃ = 0, and b̃ij(·, ·) = 0 for all i, j and possible pairs of
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(γi, γj). We first note that in instance Ĩ, externality are symmetric - i.e. ẽij(γi, γj) = ẽji(γi, γj)∀i, j. We now show
that the dynamics of instance Ĩs can be represented through a potential function Φ(S) defined as follows: Φ(S) =∑

i g̃i(γi) − 0.5
∑

i

∑
j ẽij(γi, γj). Without loss of generality, for a joint action profile S = (γ1, . . . , γn), consider

buyer 1 changing her action to γ′
1 and leading to profile S′. The resulting change in expected utility for her is given by

g̃1(γ1)−g̃1(γ
′
1)−

(∑
j ̸=1 ẽ1j(γi, γj)− ẽ1j(γ

′
i, γj)

)
. Note that the potential function difference is given by Φ(S)−Φ(S′) =

g̃1(γ1) − g̃1(γ
′
1) − 0.5

∑
j ̸=1 ẽ1j(γ1, γj) − 0.5

∑
j ̸=1 ẽj1(γ1, γj) + 0.5

∑
j ̸=1 ẽ1j(γ

′
1, γj) − 0.5

∑
j ̸=1 ẽj1(γ

′
1, γj). Since

externalities are symmetric in Ĩ , this difference in potential functions is equivalent to the difference in agent 1’s utility,
making this a potential game, which implies game instance Ĩ has a pure Nash Equilibrium.

Let S = (γ1, . . . , γn) denote an action profile. Under Ĩ, observe that utility for buyer i can be expressed as ui(S; Ĩ) =
gi(γi)− 0.5

∑
j ̸=i eij(γi, γj)− 0.5

∑
j ̸=i eji(γi, γj). Observe that for any strategy S, we can relate ui(S; Ĩ) to the utility

for buyer i in the general instance I under the same actions S as follows: ui(S; Ĩ)− ui(S; I)

= (α− 0.5)
∑
j ̸=i

[êji(γi, γj)− êij(γi, γj)] + 0.5
∑
j ̸=i

bij(γi, γj)− bji(γi, γj) (13)

where êij is the predicted externality under the true instance I. Next, let Sq = (γq
1 , . . . , γ

q
n) denote an equilibrium profile

under simplified instance Ĩ. This implies for any buyer i unilaterally deviating from γq
i to another γi (we denote the

resulting action profile Sq
−i) is not beneficial under Ĩ: ui(S

q; Ĩ) ≥ ui(S
q
−i; Ĩ). Then by appealing to equation 13, we state

that ui(S
q
−i; I)− ui(S

q; I), the deviation benefit, is bounded by: ≤ 2|α− 0.5|
∑

j ̸=i maxγi,γj
|êij(γi, γj)− êji(γi, γj)|+∑

j ̸=i maxγi,γj
|bij(γi, γj)− bji(γi, γj)|. Thus, Sq is an ε equilibrium for the original instance I for the states ε values.

E.4. Proof of Corollary 2

This follows immediately from the above theorem: Theorem 5

E.5. Proof of Theorem 6

Proof. We consider the corresponding simpler version of instance I, Ĩ = (g̃i, ẽij , b̃ij , α̃), defined in corollary 2. We note
that externality in Ĩ is always symmetric and by corollary 5, a PNE always exists for Ĩ , which implies a ε-PNE for instance
I, where ε is equal to the one in the theorem statement. Thus, it suffices to consider the WRaE of instance Ĩ for the
remainder of the proof.

Let the social optimal be S∗ = (γ∗
1 , . . . , γ

∗
n), with each buyer attaining utility ũi(S

∗) = g̃i(γ
∗
i ) −

∑
j ̸=i ẽij(γ

∗
i , γ

∗
j ) for

a total welfare of sw(S∗). If the social optimal is an equilibrium, then the best-case welfare regret is 0. If not, then by
theorem 5, we know that a pure equilibrium of Ĩ can be reached by playing the sequential best response (buyers play the
best response one by one). Without loss of generality, suppose buyer 1 is unhappy at the social optimal and changes their
decision from γ∗

1 to γ1
1 (denotes that this is buyer 1’s first best response), and define this new state as S1,1 (denotes buyer 1

has played their first best response). Thus:

g̃1(γ
1
1)−

∑
j ̸=1

ẽ1j(γ
1
1 , γ

∗
j ) > g̃1(γ

∗
1)−

∑
j ̸=1

ẽ1j(γ
∗
1 , γ

∗
j ) (14)

Define ∆g̃i(γ
t
i , γi) = g̃i(γ

t
i ) − g̃i(γi) and ∆ẽij(γ

t
i , γi, γj) = ẽij(γ

t
i , γj) − ẽij(γi, γj). With this new notation, we can

express equation 14 as ∆g̃1(γ
1
1 , γ

∗
1 ) >

∑
j ̸=1 ∆ẽ1j(γ

1
1 , γ

∗
1 , γ

∗
j ) and exploiting symmetric externality of Ĩs, the social

optimal at S1,1 can be succinctly expressed as sw(S1,1) = sw(S∗) + ∆g̃1(γ
1
1 , γ

∗
1) − 2

∑
j ̸=1 ∆ẽ1j(γ

1
1 , γ

∗
1 , γ

∗
j ) (since

externalities are symmetric, buyer 1’s new decision affects externality ẽ1j and ẽj1 equally). This relationship is in fact
satisfied between any two consecutive best response steps: let state Si,k denote when buyer i plays her kth best response,
which occurs right after state Sh,ℓ where buyer h plays her ℓth best response (note that not every buyer needs to update at
every round). Also, for any buyer j, let tj represent the number of times they have played best response up to time t (i.e.
th = ℓ). The following two invariants hold:

∆g̃i(γ
k
i , γ

k−1
i ) >

∑
j ̸=i

∆ẽij(γ
k
i , γ

k−1
i , γ

tj
j ) (15)

sw(Si,k) = sw(Sh,ℓ) + ∆g̃i(γ
k
i , γ

k−1
i )− 2

∑
j ̸=i

∆ẽij(γ
k
i , γ

k−1
i , γ

tj
j ) (16)
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Let Sq = (γq
i , . . . , γ

q
n) be the pure equilibrium state reached by this best response cycle starting from social optimal. By

repeatedly applying the two invariants above to sw(S∗) and expanding, we can relate sw(Sq) to sw(S∗) as follows:

sw(Sq) = sw(S∗) +

n∑
i=1

∆g̃i(γ
q
i , γ

∗
i )− 2

n∑
i=1

∑
j ̸=i

∆ẽ(γq
i , γ

∗
i , γ

∗
j ) (17)

Observe that summing the first invariant (equation 15) across n implies that:

n∑
i=1

∆g̃i(γ
q
i , γ

∗
i ) ≥

n∑
i=1

∑
j ̸=i

∆ẽij(γ
q
i , γ

∗
i ) (18)

Let
∑

i

∑
j ̸=i ∆ẽij(γ

e
i , γ

∗
i ) ≜ c, and note that c ∈ [0, n] due to the boundedness of

∑
ij ẽij . Thus we have:∑n

i=1 ∆g̃i(γ
e
i , γ

∗
i ) ≥ c =⇒ sw(S∗) ≤ n − c since maximum net gain for any buyer is 1. Thus, WRaE ≤ n − c.

Next, observe by equation 17, sw(Sq) ≥ sw(S∗) + c− 2c = sw(S∗)− c =⇒ WRaE ≤ c. Combining these, we have
that WRaE = min(c, n− c) ≤ n

2 .
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F. Experimental Results
We experimentally validate our theoretical insights on the effectiveness of transaction costs. While no publicly available
dataset exists for data markets with prices and utilities, we take inspiration from AWS marketplace (a fixed price data market
platform) we design a suite of synthetic experiments. We take the 10 different data categories from AWS, and instantiate
several data sellers for each category (177 total sellers). For each category, we have several buyers (57 total), where each
buyer has zero gain/externality for the sellers not in their category, with gains and externalities for their category sampled
uniformly. They may purchase from up to 10% of the sellers in their category. This is meant to model the pricing and budget
constraints of buyers.

Bias

A
lp

ha

Figure 1. Standard Externality Model: Avg % increase in social welfare (with 90% confidence interval) from
gain maximizing decision.

We first consider the standard externality model, with results presented in Figure 1. We use α = 0 (no intervention) as the
baseline which corresponds to buyers picking seller sets with the highest possible gain. We measure the increase in social
welfare from this baseline to the social welfare at equilibrium under varying α and bias parameters (denoted by epsilon). As
expected, our plots show that increasing α leads to increased social welfare. Also as expected, as the bias of the platform’s
externality estimate increases, welfare decreases, with the effect more pronounced as α increases. This is also reasonable
since enforcing large transaction costs with very inaccurate predictions is inadvisable. Fortunately, the results show that
α = 0.6 can capture most of the increase in welfare, without suffering too much when then the externality estimates by the
platform are inaccurate.

For the joint externality setting, whose results are presented in Figure 2, there is no dominant strategy, even without
any intervention. As such, we use the gain maximizing choice from before as the baseline (which isn’t necessarily an
equilibrium). Our theoretical results show with intervention the resulting game is an approximate potential game with an
approximate equilibrium. As such, we use a best response algorithm to find the approximate equilibrium. Once again,
we plot the increase in social welfare (sum of all buyer utilities) from the baseline for different values of α and bias. As
expected from our theoretical results, setting α closer to 0.5 from either direction leads to a higher increase in social welfare.
The results are quite symmetric. We also notice that the effect of bias is less clear here than in the standard case.

Operationally, these results corroborate our assertion that α close to 0.5 is the ideal parameter. In the standard setting, it
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Figure 2. Joint Externality Model: Avg % increase in social welfare (with 90% confidence interval) from gain
maximizing decision.

offers much of the welfare benefits of setting it higher without any of the drawbacks due to bias, and in the joint setting, it is
outright the best parameter.
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