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Abstract
Mixture variational distributions in black box vari-
ational inference (BBVI) have demonstrated im-
pressive results in challenging density estimation
tasks. However, currently scaling the number
of mixture components can lead to a linear in-
crease in the number of learnable parameters and
a quadratic increase in inference time due to the
evaluation of the evidence lower bound (ELBO).
Our two key contributions address these limita-
tions. First, we introduce the novel Multiple Im-
portance Sampling Variational Autoencoder (MIS-
VAE), which amortizes the mapping from input to
mixture-parameter space using one-hot encodings.
Fortunately, with MISVAE, each additional mix-
ture component incurs a negligible increase in net-
work parameters. Second, we construct two new
estimators of the ELBO for mixtures in BBVI, en-
abling a tremendous reduction in inference time
with marginal or even improved impact on per-
formance. Collectively, our contributions enable
scalability to hundreds of mixture components
and provide superior estimation performance in
shorter time, with fewer network parameters com-
pared to previous Mixture VAEs. Experiment-
ing with MISVAE, we achieve astonishing, SOTA
results on MNIST. Furthermore, we empirically
validate our estimators in other BBVI settings, in-
cluding Bayesian phylogenetic inference, where
we improve inference times for the SOTA mixture
model on eight data sets.

1. Introduction
Recent advancements in variational inference (VI) have
focused on enhancing performance through more sophisti-
cated network architectures, formulation of flexible priors
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and variational posteriors, and the exploration of alternative
formulations of the evidence lower bound (ELBO), the typ-
ical objective function in VI. Competitive developments
include normalizing flows (NFs; Rezende & Mohamed
(2015); Papamakarios et al. (2021)), hierarchical models
(Burda et al., 2015; Sønderby et al., 2016; Vahdat & Kautz,
2020), autoregressive models (Van Oord et al., 2016), the
VampPrior (Tomczak & Welling, 2018), and the importance
weighted ELBO (IWELBO; Burda et al. (2015)).

Lately, using mixture models as variational distributions
has garnered increased attention (Nalisnick et al., 2016; Ku-
cukelbir et al., 2017; Morningstar et al., 2021; Kviman et al.,
2022; 2023a). Specifically, Kviman et al. (2022) developed
a formulation of the ELBO for uniformly weighted mixtures
inspired by multiple importance sampling (MIS; see Elvira
et al. (2019) for a review), termed MISELBO,1

LMIS =
1

A

A∑
a=1

Eqϕa (za|x)

[
log

pθ(x, za)
1
A

∑A
a′=1 qϕa′ (za|x)

]
,

(1)

where za is a latent variable, x is observed data, θ represents
the parameters of the generative model pθ(x, ·), A is the
number of mixture components, and ϕa denotes the varia-
tional parameters of the a-th mixture component qϕa

(·|x).

Mixtures are distinguished by their simple yet expressive
nature, as well as their theoretical foundation. In the BBVI
setting, they have achieved state-of-the-art (SOTA) results
in applications like image processing and phylogenetics
(Kviman et al., 2023a;b). However, computational complex-
ities (parameter costs and inference times) hinder algorithm
developers from utilizing a large A, ultimately leaving the
full potential (e.g., their universal approximator property
(Kostantinos, 2000)) untapped.

In BBVI-based mixture learning, the number of learnable
parameters typically increases linearly with A at an unprac-
tical rate. For example, in Kviman et al. (2022; 2023a), a
naive approach is used where each new component allocates
a separate encoder network, while in Kviman et al. (2023b),
there is one Bayesian network per component. Moreover,

1An alternative naming of this lower bound emerges in the
work of Morningstar et al. (2021), where the sampling scheme is
interpreted as stratified sampling. This perspective leads to the
names SELBO or SIWELBO.
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Figure 1: SOTA Performance with Small and Efficient
Networks: NLL values for MISVAE trained with the S2A
estimator with S = 1 and a gradually increasing A.

by inspecting Eq. (1), it is clear that the evaluation of the
MISELBO objective, and thus the inference time, scales
quadratically with A.

We make two contributions in this work, each addressing
the aforementioned computational complexities. First, we
introduce the Multiple Importance Sampling VAE (MIS-
VAE), a novel VAE architecture that efficiently amortizes
the mapping from data to mixture parameters (see Fig. 2).
With our one-hot-encoding-based parameterization strategy,
all network weights in a single encoder are shared among
the A mixture components. This is a novel construction, as,
previously, either no (Kviman et al., 2022; 2023a) or only a
subset (Nalisnick et al., 2016) of the encoder weights have
been shared. MISVAE is described in detail in Sec. 5.

Our second contribution is inspired by the plethora of tech-
niques for sampling from mixture models, from the MIS
literature (Elvira et al., 2019). To make the evaluation of
MISELBO objective more effective, we extend two estab-
lished MIS schemes to develop two novel estimators of
the MISELBO: the Some-to-All (S2A) and Some-to-Some
(S2S) estimators. Both estimators sample a subset of S < A

unique components, from which the latent variables are sub-
sequently simulated from. This results in estimations of a
subset of the expectations in Eq. (1). The two estimators
differ, however, in their formulation of the denominator in
Eq. (1) and, thus, in their theoretical properties. In Sec. 4,
we clearly explain how to implement the estimators, how
they relate to popular MIS schemes, provide their respective
time complexities, and give robust theoretical justifications
of both estimators.

We have constrained our work to uniformly weighted mix-
tures. This is justified by existing analyses in the BBVI
literature. Specifically, Morningstar et al. (2021) observed
that inferring parameters for weighted mixture components
often leads to mode collapse. To mitigate this issue, they
suggested using the Importance Weighted ELBO (IWELBO;
Burda et al. (2015)). However, using the IWELBO objec-
tive presents other challenges. Notably, it does not allow for
training VAEs using the KL warm-up scheme, which is cru-
cial for achieving SOTA NLL results (see e.g., Tomczak &
Welling (2018)). Additionally, this approach can adversely
affect the learning of encoder nets (Rainforth et al., 2018).

The S2A and S2S estimators are applicable to any BBVI
mixture problem (i.e., not constrained to VAEs), and, as we
demonstrate in various BBVI scenarios in Sec. 6, they can
heavily decrease the parameter inference time. For VAEs,
when paired with MISVAE, we can push the limits of A in
order to achieve astonishing marginal log-likelihood results
on MNIST and FashionMNIST (see Fig. 1).

To summarize, our contributions are

• MISVAE: We introduce MISVAE. A novel Mixture
VAE architecture that efficiently maps data to mix-
ture parameters, significantly improving the scalability
w.r.t. the number of mixture components, A.

• Some-to-Some: We propose S2S, a novel estimator
of MISELBO (Eq. (1)). This estimator enables en-
hanced performance relative to MISVAE by allowing
an increase in A, while preserving the same inference
time per epoch.

• Some-to-All: We introduce S2A, which we prove to
be an unbiased estimator of MISELBO for any S < A.
This approach makes it possible to increase the total
number of mixtures A with only a small additional
computational burden.

2. Related Work
Mixture VAEs can be traced back to Nalisnick et al. (2016),
who employed a Gaussian mixture model with a Dirichlet
prior on the mixture weights, and inferred these weights
through a neural network mapping from the data, x, to the
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simplex. Their encoder employed A separate mappings
from a hidden layer in the encoder to the different mixture
parameters. As such, their architecture scales poorly to large
A in terms of number of network parameters. Furthermore,
Roeder et al. (2017) utilized a weighted mixture ELBO, for
training a VAE using stop gradients and different sampling
strategies. Yet, their application was limited to a toy dataset.

Drawing inspiration from the MIS literature, Kviman et al.
(2022) introduced the concept of the MISELBO, offering a
straightforward method for evaluating the mixture ELBO.
However, in their approach, individual mixture components
were trained separately and aggregated only during the eval-
uation of the MISELBO objective. As a result, each compo-
nent tended to gravitate towards the mode of the posterior,
rather than all components collaboratively covering all re-
gions of the posterior. Expanding on these concepts, Kvi-
man et al. (2023a) devised methods for the joint training of
all mixture components, which were subsequently applied
by Kviman et al. (2023b). Collectively, achieving SOTA
performance on datasets such as MNIST, FashionMNIST,
and a range of phylogenetic datasets. Nevertheless, de-
spite their impressive empirical performance, scaling these
architectures to variational mixtures with more than ten com-
ponents posed significant computational challenges. Here,
we address this limitation, enabling the full potential of
variational mixtures to be realized by significantly reducing
the computational demands of scaling to a larger number
of components. The idea of increasing the number of mix-
ture components for variance reduction while limiting the
computational complexity in MIS was introduced in (Elvira
et al., 2015) and further developed in (Elvira et al., 2016a;b).

3. Background
Estimating NLL The estimate of the IWELBO,

LL
IWELBO = Eqϕ(z|x)

[
log

1

L

L∑
ℓ=1

pθ(x, zℓ)

qϕ(zℓ|x)

]
, (2)

where L is the number of importance samples, is often
used to estimate the marginal log-likelihood, log pθ(x). The
negative log-likelihood (NLL) refers to - log pθ(x). It is pos-
sible to estimate the NLL by using an importance-weighted
version of MISELBO (Kviman et al., 2022).

MIS In the field of importance sampling (IS), MIS refers
to techniques with more than one proposal/importance sam-
pler (Elvira & Martino, 2021). MIS inherits strong theo-
retical guarantees and many methodological developments
have been made (Veach & Guibas, 1995; Owen & Zhou,
2000; Sbert & Elvira, 2022). In this line of research, we rely
on MIS schemes where the sampling is done either from a
mixture or by deterministically choosing the proposal from
a set of mixture components. In both cases, the weights

are constructed in a way that reduces variances of the IS
estimators (see Elvira et al. (2019) for more details).

Due to the logarithm in the ELBO, many theoretical insights
gathered in MIS do not generalize to VI. However, recog-
nizing that MISELBO is an expectation to be estimated by
a mixture establishes clear connections between popular
mixture sampling techniques, as described in Elvira et al.
(2019), and the estimators used in BBVI mixture learning.

Bayesian phylogenetics In Bayesian phylogenetic infer-
ence, the posterior distribution over branch lengths and tree
topologies is approximated jointly, given the observed se-
quence data (e.g., DNA). In Appendix E.3.1, we define the
posterior and give more details on the generative model.

Many recent works have applied modern machine learning
techniques to Bayesian phylogenetics (Zhang et al., 2018;
Zhang, 2020b; Moretti et al., 2021; Zhang, 2023; Zhou et al.,
2023). Notably, Kviman et al. (2023b) constructed a mix-
ture of variational phylogenetic posterior approximations,
achieving SOTA results.

However, in Kviman et al. (2023b), the inference time scales
poorly with A, making it infeasible to learn mixture models
with many components. In Sec. 6, we instead apply our
two new estimators for learning the mixture parameters, de-
creasing the computational costs of the SOTA BBVI method.
This takes the field closer to realistic application of mixture
models in Bayesian phylogenetic and domains with even
larger state spaces. These applications have traditionally
been viewed as computationally demanding and, in practice,
considered intractable within a Bayesian framework (e.g.,
species-tree reconciliation (Åkerborg et al., 2009))

4. Efficient Estimation of MISELBO
We now walk through the three approaches we consider for
estimating Eq. (1), namely the All-to-All, and our two novel
estimators, the Some-to-All, and Some-to-Some estimators.

All-to-All When implementing the All-to-All (A2A) esti-
mator, a single latent variable is sampled from each of the
A available components, resulting in

L̃A2A =
1

A

A∑
a=1

log
pθ(x|za)pθ(za)

1
A

∑A
a′=1 qϕa′ (za|x)

, (3)

where za ∼ qϕa(za|x).

The computational cost of this estimator is proportional
A × A and it connects to the N3 scheme in Elvira et al.
(2019) since all A components are used in the simulation of
the S = A samples and also appear in the denominator.

Some-to-All There are A components in total, and for a
given data point (or batch) we sample a subset, Φ, of S
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unique components (without replacement). No component
is more likely to be selected a priori, and so we can consider
sampling the subsets from a uniform distribution over all(
A
S

)
possible subsets, φ(Φ) (see Appendix A). Then, by

obtaining Φ ∼ φ(Φ), we construct the Some-to-All (S2A)
estimator

L̃S2A :=
1

S

S∑
s=1

log
pθ(x|zs)pθ(zs)

1
A

∑A
a=1 qϕa

(zs|x)
, (4)

where zs ∼ qϕs(zs|x) for all ϕs ∈ Φ.

This estimator is linked to the R3 scheme in Elvira et al.
(2019) since in both cases a subset of components is used
to simulate the samples, while the unweighted mixture of
all components appear in the denominator. The difference
is that the R3 scheme samples exactly S = A samples
by selecting the components with multinomial resampling
with replacement, while our S2A estimator samples S <
A samples by selecting the components with multinomial
resampling without replacement instead.

A beneficial property of the S2A estimator is that it allows
for sampling mixture components without replacement, re-
sulting in a lower variance gradient estimator compared
to when sampling with replacement. Moreover, the com-
putational cost of the S2A estimator is S × A and it is an
unbiased estimator of Eq. (1).

Theorem 4.1. The Some-to-All estimator is an unbiased
estimator of Eq. (1).

Proof. See Appendix A.

Furthermore, its expectation is a lower bound on the
marginal log-likelihood.

Corollary 4.2. The expected value of the Some-to-All esti-
mator is a lower bound on the marginal log-likelihood,

E
[
L̃S2A

]
≤ log pθ(x).

We leverage the unbiased property of S2A to substantially
reduce the complexity involved in estimating the MISELBO
objective. The computational cost of this estimator is pro-
portional to S × A, however, given that it is unbiased, we
can keep S small and instead increase A.

Although the focus of our work is on uniformly weighted
components, we generalize Theorem 4.1 to hold for arbitrary
mixture weights.

Theorem 4.3. The Some-to-All estimator is an unbiased
estimator of MISELBO for arbitrary mixture weights.

Proof. See Appendix B.

Some-to-Some The next estimator is inspired by the a pri-
ori partitioning approach in Elvira et al. (2019, Section 7.2).
For a given data point, we, again obtain a Φ ∼ φ(Φ), where
|Φ| = S. In contrast to the S2A estimator, we here only
evaluate the simulated latents on this subset of components,
and we get the Some-to-Some (S2S) estimator

L̃S2S :=
1

S

S∑
s=1

log
pθ(x|zs)pθ(zs)

1
S

∑
ϕs′∈Φ qϕs′ (zs|x)

, (5)

where zs ∼ qϕs(zs|x) for all ϕs ∈ Φ. The cost of comput-
ing this estimator is S × S. Letting S = 1 is equivalent
to inferring the parameters of an ensemble of variational
approximations (Kviman et al., 2022).

The S2S estimator also connects with the R2 scheme in
Elvira et al. (2019) since in both cases a subset of compo-
nents is used to simulate the samples and this same subset
of components appear in the denominator. Again, the differ-
ence is that the R2 scheme samples exactly S = A samples
by selecting the components with multinomial resampling
with replacement, while our S2S samples S < A samples
by selecting the components with multinomial resampling
without replacement.

Theorem 4.4. The expected value of the Some-to-Some esti-
mator is a lower bound on MISELBO, i.e.,

E
[
L̃S2S

]
≤ LMIS.

Proof. See the supplementary material.

Corollary 4.5. The expected value of the Some-to-Some esti-
mator is a lower bound on the marginal log-likelihood,

E
[
L̃S2S

]
≤ log pθ(x).

The S2S estimator has the smallest computational cost
among the three presented here. However, what it gains
in speed it trades off in joint inference among the mixture
components—a component that is not in Φ will not affect
the inference of ϕs ∈ Φ, which should affect cooperation.
Yet, given a fixed S, we can improve performance by in-
creasing A without additional computational burden. This
is because the S2S estimator can be viewed as an ensemble
of mixtures, where we have access to A models and select
S components for each instance of the ensemble.

Summary Our two new estimators have lower compu-
tational complexity than the A2A estimator. As we will
demonstrate, the benefits gained in practice in terms of run-
time will be particularly important if the numerator (the
generative model) of Eq. (1) is expensive to compute. Com-
paring S2A and S2S, the latter will enjoy a shorter inference
time if the entropy, or, alternatively, the denominator in Eq.
(1), is expensive to compute.
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Figure 2: Block diagram depicting the estimation of MISELBO using MISVAE with the S2S estimator, with S = 2 and
A = 3. First, fD2H maps the data to an intermediate hidden space, producing a representation h. The next network, fϕ,
takes h along with S A-dimensional one-hot encodings, acting as signals of the S mixtures used by the S2S estimator, as
input, which are then mapped to the variational parameters, here ϕ1 and ϕ2, of the mixture components. Samples drawn
from the S mixtures are then passed to a decoding network to produce the parameters θ of the generative model. Collectively,
the sampled latent variables, the variational parameters, and θ , are used to compute L̃S2S. The diagram is explained in detail
in Sec. 5. Corresponding diagrams for the S2A and A2A estimators can be found in Fig. 7.

5. Multiple Importance Sampling VAE
Impressive results have been obtained by naively expanding
the parameter space with the number of mixtures. However,
by carefully studying the problem at hand, similar, or even
improved, performance gains can be achieved at negligible
increases in parameter costs.

MISVAE is a new Mixture VAE architecture featuring an
encoder network composed of two consecutive networks.
The novelty of MISVAE lies in the second network, which
parameterizes the mixture components using amortization.

The first network maps the data to an intermediate (deter-
ministic) hidden space, H; we refer to it as the D2H net
and denote the function as fD2H. The second net is a map-
ping from the Cartesian product of H and the space of
A-dimensional one-hot encodings, OA, to the parameters of
a mixture component. We denote this as fϕ and call it the
amortized mixture parameterization (AMP) net. We write

fD2H : X 7→ H, fϕ : H×OA 7→ Q, (6)

or, alternatively, h = fD2H(x) and if Q is the family
of Gaussians, (µ(h, ϕs), σ(h, ϕs)) = fϕ(h, oA(s)), where
oA(s) is an A long one-hot encoding with the s-th element
set to one.

The AMP net, fϕ, is a sequence of neural networks (NNs),
shared among all mixture components. The NNs take oA(s)
as their biases. That is, to get the parameters of the s-th
component, we pass oA(s) as a bias to the NNs. See Fig. 2
for a depiction of the MISVAE architecture.

6. Experiments
In this section, we infer variational parameters using MIS-
VAE along with the S2S, S2A, and A2A estimators. We con-
duct comparisons among these methods and against SOTA
approaches across a synthetic dataset, three image datasets,

and eight phylogenetic datasets. All code necessary to repli-
cate our experiments is publicly available at: https://
github.com/okviman/efficient-mixtures.
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Figure 3: Comparison of MISELBO approximation perfor-
mance and training runtimes across three distinct estimators
under various settings of S and A in the Toy Experiment,
trained for 50, 000 epochs.

6.1. Toy Example

Here we construct a toy example in order to evaluate the per-
formances of the estimators when the posterior exhibits
certain properties. Concretely, we design a generative
model that is non-Gaussian, has an autoregressive likeli-
hood function, and assume that the A terms in the energy
term, 1

A

∑A
a=1 Eqϕa (za|x)[log pθ(za, x)], have to be com-

puted sequentially.

These criteria are of interest as they naturally arise in many
settings, including all our real-data experiments below: the
posteriors are non-Gaussian, both the pixel-CNN decoder
and the likelihood function in Bayesian phylogenetics are
autoregressive, and the corresponding energy terms are not
always parallelizable–––the CIFAR-10 images are too big
to parallelize over A with a reasonable batch size, and the
standard implementation of the dynamic programming re-
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Figure 4: Results on MNIST for MISVAE trained with various combinations of S and A, with the S2S estimator (top row)
and the S2A estimator (bottom row). (a) Average (solid) NLL results computed over three runs with one standard deviation
(opaque) displayed, (b) training time per epoch, and (c) the number of network parameters for MISVAE for increasing values
of A. Using MISVAE, the number of network parameters increases by a small amount as we increase A. Also, with the
S2S estimator, we can keep S fixed and increase A, without impacting the number of seconds needed to complete an epoch
and simultaneously improving the NLL. For S2A, we converge to an equivalent solution with A held fixed for any S < A,
meaning that in practice, we can scale up A for small values of S at a small extra computational cost per mixture component.

quired to compute the phylogenetic likelihood function does
not necessarily parallelize.

With these criteria in mind, we let p(x|z) =
∏N

n=1 p(xn|z),
where xn is the n-th dx-dimensional data point, N is
the number of generated data points and p(xn|z) =∏dx

i=1 Bernoulli
(
x(i)
∣∣∣sigmoid

(
θ(i) +

∑i−1
j=1 β

i−jx(j)
))

,
with β = 0.1, superindices are within parentheses, and
θ = Wz, where

W ∈ Rdx×dz , Wu,v ∼ logN (0, 0.1). (7)

Finally, as prior we use the hierarchical Neal’s funnel model

p(z2, z1) = N (z2|0, ez1/2)N (z1|0, 3). (8)

We constrain our analysis to a 2-dimensional latent space
for visualization purposes. An unnormlized posterior when
dx = 20 and N = 5 is depicted in Fig. 8.

Results. The posterior is non-Gaussian (and intractable) and
has an autoregressive likelihood function. We artificially

force the energy term to be computed sequentially, let dx =
20 (a moderately large number) and chose N = 5. In Fig. 8
we visualize the unnormalized posterior when dx = 20. All
mixture components in the variational approximations are
Gaussians with diagonal covariance matrices.

The purpose of this experiment is to compare the MISELBO
values and total runtimes across different estimators, as well
as to visualize the final variational approximations in the
latent space. Accordingly, all models were subjected to
training over 50, 000 epochs. Fig. 3 presents the evolution
of MISELBO during the training process for these estima-
tors, alongside the total runtime required to finish the epochs.
If dx was to be further increased, so would the cost of eval-
uating the likelihood. Hence, we expect our new estimators
to provide good approximations in shorter runtime than the
A2A estimator when dx is sufficiently high.

The results in Fig. 3 confirm our expectations. When
(S = 2, A = 5), the S2A and A2A estimators achieve
the same MISELBO scores, however, S2A requires only a
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Figure 5: Comparison between SEMVAE and MISVAE using the S2S, A2A, and S2A estimators on MNIST: (a) NLL
scores for increasing values of A, (b) training time per epoch, and (c) number of hyperparameters for increasing A for
SEMVAE compared to MISVAE. Note: The green curve represents the performance of MISVAE using the S2S estimator
with S increasing , such that S=A on the x-axis, while A is held fixed at 50.

fraction of the runtime. Meanwhile, for the said S and A,
S2S performs worse in terms of MISELBO score, albeit in
short runtime. Interestingly, as S2S can be regarded as an
ensemble, S2S with (S = 5, A = 20) can outperform A2A
(A = 5) in terms of MISELBO scores in approximately
the same training time per epoch. Finally, as the S2A is an
unbiased estimator of MISELBO for any S < A, it excels
when utilizing a large number of mixtures A with a small
S. Notably, the configuration of S2A with (S = 1, A = 20)
not only boasts the fastest training time per epoch but also
achieves the lowest overall negative MISELBO scores.

In Appendix E.1.1 we include further implementation details
and visualizations of the approximations in the latent space.

6.2. Image Data

To make our results comparable to current SOTA mixture ar-
chitectures, we use the same experiment setup and training-

related hyperparameters as in Kviman et al. (2023a). We
refer to the benchmark MISVAE with the Mixture VAE used
in Kviman et al. (2023a), where separate encoder networks
are used for each mixture component, as the separate en-
coder Mixture VAE (SEMVAE). We train on MNIST (Le-
Cun & Cortes, 2010), FashionMNIST (Xiao et al., 2017),
and CIFAR-10 (Krizhevsky et al.). Additional details are
provided in Appendix E

Results. The experiments conducted with real datasets
confirm the insights gained from the Toy Experiment. In
Figures 4 (MNIST) and 6 (CIFAR-10), we compare the
NLL scores of MISVAE when trained using the S2S, S2A,
and A2A estimators across progressively increasing values
of S and A. Note that the A2A estimator is used when
S = A. We make two observations. First, for a given S,
the S2S estimator consistently achieves lower NLL scores
as A increases, with this effect being more pronounced

Table 1: NLL statistics for SOTA VAE architectures on MNIST. The Composite model is a SEMVAE model with hierarchical
models, NFs and the VampPrior. For IWAE, L is the number of importance samples used during training.

Model NLL No. Parameters Seconds/epoch

IWAE (L = 20) (Burda et al., 2016) 79.63 720, 541 128.02
Hierarchical VAE w. VampPrior (Tomczak & Welling, 2018) 78.45 1, 777, 821 -
NVAE (Vahdat & Kautz, 2020) 78.01 33, 363, 134 -
MAE (Ma et al., 2019) 77.98 1, 565, 570
Ensemble NVAE (Kviman et al., 2022) 77.77 ± 0.2 - -
Vanilla SEMVAE (S = 12; Kviman et al. (2023a)) 77.67 8, 549, 344 -
Composite SEMVAE (S = 4; Kviman et al. (2023a)) 77.23 ± 0.1 5, 212, 065 -
CR-NVAE (Sinha & Dieng, 2021) 76.93 - -

MISVAE S2S (A = 50, S = 20; our) 76.67 618, 781 132.46
MISVAE S2A (A = 200, S = 1; our) 75.43 654, 781 73.06
MISVAE S2A (A = 800, S = 1; our) 74.07 798, 781 261.71

7



Efficient Mixture Learning in Black-Box Variational Inference

1 2 3 4
3.2

3.3

3.4

S

B
PD

(a) Some-to-Some

A = 1

A = 2

A = 3

A = 4

1 2 3 4

3.2

3.25

3.3

S

B
PD

(b) Some-to-All

A = 1

A = 2

A = 3

A = 4

Figure 6: BPD results on CIFAR-10 for MISVAEs trained
with different estimators and combinations of S and A.

for MNIST. Second, as depicted in Fig. 4b, the epoch
completion time for the S2S estimator remains constant
as A increases, assuming S is fixed. These observations
collectively suggest the potential for improving performance
by significantly increasing A while maintaining a small S.
This hypothesis is further examined in Fig. 13b, which
shows that initially, increasing A enhances performance.
However, for large enough A, the performance gains start
to wane, likely due to the decreasing probability of each
component being updated in an epoch as A increases.

We also make some useful observations regarding the S2A
estimator. For a given value of A, the S2A estimator demon-
strates approximately equivalent performance as S varies,
confirming its unbiasedness on both CIFAR-10 (Fig. 6b)
and MNIST (Fig. 4a). Additionally, from Fig. 4b, we ob-
serve a marginal increase in epoch completion time for a
fixed S with increasing A. The combination of being un-
biased and efficient suggests that the S2A estimator can be
scaled to a substantially larger number of mixture compo-
nents. In Fig. 1, we gradually increase A up to hundreds
of mixture components with S = 1 held fixed and achieve
SOTA NLL scores on MNIST and FashionMNIST. In Table
1, we compare the number of network parameters and the
NLL scores of our models against other competitive models
in this domain. Notably, our models use far fewer network

Table 2: FID scores evaluated on the MNIST test set

S 1 2 3 4
FID 10.87 10.02 9.89 9.70

parameters at superior performance in terms of NLL.

Finally, we compare MISVAE and our estimators against
SEMVAE in Fig. 5, which reveals that S2A, even with
S = 2 held constant, either outperforms or matches the
performance of SEMVAE. Also, it achieves this with only a
slight increase in inference time and network parameters as
A increases, unlike SEMVAE, where epoch completion time
and network parameters escalate rapidly with A. We also see
that S2S outperforms both S2A, albeit being considerably
slower, and A2A, with approximately the same inference
time. The superior performance of the S2S estimator is
because it can be regarded as an ensemble of mixtures, thus
providing a tighter bound compared to a single mixture
model, as proven by Kviman et al. (2022).

Generative performance. In order to understand how
the decoder contributes to the impressive NLL scores,
we trained four MISVAEs using S2A with A = 4 and
S = 1, . . . , 4. For each model, we evaluated the decoders
generative performance via the FID score on the MNIST
test dataset. The results in Table 2 demonstrate that the gen-
erative performance of the decoder increases when learned
with increasingly expensive estimators. These results likely
stem from the frequency of likelihood function evaluations.
I.e., when S ≤ A, the likelihood function is evaluated less
frequently during gradient calculations with respect to the
decoder weights. In Appendix E.4 we also include visualiza-
tions of generated images from MNIST and FashionMNIST.

6.3. Bayesian Phylogenetics

Kviman et al. (2023b) achieved SOTA results by developing
a mixture of variational phylogenetic posterior approxima-
tions, learnt via the A2A estimator. As empirically demon-
strated in (Kviman et al., 2023a;b), the NLL improves mono-
tonically with an increasing number of components. Using
a large number of mixtures in mixture variational Bayesian
phylogenetic inference (VBPI), however, lead to significant
computational overhead and slow convergence, especially
with large datasets. We address these issues with the S2A
and S2S estimators, showing that they achieve comparable
results with reduced computational requirements. Overall,
our estimators enable us to minimize computational time
without compromising performance.

We precisely followed the training procedure outlined by
Kviman et al. (2023b) and, like them, adopted the VBPI al-
gorithm with NFs and mixture distributions. We performed
experiments on eight popular datasets for Bayesian phylo-
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Table 3: NLL estimates on eight Phylogenetic Datasets. All VBPI methods use 1000 importance samples, and the results
are averaged over 100 runs and three independently trained models. The time evaluation for the likelihood function (p) and
variational probability (q) was conducted on an i5-1130G7 CPU using one core using a CPU timer. #p and #q describe the
number of times the likelihood and variational distribution needs to be evaluated respectively.

Data DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
# Taxa 27 29 36 41 50 50 59 64
# Sites 1949 2520 1812 1137 378 1133 1824 1008
Run time p (ms) 0.765 1.007 1.249 1.235 1.481 1.622 1.821 1.954
Run time q (ms) 0.778 1.082 1.425 1.427 1.816 1.652 2.130 2.359
A #p #q VBPI with NFs and Mixtures using (A2A) (Kviman et al., 2023b)
1 1 1 7108.42 (.15) 26367.72 (.06) 33735.10 (.07) 13330.00 (.23) 8214.70 (.47) 6724.50 (.45) 37332.01 (.27) 8650.68 (.46)
2 2 4 7108.40 (.10) 26367.71 (.04) 33735.10 (.05) 13329.95 (.15) 8214.62 (.26) 6724.44 (.32) 37331.96 (.19) 8650.56 (.33)
3 3 9 7108.40 (.06) 26367.70 (.03) 33735.09 (.04) 13329.94 (.11) 8214.56 (.22) 6724.40 (.23) 37331.96 (.15) 8650.54 (.30)
4 4 16 7108.40 (.05) 26367.71 (.02) 33735.09 (.02) 13329.93 (.07) 8214.57 (.16) 6724.31 (.19) 37331.92 (.13) 8650.66 (.24)
A S #p #q VBPI with NFs and Mixtures using (S2A)
2 1 1 2 7108.54 (.11) 26367.71 (.04) 33735.10 (.05) 13329.97 (.16) 8214.92 (.44) 6724.49 (.35) 37331.99 (.19) 8651.32 (.42)
3 1 1 3 7108.77 (.08) 26367.71 (.03) 33735.10 (.04) 13330.05 (.12) 8215.34 (.42) 6724.49 (.29) 37331.98 (.15) 8651.85 (.35)
3 2 2 6 7108.44 (.08) 26367.71 (.03) 33735.09 (.04) 13329.94 (.10) 8214.62 (.28) 6724.42 (.27) 37331.95 (.17) 8650.76 (.29)
4 1 1 4 7108.92 (.09) 26367.71 (.02) 33735.09 (.03) 13330.05 (.11) 8217.98 (.73) 6724.61 (.28) 37331.96 (.13) 8652.01 (.32)
4 2 2 8 7108.40 (.06) 26367.70 (.03) 33735.10 (.03) 13329.97 (.09) 8214.69 (.21) 6724.41 (.22) 37331.98 (.14) 8650.85 (.25)
4 3 3 12 7108.40 (.05) 26367.71 (.02) 33735.09 (.03) 13329.93 (.08) 8214.59 (.17) 6724.38 (.21) 37331.96 (.11) 8650.72 (.22)
A S #p #q VBPI with NFs and Mixtures using (S2S)
2 1 1 1 7108.41 (.10) 26367.71 (.04) 33735.09 (.06) 13330.00 (.16) 8214.77 (.38) 6724.53 (.32) 37332.00 (.20) 8650.65 (.37)
3 1 1 1 7108.41 (.08) 26367.71 (.04) 33735.09 (.05) 13330.02 (.16) 8214.90 (.35) 6724.53 (.26) 37332.00 (.18) 8650.97 (.30)
3 2 2 4 7108.42 (.08) 26367.71 (.03) 33735.09 (.04) 13329.96 (.11) 8214.63 (.23) 6724.44 (.24) 37331.98 (.13) 8650.71 (.27)
4 1 1 1 7108.74 (.15) 26367.71 (.03) 33735.09 (.04) 13330.01 (.11) 8215.73 (.48) 6724.54 (.23) 37332.00 (.15) 8651.34 (.27)
4 2 2 4 7108.41 (.06) 26367.71 (.03) 33735.09 (.04) 13329.96 (.11) 8214.72 (.20) 6724.44 (.24) 37331.98 (.13) 8650.68 (.23)
4 3 3 9 7108.40 (.06) 26367.71 (.02) 33735.09 (.03) 13329.94 (.07) 8214.59 (.16) 6724.39 (.21) 37331.94 (.15) 8650.64 (.22)

MCMC and VBPI with GNNs (scores from (Zhang & Matsen IV, 2019) and (Zhang, 2023))
MrBayesss 7108.42 (.18) 26367.57 (.48) 33735.44 (.50) 13330.06 (.54) 8214.51 (.28) 6724.07 (.86) 37332.76 (2.42) 8649.88 (1.75)
GGNN 7108.40 (.19) 26367.73 (.10) 33735.11 (.09) 13329.95 (.19) 8214.67 (.36) 6724.38 (.42) 37332.03 (.30) 8650.68 (.48)
EDGE 7108.41 (.14) 26367.73 (.07) 33735.12 (.09) 13329.94 (.19) 8214.64 (.38) 6724.37 (.40) 37332.04 (.26) 8650.65 (.45)

genetics (Hedges et al., 1990; Garey et al., 1996; Yang &
Yoder, 2003; Henk et al., 2003; Lakner et al., 2008; Zhang
& Blackwell, 2001; Yoder & Yang, 2004; Rossman et al.,
2001). As in Zhang & Matsen IV (2019); Zhang (2020a);
Moretti et al. (2021); Koptagel et al. (2022); Zhang & Mat-
sen IV (2022); Zhang (2023), we learn the approximations
of branch-length and tree-topology distributions. As can
be seen in Table 3, similar, or identical, NLL results are
obtained with fewer likelihood and variational probability
evaluations. The cost of each such operation is specified
in the table. This implies that our estimators have success-
fully reduced the inference time of the SOTA model, while
preserving the impressive NLL scores.

7. Future Work
A future avenue of research is to theoretically justify the
results in this work by producing convergence results for
mixtures. Convergence properties and guarantees for BBVI
have previously been studied by Kim et al. (2023); Domke
et al. (2024); Hotti et al. (2024) for when the variational
family belongs to the location-scale family, which does not
include mixtures. Since the mixture differential entropy can
no longer be computed in closed form, one would need to
consider stochastic estimates of both the energy and the
differential entropy gradients of the variational objective. In
this context, it would be interesting to consider the sticking-
the-landing (STL) estimator, previously studied in the set-
ting of BBVI by both (Kim et al., 2024) and (Domke et al.,

2024). It turns out that with the STL estimator, a linear
convergence rate can be achieved when the variational fam-
ily contains the true posterior, which approximately holds
for a mixture of Gaussians given a sufficient number of
components.

Gradient-based inference of mixture weights in BBVI is
non-trivial (Morningstar et al., 2021), and there are multiple
approaches to reparameterized sampling of the components
(Figurnov et al., 2018; Morningstar et al., 2021). However,
an alternative is resampling-based inference, as in the adap-
tive IS literature. Recently, Kviman et al. (2024) proposed
a new resampling methodology which could be applied in
mixture BBVI to weight components such that the ELBO is
maximized via a combinatorial optimization algorithm.

8. Conclusion
In this work, we have addressed the scalability and efficiency
challenges faced by mixtures in BBVI, by introducing MIS-
VAE and the novel estimators of the MISELBO: the Some-
to-All and Some-to-Some estimators. Our contributions
significantly decrease the number required learnable param-
eters and the computational costs associated with increasing
the number of mixture components, enabling scalability of
mixture models without compromising performance.
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A. Expected Values of the Estimators
Here we prove the results presented in Section 4.

There are A components in total and thus
(
A
S

)
subsets Φ of cardinality S (without replacement). Furthermore, summed over

all subsets, an arbitrary component, qϕk
, is observed

(
A
S

)
S
A =

(
A−1
S−1

)
times. Define a uniform distribution in the space of all

S-subsets, ΩS ,

φ (Φ) =
1(
A
S

) (9)

and the Some-to-All estimator as

L̃M,S,J

Some-to-All :=
1

M

M∑
m=1

1

S

∑
ϕk∈Φm

1

J

J∑
j′=1

log
p(x, zj

′

k )
1
A

∑A
j=1 qϕj

(zj
′

k |x)
, Φ1, ...,ΦM ∼ φ(Φ), z1k, ..., z

J
k ∼ qϕk

(z|x).

(10)

Theorem 4.1: The Some-to-All estimator is an unbiased estimator of Eq. (1).

Proof. Taking expectations and utilizing that the expectation is a linear operator, the R.H.S. of Eq. (10) is

1

M

M∑
m=1

Eφ(Φ)

 1

S

∑
ϕk∈Φ

1

J

J∑
j′=1

Eqϕk
(z|x)

[
log

p(x, zk)
1
A

∑A
j=1 qϕj (zk|x)

] = (11)

Eφ(Φ)

 1

S

∑
ϕk∈Φ

Eqϕk
(z|x)

[
log

p(x, zk)
1
A

∑A
j=1 qϕj

(zk|x)

] = (12)

∑
Φ∈ΩS

1(
A
S

) 1
S

∑
ϕk∈Φ

Eqϕk
(z|x)

[
log

p(x, zk)
1
A

∑A
j=1 qϕj (zk|x)

]
= (13)

1(
A
S

) 1
S

∑
ϕk∈Φ

Eqϕk
(z|x)

[
log

p(x, zk)
1
A

∑A
j=1 qϕj (zk|x)

]
= (14)

1(
A
S

) 1
S

(
A− 1

S − 1

) A∑
k=1

Eqϕk
(z|x)

[
log

p(x, zk)
1
A

∑A
j=1 qϕj

(zk|x)

]
= (15)

1

A

A∑
k=1

Eqϕk
(z|x)

[
log

p(x, zk)
1
A

∑A
j=1 qϕj

(zk|x)

]
= LMIS, (16)

where the equality in Eq. (14) holds as

∑
Φ∈ΩS

∑
ϕk∈Φ

qϕk
=
∑

Φ∈ΩS

A∑
k=1

1{ϕk∈Φ}(ϕk)qϕk
(z|x) =

(
A− 1

S − 1

) S∑
k=1

qϕk
(z|x),

following the statement in the beginning of this section; component qϕk
will be observed

(
A
S

)
S
A times in all possible

subsets.

From the theorem above we can provide the following corollary.
Corollary 4.2: The expected value of the Some-to-All estimator is a lower bound on the marginal log-likelihood,

E
[
L̃S2A

]
≤ log pθ(x).

Proof. From Theorem 4.1, we have E
[
L̃M,S,J

S2A
]
= LMIS and from Kviman et al. (2022) it is known that LMIS ≤ log pθ(x).
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Next, we turn to the examination of the expected value of the Some-to-Some estimator

L̃M,S,J

S2S :=
1

M

M∑
m=1

1

S

∑
ϕk∈Φm

1

J

J∑
j′=1

log
p(x, zj

′

k )
1
S

∑
ϕj∈Φm qϕj (z

j′

k |x)
, Φ1, ...,ΦM ∼ φ(Φ), z1k, ..., z

J
k ∼ qϕk

(z|x). (17)

Note that this estimator diverges from the S2A estimator merely in the denominator inside the logarithm. However, this
change clearly implies that the S2S estimator is not an unbiased estimator of Eq. (1). In fact, its expected value is instead a
lower bound on MISELBO, as we will show here.

Theorem A.1. The expected value of the Some-to-Some estimator is a lower bound on MISELBO, i.e.

E
[
L̃M,S,J

S2S

]
≤ LMIS.

Proof. Using that E
[
L̃M,S,J

S2A
]
= LMIS, we will directly check if E

[
L̃M,S,J

S2S
]
≤ E

[
L̃M,S,J

S2A
]
. From the formulation in Eq.

(12), the inequality can equivalently be expressed as

Eφ(Φ)

 1

S

∑
ϕs∈Φ

Eqϕs (zs|x)

[
log

p(x, zs)
1
S

∑
ϕk∈Φ qϕk

(zs|x)

] ≤ Eφ(Φ)

 1

S

∑
ϕs∈Φ

Eqϕs (zs|x)

[
log

p(x, zs)
1
A

∑A
j=1 qϕj (zs|x)

] . (18)

Subtracting the R.H.S. with the L.H.S., we get

Eφ(Φ)

 1

S

∑
ϕs∈Φ

Eqϕs (zs|x)

[
log

p(x, zs)
1
A

∑A
j=1 qϕj

(zs|x)

]− Eφ(Φ)

 1

S

∑
ϕs∈Φ

Eqϕs (zs|x)

[
log

p(x, zs)
1
S

∑
ϕk∈Φ qϕk

(zs|x)

] (19)

=Eφ(Φ)

 1

S

∑
ϕs∈Φ

Eqϕs (zs|x)

[
log

p(x, zs)
1
A

∑A
j=1 qϕj

(zs|x)
− log

p(x, zs)
1
S

∑
ϕk∈Φ qϕk

(zs|x)

] (20)

=Eφ(Φ)

 1

S

∑
ϕs∈Φ

Eqϕs (zs|x)

[
log

1
S

∑
ϕk∈Φ qϕk

(zs|x)
1
A

∑A
j=1 qϕj

(zs|x)

] (21)

=Eφ(Φ)

KL

 1

S

∑
ϕk∈Φ

qϕk
(z|x)

∥∥∥∥∥ 1A
A∑

j=1

qϕj
(z|x)

 ≥ 0, (22)

where the final inequality holds as the KL, and thus the average of KLs, is non-negative.

From the result above, it furthermore follows directly that the expected value of the S2S estimator is a lower bound on the
marginal log-likelihood.

Corollary A.2. The expected value of the Some-to-Some estimator is a lower bound on the marginal log-likelihood, i.e.

E
[
L̃M,S,J

S2S

]
≤ log pθ(x).

Corollary 4.1: The expected value of the Some-to-All estimator is a lower bound on the marginal log-likelihood,

E
[
L̃S2A

]
≤ log pθ(x).

Proof. Recalling that LMIS ≤ log pθ(x), it follows from Theorem A.1 that E
[
L̃M,S,J

S2S
]
≤ LMIS ≤ log pθ(x).
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B. Extension to Weighted Mixture
We now extend the unbiasedness result to the case of weighted mixtures. We repeat Theorem 4.3 from the main text.
Theorem B.1. The Some-to-All estimator is an unbiased estimator of MISELBO for arbitrary mixture weights.

Proof. First let us define the weighted A2A estimator

L̃A2A =

A∑
k=1

wk

wA
log

pθ(x|zk)pθ(zk)∑A
a′=1

wa′
wA

qϕa′ (zk|x)
, (23)

where za ∼ qϕa(z|x), wa are the unnormalized weights and

wA :=

A∑
k=1

wk.

Let (I,Σ) be a measurable space with sample space

I =

H ∈ {0, 1}A :
∑
j∈[A]

Hj = S

 (24)

and probability measure φ(H).

For the sake of generality we will consider an estimator of the importance weighted MISELBO (i.e. with L ≥ 1). Let

LM,S,φ
S2A :=

1

M

M∑
m=1

A∑
k=1

ukH
m
k log

1

L

L∑
l=1

p(x, zlk)∑A
a′=1

wa′
wA

qϕa′ (z
l
k|x)

(∗)

where

H1, . . . ,HM ∼ φ, zlk ∼ qϕk
(z|x), and uk :=

wk

wAE[Hk]

Now we show that the expectation of (∗) is equal to the importance weighted MISELBO objective with arbitrary mixture
weights.

E[LM,S,φ
S2A ] = EH1,...,HM∼φ

[
1

M

M∑
m=1

A∑
k=1

ukH
m
k Ezl

k∼qϕk
(z|x)

[
log

1

L

L∑
l=1

p(x, zlk)∑
a′

wa′
wA

qϕa′ (z
l
k|x)

]]

= EH∼φ

[
A∑

k=1

ukHkEzl
k

[
log

1

L

L∑
l=1

p(x, zlk)∑
a′

wa′
wA

qϕa′ (z
l
k|x)

]]

=
∑
H∈I

φ(H)

[
A∑

k=1

ukHkEzl
k

[
log

1

L

L∑
l=1

p(x, zlk)∑
a′

wa′
wA

qϕa′ (z
l
k|x)

]]

=

A∑
k=1

uk

( ∑
H∈IS

φ(H)Hk

)
Ezl

k

[
log

1

L

L∑
l=1

p(x, zlk)∑
a′

wa′
wA

qϕa′ (z
l
k|x)

]

=

A∑
k=1

ukEφ[Hk]Ezl
k

[
log

1

L

L∑
l=1

p(x, zlk)∑
a′

wa′
wA

qϕa′ (z
l
k|x)

]

=

A∑
k=1

wk

wA
Ezl

k

[
log

1

L

L∑
l=1

p(x, zlk)∑
a′

wa′
wA

qϕa′ (z
l
k|x)

]
.

That is the same as that of the weighted A2A.
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C. Block Diagrams MISVAE - S2A and A2A
In Fig. 7 we display block diagrams for MISVAE with the S2A and A2A estimators.
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Figure 7: Block diagram illustrating the estimation of MISELBO with MISVAE, showcasing the S2A estimator (top) with
S = 2 and A = 3, alongside the A2A estimator (bottom) with A = 3.

D. Additional Experimental Details
D.1. Training Infrastructure

All experiments were conducted on a NVIDIA RTX 4090s with 24 GiB of memory each using the PyTorch framework
(Paszke et al., 2019).

MNIST (LeCun & Cortes, 2010). When training on the MNIST image dataset, fD2H was defined as a sequence of five
gated convolutional layers. To learn fϕ, which amortizes the mean and covariance matrices of the variational posterior,
we employed two separate non-linear networks. Each network consisted of an input layer, an output layer, and a hidden
layer, the latter featuring 40 latent dimensions equipped with ReLU activation functions. We used a single layer Pixel CNN
decoder. For optimization, we used Adam (Kingma & Ba, 2017), with a learning rate of 0.0005, and a batch size of 100 and
initiated the process with a KL-warmup phase lasting 100 epochs.

CIFAR-10 (Krizhevsky et al.). For fD2H we used a pre-trained ResNet model2 with 20 layers. fϕ was defined the same
way as on MNIST, except we used 128 latent dimensions. We optimized using Adam, with a learning rate of 0.001, and
a batch size of 100 and initiated the training with KL-warmup during 500 epochs. We used a Pixel CNN decoder with 4
layers.

2https://github.com/akamaster/pytorch resnet cifar10/tree/master
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E. Additional Experimental Results
E.1. Toy Experiment

Figure 8: An unnormalized posterior from the toy example when dx = 20 and N = 5. The plot is generated by sampling
from the prior and evaluating the unnormalized log-probabilities of each sample (darker is lower).

E.1.1. THE EXPONENTIAL-DECAY-BERNOULLI-LIKELIHOOD-AND-NEAL-FUNNEL-PRIOR MODEL

We generated a dataset D = {xn}5n=1 by sampling from the model. The approximations were learned using the Adam
optimizer (Kingma & Ba, 2014) with learning rate equal to 0.001. The other optimizer parameters were set to their (PyTorch)
default values. The variational parameters were initialized using the Kaiming-uniform initialization (He et al., 2015), the
number of training iterations were 50k. All estimators used the same number of importance samples when estimating the
MISELBO scores shown in the curve figures.

E.1.2. TOY EXPERIMENT - LATENT SPACE VISUALIZATION

The approximations are visualized in the latent spaces shown in figures 9-12. Notably, when A = 5, the approximations
from S2A and A2A are identical (recall that S2A required substantially less inference time, see in Sec. 6). Meanwhile, the
components in the S2S approximations were not able to sufficiently separate themselves.

Finally, in Fig. 12, we visualize how the approximation learned with the S2S estimator behaves when S = 5 and S = 20.
The approximation obtains impressive MISELBO scores (shown in Sec. 6) although the components largely overlapping.

Figure 9: dx = 20: approximation when using the S2A estimator, S = 2 and A = 5.
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Figure 10: dx = 20: approximation when using the S2S estimator, S = 2 and A = 5.

Figure 11: dx = 20: approximation when using the A2A estimator, S = 5 and A = 5.

Figure 12: dx = 20: approximation when using the S2S estimator, S = 5 and A = 20.
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E.2. Additional S2S Results with big A

In Fig. 13a, we showcase how the final test set Negative Log Likelihood (NLL) value is impacted by setting the total
number of mixtures to a large fixed value A = 50 and gradually increasing the number of components used by the S2S
estimator. The performance of S2S is compared to the A2A estimator, where we instead let A = S of the former estimator
and gradually increase A. For small values of S, S2S exhibits a clear performance advantage both in terms of NLL and
inference time per epoch (not shown here). However, as S approaches A, the NLL performance advantage of S2S diminishes
compared to A2A.

In Fig. 13b, we let S be a fixed small value and gradually increase A for the S2S estimator. For both curves, an initial
increase in A results in significant performance gains in terms of NLL; however, beyond a certain point, adding more
mixtures yields no further improvements.
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Figure 13: Analysis of MISELBO estimation using the S2S estimator. (a) With the number of mixtures A set to a constant
value, we incrementally increase the number of components S, observing the impact on estimation accuracy. (b) Conversely,
we maintain a constant number of components S while progressively increasing the number of mixtures A to assess the
benefits of additional mixtures on the estimation process.

E.3. Phylogenetics Experiment

E.3.1. DETAILS OF VARIATIONAL BAYESIAN PHYLOGENETIC INFERENCE USING MIXTURES AND BLACK-BOX
VARIATIONAL INFERENCE

The task in Bayesian phylogenetic inference, is to approximate the posterior distribution over branch lengths, B, and tree
topologies, τ , given the observed sequence data (typically DNA data), x. The phylogenetic posterior is thus defined as

p(τ,B|x) = p(x|τ,B)p(B|τ)p(τ)
p(x)

, (25)

where the marginal likelihood, p(x), is intractable.

Based on algorithms of (Zhang & Matsen IV, 2018; 2019; Zhang, 2020a; Zhang & Matsen IV, 2022; Zhang, 2023; Zhou
et al., 2023) we utilized the S2A and S2S to speed up the improvements made with mixtures in (Kviman et al., 2023b). The
improvements follow the same structure as the original paper. In summary, the Subsplit Bayesian Networks (SBNs; Zhang &
Matsen IV (2018)) are utilized to learn tree topologies in a Bayesian phylogenetic context. An SBN employs a lookup table
containing probabilities of subsplits (partial tree structures), referred to as a Conditional Probability Table (CPT). This table
is learned through BBVI, and once the CPT is established, the SBN provides a tractable probability distribution over tree
topologies, enabling sampling from this distribution. The parameters of SBNs are learned in the VBPI (Variational Bayesian
Phylogenetic Inference) framework by maximizing MISELBO using VIMCO for variance reduction of the gradient.
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Figure 14: Top: Images generated with a variational posterior with 400 mixture components (A=400), trained with the S2A
estimator and S=1 on FashionMNIST. Bottom: Images generated with a variational posterior with 600 mixture components
(A=600), trained with the S2A estimator and S=1 on MNIST

VIMCO (Variational Inference for Monte Carlo Objectives), the VBPI-Mixtures algorithm is a novel development in
Bayesian phylogenetics. It demonstrates that mixtures of SBNs can approximate distributions unattainable by a single SBN,
providing more accurate models of complex phylogenetic datasets. The VIMCO estimator, specifically derived for mixtures,
enhances this approach. This estimator enables the VBPI-Mixtures algorithm to jointly explore the tree-topology space
more effectively, leading to state-of-the-art results on various real phylogenetics datasets. Thus, mixtures of SBNs, coupled
with the VIMCO estimator, significantly improve the accuracy of approximations of the tree-topology posterior in Bayesian
phylogenetic inference. In this article, we took these improvements and combined them with the novel improvements of
S2A and S2S to significantly speed up the training process with minimal to no loss in performance, resulting in a scalable
solution that can be used for more advance phylogenetic problems.

E.4. Generated Images

To assess the generative capabilities of our models, we have included visualizations of images generated from the MNIST
and FashionMNIST datasets in Fig. 14.

E.5. Comparable performance on CIFAR-10

Table 4: NLL statistics for various SOTA VAE architectures on the CIFAR-10 dataset. The Composite model is a SEMVAE
model which incorporates hierarchical models, NFs and the VampPrior. For IWAE L is the number of importance samples
used during training.

Model NLL

NVAE (Vahdat & Kautz, 2020) 2.93
PixelVAE++ (Sadeghi et al., 2019) 2.90
MAE (Ma et al., 2019) 2.95
Vanilla SEMVAE (S = 12; Kviman et al. (2023a)) 4.83
CR-NVAE (Sinha & Dieng, 2021) 2.51

MISVAE S2S (A = 4, S = 2; our) 3.23
MISVAE S2A (A = 4, S = 2; our) 3.19
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