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Abstract
Deep neural networks (DNNs) are vulnerable to
backdoor attacks, where adversaries can mali-
ciously trigger model misclassifications by im-
planting a hidden backdoor during model training.
This paper proposes a simple yet effective input-
level backdoor detection (dubbed IBD-PSC) as
a ‘firewall’ to filter out malicious testing images.
Our method is motivated by an intriguing phe-
nomenon, i.e., parameter-oriented scaling consis-
tency (PSC), where the prediction confidences of
poisoned samples are significantly more consis-
tent than those of benign ones when amplifying
model parameters. In particular, we provide theo-
retical analysis to safeguard the foundations of the
PSC phenomenon. We also design an adaptive
method to select BN layers to scale up for ef-
fective detection. Extensive experiments are con-
ducted on benchmark datasets, verifying the effec-
tiveness and efficiency of our IBD-PSC method
and its resistance to adaptive attacks. Codes are
available at BackdoorBox.

1. Introduction
Backdoor attacks are an emerging training-phase threat to
deep neural networks (DNNs) (Li et al., 2022b). A back-
doored model behaves normally on benign samples while
misclassifying malicious samples containing adversary-
specified patterns (i.e., triggers). This attack could happen
whenever the training stage is not fully controlled. It poses a
significant threat to the lifecycle and supply chain of DNNs.
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Figure 1. The limitation of SCALE-UP and the co-effects of pixel
and parameter values. (a) Failures in SCALE-UP due to bounded
pixel value (i.e., [0, 255]). Specifically, benign samples with black
and white pixels are immune to amplification, preserving scaled
prediction stability. Multiplying larger pixel values can easily turn
them white, making the trigger disappear and become useless. (b)
The prediction is the co-effects of the image and model parameters.

Currently, there are five representative defense strategies
to alleviate backdoor threats, including (1) data purifica-
tion (Tran et al., 2018; Li et al., 2021b; Jebreel et al., 2023),
(2) poison suppression (Wang et al., 2022a; Huang et al.,
2022; Tang et al., 2023), (3) model-level backdoor detec-
tion (Wang et al., 2019; Xiang et al., 2023; Wang et al.,
2024), (4) model-level backdoor mitigation (Liu et al., 2018;
Zeng et al., 2022; Guo et al., 2023a), and (5) input-level
backdoor detection (IBD) (Gao et al., 2021; Liu et al., 2023;
Guo et al., 2023b). In general, the first four strategies typi-
cally demand substantial computational resources since they
usually require model training. However, these resources
are unavailable for many researchers and developers, espe-
cially those using third-party models. In contrast, the last
one is less resource-intensive and is, therefore, our main
focus. It aims to detect and prevent malicious inputs and
can serve as the firewall of deployed models.

To the best of our knowledge, SCALE-UP (Guo et al.,
2023b) currently stands as the most advanced IBD. It ob-
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serves that the predictions of poisoned samples (i.e., those
containing triggers) exhibit more robustness to pixel-level
amplification compared with those of benign samples and
provides the theoretical foundations for this phenomenon.
Employing this intriguing phenomenon, SCALE-UP di-
rectly enlarges all pixel values of the suspicious input sam-
ple with varying amplification intensities and assesses its
prediction consistency for detection. However, SCALE-UP
encounters some intrinsic limitations due to the restriction
of pixel values (i.e., bounded in [0, 255]). For example,
as shown in Figure 1(a), benign samples containing black
and white pixels maintain their initial predictions during the
amplification process. This stability is due to their extreme
pixel values (0 or 255), which remain unaffected against
amplification. Conversely, in poisoned samples, amplifica-
tion often turns higher pixel values to the maximum (i.e.,
255). It leads to large blank areas in the scaled poisoned
images, masking the triggers and thus leading to changes
in their predictions. Recognizing that prediction results are
from the co-effects of pixel and parameter values, as shown
in Figure 1(b), while parameter values are not bounded, an
intriguing question arises:

Shall the model’s parameters expose backdoors with more
grace than the humble pixel’s tale?

Fortunately, the answer is yes! In this paper, we reveal
that the prediction confidences of poisoned samples have
parameter-oriented scaling consistency (PSC). Specifically,
we scale up the learned parameters of the batch normaliza-
tion (BN) layers, which are widely exploited in advanced
DNN structures. We demonstrate that the prediction confi-
dences of poisoned samples are significantly more consistent
than those of benign ones when the number of amplified BN
layers increases. In particular, we show that this intriguing
phenomenon is not accidental, where we prove that we can
always find a scaling factor for BN parameters to expose la-
tent backdoors for all attacked models (under some classical
assumptions in learning theory). The scaled model can mis-
classify benign samples while maintaining the predictions
of poisoned samples, leading to the PSC phenomenon.

Motivated by this finding, we propose a simple yet effective
IBD method to identify and filter malicious testing samples,
dubbed IBD-PSC. Specifically, for each suspicious testing
image, our IBD-PSC measures its PSC value. This PSC
value is defined as the average confidence generated over
a range of parameter-scaled versions of the original model
on the label, which is predicted by the original model. The
larger the PSC value, the more likely the suspicious sample
is poisoned. In particular, we start from the last layer of
the deployed model and scale up different numbers of BN
layers to obtain the scaled models. It is motivated by the
previous findings (Huang et al., 2022; Jebreel et al., 2023)
that trigger patterns often manifest as complicated features

learned by the deeper layers of models, especially for those
attacks with elaborate designs (Huang et al., 2022; Jebreel
et al., 2023). To effectively determine the optimal number of
layers for amplification, we design an adaptive algorithm by
evaluating the scaling impact on the model’s performance
when processing benign samples.

In conclusion, our main contributions are four-fold. (1) We
disclose an intriguing phenomenon, i.e., parameter-oriented
scaling consistency (PSC), where the prediction confidences
of poisoned samples are more consistent than benign ones
when scaling up BN parameters. (2) We provide theoretical
insights to elucidate the PSC phenomenon. (3) We design a
simple yet effective method (i.e., IBD-PSC) to filter out poi-
soned testing images based on our findings. (4) We conduct
extensive experiments on benchmark datasets, verifying the
effectiveness of our method against 13 representative attacks
and its resistance to potential adaptive attacks.

2. Related Work
2.1. Backdoor Attacks

In general, existing backdoor attacks can be categorized into
three types based on the adversaries’ capabilities: (1) poison-
only attacks, (2) training-controlled attacks, and (3) model-
controlled attacks. These attacks could happen whenever
the training stage is not fully controlled.

Poison-only Backdoor Attacks. In these attacks, the adver-
saries can only manipulate the training dataset. Gu et al. (Gu
et al., 2017) proposed the first poison-only attack (i.e., Bad-
Nets). BadNets poisoned a few training samples by patching
a predefined trigger, e.g., a 3× 3 white square, onto the bot-
tom right corner of these samples. It then altered the labels
of the modified samples to an adversaries-specified target
label. Models trained on such poisoned training sets create
a relation between the trigger and the target label. Subse-
quent studies further developed more stealthy attack meth-
ods, including invisible and clean-label attacks. The former
methods (Chen et al., 2017; Li et al., 2021c) typically used
imperceptible triggers to bypass manual detection, while
the latter ones (Turner et al., 2019; Zeng et al., 2023; Gao
et al., 2023) maintained the ground-truth label of poisoned
samples. Besides, there are also the physical attack (Wenger
et al., 2021; Gong et al., 2023; Xu et al., 2023) that adopt
physical objects or spatial transformations as triggers and
the adaptive attack methods (Tang et al., 2021; Qi et al.,
2023) that are specifically designed to evade defenses.

Training-controlled Backdoor Attacks. In these attacks,
adversaries can modify both the training dataset and the
training process. One line of work aimed to circumvent
existing defenses and human detection. For instance, the
adversaries may introduce a ‘noise mode’ (Nguyen & Tran,
2020; 2021; Mo et al., 2024; Zhang et al., 2024) or incorpo-
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rate well-designed regularization terms into training loss (Li
et al., 2020; Doan et al., 2021; Xia et al., 2022). Another line
of work focused on augmenting the effectiveness of attacks.
For instance, Wang et al. (Wang et al., 2022c) exploited
learning algorithms beyond supervised learning to ensure
the correct injections of subtle triggers. Besides, Li et al. (Li
et al., 2021c) and Zhang et al. (Zhang et al., 2022) intro-
duced spatial transformations to poisoned samples to hide
the triggers more robustly, extending the threat of backdoor
attacks to the real physical scenarios.

Model-controlled Backdoor Attacks. In model-controlled
backdoor attacks, adversaries modify model architectures
or parameters directly to inject backdoors. For example,
Tang et al. (Tang et al., 2020) implanted hidden backdoors
by inserting an additional malicious module into the be-
nign victim model. Qi et al. (Qi et al., 2022) proposed to
maliciously modify the parameters of a narrow subnet in
the benign model instead of inserting an additional module.
This approach was more stealthy and was highly effective
in both digital and physical scenarios.

Recently, a few works exploit backdoor attacks for positive
purposes (Li et al., 2022a;c; 2023b; Guo et al., 2023c; Tang
et al., 2023; Ya et al., 2024), which are out of our scope.

2.2. Backdoor Defenses

Based on the stage of the model lifecycle where defense oc-
curs, existing defenses can be mainly divided into five main
categories: (1) data purification (Tran et al., 2018; Li et al.,
2021b; Jebreel et al., 2023), (2) poison suppression (Wang
et al., 2022a; Huang et al., 2022; Tang et al., 2023), (3)
model-level backdoor detection (Wang et al., 2019; Xiang
et al., 2023; Wang et al., 2024; Yao et al., 2024; Wang et al.,
2023; 2022b), (4) model-level backdoor mitigation (Liu
et al., 2018; Zeng et al., 2022; Guo et al., 2023a; Li et al.,
2024a;b; Xu et al., 2024), and (5) input-level backdoor de-
tection (IBD) (Gao et al., 2021; Liu et al., 2023; Guo et al.,
2023b). Specifically, data purification intends to filter out all
poisoned samples in a given (third-party) dataset. It usually
needs to train a model before identifying the influence of
each training sample; Poison suppression aims to hinder the
model’s learning of the poisoned samples by modifying its
training process to prevent backdoor creation; Model-level
detection usually trains a meta-classifier or approximates
trigger generation to determine whether a suspicious model
contains hidden backdoors; IBD detects and prevents ma-
licious inputs and acts as a ‘firewall’ of deployed models.
In general, the first four strategies demand substantial com-
putational resources since they typically necessitate model
training or fine-tuning. However, these resources are un-
available for many researchers and developers, especially
those using third-party models. This paper primarily focuses
on IBD, which is more computation-friendly.

Previous IBD methods (Chou et al., 2020; Gao et al., 2021;
Liu et al., 2023) are effective under implicit assumptions
concerning the backdoor triggers. For example, STRIP (Gao
et al., 2021) posited that trigger features play a dominant
role, and the predictions of poisoned samples will not be
affected even when benign features are overlaid. These as-
sumptions can be easily circumvented by adaptive backdoor
attacks (Nguyen & Tran, 2020; Li et al., 2021a; Duan et al.,
2024). To the best of our knowledge, the most advanced
IBD method is SCALE-UP (Guo et al., 2023b). It amplified
all pixel values of an input sample with varying intensities
and treated it as poisoned if the predictions were consistent.
However, SCALE-UP inherited some potential limitations
due to pixel value constraints (bounded in [0, 255]). For
example, these constraints may alter predictions of poisoned
samples, as amplification can transform higher pixel values
into the maximum value of 255, causing triggers (e.g., a
white square) to disappear. How to design effective yet
efficient IBD methods is still a critical open question.

3. Parameter-oriented Scaling Consistency
As demonstrated in (Guo et al., 2023b), the predictions
of poisoned samples are significantly more consistent than
benign ones when amplifying all pixel values. Motivated by
the fact that model predictions result from the co-effects of
samples and model parameters, in this section, we explore
whether a similar intriguing phenomenon still exists if we
scale up model parameters instead of pixel values.

For simplicity, we mainly focus on the learnable parameters
of BN layers since they are used to transform features and
are widely exploited in almost all advanced DNNs. Before
illustrating our key observation and its theoretical support,
we first briefly review the mechanism of BN.

Batch Normalization. Let ϕ(·; γ,β) denote the BN func-
tion, for a given batch feature maps a, the BN operation
transforms it into b: b = ϕ(a; γ,β). This transformation is

expressed as ϕ(a; γ,β) = γ

(
a−µa√
σ2
a+ϵ

)
+ β, where ϵ is a

small value, µa and σa are the mean and standard deviation
of a, respectively. The γ and β are learnable parameters,
designed to scale and shift normalized features, and learned
during the training process.
Settings. In this section, we adopt BadNets (Gu et al., 2017),
WaNet (Nguyen & Tran, 2021), and BATT (Xu et al., 2023)
on CIFAR-10 (Krizhevsky et al., 2009) as examples for anal-
yses. They are the representative of (1) patch-based attack,
(2) sample-specific attack, and (3) physical attack, respec-
tively. We exploit a standard ResNet-18 (He et al., 2016a)
as our model structure. It contains twenty BN layers. For
all attacks, we set the poisoning rate as 10%. Specifically,
for each benign and poisoned image, we scale up on the BN
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Figure 2. The average confidence of benign and poisoned samples when amplifying different numbers of BN layers under benign and
backdoored models (starting from the last layer).
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Figure 3. The approximated distribution of the ℓ2-norm, fitted by Gaussian, of the final feature map of samples generated by models with
different numbers of amplified BN layers. Increasing the number of amplified layers increases both value and variance of features.

parameters (i.e., γ and β) with ω = 1.5 times starting from
the last layer and gradually moving forward to more layers.
Similar to (Guo et al., 2023b), we also calculate the average
confidence defined as the average probability of samples on
the label predicted by the original unamplified model. More
details are in our Appendix B.

Results. As shown in Figure 2(a), the average prediction
confidence of the poisoned and benign samples decreases at
almost the same rate as the number of amplified BN layers
increases under the benign model. In contrast, as shown
in Figure 2(b)-Figure 2(d), the average prediction confi-
dence of the poisoned samples remains nearly unchanged,
whereas that of the benign samples also decreases during
the parameter-amplified process under all three attacked
models. In other words, benign and poisoned samples enjoy
different BN-amplified prediction behaviors under attacked
models. We call this intriguing phenomenon (of poisoned
samples) as parameter-oriented scaling consistency (PSC).

To verify that the PSC phenomenon is not accidental, we
provide the following theoretical and empirical analyses.

Theorem 3.1. Let F = FC ◦ fL ◦ · · · ◦ f1 be a backdoored
DNN with L hidden layers and FC denotes the fully con-
nected layers. Let x be an input, b = fl ◦ · · · ◦ f1(x) be its
batch-normalized feature after the l-th layer (1 ≤ l ≤ L),
and t represent the attacker-specified target class. Assume
that b follows a mixture of Gaussian distributions. Then the
following two statements hold: (1) Amplifying the β and γ
parameters of the l-th BN layer can make ∥b̃∥2 (b̃ is the am-
plified version of b) arbitrarily large, and (2) There exists a
positive constant M that is independent of b̃, such that when-

ever ∥b̃∥2 > M , then argmaxFC ◦ fL ◦ · · · ◦ fl+1(b̃) = t,
even when argmaxFC ◦ fL ◦ · · · ◦ fl+1(b) ̸= t.

Theorem 3.1 indicates that larger enough feature norms can
induce decreasing confidence in the original predicted class
if the inputs are benign samples (under certain classical
assumptions in learning theory). Poisoned samples, instead,
will stay fine. Its proof is in Appendix A.

In practice, we find amplifying only a single BN layer may
require an unreasonably large amplification factor and is un-
stable among different attacks or even BN layers, as demon-
strated in Appendix C. Fortunately, as shown in Figure 3,
amplifying multiple BN layers with a small factor (e.g., 1.5)
can also significantly increase the feature norm in the last
pre-FC layer and is more stable across different settings. As
such, we amplify multiple layers throughout this work.

4. The Proposed Method
4.1. Preliminaries

Threat Model. This work focuses on input-level backdoor
detection under the white-box setting with limited compu-
tational capacities. Defenders have full access to the suspi-
cious model downloaded from a third party, but they lack
the resources to remove potential backdoors (via backdoor
mitigation). Similar to prior works (Gao et al., 2021; Guo
et al., 2023b), we assume that defenders have access to a
limited number of local benign samples.

Defenders’ Goals. An ideal IBD solution aims to precisely
identify and eliminate all poisoned input samples while
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Figure 4. The main pipeline of our IBD-PSC. Stage 1. Model Amplification: Starting from the penultimate k-th layer of the original
model, IBD-PSC gradually forward amplifies the parameters of more BN layers simultaneously to obtain n different parameter-amplified
models. Stage 2. Input Detection: For each suspicious image, IBD-PSC will first calculate the prediction confidence of the obtained n
parameter-amplified models on the label predicted by the original model. After that, IBD-PSC determines whether it is a poisoned sample
by whether the average of obtained prediction confidences (defined as PSC value) is greater than a given threshold T .

preserving the inference efficiency of the deployed model.
Consequently, defenders have two main goals: (1) Effec-
tiveness: The defense should accurately identify whether
a given suspicious image is malicious. (2) Efficiency: The
defense must operate in real-time and integrate seamlessly
as a plug-and-play module, ensuring minimal impact on the
model’s inference time.

The Overview of DNNs. Consider a DNN model F : X →
[0, 1]C consisting L hidden layers, where X is the input
space and C is the number of classes. We can specify it as

F = FC ◦ fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1, (1)

where FC denotes the fully-connected layers and fi rep-
resents i-th hidden layer consisting of one convolutional,
batch normalization, and activation layer.

The Main Pipeline of Backdoor Attack. Let D =
{(xi, yi)}Ni=1 denote a training set, consisting of N i.i.d.
samples. For each sample (x, y), x ∈ X = [0, 1]dc×dw×dh

and y ∈ Y = {1, 2, · · · , C}, an adversary creates a poi-
soned training set D̂ by injecting a pre-defined trigger t
into a subset of benign samples (i.e., Ds). The trigger is
procured through a designated trigger generating function,
symbolized as t = τ(x), where τ : X → X . The gener-
ated poisoned samples are represented as Dp = {(x̂, t) |
x̂ = x + t, (x, y) ∈ Ds}. The final poisoned training set
D̂ is formed by combining Dp with the remaining benign
samples Db, i.e., D̂ = Dp ∪ Db. The poisoning rate is
ρ = |Dp|/|D̂|. The backdoor will be created for DNNs
trained on the poisoned dataset D̂.

4.2. The Overview of IBD-PSC

As demonstrated in Section 3, the prediction confidences
of poisoned samples exhibit greater consistency than those
of benign ones when scaling up BN parameters of attacked

DNNs. As such, we can detect whether a suspicious image
is malicious by examining its parameter-oriented scaled
consistency (PSC), a method we refer to as IBD-PSC.

In general, as shown in Figure 4, our IBD-PSC has two
main stages, including (1) model amplification and (2) input
detection. In the first stage, we amplify the BN parameters
of different layers in the original model to obtain a series
of parameter-amplified models. In the second stage, we
calculate the PSC value of the suspicious image based on
the obtained models and the original one. A larger PSC
value indicates a higher likelihood that the suspicious image
is malicious. The technical details are as follows.

4.3. Model Amplification

Overview. In this stage, we intend to obtain n different
parameter-amplified versions of the original model by ampli-
fying the parameters (i.e., γ and β) of its different BN layers.
In particular, we amplify the later parts of the original model.
It is motivated by the previous findings that trigger patterns
often manifest as complicated features learned by the deeper
(convolutional) layers of DNNs, especially for those attacks
with elaborate designs (Huang et al., 2022; Jebreel et al.,
2023). This finding is consistent with our observations
in Figure 2. Specifically, let k denote the penultimate BN
layers in which we scale up in the first parameter-amplified
model. For the i-th amplified model, we scale up the param-
eters in the last (k+ i− 1) BN layers with the same scaling
factor ω. Let F denotes the original model, its parameter-
amplified version containing k amplified BN layers with
scaling factor ω (i.e., F̂ω

k ) can be defined as

F̂ω
k = FC ◦ f̂ω

L ◦ f̂ω
L−1 ◦ ... ◦ f̂ω

L−k+1 ◦ ... ◦ f2 ◦ f1, (2)

where f̂ω
i represents the BN layer of the i-th hidden layer

undergoing an amplification process. It scales the original
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Algorithm 1 Adaptive layer selection.
Input: original model F , scaling factor ω, error rate
threshold ξ, local benign dataset Dr

Output: optimal number of amplified BN layers (i.e., k)
for the first parameter-amplified model
for i← 1 to L do
k = i
Generate the parameter-amplified model F̂ω

k us-
ing Equation (2)
Calculate the error rate η using Equation (3)
if η > ξ then

break
end if

end for
return k

BN layer’s parameters γ and β by a scaling factor ω, i.e.,
γ̂ = ω · γ and β̂ = ω · β. We also conduct ablation studies
in Appendix D and Appendix E to assess the impact of
amplifying BN layers in a forward sequential manner and
that of amplifying all BN layers, respectively.

We exploit n instead of one parameter-amplified model
(with many amplified BN layers) to balance the performance
on benign and poisoned samples. In practice, n is a defender-
assigned hyper-parameter. More details and its impact are
included in Appendix M.3. Accordingly, the last remain-
ing question for model amplification is selecting a suitable
starting point k. Its technical details are as follows.

Layer Selection. To optimally determine the number of
amplified BN layers, we design an adaptive algorithm to
dynamically select a suitable k. Motivated by our PSC
phenomenon (see Figure 2), we intend to find the point
where the prediction accuracy for benign samples begins to
decline significantly. Specifically, we incrementally increase
k from 1 to L and monitor the error rate η. Let Dr denote
the set of remaining benign samples. We can then compute
the error rate η as the proportion of samples within Dr that
are misclassified by the parameter-amplified model F̂ω

k , i.e.,

η =
1

|Dr|
∑

(x,y)∈Dr

I
(
argmax

(
F̂ω

k (x)
)
̸= y
)
, (3)

where I denotes the indicator function. Once η exceeds
a predefined threshold ξ (e.g., 60%), the BN layers from
the (L− k + 1)-th to the L-th layer are determined as the
target layers for amplification. The details of the adaptive
algorithm are outlined in Algorithm 1.

4.4. Input Detection

Once we obtain n parameter-amplified versions of the
original model F with the starting amplified point k (i.e.,
{F̂ω

k+i−1}ni=1), for each suspicious image, our IBD-PSC can

examine it by calculating its PSC value based on their predic-
tions. Specifically, we define the PSC value as the average
confidence generated over parameter-amplified models on
the label predicted by the original model, i.e.,

PSC(x) =
1

n

k+n−1∑
i=k

F̂ω
i (x)y′ , (4)

where y′ = argmax (F(x)). After obtaining the PSC value,
IBD-PSC assesses whether the input sample is malicious by
comparing it to a predefined threshold T . If PSC > T , it is
marked as a poisoned image.

5. Experiments
5.1. Experiment Settings

Datasets and Models. We follow the settings in existing
backdoor defenses and conduct experiments on CIFAR-
10 (Krizhevsky et al., 2009), GTSRB (Stallkamp et al., 2012)
and a subset of ImageNet dataset with 200 classes (dubbed
‘SubImageNet-200’) (Deng et al., 2009) using the ResNet18
architecture (He et al., 2016a). More detailed settings are
presented in Appendix F.

Attack Baselines. We evaluate the effectiveness of IBD-
PSC against thirteen representative backdoor attacks, in-
cluding 1) BadNets (Gu et al., 2017), 2) Blend (Chen
et al., 2017), 3) LC (Turner et al., 2019), 4) ISSBA (Li
et al., 2021a), 5) TaCT (Tang et al., 2021), 6) NARCIS-
SUS (Zeng et al., 2023), 7) Adap-Patch (Qi et al., 2023), 8)
BATT (Xu et al., 2023), 9) PhysicalBA (Li et al., 2021c), 10)
IAD (Nguyen & Tran, 2020), 11) WaNet (Nguyen & Tran,
2021), 12) BPP (Wang et al., 2022c), and 13) SRA (Qi et al.,
2022). The first eight attacks are representative of poison-
only attacks, while the last one is a model-controlled attack.
The remaining four are training-controlled attacks. More
details about the attack baselines are in the Appendix G.

Defense Settings. We compare our defense with classi-
cal and advanced input-level backdoor defenses, includ-
ing STRIP (Gao et al., 2021), TeCo (Liu et al., 2023) and
SCALE-UP (Guo et al., 2023b). We implement these de-
fenses using their official codes with default settings. Our
IBD-PSC defense maintains a consistent hyper-parameter
setting across various attacks and datasets. Specifically, we
set ω = 1.5, n = 5, ϵ = 60%, and T = 0.9. Defenders can
only access 100 benign samples as their local samples. More
setting details about baseline methods are in Appendix H.

Evaluation Metrics. We employ two common metrics in
our evaluation: 1) the area under the receiver operating curve
(AUROC) measures the overall performance of detection
methods across different thresholds, and 2) the F1 score
measures both detection precision and recall.
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Table 1. The performance (AUROC, F1) on the CIFAR-10 dataset. We mark the best result in boldface and failed cases (< 0.7) in red.
Attacks→ BadNets Blend PhysicalBA IAD WaNet ISSBA BATT Avg.
Defenses↓ AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

STRIP 0.931 0.842 0.453 0.114 0.884 0.882 0.962 0.907 0.469 0.125 0.364 0.526 0.449 0.258 0.663 0.494
TeCo 0.998 0.970 0.675 0.678 0.748 0.689 0.909 0.920 0.923 0.915 0.901 0.942 0.914 0.673 0.858 0.834
SCALE-UP 0.962 0.913 0.644 0.453 0.969 0.715 0.967 0.869 0.672 0.529 0.942 0.894 0.959 0.911 0.731 0.757
IBD-PSC 1.000 0.967 0.998 0.960 0.972 0.942 0.983 0.952 0.984 0.956 1.000 0.986 0.999 0.966 0.992 0.961

Table 2. The performance (AUROC, F1) on the GTSRB dataset. We mark the best result in boldface and failed cases (< 0.7) in red.
Attacks→ BadNets Blend PhysicalBA IAD WaNet ISSBA BATT Avg.
Defenses↓ AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

STRIP 0.962 0.915 0.426 0.088 0.700 0.479 0.855 0.890 0.356 0.201 0.640 0.625 0.648 0.368 0.657 0.588
TeCo 0.879 0.905 0.917 0.913 0.860 0.673 0.955 0.962 0.954 0.935 0.941 0.947 0.829 0.673 0.907 0.858
SCALE-UP 0.913 0.858 0.579 0.421 0.762 0.709 0.885 0.860 0.309 0.149 0.733 0.691 0.902 0.876 0.700 0.669
IBD-PSC 0.968 0.965 0.953 0.928 0.940 0.946 0.970 0.971 0.986 0.973 0.972 0.971 0.969 0.968 0.969 0.962

Table 3. The performance (AUROC, F1) on SubImageNet-200. We mark the best result in boldface and failed cases (< 0.7) in red.
Attacks→ BadNets Blend PhysicalBA IAD WaNet ISSBA BATT Avg.
Defenses↓ AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

STRIP 0.840 0.828 0.799 0.772 0.618 0.468 0.528 0.419 0.563 0.356 0.768 0.765 0.554 0.361 0.681 0.596
TeCo 0.978 0.880 0.958 0.849 0.926 0.842 0.927 0.920 0.903 0.747 0.945 0.921 0.690 0.692 0.908 0.846
SCALE-UP 0.967 0.895 0.531 0.356 0.932 0.876 0.322 0.030 0.563 0.356 0.945 0.912 0.967 0.921 0.725 0.651
IBD-PSC 1.000 0.992 0.989 0.833 0.994 0.988 0.994 0.996 0.967 0.981 0.989 0.987 0.998 0.998 0.990 0.974

5.2. Main Results

As shown in Table 1-3, IBD-PSC consistently achieves
promising performance in all cases across various datasets.
For instance, it achieves AUROC and F1 scores approaching
1.0, indicating its effectiveness in various attack scenarios.
The results also demonstrate that IBD-PSC achieves a sub-
stantial improvement in detection performance compared to
the defense baselines. In contrast, all baseline defenses
fail in some cases (marked in red), especially under at-
tacks involving subtle alterations across multiple pixels (e.g.,
Blend, WaNet) or physical attacks. This failure is primarily
caused by their implicit assumptions about backdoors, such
as sample-agnostic triggers and robustness against image
preprocessing. We also provide the results with PreActRes-
Net18 (He et al., 2016b) and MobileNet (Krizhevsky et al.,
2009) architectures in Appendix I. We also provide the ROC
curves of defenses against four representative attacks in Ap-
pendix J. Besides, for more experimental results under other
attack baselines in Appendix K.

We also calculated the inference time of all methods under
identical and ideal conditions for evaluating efficiency. For
example, we assume that defenders will load all required
models and images simultaneously (with more memory
requirements compared to the vanilla model inference). Ar-
guably, this comparison is fair and reasonable since different
defenses differ greatly in their mechanisms and require-
ments. Detailed settings can be found in Appendix L. As
shown in Figure 5, the efficiency of our IBD-PSC is on par
with or even better than all baseline defenses. The extra time
is negligible compared to no defense, although IBD-PSC
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Figure 5. The inference time on the CIFAR-10 dataset.

may increase some storage or computational consumptions.
More detailed discussions about our running efficiency and
storage requirements are in Appendix R.

5.3. Ablation Study

Impact of Scaling Factor ω. IBD-PSC generates scaled
models by amplifying the learnable parameter values of the
selected BN layers with a fixed scalar ω. We hereby explore
its effects on our method. Specifically, we vary ω from 1
to 2 and calculate the AUROC and F1 scores of IBD-PSC
against three representative backdoor attacks (i.e., BadNets,
WaNet, and BATT) on CIFAR-10. As shown in Figure 6,
in the initial phase, increasing ω can significantly improve
both the AUROC and F1 scores against different backdoor
attacks. Furthermore, the AUROC and F1 scores converge
to nearly one and stabilize at approximately one for ω values
of 1.5 or higher, i.e., the scaling factor has a relatively minor
influence when it is sufficiently large. Besides, we conduct
further ablation studies on other hyper-parameters of our
method, as detailed in Appendix M.

Impact of Confidence Consistency. IBD-PSC leverages
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Figure 6. The impact of scaling factors on CIFAR-10.
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Figure 7. The impact of poisoning rate on CIFAR-10.

the consistency of confidence for detection, in contrast to
the SCALE-UP method, which relies on the consistency of
the predicted label. SCALE-UP is designed for black-box
scenarios where defenders only have access to predicted
labels, while our IBD-PSC focuses on white-box settings
where predicted confidences are naturally available. To vali-
date the effectiveness of IBD-PSC, we develop a variant that
uses label consistency (dubbed ‘Ours-L’). We then calculate
the False Positive Rate (FPR) (%) for both target and benign
classes on the CIFAR-10 dataset across various backdoor
attacks. As shown in Table 4, our method significantly re-
duces false positives in both the target and benign classes,
outperforming both the Ours-L and SCALE-UP.

5.4. Resistance to Potential Adaptive Attacks

We initially assess the performance of IBD-PSC against
attacks with low poisoning rates. This is because a small
poisoning rate ρ can prevent models from over-fitting trig-
gers, thus weakening the association between triggers and
target labels, as demonstrated in previous studies (Guo et al.,
2023b; Qi et al., 2023). Specifically, we conduct attacks
(BadNets, WaNet, and BATT) on the CIFAR-10 dataset
with ρ ranging from 0.02 to 0.1, ensuring the attack suc-
cess rates exceed 80%. The results in Figure 7 consistently
demonstrate the effectiveness of IBD-PSC, with AUROC
and F1 scores consistently above 0.98 and 0.95, respectively.
Results on SubImageNet-200 are shown in Appendix N.1.

We further evaluate the robustness of IBD-PSC against po-
tential adaptive attacks in the worst-case scenario, where
adversaries possess complete knowledge of our defense.
Typically, a vanilla backdoored model functions normally
with benign samples but yields adversary-specific predic-
tions when exposed to poisoned samples. The loss function
for training such backdoored models is defined as follows:

Lbd =

|Db|∑
i=1

L(F(xi), yi) +

|Dp|∑
j=1

L(F(xj), yt), (5)

Table 4. The False Positive Rate (FPR) (%) of SCALE-UP and our
defense on target and benign classes on the CIFAR-10 dataset.

Defenses→ SCALE-UP Ours-L Ours

AttackS↓ Target Benign Target Benign Target Benign

BadNets 72.74 29.00 0.40 9.76 0.20 1.88
Blend 54.28 19.80 22.55 3.39 18.34 2.64
PhysicalBA 90.58 23.98 4.60 5.42 4.10 1.50
WaNet 76.70 28.11 81.41 10.05 69.20 8.16
ISSBA 93.93 20.70 20.94 3.00 17.22 0.61
BATT 57.74 18.78 2.35 9.72 0.87 6.90
SRA 65.55 29.33 0.62 10.48 0.50 10.13
Ada-Patch 93.80 25.77 8.67 4.78 4.34 3.00

Table 5. Performance of IBD-PSC under adaptive attacks.
α→ 0.2 0.5 0.9 0.99

Attacks↓ AUROC F1 AUROC F1 AUROC F1 AUROC F1

BadNets 0.992 0.978 0.986 0.964 0.995 0.962 0.996 0.951
WaNet 0.947 0.949 0.956 0.942 0.931 0.927 0.819 0.862
BATT 0.986 0.968 0.994 0.956 0.982 0.975 0.979 0.959

where L(·) represents the cross entropy loss function.

We design an adaptive loss term Lada to ensure benign sam-
ples are correctly predicted under parameter amplification:

Lada =

|Db|∑
i=1

L(F̂ω
k (xi; θ̂), yi). (6)

Subsequently, we integrate this adaptive loss Lada with the
vanilla loss Lbd to formulate the overall loss function as
L = αLbd + (1 − α)Lada, where α is a weighting factor.
We then optimize the original model’s parameters θ by
minimizing L during the training phase.

Similar to previous experiments, we also employ the three
representative backdoor attacks to develop adaptive attacks
on the CIFAR-10 dataset. Table 5 demonstrates the sus-
tained robustness of our IBD-PSC across all cases. The
effectiveness primarily originates from our adaptive layer
selection strategy, which dynamically identifies BN layers
for amplification, regardless of whether it is a vanilla or
an adaptive backdoored model. The layers selected during
the inference stage typically differ from those used in the
training phase, enabling the IBD-PSC to effectively detect
poisoned samples. More results and the resistance to another
adaptive attack can be found in Appendix N.2.

5.5. Performance on Benign Samples from Target Class

In this section, we evaluate the effectiveness of our defense
on benign samples from the target class. We conduct experi-
ments on the CIFAR-10 dataset against four different attacks
and present the confidences of both the initial backdoored
model and the scaled models in Figure 8. As shown, the
confidences of benign samples from both the target class
and other classes decrease due to parameter amplification,
falling below the threshold. In contrast, the confidence val-
ues for poisoned samples mostly remain above this thresh-
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Figure 8. The violin plots of the prediction confidences for benign samples in the target and other classes, as well as for poisoned samples,
as predicted by the initial and scaled models on CIFAR-10. The threshold is 0.9.

old. These results demonstrate that our defense effectively
distinguishes between benign and poisoned samples, regard-
less of whether the benign sample originates from the target
class. In particular, we observe an interesting phenomenon
that scaled models tend to cluster the confidences for benign
samples from the target class in the more difficult-to-learn
class(es), rather than in the easier ones, which is unexpected.
We will further explore its intrinsic mechanism in our future
work. Additional analysis can be found in Appendix O.

5.6. A Closer Look to the Effectiveness of our Method

To gain deeper insights, we delve into the mechanisms
of both SCALE-UP and our IBD-PSC. We utilize t-
SNE (Van der Maaten & Hinton, 2008) for visualizing the
features of benign and poisoned samples in the last hidden
layer. We adopt the representative BadNets attack method
on the CIFAR-10 dataset as an example for our discus-
sions. More results about other attack methods can be found
in Appendix P. The results in Figure 9 demonstrate that
both SCALE-UP and our IBD-PSC induce more significant
shifts in the feature space for benign samples compared to
the poisoned samples. These larger shifts result in changes
in the predictions for benign samples. These results provide
clear evidence of the effectiveness of the two defense meth-
ods. Furthermore, in contrast to SCALE-UP, our IBD-PSC
method induces more significant shifts in benign samples.
This disparity in shift magnitude may stem from the con-
strained pixel value range of [0, 255], potentially mitigating
the impact of amplification. However, the values of model
parameters do not have such bounded constraints. Conse-
quently, the larger shifts contribute to a more distinct sepa-
ration between benign and poisoned samples, significantly
augmenting the effectiveness of IBD-PSC.

5.7. The Extension to Training Set Purification

Although our method is initially and primarily designed
to filter malicious testing samples, it can also be used to
detect potentially poisoned samples within a compromised
training set. Specifically, users can first train a model on
this dataset with a standard process and then exploit our
detection method. To verify our effectiveness, we con-

Benign (Original)
Poisoned (Original)
Benign (Amplified)
Poisoned (Amplified)

(a) SCALE-UP

Benign (Original)
Backdoored (Original)
Benign (Amplified)
Backdoored (Amplified)

(b) Ours

Figure 9. t-SNE of feature representations of benign and poisoned
samples on the CIFAR-10 dataset against BadNets attack.

duct experiments on the CIFAR-10 dataset against three
representative attacks. The results show a 100% TPR and
nearly 100% AUROC scores, with FPR scores close to
0%. We compare the detection performance of our method
with the most advanced defenses, i.e., CD (Huang et al.,
2023) and MSPC (Pal et al., 2024), and the results show
that our method achieves the best detection performance.
Subsequently, we retrain a model on this purified dataset
to evaluate both its BA and the ASR. The ASR scores of
these retrained models are less than 0.5%, rendering the
attacks ineffective. More settings and results can be found
in Appendix Q.

6. Conclusion
In this paper, we proposed a simple yet effective method
(dubbed IBD-PSC) for determining whether a suspicious
image is poisoned. The IBD-PSC was inspired by our dis-
covery of an intriguing phenomenon, named parameter-
oriented scaled consistency (PSC). This phenomenon man-
ifests through a significant uniformity of prediction confi-
dences for poisoned samples, in contrast to benign ones,
when the parameters of selected BN layers undergo amplifi-
cation. We provided the theoretical and empirical founda-
tions to support this phenomenon. To enhance the detection
performance, we also designed an adaptive algorithm to dy-
namically select the number of BN layers for amplification.
We conducted thirteen backdoor attack methods on bench-
mark datasets to comprehensively verify the effectiveness
of our IBD-PSC. We also demonstrated that our IBD-PSC
is highly efficient and resistant to potential adaptive attacks.
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Impact Statement
Backdoor attacks have posed severe threats in DNNs since
developers often rely on external untrustworthy training
resources (e.g., datasets and model backbones). This pa-
per proposes a simple yet effective input-level backdoor
detection to identify and filter malicious testing samples.
It generally has no ethical issues since it does not expose
new vulnerabilities within DNNs and is purely defensive.
However, we need to notice that our work can only filter out
poisoned input images but cannot repair potential backdoors
in the deployed model. Besides, it cannot recover trigger
patterns or the ground-truth class of the poisoned samples.
People should not be too optimistic about eliminating back-
door threats. Moreover, the adversaries may design more
advanced backdoor attacks against our defense, although
we have demonstrated that it is challenging. People should
use only trusted training resources and models to eliminate
and prevent backdoor attacks at the source.
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Appendix

A. The Omitted Proof of Theorem 3.1
Theorem 3.1. Let F = FC ◦ fL ◦ · · · ◦ f1 be a backdoored DNN with L hidden layers and FC denotes the fully-connected
layers. Let x be an input, b = fl ◦ · · · ◦ f1(x) be its batch-normalized feature after the l-th layer (1 ≤ l ≤ L), and t
represent the attacker-specified target class. Assume that b follows a mixture of Gaussian distribution. Then the following
two statements hold: (1) Amplifying the β and γ parameters of the l-th BN layer can make ∥b̃∥2 (b̃ is the amplified version
of b) arbitrarily large, and (2) There exists a positive constant M that is independent of b̃, such that whenever ∥b̃∥2 > M ,
then argmaxFC ◦ fL ◦ · · · ◦ fl+1(b̃) = t, even when argmaxFC ◦ fL ◦ · · · ◦ fl+1(b) ̸= t

Proof of Theorem 3.1: For simplicity, let F denote the benign model and F̃ denote the backdoored model. We look at the
l-th (pre-batch-norm) feature layer al such that

a = al(x), b = ϕ(a; γBenign,βBenign),F(x) = FC ◦ fL ◦ · · · ◦ fl+1(b), (A1)

ã = ãl(x), b̃ = ϕ(ã; γ,β), F̃(x) = FC ◦ fL ◦ · · · ◦ fl+1(b̃). (A2)

We assume all features follow the mixture of Gaussians, an assumption commonly used in many deep learning theory
papers (Guo et al., 2024; Zoran & Weiss, 2012; Loureiro et al., 2021) as it simplifies analysis and provides a tractable
framework for modeling complex data distributions. Consequently, a and ã follow:

a ∼ 1

C

C∑
c=1

Zc exp
−∥a− µc∥22

2σ2
c

,ac|c ∼ Zc exp
−∥a− µc∥22

2σ2
c

, c ∈ Y, (A3)

bc|c ∼ Bc exp−
∥bc − (βBenign − γBenign

µa−µc√
σ2
a+ϵ

)∥22

2
γ2σ2

c

σ2
a

= N (a;βBenign − γBenign
µa − µc√
σ2
a + ϵ

,
γBenignσc

σa
), c ∈ Y, (A4)

and

ã ∼ 1

C

C∑
c=1

Zc exp
−∥ã− µ̃c∥22

2σ̃2
c

, ãc|c ∼ Zc exp
−∥ã− µ̃c∥22

2σ̃2
c

, c ∈ Y, (A5)

b̃c|c ∼ Bc exp−
∥b̃c − (β − γ µ̃ã−µ̃c√

σ̃2
ã+ϵ

)∥22

2
γ2σ̃2

c

σ̃2
ã

= N (ã;β − γ
µ̃ã − µ̃c√
σ̃2
ã + ϵ

,
γσ̃c

σ̃ã
), c ∈ Y, (A6)

where

µc = Ex∼p(x|argmaxF(x)=c)[a], µ̃c = Ex∼p(x|argmaxF̃(x)=c)[ã], (A7)

σc = Stdx∼p(x|argmaxF(x)=c)(a), σ̃c = Stdx∼p(x|argmaxF̃(x)=c)(ã), c ∈ Y, (A8)

µa = Ex∼p(x)[a], µ̃ã = Ex∼p(x)[ã], σa = Stdx∼p(x)(a), σ̃ã = Ex∼p(ã)[ã]. (A9)

For a sufficiently trained network, it is well-known that, with the neural collapse (Papyan et al., 2020), µc and σc, c ∈ Y
form a simplex and are uniformly distributed. Specifically, in neural collapse scenarios, the features of each class form a
simplex equiangular tight frame. This means that all features share (nearly) the same within-class variance and exhibit
uniform mean values. Below, we try to find out the characteristics of a backdoored model.

A.1. Characterize the Backdoored Model

We denote the poisoned sample as x(t) = x+G(x), where x is a benign input and G(x), the trigger, is very small (i.e.,
∥G(x)∥2 ≪ 1). The trigger G(x) can be static or vary with different inputs, which fools the backdoored model F̃ into
recognizing the poisoned samples as the attacked target class t instead of its true class c. For clarity, we simplify the trigger
G(x) as t. In this paper, we assume that all images have been normalized, i.e., x ∈ [0, 1]. Accordingly, ||t||2 ≪ 1 holds in
practice since the triggers are either very sparse (e.g., BadNets) or have a small overall magnitude (e.g., WaNet). So the
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feature distribution of x(t) = x+ t may be approximated by

ã(t) ≈ ãl(x+ t) = ãl(x) +∇ãl(x)
T t = ã+∇ãT t, (A10)

b̃(t) = γ

(
ã(t)− µ̃ã√

σ̃2
ã + ϵ

)
+ β ≈ b̃+

∇ãT t√
σ̃2
ã + ϵ

≡ b̃+ ṽT t. (A11)

As x(t) should be recognized as category t, the conditional probability of b̃(t) being sampled from b̃|c should be smaller
than from b̃|t for all c ∈ Y . The assumption holds, particularly for the deeper hidden layers, under the Gaussian mixture
distribution and a well-trained network. Specifically, in Equations (A3) and (A4), we assume the conditional distribution
al(x)| argmax f(x) = c to be Gaussian. This conditional distribution is derived after completing the forward pass and
examining the previous layers, and it remains unchanged, i.e., p(al(x) ∈ al(A)| argmax f(x) = c)= p(al+1(x) ∈
al+1(A)| argmax f(x) = c), A = x : argmax f(x) = s. Clearly, in the last layer, the probability of al(x) belonging
to class c will always be larger than other classes. Therefore, the assumption holds for the conditional distribution of
al(x)| argmax f(x) = c. Thus, we can get, ∀x, t ∈ X ,

Bt exp−
∥b̃(t)− (β − γ µ̃ã−µ̃t√

σ̃2
ã+ϵ

)∥22

2
γ2σ̃2

t

σ̃2
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> Bc exp−
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σ̃2
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)∥22
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σ̃2
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⇔ log
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t σ̃

2
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(
σ̃2
t ∥b̃(t)− (β − γ
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ã + ϵ

− σ̃2
c )∥22 − σ̃2

c∥b̃(t)− (β − γ
µ̃ã − µ̃t√
σ̃2
ã + ϵ

)∥22

)
> 0, (A13)

∀b̃(t) = b̃+ ṽT t. (A14)

Note that this is actually a quadratic form (the form of ax2 + bx+ c > 0,∀x) of b̃, to make sure the above inequality holds
for all b̃ (or at least most of b̃ in the feature space), it is obvious that the quadratic coefficient (σ̃2

t − σ̃2
c ) must be positive, so

we should have

σ̃t > σ̃c,∀c ∈ Y, c ̸= t. (A15)

So we can confirm a key characteristic of the backdoored model, that the variance of the attacked target class t is larger than
any of the others.

A.2. Parameter-oriented Scaling Consistency of Backdoored Models

After obtaining the above characteristic of the backdoored model, we can then prove the parameter-oriented scaling
consistency of it.

Let

Γc = β − γ
µ̃ã − µ̃c√
σ̃2
ã + ϵ

, c = 1, · · · , C. (A16)

Considering the above mixture of the Gaussian model, a sample x will be classified into class t if and only if
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The above can stand if
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, 0}. (A22)

So just like Equation (A12), the above is also a quadratic form for ∥b̃∥2 with positive quadratic coefficient (σ̃2
t − σ̃2

c ) > 0.
So when ∥b̃∥2 is large enough (Equation (A22)), we will always have x is more likely to be identified into category t than
all the others.
Remark A.1. Note that scale the parameter βInf , γInf when inference will not influence the value of β, γ in Equation (A17).
The β, γ in Equation (A17) is used to describe the underlying feature distributions (which are assumed to be the mixture of
Gaussians). They will not change upon training finished.

As a result, when we scale the Batch Norm parameter βInf , γInf , we will get a b̃Scale with larger norm propositional
to γInf and linearly increasing with respect to βInf . When βInf , γInf are larger enough, the scaled feature b̃Scale will
make Equation (A17) always positive.
Remark A.2. The above proof can be intuitively understood as follows: if we sample from a mixture of Gaussian distribution,
then all remote points will be sampled from the Gaussian with the largest variance.

B. Detailed Configurations of the Empirical Study in Section 3
In this section, we adopt BadNets (Gu et al., 2017), WaNet (Nguyen & Tran, 2021), and BATT (Xu et al., 2023) as examples
for our analysis. These attacks epitomize static, dynamic, and physical backdoor attacks, respectively. Our experiments are
conducted on the CIFAR-10 dataset (Krizhevsky et al., 2009), using the ResNet18 model (He et al., 2016a). For each attack,
we set the poisoning rate (ρ) to 0.1, achieving ASRs over 99%. In particular, we implement the backdoor attacks using
their official codes with default settings. Specifically, the backdoor trigger for BadNets is represented as a 3 × 3 grid in
black-and-white and is added to the lower-right corner of the poisoned images. For WaNet, the trigger is applied to the
original images through elastic image warping transformation. In the case of BATT, the poisoned samples are obtained by
rotating the original images by sixteen degrees. These attacks are implemented using the BackdoorBox toolkit (Li et al.,
2023a)1.

Regarding the scaling procedure, we adopt a layer-wise weight scaling operation to generate the parameter-amplified models.
we scale up on the BN parameters (i.e., γ and β) with ω = 1.5 times starting from the last layer and gradually moving
forward to more layers. For example, in a 20-layer model, the first iteration involves scaling the weights of the 20th layer,
and the next iteration extends the scaling to the 20th and the 19th layers, and so on. We then calculate the average confidence
of 2000 testing samples for each parameter-scaled model. In this paper, confidence refers to the predicted probability
assigned to an input sample for a specified label. For instance, if an image of a cat is predicted as the cat label with a
probability of 0.9, then the confidence of the input under the cat label is 0.9. The average confidence is defined as the
average probability of samples on the label predicted by the original unamplified model.

C. Detailed Exploration of amplifying a single BN layers in Section 3
As described in Section 3, we find amplifying only a single BN layer may require an unreasonably large amplification factor,
and due to the nonlinearity of neural network layers, often leads to unstable defense performance across different attacks. To
further explain the phenomenon, we conduct an empirical investigation aimed at investigating the percentage of benign
samples to be predicted as the target class when amplifying the learnable parameters of individual BN layers with scale S.
The results are displayed in Table Table A1, and we have three primary observations:

1https://github.com/THUYimingLi/BackdoorBox
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Table A1. The proportion (%) of benign samples in CIFAR-10 predicted to the target class when amplifying only a single BN layer.
Index → 1 5 15

Scales S ↓ BadNets WaNet BATT Ada-patch BadNets WaNet BATT Ada-patch BadNets WaNet BATT Ada-patch

5 96.75 10.50 62.86 0.00 92.43 93.25 5.04 12.85 11.37 99.32 99.13 76.81
10 100.00 53.53 38.81 0.00 100.00 100.00 2.19 27.40 16.33 100.00 100.00 89.66
100 100.00 100.00 100.00 0.15 100.00 100.00 99.96 91.56 27.40 100.00 100.00 96.10
1000 100.00 100.00 100.00 0.43 100.00 100.00 100.00 93.99 28.89 100.00 100.00 96.45
100000 100.00 100.00 100.00 0.44 100.00 100.00 100.00 94.18 29.01 100.00 100.00 96.49
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Figure A1. Histograms of the ℓ2-norm of the final feature map of samples generated by models with different numbers of amplified BN
layers. Increasing the number of amplified layers increases both value and variance of features.

Table A2. The performance (AUROC, F1) of our defense with forward model scaling process on the CIFAR-10 dataset. We mark the best
result in boldface and failed cases (< 0.7) in red.

Metrics BadNets Blend PhysicalBA IAD WaNet ISSBA BATT SRA LC NARCISSUS Adap-Patch

AUROC 0.997 0.678 0.964 0.999 0.910 0.998 0.635 0.952 0.450 0.941 0.960
F1 0.964 0.002 0.908 0.966 0.639 0.970 0.052 0.904 0 0.922 0.831

(1) The amplification factor for achieving effective defense varies considerably from layer to layer. (2) Some attacks (e.g.,
WaNet and BATT) require an unreasonably large amplification factor to achieve a substantial misclassification rate. (3)
Amplifying only a single BN layer may not be adequate to misclassify the majority of benign samples in some cases. For
instance, amplifying the first BN layer alone cannot misclassify benign samples from the Ada-patch attack into the intended
target class.

To address this, we spread the amplification across multiple consecutive BN layers, using a small factor (e.g., 1.5) on each
layer. Instead of controlling the layer-wise amplification factor, we vary the number of amplified layers to achieve different
levels of accumulated amplification. This relation is demonstrated in Figure A1 (see Figure 3 for the density plot), where we
see amplifying more layers induces higher last-layer activations, and increases the room to differentiate poisoned samples
from the benign ones.

D. Why Scale the Later Layers?
Our defense relies on building a profile of how the target model behavior changes under progressive modifications to the
model. Motivated by a widely accepted hypothesis (e.g., (Tishby & Zaslavsky, 2015; Huang et al., 2022; Jebreel et al.,
2023)) that layers situated towards the later stages exert a more direct influence on the ultimate model output, we designed
our defense by amplifying the model parameters in stages, starting from the last hidden layer and progressively moving
backward through the preceding layers. Here, we examine the alternative of a forward model scaling approach, which scales
model parameters starting from the initial layers of the model and then progressing forward to the latter layers.

The results in Table A2 demonstrate that while this defense strategy proves to be effective against most backdoor attacks,
such as BadNets, and ISSBA, it exhibits poor performance against others like Blend, BATT, and LC attacks. This discrepancy
may be attributed to the fact that in those attacks, the trigger features closely resemble benign features in the model’s shallow
layers, making it challenging for the amplification operation to sufficiently separate these two types of features.
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Table A3. The performance (AUROC, F1) of our defense with amplifying all of the BN layers on the CIFAR-10 dataset. We mark the best
result in boldface and failed cases (< 0.7) in red.

Metrics BadNets Blend PhysicalBA IAD WaNet ISSBA BATT SRA LC NARCISSUS Adap-Patch

AUROC 0.961 0.664 0.947 0.949 0.938 0.949 0.947 0.942 0.224 0.992 0.679
F1 0.949 0.060 0.926 0.952 0.941 0.951 0.940 0.943 0 0.938 0

E. Why not Amplifying All BN Layers?
In our defense, we amplify the later parts of the original model. It is motivated by the previous findings that trigger patterns
often manifest as complicated features learned by the deeper (convolutional) layers of DNNs, especially for those attacks
with elaborate designs (Huang et al., 2022; Jebreel et al., 2023). It is also consistent with our observations in Figure 2.

We investigate the performance of our defense by amplifying all BN layers within a model. As shown in Table A3,
amplifying all layers leads to defense failure against Blend, LC, and WaNet attacks. In particular, its F1 score drops to 0,
suggesting that amplifying all layers in the defense fails to detect any poisoned samples.

F. Detailed Settings for Experimental Datasets and Configurations
In line with the existing backdoor defense methods (Guo et al., 2023b; Liu et al., 2023; Gao et al., 2021), we select the most
commonly used benchmark datasets and model architectures for our experiments. The datasets and models used are outlined
in Table A4.

Table A4. The overview of the image datasets and the related classifiers used in our experiments.
Datasets #Classes Input Sizes #Train. & Test. Images Classifiers

CIFAR-10 10 32 × 32 × 3 50,000, 10,000 ResNet18,
PreactResNet18, MobileNet

GTSRB 43 32 × 32 × 3 39,200, 12,600 ResNet18,
PreactResNet18, MobileNet

SubImageNet-200 200 224 × 224 × 3 100,000, 10,000 ResNet18

CIFAR-10 is a benchmark dataset consisting of 3 × 32 × 32 color images representing ten different object cate-
gories (Krizhevsky et al., 2009). The training set comprises 50,000 images, while the test set contains 10,000 images, with
an equal distribution across the ten classes.

GTSRB is a benchmark dataset consisting of images of German traffic signs, categorized into 43 classes (Stallkamp et al.,
2012). The training set consists of 39,209 images, while the test set contains 12,630 images. Given the considerable variation
in image sizes within this dataset, we resize all images to a uniform size of 3 × 32 × 32 for our experiments, ensuring
consistency and convenience in handling.

SubImageNet-200. We adopt a subset of the ImageNet benchmark dataset (Deng et al., 2009) by randomly selecting 200
categories from the most common categories in the original ImageNet. Specifically, the subset includes 100,000 images
from the original ImageNet for training (500 images per class) and 10,000 images for testing (50 images per class). For
simplicity, all images are resized to a uniform dimension of 3 × 224 × 224.

G. Details of Training Backdoored Models
G.1. Backdoor Attacks

In Section 5, we assess the effectiveness of our defense against thirteen backdoor attacks. These attacks are categorized into
three types: 1) poisoning-only attacks, 2) training-controlled, 3) and model-controlled attacks.

• Poison-only Backdoor Attacks: For the most commonly studied poisoning-only attacks, we consider various forms.
This includes classic static attacks like (1) BadNet (Gu et al., 2017) and (2) Blend (Bai et al., 2021), sample-specific
attack such as (3) ISSBA (Li et al., 2021a), clean-label attacks represented by (4) Label-Consistent (LC) (Turner et al.,
2019) and (5) NARCISSUS (Zeng et al., 2023). In addition, we also consider adaptive attacks like (6) TaCT (Tang
et al., 2021) and (7) Adap-Patch (Qi et al., 2023), which are designed to slip past existing defenses.

17



IBD-PSC: Input-level Backdoor Detection via Parameter-oriented Scaling Consistency
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Figure A2. The examples of various triggers in the attacks adopted in our study and the corresponding poisoned samples.

• Training-controlled Backdoor Attacks: The training-controlled attacks include the (8) Dynamic (Nguyen & Tran,
2020), (9) WaNet (Nguyen & Tran, 2021), (10) BPP (Wang et al., 2022c) attacks, and physical backdoor attacks,
including (11) PhysicalBA (Li et al., 2021c) and (12) BATT (Xu et al., 2023).

• Model-controlled Backdoor Attacks: we assess attacks involving direct modification of model parameters, such as
(13) subnet replacement attack (SRA) (Qi et al., 2022).

The poisoning rate ρ for data-poisoning-based backdoor attacks is set to 0.1. The target class label is set to 0. In particular, the
BATT attack consists of two attack modes, utilizing spatial rotation and translation transformations as triggers, respectively.
In our study, we specifically employ spatial rotation as our triggers. The examples of both triggers and the corresponding
poisoned samples are depicted in Figure A2.

G.2. Additional Details of Training Backdoored Models

We adopt the standard training pipeline for developing backdoor models. This involves an SGD optimizer with a momentum
of 0.9 and a weight decay of 10−4. The initial learning rate is set at 0.1, which is reduced to 10% of its previous value
at the 50th and 75th epochs. The training comprises 200 epochs with a batch size of 128. For data augmentation on the
CIFAR-10 dataset, we apply RandomHorizontalFlip and RandomCrop32 (randomly cropping images to a size of 3 × 32 ×
32). Additionally, RandomRotation15 is used to randomly rotate images within a range of [-15, 15] degrees.

For data augmentation on the CIFAR-10 dataset, we utilize RandomHorizontalFlip with a probability of 0.5 and Random-
Crop32, which randomly crops images to a size of 3 × 32 × 32. For the GTSRB dataset, we employ the RandomRotation15
augmentation technique, where images are randomly rotated within a range of [-15, 15] degrees. For the GTSRB dataset, we
apply RandomCrop224, RandomHorizontalFlip, and RandomRotation20 to enhance the accuracy of the backdoored model
on the benign samples.

All experiments are performed on a server with the Ubuntu 16.04.6 LTS operating system, a 3.20GHz CPU, 2 NVIDIA’s
GeForce GTX3090 GPUs with 62G RAM, and an 8TB hard disk.

G.3. Effectiveness of the Backdoored Attacks

Following the settings in existing backdoor attacks, we use two metrics to measure the effectiveness of the backdoor attacks:
attack success rate (ASR) and benign accuracy (BA). ASR indicates the success rate of classifying the poisoned samples
into the corresponding target classes. BA measures the accuracy of a backdoored model on the benign testing dataset.

BA and ASR for different backdoor attacks are included in Table A5 and Table A6.
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Table A5. The performance (BA, ASR) on different attacks and datasets with ResNet18 model.

Datasets BadNets Blend PhysicalBA Dynamic WaNet ISSBA BATT
BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

CIFAR10 0.929 1 0.931 0.999 0.937 0.966 0.938 1 0.948 0.997 0.936 1 0.939 1
GTSRB 0.976 0.998 0.966 1 0.976 0.968 0.971 1 0.994 0.997 0.968 1 0.979 0.998
SubImageNet-200 0.808 0.998 0.823 0.998 0.796 0.994 0.793 1 0.768 0.967 0.803 0.990 0.695 0.997

Table A6. The performance (BA, ASR) on other backdoor attacks with the ResNet18 model on the CIFAR-10 dataset.
Metrics LC TaCT SRA BPP NARCISSUS Adap-Patch

BA 92.28 93.78 88.98 89.68 89.80 93.54
ASR 100 99.00 99.90 99.70 96.92 99.89
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Figure A3. ROC curves of defenses against different attacks on the CIFAR-10 dataset.

H. Implementation of the Baseline Defenses
(1) STRIP: We implement STRIP following their official open-sourced codes2. STRIP detects backdoor attacks by observing
the prediction behaviors of an input sample when superimposing benign features on it.

(2) TeCo: We implement TeCo following their official open-sourced codes3.

(3) SCALE-UP: We implement SCALE-UP (data-limited) following the most commonly used open-sourced toolbox codes4.

I. Generalizability to Other Model Architectures
We evaluate the effectiveness of our defense on additional model architectures including PreActResNet18 (He et al., 2016b),
and MobileNet (Krizhevsky et al., 2009). The defense performance is presented in Table A7. As shown, most of the average
AUROC and F1 scores on both architectures are above 0.96, with a few slightly lower scores (still above 0.93). This result
indicates that our defense has general applicability across different model architectures.

J. ROC Curve Comparison with Baseline Defenses
In addition to AUROC and F1 scire metrics, we also visually compare the ROC curves of competing defense methods
against attacks. ROC curves for the CIFAR-10 experiments can be found in Figure A3.

K. Performance of Our IBD-PSC Against Additional Backdoor Scenarios
Table A8 presents the performance (AUROC and F1 scores) of our IBD-PSC against some other types of backdoor attacks,
including clean-label attacks (LC (Turner et al., 2019), NARCISSUS (Zeng et al., 2023)), source-specific attack (TaCT (Tang
et al., 2021)), training-controlled attack (BPP (Wang et al., 2022c)), model-controlled attack (SRA (Qi et al., 2022)), and
adaptive attack (Adap-Patch (Qi et al., 2023)). The results demonstrate that IBD-PSC consistently outperforms other defense
strategies across almost all types of backdoor attacks. It achieves the highest average scores in both AUROC and F1 metrics,
marked in bold, underscoring its superior detection capabilities. This comprehensive evaluation affirms the robustness of

2https://github.com/garrisongys/STRIP
3https://github.com/CGCL-codes/TeCo
4https://github.com/vtu81/backdoor-toolbox
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Table A7. The performance (AUROC, F1) of our defense on other model architectures.

Datasets Models→ PreactResNet18 MobileNet Avg.
Attacks↓ AUROC F1 AUROC F1 AUROC F1

CIFAR10

BadNets 0.978 0.931 0.970 0.943 0.974 0.937
IAD 0.989 0.965 0.969 0.951 0.979 0.958

WaNet 0.977 0.949 0.937 0.940 0.957 0.945
BATT 0.972 0.958 0.951 0.953 0.962 0.956

Datasets Models→ PreactResNet18 MobileNet Avg.
Attacks↓ AUROC F1 AUROC F1 AUROC F1

GTSRB

BadNets 0.970 0.971 0.969 0.971 0.970 0.971
IAD 0.970 0.970 0.966 0.966 0.968 0.968

WaNet 0.964 0.933 0.986 0.977 0.975 0.955
BATT 0.968 0.970 0.970 0.957 0.969 0.964

Table A8. Performance (AUROC, F1) of our IBD-PSC against various backdoor attacks including clean-label, source-specific, training-
controlled, model-controlled, and adaptive attacks. We mark the best result in boldface and failed cases (< 0.7) in red.

Attacks→ LC TaCT SRA BPP NARCISSUS Adap-Patch Avg.
Defenses↓ AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

STRIP 0.668 0.541 0.431 0.106 0.550 0.213 0.331 0.081 0.952 0.949 0.858 0.715 0.632 0.434
TeCo 0.818 0.685 1.000 0.946 0.933 0.919 0.992 0.926 0.927 0.864 0.947 0.948 0.940 0.908
SCALE-UP 0.943 0.912 0.614 0.234 0.580 0.453 0.860 0.832 0.673 0.000 0.941 0.913 0.754 0.496
IBD-PSC 0.980 0.834 0.986 0.974 0.976 0.943 0.990 0.968 0.939 0.924 0.999 0.961 0.978 0.944

0.5 0.6 0.7 0.8 0.9
Threshold value

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

F1

(a) BadNets

0.5 0.6 0.7 0.8 0.9
Threshold value

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

F1

(b) WaNet

0.5 0.6 0.7 0.8 0.9
Threshold value

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

F1

(c) BATT

Figure A4. Impact of the value of threshold T on defense effectiveness.

IBD-PSC as a formidable defense mechanism in the ever-evolving landscape of backdoor attacks in cybersecurity.

L. Settings for the Inference Time Comparison
The inference time is critical for this task (i.e., detecting poisoned testing images) because the detection is usually deployed
as the ‘firewall’ for online inference. In the case of STRIP, TeCo, SCALE-UP, and our defense, defenders utilize the target
model’s prediction for defense purposes. This means that both detection and prediction can be carried out simultaneously.

We calculate the inference time of all defense methods under identical and ideal conditions to evaluate efficiency. For
example, we assume that defenders will load all required models and images simultaneously, which demands more memory
requirements compared to the standard model inference. This comparison is fair and reasonable due to the significant
differences in mechanisms and requirements among the various defenses. More precisely, before inference, we engage in
preparatory steps such as selecting the BN layers to be amplified and preparing the parameter-amplified models. These
models are subsequently deployed across different machines, enabling simultaneous processing of input samples. While
this approach requires additional storage space to accommodate the various model versions, it considerably accelerates the
detection process. For SCALE-UP, we calculate the inference time needed to obtain predictions for multiple augmented
images associated with a given input. This is achieved by concurrently feeding all the images into the deployed model as a
batch instead of predicting them individually.
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Figure A5. The impact of error rate ξ on defense effectiveness.
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Figure A6. Impact of the number of amplifications (n) on defense effectiveness.

M. Ablation Studies
M.1. Impact of the Threshold T

In our defense, we assess whether an input sample is malicious by comparing its PSC value to a predefined threshold T .
Following the other experiments, we conduct an ablation study of T on three representative attacks: BadNets, WaNet, and
BATT on the CIFAR-10 dataset, by adjusting T from 0.5 to 0.9. The results are shown in Figure A4. As we can see, a wide
range of values of T can lead to a high F1 score. In our experiment, we set T to 0.9.

M.2. Impact of the Hyperparameter ξ

In our defense, we design an adaptive algorithm to dynamically select a suitable number of the BN layers to be amplified.
The algorithm uses a predefined hyperparameter error rate threshold ξ. Here we empirically show that our defense is
insensitive to changes in ξ. Again, this is demonstrated on three representative attacks: BadNets, WaNet, and BATT,
with varying values of ξ from 10% to 90%. Figure A6 shows that the defense performance against BadNets and WaNet
attacks exhibits remarkable resilience to variations in ξ. While the BATT attack does manifest a more pronounced response
to changes in ξ, with the F1 score experiencing fluctuations, the metric is eventually higher when the error rate reaches
approximately 60%. This observation signals that the overall influence of the error rate on the defense efficacy remains
limited. Consequently, we advocate for an error rate of around 60%, as it appears to strike a judicious balance, ensuring
adequate detection accuracy without unduly compromising the defense strategy against the assessed backdoor threats.

M.3. Impact of the Number of Amplified Models n

In our defense, we build a profile of n progressively amplified models, to capture the model’s dynamic response to such
interventions. In practice, the number of amplifications n is a defender-assigned hyper-parameter. As illustrated in Figure A6,
the detection performance under the BadNets attack exhibits consistency across various values of n, suggesting a relative
insensitivity to the number of amplifications. In contrast, for the WaNet and BATT attacks, there is an improvement in
detection effectiveness as n increases, which plateaus when n reaches five. This stabilization suggests an optimal defense
performance, and thus we establish n = 5 as the optimal value for our defense, ensuring stable detection performance.
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Figure A7. Performance of our defense across 10 target labels of CIFAR10.
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Figure A8. The impact for the size of the validation set.

Table A9. The false positive rate (%) of our defense on benign models on the CIFAR-10 dataset.
Dataset Model 1 Model 2 Model 3 Model 4 Model 5

CIFAR-10 2.990 3.00 2.540 2.240 2.100
GTSRB 6.050 6.270 6.950 6.310 6.150
SubImageNet-200 0.290 0.370 0.370 0.320 0.320

M.4. Impact of the Target Class

We further evaluate the robustness of our defense to the changes of the target class. We select three attacks, including the
patch-based, dynamic, and physical backdoor attacks mentioned above, and apply them to target each of the ten labels of
CIFAR-10. We display the AUROC and F1 scores of our defense against these backdoored models in Figure A7. As shown,
our defense demonstrates consistent performance against different attacks and target labels. Specifically, the AUROC and
F1 scores are consistently close to 1, with the average AUROC and F1 scores of each attack all exceeding 0.96 and 0.94,
respectively. This indicates that our defense maintains strong performance against different types of attacks and target labels.
Additionally, the standard deviations of AUROC and F1 scores across different cases are generally below 0.02.
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Figure A9. The impact of scaling factor (smaller than 1.0) on defense effectiveness.
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Figure A10. Distribution of L2 Norm Values for the last-hidden-layer activations under reduced model parameters (i.e., magnification
factors less than 1), where “n Layers” represents the number of scaled layers, counting backward from the model’s final layer.

M.5. Impact of the Size of Local Benign Samples Dr

Following similar studies in the literature (Wang et al., 2019; Guo et al., 2023b), we assume that defenders possess a small
benign dataset Dr to calibrate different model parameters. By default, Dr contains merely 100 samples. We evaluate the
robustness of our defense to the change in the size of Dr. The results on the CIFAR-10 dataset using ResNet18 against six
attacks on the CIFAR-10 dataset are shown in Figure A8. It is evident that for most attacks, including BadNets, IAD, WaNet,
BATT, and NARCISSUS, the detection performance remains consistently high and relatively stable across varying sizes of
Dr. For the SRA attack, the F1 score increases and stabilizes when the size of Dr reaches 100. Overall, this demonstrates
that our defense is effective with as few as 100 benign samples.

M.6. False Positive Rates on Benign Models

In this study, we investigate a scenario in which a defender obtains a third-party DNN model but cannot determine whether
the model is compromised with backdoors. To ensure security, it is common to deploy an input-level backdoor detection
system, similar to a network firewall, to filter potentially poisoned samples. In such a context, evaluating the impact of the
deployed defenses on benign models is crucial.

To achieve this objective, we train five benign models using different random seeds. Subsequently, we conduct tests on these
models to calculate the false positive rate of our defense, which represents the proportion of benign samples incorrectly
identified as backdoor samples. These benign samples are incorrectly rejected by the defense during inference. Table A9
presents the false positive rates of our defense on different benign models trained on various datasets. We can observe
variations in the false positive rate among different models, but overall, it remains relatively low (below 3% on the CIFAR-10
and 1% on the SubImageNet-200 dataset, and around 6% on the GTSRB dataset).

We attribute the higher false positive rate on GTSRB to the relative simplicity of image features in this dataset, making
the models more prone to overfitting. Consequently, when amplifying model weights, some benign samples may not
decrease their prediction confidence due to overfitting. This overfitting phenomenon on GTSRB has also been reported in
the SCALE-UP defense (Guo et al., 2023b). However, in the real world, datasets are often more similar to the ImageNet
dataset, characterized by its comprehensive and rich feature information. Our defense performs best on SubImageNet-200,
achieving an error rate of less than 1%.
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Table A10. The performance of our defense in defending against backdoor attacks with different poisoning rates on CIFAR-10.
Attacks → BadNets WaNet BATT

ρ ↓ ASR AUROC F1 ASR AUROC F1 ASR AUROC F1

0.5% 1.000 0.955 0.950 0.039 0.936 0.927 0.961 0.913 0.927
1% 1.000 0.950 0.951 0.286 0.953 0.935 0.993 0.948 0.948
2% 1.000 0.999 0.928 0.968 0.966 0.944 0.999 0.999 0.972
4% 1.000 0.998 0.912 0.972 0.977 0.959 1.000 1.000 0.967
6% 1.000 0.999 0.961 0.994 0.978 0.955 1.000 0.998 0.942
8% 1.000 1.000 0.981 0.996 0.983 0.960 1.000 0.985 0.958
10% 1.000 1.000 0.967 0.997 0.984 0.956 1.000 0.999 0.979

Table A11. The performance of our defense in defending against attacks with different poisoning rates (ρ) on SubImageNet-200.
Attacks → BadNets WaNet BATT

ρ ↓ ASR AUROC F1 ASR AUROC F1 ASR AUROC F1

2% 0.955 0.999 0.905 0.004 - - 0.981 0.999 0.998
4% 0.960 1.000 0.996 0.182 0.944 - 0.967 1.000 0.999
6% 0.972 0.991 0.989 0.786 1.000 0.996 0.981 0.999 0.997
8% 0.974 0.997 0.995 0.818 0.986 0.976 0.980 1.000 0.999
10% 0.998 1.000 0.992 0.967 0.967 0.981 0.997 0.998 0.998

M.7. Is Shrinking as Effective as Amplifying?

In this study, we focus on detecting poisoned samples by amplifying model parameters with a scaling factor greater than one.
To complement this approach, we conducted ablation experiments in this section involving shrinking model parameters
using a scaling factor smaller than one.

According to Theorem 3.1, larger enough feature norms can induce a decrease in confidence for the original predicted
class, if the inputs are benign samples (and certain classical assumptions in learning theory are adopted). Poisoned samples,
instead, will stay fine. Therefore, by inversely reducing the values of parameters, we expect to observe a degradation in
detection performance. The experiments are conducted across a range of reduced magnification factors (0.1 to 0.9) against
BadNet, WaNet, and BATT attacks on the CIFAR-10 dataset using the ResNet18 model. The results displayed in Figure A9,
clearly indicate a reduction in detection performance, as evidenced by lowered AUROC values and F1 scores approaching
zero. This trend remains consistent across the various attack methods examined.

The reduction in detection performance with decreased parameter values reveals the effectiveness of parameter amplification
as a defensive strategy, offering a reason to adopt this approach in safeguarding against backdoor threats.

We also examine the L2 Norm for the last-hidden-layer activations under reduced model parameters. We set the parameter
reduction factor to 0.9 and reduced the values of parameters of the model’s last four and eight hidden layers, respectively.
The L2 norm is calculated on both benign models and backdoored models under BadNet, WaNet, and BATT attacks. As
shown in Figure A10, a greater reduction in parameters led to a smaller L2 norm in both benign and backdoored models.

This observation provides empirical justification for the necessity of parameter amplification, thereby reinforcing our insights
for our proposed defense.

N. Robustness Against Adaptive Attacks
N.1. Existing Attacks with Small Poisoning Rates

We evaluate the robustness of our defense against backdoor attacks with low poisoning rates. Specifically, we focus on
three representative attacks (BadNets, WaNet, and BATT) on the CIFAR-10 dataset with poisoning rates (ρ) ranging from
0.5% to 10%, and on the SubImageNet-200 dataset with ρ from 2% to 10%, ensuring that most ASRs exceed 80%. The
results presented in Table A10 and Table A11 demonstrate that our defense remains effective under low poisoning rates,
achieving AUROC and F1 scores well above 0.9, even at a poisoning rate as low as 0.5%. We also compare the performance
of our defense with baseline defenses under these conditions. As shown in Table A12, our defense outperforms the baseline
defenses in most scenarios across different poisoning rates.
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Table A12. Comparision of the performance in defending against backdoor attacks with different poisoning rates (ρ) on CIFAR-10.
ρ → 2% 4% 6% 8% 10%

Defenses ↓ Attacks ↓ AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

STRIP
BadNets 0.881 0.679 0.895 0.752 0.868 0.657 0.769 0.429 0.931 0.824
WaNets 0.493 0.137 0.485 0.138 0.479 0.131 0.466 0.116 0.469 0.125
BATT 0.779 0.579 0.650 0.364 0.656 0.385 0.808 0.639 0.449 0.258

TeCo
BadNets 1.000 0.916 0.997 0.952 0.981 0.929 0.994 0.937 0.998 0.970
WaNets 0.992 0.891 0.976 0.905 0.999 0.944 0.906 0.945 0.923 0.915
BATT 0.803 0.683 0.814 0.684 0.809 0.685 0.871 0.685 0.914 0.673

SCALE-UP
BadNets 0.959 0.918 0.964 0.914 0.959 0.910 0.971 0.915 0.962 0.913
WaNets 0.746 0.698 0.766 0.726 0.730 0.624 0.689 0.646 0.672 0.529
BATT 0.944 0.880 0.968 0.868 0.957 0.907 0.968 0.871 0.959 0.911

Ours
BadNets 0.999 0.928 0.998 0.912 0.999 0.961 1.000 0.981 1.000 0.967
WaNets 0.966 0.944 0.977 0.959 0.978 0.955 0.983 0.960 0.984 0.956
BATT 0.999 0.972 1.000 0.967 0.998 0.942 0.985 0.958 0.999 0.979

Table A13. The comparison of our defense and the baseline defenses in defending against the WaNet attack under poisoning rates of 0.5%
and 1% on CIFAR-10.

ρ (%) → 0.5 1

Defenses ↓ AUROC TPR FPR AUROC TPR FPR

STRIP 0.403 0.039 0.100 0.421 0.033 0.100
TeCo 1.000 1.000 0.156 1.000 1.000 0.068
SCALE-UP 0.461 0.440 0.389 0.467 0.424 0.345
Ours 0.936 0.791 0.864 0.953 1.000 0.129

We observe that the ASRs (excluding testing samples from the target class) for WaNet are 3.9% and 28.6% at poisoning rates
of 0.5% and 1%, respectively. This indicates that the attack nearly fails at a 0.5% poisoning rate. Following the suggestion
from the Backdoor-Toolbox, we remove samples containing trigger patterns that still cannot be correctly predicted as the
target label by backdoored DNNs. As shown in Table A13, our defense remains highly effective in these cases, although its
performance is slightly lower than that of TeCo, which requires significantly more inference time. In contrast, both STRIP
and SCALE-UP fail.

N.2. Adaptive Attacks in the Worst-case Scenario

In addition to the existing attacks, we further consider the worst-case scenario where potential adaptive attacks are tailored
for our defense.

Design 1. A natural assumption is that the adversary would design an adaptive loss Lada =
∑|Db|

i=1 L(F̂ω
k (xi; θ̂), yi) to

ensure that the benign samples are correctly predicted when subjected to model parameter amplification, hence breaking our
consistency assumption. This adaptive loss is then integrated into the overall loss function as L = αLbd + (1− α)Lada,
where α represents the weighting factor.

The adversary would aim to find a α value that best balances the ASRs and the BAs. Table A14 presents the performance
(BA, ASR) of the adaptive attacks under various α settings. As evident from the results, all three attacks (BadNets, WaNet,
BATT) on the CIFAR-10 dataset employed in the experiments consistently exhibit high ASRs and BA across different values
of α on the CIFAR-10 dataset, underscoring the effectiveness of the adaptive attacks.

On the other hand, we have shown in Table 5 such as adaptative attacks can still be effectively defended by our method.
We conducted further investigation. We observed that the adaptive loss indeed induced a model F ′ substantially different
from the nonadaptive version F . However, our defense, particular Algorithm 1, can readjust for the modified backdoor
model (Note that model F is an input in Algorithm 1). In particular, we observed that on a nonadaptive backdoor model F ,
Algorithm 1 returns k = 10. On the adaptive model F ′, Algorithm 1 returns k = 15. In other words, our algorithm learned
to exploit the earlier layers not touched by the adaptive attack. This ability to counter adaptive attacks is a key advantage of
our method compared with the input-based SCALEUP method.

Design 2. We can also design another form of adaptive attack to mitigate the impact of parameter amplification. Specifically,
we aim to reduce the confidence with which parameter-amplified models predict poisoned samples as belonging to the target
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Table A14. The attack performance (BA, ASR) with the adaptive attack settings in “Design 1”.
Weight→ 0.2 0.5 0.9 0.99
Attacks↓ BA ASR BA ASR BA ASR BA ASR

BadNets 0.775 0.992 0.858 0.985 0.881 0.995 0.891 0.996
WaNet 0.906 0.948 0.891 0.977 0.877 0.935 0.879 0.813
BATT 0.851 0.986 0.846 0.994 0.840 0.983 0.831 0.981

Table A15. The attack performance (BA, ASR) of the adaptive attack in “Design 2” and the detection performance (AUROC, F1) of
IBD-PSC against the adaptive attack on CIFAR-10. We mark the failed cases (where BA < 70%) in red, given that the accuracy of
models unaffected by backdoor attacks on clean samples is 94.40%.

α′ → 0.01 0.1 0.5

Attacks↓ BA / ASR AUROC /F1 BA / ASR AUROC / F1 BA / ASR AUROC/ F1

BadNets 0.832 / 0.887 0.877 / 0.924 0.802 / 0.874 0.874 / 0.861 0.101/ 0.997 - / -
WaNet 90.88 / 99.87 0.999 / 0.956 87.07 / 99.15 0.985 / 0.934 85.16 / 89.10 0.887 / 0.895
BATT 0.745 / 0.997 0.996 / 0.982 0.648 / 0.998 - / - 0.463 / 0/994 - / -

Table A16. The proportion (%) of misclassified benign samples classified by the model on each category. In our cases, the target label is 0.
Attacks ↓, Labels → 0 1 2 3 4 5 6 7 8 9

BadNets (Original) 14.68 5.71 11.09 22.02 10.77 14.19 6.36 3.92 5.55 5.71
BadNets (Adaptive) 99.57 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
BATT (Original) 10.81 5.50 13.18 22.27 10.62 13.18 6.23 5.88 5.78 6.54
BATT (Adaptive) 94.67 0.02 0.30 3.84 0.91 0.09 0.06 0.00 0.02 0.09

class. Inspired by label smoothing, we design an adaptive loss term L′
ada to decrease the confidence of poisoned samples

when model parameter amplification occurs. The adaptive loss term L′
ada is defined as:

L′
ada =

|Dp|∑
j=1

L(F̂ω
k (xxxj ; θ̂θθ), ŷi), (A23)

where ŷi represents the label-smoothing form of t, and Dp denotes the set of poisoned samples. ŷi is defined as:

ŷi,c =

{
1− ζ if c = t

ζ
C−1 otherwise.

(A24)

Here, ζ is set to 0.2, specifically chosen to reduce the confidence with which poisoned samples are classified into the target
class. The term C denotes the total number of classes, |Dp| represents the number of poisoned samples in the training set,
and xxxj denotes a poisoned sample.

We integrate the adaptive loss term L′
ada with the vanilla backdoor loss Lbd to formulate the overall loss function as

L′ = αLbd + (1 − α′)L′
ada, where α′ is a weighting factor. We evaluate the robustness of our defense under the same

settings as described in Section 5.4. As shown in Table A15, reducing the confidence of poisoned samples significantly
decreases BA, making the attack more noticeable. Moreover, our defense remains effective even against this new adaptive
attack. The effectiveness of IBD-SPC largely stems from our adaptive layer selection strategy, which dynamically identifies
BN layers for amplification. This approach ensures the robustness of our defense mechanism across various scenarios,
whether the model is vanilla or adaptively backdoored.

We claim that the reduction of BA caused by the adaptive attack is mainly because the DNNs link both benign features
and trigger features to the target class when using label smoothing, although the connection between trigger features and
the target class is stronger. Specifically, attacked models tend to overfit trigger features when high confidence (e.g., 1) is
applied on poisoned samples, as seen in vanilla backdoor attacks. However, after label smoothing, the attacked models
rely on both trigger and other features, as the task becomes more complicated and harder to fit accurately. Consequently,
the adaptive-attacked model is more likely to predict benign samples as the target class, resulting in relatively low benign
accuracy. To further verify this, we calculate the distribution of misclassified benign samples. As shown in Table A16,
almost all misclassified benign samples are predicted as the target label (i.e., 0) instead of other classes.
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0.00 0.02 0.00 0.77 0.11 0.01 0.00 0.00 0.01 0.06
0.00 0.01 0.00 0.59 0.32 0.02 0.00 0.00 0.01 0.05
0.00 0.06 0.00 0.51 0.01 0.01 0.00 0.00 0.40 0.01
0.00 0.05 0.00 0.75 0.02 0.00 0.00 0.00 0.14 0.03
0.00 0.01 0.00 0.80 0.10 0.01 0.00 0.00 0.02 0.05
0.00 0.06 0.00 0.75 0.07 0.01 0.00 0.00 0.03 0.08
0.01 0.04 0.00 0.46 0.04 0.01 0.00 0.00 0.37 0.07
0.00 0.05 0.00 0.74 0.09 0.01 0.00 0.00 0.04 0.06
0.00 0.06 0.00 0.76 0.04 0.01 0.00 0.00 0.05 0.06
0.00 0.16 0.00 0.46 0.22 0.01 0.00 0.00 0.07 0.08
0.00 0.08 0.00 0.62 0.03 0.01 0.00 0.00 0.20 0.07
0.00 0.00 0.01 0.82 0.12 0.00 0.00 0.00 0.01 0.04
0.19 0.05 0.00 0.58 0.06 0.02 0.00 0.00 0.04 0.06
0.00 0.00 0.00 0.90 0.06 0.01 0.00 0.00 0.02 0.02
0.00 0.10 0.00 0.61 0.16 0.01 0.00 0.00 0.02 0.10
0.00 0.03 0.00 0.81 0.04 0.01 0.00 0.00 0.08 0.02
0.00 0.11 0.00 0.64 0.05 0.01 0.00 0.00 0.12 0.07
0.00 0.07 0.00 0.60 0.07 0.02 0.00 0.00 0.15 0.08
0.00 0.02 0.00 0.87 0.03 0.00 0.00 0.00 0.03 0.04
0.00 0.05 0.00 0.82 0.06 0.01 0.00 0.00 0.01 0.04
0.00 0.01 0.00 0.88 0.03 0.00 0.00 0.00 0.07 0.02
0.00 0.01 0.00 0.88 0.08 0.00 0.00 0.00 0.02 0.02
0.15 0.03 0.00 0.61 0.03 0.01 0.00 0.00 0.13 0.03
0.00 0.02 0.00 0.72 0.05 0.01 0.00 0.00 0.02 0.19
0.00 0.03 0.00 0.69 0.14 0.02 0.00 0.00 0.04 0.08
0.00 0.02 0.00 0.30 0.01 0.00 0.00 0.00 0.65 0.02
0.00 0.00 0.01 0.74 0.13 0.01 0.00 0.00 0.10 0.01
0.00 0.14 0.00 0.43 0.03 0.01 0.00 0.00 0.26 0.12
0.00 0.01 0.00 0.79 0.15 0.01 0.00 0.00 0.02 0.03
0.00 0.02 0.00 0.63 0.18 0.02 0.00 0.00 0.09 0.06

(a) BadNets
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0.41 0.33 0.06 0.01 0.00 0.01 0.00 0.00 0.00 0.19
0.48 0.24 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.27
0.48 0.49 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02
0.64 0.32 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03
0.44 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09
0.71 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.61 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23
0.74 0.05 0.09 0.03 0.00 0.00 0.00 0.00 0.00 0.09
0.64 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28
0.41 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
0.77 0.03 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.13
0.42 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28
0.37 0.49 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.07
0.47 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13
0.40 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
0.47 0.34 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.17
0.65 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
0.12 0.27 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.06
0.43 0.22 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.34
0.42 0.40 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.17
0.46 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0.89 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03
0.53 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
0.27 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12
0.47 0.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0.18 0.70 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.07
0.37 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.72 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
0.51 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
0.63 0.14 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.07

(b) Blend
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0.04 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00
0.47 0.01 0.01 0.04 0.00 0.41 0.00 0.05 0.01 0.00
0.38 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.00
0.49 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00
0.57 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00
0.56 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00
0.64 0.00 0.00 0.24 0.00 0.11 0.00 0.01 0.00 0.00
0.52 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00
0.74 0.00 0.00 0.01 0.00 0.25 0.00 0.00 0.00 0.00
0.58 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.00
0.74 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00
0.83 0.00 0.00 0.02 0.00 0.14 0.00 0.00 0.00 0.00
0.74 0.00 0.01 0.01 0.00 0.23 0.00 0.01 0.00 0.00
0.04 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00
0.46 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.00
0.58 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.70 0.01 0.02 0.00 0.00 0.23 0.00 0.01 0.02 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.60 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00
0.51 0.00 0.00 0.01 0.00 0.44 0.00 0.03 0.00 0.00
0.18 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00
0.87 0.00 0.00 0.01 0.00 0.12 0.00 0.00 0.00 0.00
0.29 0.00 0.11 0.27 0.01 0.29 0.00 0.00 0.01 0.00
0.83 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00
0.81 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00
0.57 0.00 0.39 0.00 0.00 0.03 0.00 0.01 0.00 0.00
0.40 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00

(c) BATT

Logit_0 Logit_1 Logit_2 Logit_3 Logit_4 Logit_5 Logit_6 Logit_7 Logit_8 Logit_9

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28

0.25 0.01 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.04
0.02 0.00 0.00 0.23 0.74 0.00 0.00 0.00 0.00 0.01
0.69 0.00 0.00 0.28 0.01 0.00 0.00 0.00 0.00 0.02
0.18 0.69 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.03
0.00 0.01 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.22
0.02 0.00 0.00 0.73 0.00 0.00 0.00 0.00 0.00 0.25
0.01 0.13 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.54
0.00 0.00 0.00 0.34 0.62 0.00 0.00 0.00 0.00 0.04
0.23 0.67 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.07
0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.93
0.30 0.29 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.04
0.12 0.26 0.00 0.58 0.00 0.00 0.00 0.00 0.00 0.03
0.57 0.13 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.04
0.00 0.00 0.00 0.35 0.42 0.00 0.00 0.00 0.00 0.24
0.00 0.11 0.00 0.07 0.02 0.00 0.00 0.00 0.00 0.80
0.00 0.02 0.00 0.06 0.29 0.00 0.00 0.00 0.00 0.63
0.00 0.00 0.00 0.88 0.07 0.00 0.00 0.00 0.00 0.05
0.10 0.01 0.00 0.33 0.03 0.00 0.00 0.00 0.00 0.54
0.02 0.74 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00
0.27 0.08 0.03 0.34 0.13 0.00 0.00 0.00 0.00 0.14
0.77 0.10 0.00 0.10 0.01 0.00 0.00 0.00 0.00 0.02
0.05 0.20 0.00 0.45 0.17 0.00 0.00 0.00 0.00 0.13
0.09 0.27 0.00 0.17 0.10 0.00 0.00 0.00 0.00 0.38
0.15 0.14 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.15
0.08 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00
0.61 0.03 0.00 0.34 0.01 0.00 0.00 0.00 0.00 0.01
0.00 0.01 0.00 0.78 0.00 0.00 0.00 0.00 0.00 0.21
0.00 0.03 0.00 0.44 0.14 0.00 0.00 0.00 0.00 0.38
0.10 0.15 0.00 0.70 0.01 0.00 0.00 0.00 0.00 0.05
0.07 0.04 0.00 0.71 0.02 0.00 0.00 0.00 0.00 0.16

(d) Ada-patch
Figure A11. The heatmap of the average prediction confidences of benign samples within the target class predicted by the n scaled models
on the CIFAR-10 dataset. The threshold of our defense is set at 0.9; samples with PSC values above this threshold are classified as
poisoned. In our cases, the target label is 0.

We also design an adaptive attack variant that directly classifies poisoned samples to their ground-truth labels under
parameter amplification. However, this approach imposes excessive regularization, preventing the learning of backdoors.
This phenomenon aligns with our findings in Theorem 3.1. Additionally, we design another adaptive loss term by making
parameter-amplified models categorize poisoned images as a different class (rather than the target class). However, even
with a very small trade-off hyper-parameter for the adaptive loss term, it significantly decreases the BA of the attacked
model by more than 30%.

O. The Impact of Parameter Amplification on the Benign Samples from Target class
To better understand the reduction in confidence scores of benign samples, we randomly select 30 benign samples from
the target class and generate a heatmap to display the distribution of average logits across n scaled models. As shown
in Figure A11, the heatmaps for various attacks highlight a clear clustering phenomenon: scaled models consistently increase
prediction confidence for a specific non-original label, thereby reducing confidence scores for the original labels of these
benign samples. Moreover, these non-original labels correspond to categories that are more challenging to classify in
CIFAR-10 dataset, typically having lower accuracy. For example, the category associated with Logit 3 is “Cat,” which has
an accuracy of less than 90%, noticeably below the dataset’s average accuracy of approximately 94%.
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Figure A12. The t-SNE of feature representations of benign and poisoned samples on CIFAR-10 dataset against different backdoor attacks.

P. How Model Amplification Changes the Latent Representation
In this section, we provide a comprehensive set of t-SNE visualizations for all the attacks considered in our study. These
visualizations show how the hidden layer features of benign and poisoned samples change under the modifications by
SCALE-UP and our defense strategy. As indicated in Figure A12 and Figure A13, the amplification of pixel values by
SCALE-UP results in a limited change within the feature space. In contrast, our defense achieves a more pronounced shift
by modifying the model parameters, providing a more discernible differentiation between benign and poisoned samples.
This is intuitively why our method achieves better performance in backdoor attack detection.
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Figure A13. The t-SNE of feature representations of benign and poisoned samples on the CIFAR-10 dataset against other backdoor attacks
(clean-label, specific-class, training-controlled, model-controlled, and adaptive attacks).

Q. The Extension to Training Set Purification
Q.1. Related Work

Training set purification aims to filter out potentially poisoned samples from a contaminated training set, ensuring that the
model trained on the purified dataset is free from backdoors. Many existing studies assume that backdoored models will
develop abnormal latent representations for poisoned samples, which are significantly different from those of benign samples,
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Table A17. The performance (AUROC, TPR, FPR) of our defense on identifying the potential training poisoned samples.
Attacks → BadNets WaNet BATT

Defenses ↓ AUROC TPR FPR AUROC TPR FPR AUROC TPR FPR

MSPC 0.980 1.000 0.144 0.747 0.551 0.186 0.986 0.991 0.131
CD 0.980 0.895 0.052 0.710 0.303 0.121 0.767 0.403 0.117
Ours 1.000 1.000 0.066 0.998 1.000 0.081 0.994 1.000 0.079

Table A18. Effect of retraining models without poisoned samples identified by our defense.
Attacks ASR BA # Removed Samples

BadNets 0.005 0.893 7985
WaNet 0.002 0.878 9119
BATT 0.009 0.860 8536

allowing for the identification of poisoned samples. Chen et al. (Chen et al., 2018) firstly observed that samples within
the target class form two separate clusters in the feature space of the penultimate layer. They employed cluster analysis
techniques, such as K-means, to segregate these clusters. Samples from the smaller cluster are classified as poisoned, based
on the assumption that the number of poisoned samples is significantly lower than that of benign samples. Subsequent works
generally utilized different cluster analysis methods, such as singular value decomposition (SVD) (Tran et al., 2018; Hayase
et al., 2021), Gram matrix (Ma et al., 2022), K-Nearest-Neighbors (Peri et al., 2020), and feature decomposition (Tang et al.,
2021), to detect poisoned samples. Another line of research focuses on identifying poisoned samples based on differentiating
characteristics, such as the faster speed of model fitting (Li et al., 2021b), the presence of high-frequency artifacts (Zeng
et al., 2021), and the sensitivity of poisoned samples to transformations (Chen et al., 2022).

More recently, Huang et al. (Huang et al., 2023) hypothesized that poisoned samples require less input information to be
predicted correctly. They introduced the cognitive pattern signature technique, which distills a minimal pattern (given by a
mask) for an input sample to retain its original prediction. This technique reveals that poisoned samples typically exhibit a
significantly smaller L1 norm in the cognitive pattern compared to benign samples. Pan et al. (Pan et al., 2023) proposed a
proactive training set purification method called ASSET, which maximizes the loss difference between poisoned and benign
samples by optimizing opposite objectives on the base and poisoned sets. Pal et al. (Pal et al., 2024) presented intriguing
observations regarding the limitations of SCALE-UP (Guo et al., 2023b), leading to the proposal of the masked scaled
prediction consistency (MSPC) technique. This method selectively amplifies specific pixels in input samples, thereby more
effectively exposing the prediction invariance of poisoned data under an input scaling factor.

Q.2. Comparing Our IBD-PSC with MSPC

MSPC (Pal et al., 2024) presents observations that are similar to ours regarding SCALE-UP. However, it is important
to clarify that our findings on SCALE-UP constitute only a minor component of our research. While our study shares
some similarities with the SCALE-UP framework, it significantly diverges by exploring parameter scaling, highlighting a
substantial difference from MSPC. Additionally, our work focuses on different application scenarios compared to MSPC,
which is primarily concerned with training set purification.

Our Method Requires Fewer Assumptions about Potential Adversaries. We explore scenarios where the users employ
third-party models and need real-time detection of poisoned samples during the inference phase, similar to a firewall. This
setup aligns with the framework proposed in SCALE-UP. Notably, we do not limit our adversaries to using poison-only
attack methods, which is required by MSPC.

Differences in Detection Focus. Our defense operates during the inference stage, requiring the capability of real-time
detection. In contrast, MSPC is less constrained in detection time as it operates during the data collection phase.

Q.3. Identifying and Filtering Potentially Poisoned Samples within Training set

Following the methodology in references (Pal et al., 2024; Huang et al., 2023; Pan et al., 2023), we first train a model
on a potentially compromised training set and then apply our detection method to identify and filter potentially poisoned
samples within that dataset. The detection performance, presented in Table A17, demonstrates the effectiveness of our
method in filtering malicious training samples across various attacks, achieving a 100% TPR and nearly 100% AUROC
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while maintaining an FPR close to 0%. Note that we reproduce MSPC using its open-source codes with default settings.
However, it performs relatively poorly in defending against WaNet compared to the results reported in its original paper. We
speculate this is because we test WaNet in noise mode, whereas MSPC is tested on the vanilla WaNet (as mentioned in
their Appendix E). After removing suspected poisoned samples from the training set, we retrain the model on this purified
training set to evaluate both its BA and ASR. We conduct experiments on the CIFAR-10 dataset against three representative
attacks, and the results, presented in Table A18, show that the ASR scores of these retrained models are less than 0.5%,
rendering these backdoor attacks ineffective.

R. Potential Limitations and Future Directions
In this section, we analyze the potential limitations and future directions of this work.

Firstly, our defense requires more memory and inference times than the standard model inference without any defense.
Specifically, let Ms and Md denote the memory (for loading models) required by the standard model inference and by
that of our defense, respectively. Let Ts and Td denote the inference time required by the standard model inference and
by that of our defense. Assuming that we adopt n (e.g., n = 5) parameter-amplified models for our defense. We have
the following equation: Md · Td = n×Ms · Ts. Accordingly, the users may need more GPUs to load all/some amplified
models simultaneously to ensure efficiency or require more time for prediction by loading those models one by one when
the memory is limited. In particular, the storage costs of our defense are similar to those without defense since we can easily
obtain amplified models based on the standard one and, therefore, only need to save one model copy (e.g., vanilla model).
We will explore how to reduce those costs in our future work.

Secondly, our IBD-PSC requires a few local benign samples, although their number could be small (e.g., 25, as shown in
Figure A8). We will explore how to extend our method to the ‘data-free’ scenarios in our future works.

Thirdly, our method can only detect whether a suspicious testing image is malicious. Currently, our defense cannot recover
the correct label of malicious samples or their trigger patterns. As such, the users can only mark and refuse to predict those
samples. We will explore how to incorporate those additional functionalities in our future works.

Fourthly, our work currently focuses only on image classification tasks. We will explore its performance on other modalities
(e.g., text and audio) and tasks (e.g., detection and tracking) in our future work.

S. Reproducibility Statement
We have provided detailed descriptions encompassing the datasets utilized, training and evaluation settings, along the
computational resources involved. To facilitate the replication of our experimental results, the corresponding codes and
model checkpoints have been provided in the supplementary materials.

T. Discussions about the Adopted Data
In this paper, all the samples we used are from publicly available datasets, including CIFAR-10, GTSRB, and ImageNet.
It’s worth noting that our defense method is implemented by modifying the pre-trained model parameters, without making
any alterations to the input samples themselves. Therefore, our study doesn’t raise any concerns regarding the privacy of
human-related images within the dataset.
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