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Abstract

Beyond minimizing a single training loss, many
deep learning estimation pipelines rely on an aux-
iliary objective to quantify and encourage desir-
able properties of the model (e.g. performance
on another dataset, robustness, agreement with
a prior). Although the simplest approach to in-
corporating an auxiliary loss is to sum it with
the training loss as a regularizer, recent works
have shown that one can improve performance by
blending the gradients beyond a simple sum; this
is known as gradient surgery. We cast the prob-
lem as a constrained minimization problem where
the auxiliary objective is minimized among the set
of minimizers of the training loss. To solve this
bilevel problem, we follow a parameter update
direction that combines the training loss gradient
and the orthogonal projection of the auxiliary gra-
dient to the training gradient. In a setting where
gradients come from mini-batches, we explain
how, using a moving average of the training loss
gradients, we can carefully maintain this critical
orthogonality property. We demonstrate that our
method, Bloop, can lead to much better perfor-
mances on NLP and vision experiments than other
gradient surgery methods without EMA.

1. Introduction
Overparameterized neural networks trained on large datasets
admit multiple solutions with the same optimal training loss
(Cooper, 2018; Li et al., 2018). Although these parameters
may seem equivalent when viewed through their training
loss, they result in different functions, which may exhibit
starkly different behaviors on unseen data points. Practition-
ers are usually interested in generalization — one would
rather use the network with lower test loss between two
networks — but there are countless other metrics of inter-
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est, such as performance on another dataset, robustness, or
model calibration. In all of these cases, one aims to train the
neural network by minimizing a training loss Lmain while
keeping an eye on an auxiliary metric or loss Laux.

Optimization trade-offs. Our focus in this paper is on
methods that achieve the best possible trade-off between
training and auxiliary losses, using a hyper-parameter λ ≥ 0
to control that trade-off: λ = 0 corresponds to training
on Lmain exclusively, while increasing λ usually decreases
Laux at the expense of Lmain. Using the auxiliary loss as a
regularizer results in the mixed training method, arguably
the simplest approach to control that trade-off:

min
θ

Lmain(θ) + λLaux(θ). (1)

Mixed training, however, runs into optimization issues if the
directions of the largest curvature of the training loss and
that of the auxiliary loss are not aligned — see Section 3.3
for an example.

The Simple Bilevel Approach. Provided that modern deep
neural networks are inherently overparameterized, leading
to multiple minimizers, an ideal solution would be to find
the minimizer of Lmain that achieves the smallest auxiliary
loss. This corresponds to solving Equation 1 in the limit
where λ → 0, and can also be expressed as the following
simple bilevel problem (Dempe et al., 2010):

minLaux(θ) s.t. θ ∈ argminLmain(θ). (2)

Problem (2) is a constrained optimization problem on the
set of minimizers of Lmain, a high-dimensional set with
no clear structure, except when Lmain is convex, in which
case several provably convergent approaches have been pro-
posed (Sabach & Shtern, 2017; Gong & Liu, 2021; Cao
et al., 2023). However, to the best of our knowledge, these
methods have not been applied to training neural networks,
where these convergence guarantees do not hold.

Connections to Multi-Task Learning. The problem of
simultaneously optimizing the main and auxiliary loss is
also a special case of multi-task learning (Caruana, 1997)
involving only two tasks. Many of the approaches proposed
to tackle this problem more efficiently rely on the idea of
gradient surgery, which stitches together and possibly mod-
ify the gradients of both losses when they disagree (Yu et al.,
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2020). While multi-task methods tend to treat the two losses
equally, we are interested in our work in cases where there
is a clear hierarchy between the two.

Two types of auxiliary losses. Auxiliary objectives largely
fall into two categories. The first consists of objectives
that guide optimization of the main loss but are not intrin-
sically meaningful; also known as inductive biases, they are
only useful to reach a lower test loss. Weight decay, Laux =
1
2∥·∥2, fits this description: using it improves generalization,
but practitioners rarely care about the final norm of their pa-
rameters. The second category of auxiliary losses quantify
instead a desirable property: Trading off an increase in the
main loss for a decrease in the auxiliary loss might be rele-
vant to applications. For instance, the main objective might
a loss on a large dataset, whereas the auxiliary objective
may be a loss on a smaller, specialized dataset. Ideally, one
wishes to achieve a model with high accuracy on both, and
hope that the auxiliary loss might also help generalization on
the large training set, but both objectives remain meaningful
on their own. Another example is in training neural net-
works that are also smooth, i.e., with a small Lipschitz con-
stant. This is beneficial for the networks’ robustness (Cisse
et al., 2017). To enforce this during training, one can use a
proxy for the Lipschitz constant of the neural network as an
auxiliary loss (Tsuzuku et al., 2018; Terjék, 2019).

Contributions. To handle the optimization tradeoff
between main and auxiliary losses, we introduce in Sec-
tion 2 the Bloop (BiLevel Optimization with Orthogonal
Projection) method. Our method is inspired by the simple
bilevel problem, but similar to the regularization approach,
has a tunable hyperparameter, λ, to control the trade-off
between losses. At the heart of the method is a projection
of the auxiliary gradient to be orthogonal to the primary
loss gradient. We first provide a theoretical justification
for this approach in the full-batch case. In the stochastic
setting, we rely on an exponential moving average (EMA)
of the training gradient to estimate the projection direction,
and retain most of the full-batch theoretical properties.In
Section 3, we analyze Bloop’s stationary points, and show
that they are first-order stationary points of the simple
bilevel problem. We demonstrate the convergence of the
iterates towards the stationary points of the training loss,
under appropriate hypothesis on the step size and the EMA
accumulation factor, highlighting the importance of the
EMA. In Section 4, we discuss related methods that perform
variants of gradient surgery. In Section 5, we explore the
applicability of our method to a variety of tasks: training net-
work parameters with an explicit bias; multi-task learning;
training language models to perform well on a large generic
dataset and a small specific dataset. In our experiments,
Bloop exhibits a better Pareto front than both the mixed
method and multi-task methods that do not use an EMA.

2. The Bloop Algorithm
In this section, we introduce Bloop, a simple and intuitive
iterative algorithm to optimize two losses simultaneously.
We then discuss how the method can be extended to address
stochasticity in the gradients, and multi-level optimization.

2.1. Full-batch setting and main intuition

At each step, Bloop builds a parameter update direction d ∈
Rp which is then fed to an optimizer (e.g. Adam (Kingma &
Ba, 2014)) in order to converge to the solution of Equation 2.
For instance, the gradient descent optimizer would iterate
θ ← θ − ηd. At the current iterate θ, we let gmain =
∇Lmain(θ) and gaux = ∇Laux(θ).

We design our direction from first principles. We seek a
direction in the span of these two gradients, d = ωgmain +
λgaux with ω and λ two scalars. Our primary goal is to make
progress on the main loss at the same speed as gradient de-
scent; hence we target Lmain(θ−ηd) ≃ Lmain(θ−ηgmain).

At the first order in the step-size η, we see that the compo-
nent of the direction in the direction gmain should be the
same as that of gmain, i.e., we want ⟨d, gmain⟩ = ∥gmain∥2.
This gives the equation (1− ω)∥gmain∥2 = λ⟨gmain, gaux⟩.
Our secondary goal is the optimization of the auxiliary loss,
hence we impose that the coefficient in front of gaux is posi-
tive, i.e. that λ > 0. These two conditions alone give us our
update rule: we find that such a direction is necessarily

d = gmain + λπ(gaux, gmain), where

π(gaux; gmain) = gaux −
⟨gaux, gmain⟩
∥gmain∥2

gmain

(3)

Hyperparameter λ ≥ 0 trades-off the two objectives, and
π(gaux; gmain) is the projection of gaux orthogonal to gmain.
This direction admits an intuitive explanation: since we pri-
marily want to optimize the main loss, we follow gmain; the
projection part is aligned with gaux, and does not interfere
with gmain thanks to the orthogonality condition. Moreover,
the fact that ⟨d, gmain⟩ = ∥gmain∥2 means that following
this direction does not change the optimization with respect
to Lmain when step-sizes are small. Specifically, we write
down the Taylor expansion at the first order

Lmain(θ − ηd) ≃ Lmain(θ)− η⟨gmain, d⟩,
(Orthogonality) ≃ Lmain(θ)− η∥gmain∥2.

(4)

This is the same as standard gradient descent where d =
gmain. Figure 1 illustrates the geometric principle of Bloop.
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Bloop direction

Figure 1. Principle of the Bloop method: the direction we follow
is the sum of the gradient of the main loss gmain, and of the
projection of the gradient of the auxiliary loss, orthogonal to gmain.
This enforces that, at the first order, following this direction yields
the same decrease in Lmain as following gmain.

2.2. Stochastic extension for large-scale problems

When dealing with neural networks trained over large
datasets, the losses are written as sums over many samples:

Lmain(θ) =
1

n

n∑
i=1

Li
main(θ), Laux(θ) =

1

m

m∑
j=1

Lj
aux(θ).

In practice, we can only use a mini-batch of gradients to
make progress on the problem, as the computation of the
full-batch gradient of these losses is out of the question.
Concretely, we assume that we have computed the two mini-
batch gradients gbatchmain , gbatchaux , which are by design unbiased
estimators of the full-batch gradients:

E[gbatchmain ] = gmain and E[gbatchaux ] = gaux.

In the above, the expectation is taken over the randomness
of the mini-batch choice. Extending the direction d to this
stochastic setting is not straightforward, and careful design
makes a big difference in the final performance. A key
insight behind standard, single-level, stochastic gradient
descent on Lmain is that, for small step sizes, it has on
average the same decrease as gradient descent:

E[Lmain(θ − ηgbatchmain )] ≃ Lmain(θ)− ηE[⟨gmain, g
batch
main ⟩]

(Linearity of dot) ≃ Lmain(θ)− η⟨gmain,E[gbatchmain ]⟩
(Unbiased gradient) ≃ Lmain(θ)− η∥gmain∥2

We want to preserve this behavior as much as possible.
A first idea is simply to plug the mini-batch gradients in
Equation 3, i.e. consider

dbatchsimple = gbatchmain + λπ(gbatchaux ; gbatchmain ).

The pitfall of projecting on stochastic gradients. The
main issue with the above method is that the projection is
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Mini-batch gradient s.t.d. σ
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‖E[dbatch
simple]− dbloop‖

‖E[dbatch
simple]− dmixed‖

Figure 2. Effect of randomness on the projection: We fix the
dimension of the parameter space to p = 100, and draw both
gmain and gaux from the Gaussian distribution N (0, I). These two
vectors are fixed in the remainder of the experiment. We draw
gbatch

main ∼ gmain + σN (0, I) and use Monte-Carlo simulation to
estimate E[dbatch

simple] = gmain + E[π(gaux; g
batch
main )]. We compare its

value against dbloop = gmain + π(gaux; gmain), its theoretical value
when σ = 0 (the target direction), and dmixed = gmain + (1 −
1/100)gaux, its theoretical value when σ tends to infinity. We see
that the E[dbatch

simple] becomes closer to the gradient of the mixed
method when the noise starts to dominate.

nonlinear with respect to its second argument: in general,
E[π(gbatchaux ; gbatchmain )] ̸= π(gaux; gmain). As a consequence,
it is not true anymore that ⟨dbatchsimple, gmain⟩ = ∥gmain∥2,
even in expectation, which in turn leads to a behavior starkly
different from SGD on Lmain. We can improve this intuition
using a simplified model of the training dynamics. Assume
that gbatchmain = gmain+σε, where ε ∼ N (0, I) is the random
gradient noise, and σ > 0 is the noise variance. In the limit
where σ is large in front of ∥gmain∥, we get that on average
Eε[π(g

batch
aux ; gbatchmain )] = (1 − 1

p )g
batch
aux with p the parame-

ter’s dimension. Therefore, the simple direction is on aver-
age dbatchsimple = gbatchmain +λ(1− 1

p )g
batch
aux . We recover the same

direction as that of the mixed training method, with a new
λ′ = λ(1− 1

p ), and the orthogonalization becomes useless.

In order to illustrate this intuition, we conduct a synthetic
experiment, explained in Figure 2.

The EMA solution. The previous analysis indicates that
we need a better estimate of gmain than the mini-batch
gradient. A simple solution to this is to use an Exponen-
tial Moving Average (EMA) of the previous batch gradi-
ents, gEMA

main , which is updated at each iteration by doing
gEMA
main ← (1− ρ)gEMA

main + ρgbatchmain , with ρ ∈ [0, 1] a param-
eter that controls the speed of the EMA. This can be a much
better estimator of gmain than gbatchmain , because it averages
gradients over the optimization trajectory, drastically reduc-
ing the variance. Intuitively, we need to accumulate the
EMA faster than the speed of the optimization algorithm
that updates the parameters. Hence, ρ should be greater
than the step-size η. We use this gradient EMA solely in the
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Algorithm 1 The Bloop algorithm
Input: Hyperparameter λ, EMA parameter ρ, initial pa-
rameters θ, optimizer optim, optimizer state s, initial
EMA gEMA

main

for t = 0, . . . , T − 1 do
Sample gradients gbatchmain , gbatchaux

Compute the Bloop direction dbatch using Equation 5
Update θ, s← optim(dbatch, θ, s)
Update EMA: gEMA

main ← (1− ρ)gEMA
main + ρgbatchmain

end for

projection, and propose the direction

dbatch = gbatchmain + λπ(gbatchaux ; gEMA
main ) (5)

We do not replace the first gbatchmain in the formula by the
EMA, because dbatch is an optimization direction, that is
then plugged into any optimizer like Adam, which will use
a smart adaptive step to reach the solution quickly. Since
the EMA does not depend on the current batch, and the pro-
jection is linear with respect to its first argument, we have
that E[dbatch] = gmain + λπ(gaux; g

EMA
main ), and as a conse-

quence, the expected decrease on Lmain following this direc-
tion is E[Lmain(θ − ηdbatch)] ≃ Lmain(θ) − η∥gmain∥2 +
ηλ⟨π(gaux; gEMA

main ), gmain⟩. When the EMA accumulation
gEMA
main is close to gmain, the last term becomes small because

the two vectors are approximately orthogonal. Thus,

E[Lmain(θ − ηdbatch)] ≃ Lmain(θ)− η∥gmain∥2,

and we recover the same behavior as SGD on Lmain. The
new direction is no longer in the span of (gbatchmain , gbatchaux )
because it also has a component in the direction of gEMA

main .

The theory presented in the next section clearly highlights
the importance of this EMA, and in our experiments, we find
that this simple EMA modification drastically improves the
performance of the algorithm on a variety of tasks. In fact,
we found that in many cases, standard multi-task methods
without EMA have very similar performances to the mixed
training method.

Algorithm 1 gives the full pseudo-code of the Bloop method.
We use optax-like notations (DeepMind et al., 2020) for
the optimizer, which is abstracted as a method that, given a
direction d, current parameters θ and a state s containing all
its hyper-parameters like learning rate and internal state like
EMAs for adaptive methods, returns the updated parameters
θ and updated state s.

2.3. Extension to multi-level hierarchical optimization

Our algorithm can be extended to multi-level optimization,
where we have more than two losses and they have a hi-

erarchy. For simplicity, we present here the case with 3
losses: Lmain, L1

aux and L2
aux. The hierarchy means that

we minimize Lmain, and then, among this set of minimizers,
we minimize L1

aux. Finally, we minimize L2
aux among this

new set. This gives the trilevel optimization problem:

minL2
aux(θ) s.t.

θ ∈
(
argminL1

aux(θ) s.t. θ ∈ argminLmain(θ)
) (6)

Our algorithm can be straightforwardly extended to this
case by following a Gram-Schmidt like orthogonalization
process: letting gmain, g1aux and g2aux the gradients of the
three losses, we go in the direction

d = gmain + λ1π(g1aux; gmain) + λ2π(g2aux; (gmain, g
1
aux))

where π(g2aux; (gmain, g
1
aux)) is the projection of g2aux on

the orthogonal of the span of (gmain, g
1
aux). Thanks to or-

thogonality, this direction satisfies ⟨d, gmain⟩ = ∥gmain∥2;
hence in terms of optimization with respect to Lmain, the
direction behaves just like gmain, and ⟨d, g1aux⟩ = ⟨gmain +
λ1π(g1aux; gmain), g

1
aux⟩; hence in terms of optimization

with respect to L1
aux, the direction behaves just like the

bilevel direction d introduced in Equation 3.

3. Theoretical Analysis
This section aims at understanding the theoretical properties
of the proposed direction in the full-batch and the mini-
batch settings by linking it with the simple bilevel problem
(Equation 2). All the proofs are deferred to Appendix A.

3.1. Approximate stationary points of Bloop

At a solution to the simple bilevel problem, we have
∇Lmain(θ) = 0, hence the solutions to the bilevel prob-
lem are also solutions of

minLaux(θ) s.t. ∇Lmain(θ) = 0.

The Lagrangian for this equation is L(θ, v) = Laux(θ) −
⟨v,∇Lmain(θ)⟩ with v ∈ Rp the Lagrange multiplier. Ac-
cordingly, the first-order optimality conditions are gmain =
0 and that there exists v such that gaux = ∇2Lmain(θ)v.
A first natural question to ask is whether the direction that
we propose in Equation 3 cancels at these points. However,
the projection is ill-defined when gmain = 0. We thus as-
sume that ∥gmain∥ is positive hereinafter and focus on the
case where d is small but non-zero.1 To analyze this, we
introduce the following assumption.

Assumption 1 (Local Error Bound Luo & Tseng, 1993).
There exists c > 0 such that for ε small enough and for any

1Although we can simply set d = λgaux when gmain = 0,
the study of this particular case is straightforward and gives little
insight on the general case. We therefore omit it here.
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θ satisfying ∥gmain(θ)∥ ≤ ε, we have

Dist(θ,∇L−1
main({0})) ≤ c∥gmain∥.

This local error bound condition is implied by a local Polyak-
Lojasiewicz inequality, which is verified, for instance, for
overparameterized least-squares and some neural network
loss functions (Liu et al., 2022). With this in hand, we are
now ready to present our result regarding the approximate
first-order stationary points of the full-batch Bloop method.

Proposition 1 (Stationary points). If d in Equation 3 is
such that ∥d∥ ≤ ε, then we have ∥gmain∥ ≤ ε. Moreover if
Assumption 1 holds, the Hessian of Lmain is M−Lipschitz,
and ε is small enough, then there exists v ∈ Rp such that

∥gaux −∇2Lmain(θ)v∥ ≤ (λ−1 +Mc2∥gaux∥/2)ε.

Conversely, given a point θ∗ that satisfies the first or-
der optimality conditions of Equation 2, we have that
limε→0 d(θ

∗ + εv) = 0 where v is the Lagrange multiplier.

In short, Proposition 1 relates the (approximate) stationary
points of Bloop to the (approximate) stationary points of the
bilevel problem. Moreover, as an immediate consequence
of the proposition, we see that we additionally assume Laux

to be Lipschitz continuous, the limit points of Bloop must
be stationary points of the simple bilevel problem.

3.2. Convergence of stochastic Bloop

Our main theorem is a convergence result of the stochastic
version of Bloop. It clearly highlights the role of the EMA:
without EMA, obtaining such results would be impossible.

Theorem 2 (Convergence of Bloop). Consider the Bloop
method in the stochastic setting with the SGD optimizer. Let
ρ be the EMA parameter and η be the step-size of the algo-
rithm. Assume that (i) Lmain is L-smooth, (ii) the stochastic
directions are uniformly bounded, i.e., ∥dt∥ ≤ D for all t,
(iii) the variance of the gradients of Lmain is bounded with
Ei[∥∇Li

main(θ) −∇Lmain(θ)∥2 ≤ C2, and (iv) the auxil-
iary gradients are bounded as ∥∇Laux(θ)∥ ≤ B. Then, for
a number of iterations T , taking a step size η ≃ T− 3

4 and
an EMA parameter ρ ≃ η

2
3 gives

1

T

T−1∑
t=0

E[∥∇Lmain(θ
t)∥2] = O(T− 1

4 )

If Lmain is additionally µ-PL (Karimi et al., 2016), we have

E[Lmain(θ
T )−minLmain] ≤ (1− 2ηµ)TLmain(θ

0) +O(η
1
3 ).

Theorem 2 demonstrates the convergence of stochastic
Bloop either in terms of the expected gradient norm or the
expected optimiality gap. In spirit, this suggests that the

Bloop iterate would end up being arbitrarily close to the
stationary points of Lmain. The theorem also instructs us on
the role of the EMA coefficient ρ compared to the learning
rate η. We see that we should take ρ to be slightly larger
than η: in this regime, the gradient EMA gEMA

train is a good
approximation of gtrain.

Also note that this result differs significantly from those ob-
tained in the multi-task learning literature, which show con-
vergence of the algorithms to points where either both losses
are minimized or where their gradients are opposed (Yu
et al., 2020). Here, even in the extreme case where losses
are the exact opposite (Laux = −Lmain), full-batch Bloop
provably converges to the minimizers of Lmain under PL
condition. This is not a surprise since in that case, the pro-
jection π(gaux, gmain) cancels and the iterates of Bloop are
that of gradient descent on Lmain.

Unlike Gong & Liu (2021), we do not demonstrate the
convergence of our algorithm to the KKT points of the
simple bilevel problem. Our results are thus weaker in that
regard, albeit in a different setting since Gong & Liu (2021)
are not in the stochastic case.

3.3. Conditioning compared to regularization method

We illustrate below that the regularization method can lead
to poorly conditioned problems, resulting in hard optimiza-
tion problems, while our method alleviates this. For this, we
take the following simple 2D example, where θ = (a, b):

Lmain(θ) =
1

2
a2 , Laux(θ) =

1

2
((a− 1)2 + b2).

The solution to the bilevel problem is θ∗ = 0, while the
solution to the regularized problem is θ = (λ/(1 + λ), 0).
We recover the same solution in the limit λ→ 0. However,
the Hessian of the regularized problem is diag(1 + λ, λ);
hence the conditioning of the regularized problem is
1 + 1/λ which goes to infinity as λ → 0. In view of this,
the regularized method either converges to a point far from
the solution (λ large) or converges slowly (λ small). On
the contrary, the projection method goes in the direction
d = (a, λb). This is equivalent to gradient descent on a
quadratic loss with the correct θ∗ minimizer — regardless
of λ — and Hessian equal to diag(1, λ), which is well
conditioned when λ is not too far from 1.

4. Related Works
Our work sits at the intersection of two fields of machine
learning: the solution of the simple bilevel problem and
multi-task learning. There are however a number of dif-
ferences between the two. In particular, in the multi-task
learning problem each task is considered jointly whereas in
the bilevel setting there is a hierarchy to the primary and
auxiliary objectives. Another key difference is in the notion
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Table 1. Comparison of similar gradient surgery methods for the
two tasks setting. For brevity, we write gm := gmain and ϕ :=
cos(gm, gaux) = ⟨gm,gaux⟩

∥gm∥∥gaux∥ . (̄·) indicates that EMA has been
applied, and ψ is a dynamic barrier function described in (Gong &
Liu, 2021).

Method Modified Direction

Bloop (ours) gm + λ
(
gaux − ⟨gaux,ḡm⟩

∥ḡm∥2 ḡm
)

Mixed (Regularized) gm + λgaux

A-GEM
Chaudhry et al. (2018)

gm − min(0,⟨gm,gaux⟩)
∥gaux∥2

gaux

Dynamic Barrier
Gong & Liu (2021)

gaux +max(0, ψ(θ)−⟨gm,gaux⟩
∥gm∥2 )gm

MTL-MOO
Sener & Koltun (2018)

⟨gm−gaux,gaux⟩
∥gm−gaux∥2

gm+

(1− ⟨gm−gaux,gaux⟩
∥gm−gaux∥2

)gaux
Cosine Similarity
Du et al. (2018)

gm + gaux max(0, ϕ)

GradVac
Wang & Tsvetkov (2021)

gm +
∥gm∥

(
ϕ̄
√

1−ϕ2−ϕ
√

1−ϕ̄2
)

∥gaux

√
1−ϕ̄2∥

PCGrad
Yu et al. (2020)

gm −min(0, ⟨gaux, gm⟩) gm
∥gm∥2

+gaux −min(0, ⟨gaux, gm⟩) gaux
∥gaux∥2

Meta-Balance
He et al. (2022)

gm + ∥gm∥
∥gaux∥gaux

of task versus auxiliary objective. A task typically requires
a dataset as input, whereas an auxiliary objective is more
general and can incorporate losses without the need for data,
such as the L2 norm in weight decay.

Given the similarity, a number of gradient surgery methods
that have been proposed in multi-task literature can be used
to minimize both the main and the auxiliary objectives. We
summarize the most relevant ones in Table 1. Some works
try to leverage the auxiliary loss to obtain improvements on
the main loss only (Du et al., 2018; Dery et al., 2021).

The Dynamic Barrier (DB) algorithm of Gong & Liu (2021),
as detailed in Table 1, uses a similar orthogonal projection
as in our proposal. It provably solves the bilevel problem.
However, DB includes an additional barrier function, ϕ e.g.
ϕ = ∥gaux∥2, to control the trade-off between objectives,
whereas we use a scalar, λ, similar to regularization methods,
for this purpose. The other main differences between our
proposal and the DB method are that we always use the
projection, rather than conditioning on ⟨gm, gaux⟩, and most
importantly, we use an EMA of main gradients to compute
the projection, rather than the stochastic gradient. With
ϕ = ∥gaux∥2 and without the conditional update or EMA,
the approaches would be the same. Gong & Liu (2021) do
not discuss stochastic extensions of the method, which is of
key importance to practitioners.

Yu et al. (2020) propose PCGrad, which, as shown in Table 1,
can be regarded as a symmetrized version of our method.
Unlike our method, the projection is again conditioned. Con-
cretely, the parameters are updated in the direction of the
combined gradient gmain + gaux when they are aligned, and
projections are performed when this is not the case. The
gradient alignment condition and the symmetry between
the gradients implies that the algorithm does not solve the
bilevel problem; instead (Yu et al., 2020, Thm.1) show that
it minimizes the sum of the two losses or finds a point where
gaux and gmain go in opposite directions. Similarly to the
DB method, no EMA is used in the projection.

5. Experiments
In this section we demonstrate the effectiveness of Bloop
via numerical experiments on problems of three distinct
categories: the use of auxiliary loss for imposing an explicit
bias, multi-task learning, and joint dataset training. For each
of these experiments, we use an optimizer with hyperpa-
rameters that work well for the minimization of solely the
main loss, and never change these hyperparameters. As for
the EMA parameter of Bloop, we take it as ρ = 0.01 in all
experiments unless otherwise stated. Further experimental
details can be found in Appendix B.

Note that Bloop incurs a negligible training cost compared
to the standard regularized training, as it only requires two
additional dot products in the parameter space.

5.1. Baselines and evaluation

We compare Bloop (Algorithm 1) to other popular gradient
surgery methods that follow a similar design. We focus
on the stochastic setup where we only have access to the
gradients over a mini-batch of samples at each iteration.

Mixed. This method minimizes the regularized objective
Lmain + λLaux with the direction d = gbatchmain + λgbatchaux .

Dynamic Barrier (DB). The original formulation of the
DB method requires both an estimate of a lower bound on
Lmain, as well as an estimate of Lmain(θ), which are cum-
bersome to estimate in deep learning setups. We therefore
forgo this part of the algorithm and instead incorporate the
scaling factor λ to control the trade-off. We also replace
the gradients in the original method by stochastic gradients.
This results in the update direction d = µgbatchmain + λgbatchaux

where µ = max
(
1− λ

⟨gbatch
main ,gbatch

aux ⟩
∥gbatch

main ∥2 , 0
)
.

PCGrad. Being motivated from a multi-task perspective,
the original formulation of PCGrad does not use the scaling
factor λ. By incorporating this factor, the update direction
becomes d = gbatchmain + λgbatchaux if ⟨gbatchmain , gbatchaux ⟩ > 0, and
d = π(gbatchmain , gbatchaux ) + λπ(gbatchaux , gbatchmain ) otherwise.

6



Careful with that Scalpel: Improving Gradient Surgery with an EMA

High
<latexit sha1_base64="NExqyl3AlX5HLJAFg3vAS3ekFqo=">AAACAXicbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPqAdSiaTtqGZzJDcEcrQlV/gVr/Anbj1S/wA/8O0nYVtPRA4nHMv9+QEiRQGXffbWVldW9/YLGwVt3d29/ZLB4cNE6ea8TqLZaxbATVcCsXrKFDyVqI5jQLJm8HwbuI3n7g2IlaPOEq4H9G+Ej3BKFqp2ZF2NKTdUtmtuFOQZeLlpAw5at3STyeMWRpxhUxSY9qem6CfUY2CST4udlLDE8qGtM/blioaceNn07hjcmqVkPRibZ9CMlX/bmQ0MmYUBXYyojgwi95E/M9rp9i78TOhkhS5YrNDvVQSjMnk7yQUmjOUI0so08JmJWxANWVoG5q7gsIGHhdtL95iC8ukcV7xriqXDxfl6m3eUAGO4QTOwINrqMI91KAODIbwAq/w5jw7786H8zkbXXHynSOYg/P1C9G1l5I=</latexit>

�

Low
<latexit sha1_base64="NExqyl3AlX5HLJAFg3vAS3ekFqo=">AAACAXicbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPqAdSiaTtqGZzJDcEcrQlV/gVr/Anbj1S/wA/8O0nYVtPRA4nHMv9+QEiRQGXffbWVldW9/YLGwVt3d29/ZLB4cNE6ea8TqLZaxbATVcCsXrKFDyVqI5jQLJm8HwbuI3n7g2IlaPOEq4H9G+Ej3BKFqp2ZF2NKTdUtmtuFOQZeLlpAw5at3STyeMWRpxhUxSY9qem6CfUY2CST4udlLDE8qGtM/blioaceNn07hjcmqVkPRibZ9CMlX/bmQ0MmYUBXYyojgwi95E/M9rp9i78TOhkhS5YrNDvVQSjMnk7yQUmjOUI0so08JmJWxANWVoG5q7gsIGHhdtL95iC8ukcV7xriqXDxfl6m3eUAGO4QTOwINrqMI91KAODIbwAq/w5jw7786H8zkbXXHynSOYg/P1C9G1l5I=</latexit>

�

10 1

Test Loss

10 1

100

101

102

Li
p.

 u
pp

er
 b

ou
nd DB

PCGrad
Mixed
Bloop

(a) Training an MLP on MNIST with an auxiliary loss that is a
proxy for its Lipschitz constant.
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(b) Training a ResNet50 on Imagenet with squared L2 norm as the
auxiliary loss.

Figure 3. Trade-offs between the main and the auxiliary objectives in problems where the auxiliary loss is used to impose an explicit bias
on the neural network. The symbols correspond to the parameters reached at the end of training and form a Pareto front, the transparent
curves are the training trajectories. Bloop achieves a better trade-off than the other methods, which all perform similarly here.

Evaluation of the algorithms. To provide a comprehensive
insight into how the algorithm design affects the training
dynamics, we report the metrics on both the training and the
test sets. Moreover, we trace the evolution of these metrics
along training.

Pareto fronts. All algorithms that we consider here have
thus a parameter λ that trades-off between the train and the
auxiliary losses. After a fixed number of iterations, the algo-
rithm algo finds a final parameter θalgo(λ) that explicitly
depends on λ. Generally, Lmain(θ

algo(λ)) is a decreas-
ing function of λ while Laux(θ

algo(λ)) is increasing with
λ. We can then vary λ to get the set of pairs P(algo) =
{(Lmain(θ

algo(λ)), Laux((θ
algo(λ)))| λ ≥ 0}, called the

Pareto front of algo.

5.2. Imposing an explicit bias during training

To begin with, we first investigate the situation where the
auxiliary objective is used to enforce a certain desirable
property (bias) on the neural network.

Training smooth neural networks. Following our discus-
sion in Section 1, we explore the potential of Bloop in train-
ing smooth neural networks. For this, we use the MNIST
dataset (LeCun et al., 2010) and an MLP of two hidden
layers. With this minimal architecture, a simple induction
argument shows that the Lipschitz constant of the network
is upper-bounded by

∏L
l=1 ∥Wl∥2, where Wl is the weight

matrix of the l−th linear layer, ∥ · ∥2 is the spectral norm,
and L = 3 is the number of layers. We thus define the
auxiliary loss as Laux = log(

∏L
l=1 ∥Wl∥2). The use of

logarithm here makes training easier. On the other hand, we
use the standard cross-entropy loss as the main loss.

Training networks with small weights. For this experi-
ment, we train a ResNet50 using standard cross-entropy
loss on Imagenet, and try to simultaneously achieve a low
ℓ2 norm of the parameters of the network. The auxiliary
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Figure 4. Trade-off between the performances in the Cifar10Mnist
multi-task learning problem. Bloop gives a better Pareto front.

loss is therefore Laux(θ) =
1
2∥θ∥2. In that case, the mixed

method is similar to training with a weight decay λ.

Results. The results are reported in Figure 3. We see
Bloop induces training trajectories that are fundamentally
different from all other methods, and leads to better Pareto
fronts when trading off the main and the auxiliary training
losses. In both experiments, we observe that Bloop leads
to a significantly better Pareto front when looking at the
training loss (Figure 3a, left and Figure 3b, left). Whether
this translates or not to a better Pareto front in terms of test
loss is problem dependent: in Figure 3a, right, the Pareto
front of Bloop is only slightly better than that of the other
methods, while in Figure 3b, right, it is significantly better.

5.3. Multi-task learning

As discussed in Section 1, multi-task learning represents
another typical scenario in which such auxiliary objectives
emerge. Following Hotegni et al. (2023), we construct a
Cifar10Mnist dataset by overlapping digits from MNIST
on images from CIFAR-10 (Krizhevsky et al., 2009) — see
Figure 9 in Appendix B for an illustration. The main and the
auxiliary tasks correpond respectively to identifying the la-
bel for the background CIFAR-10 image and for the MNIST
digit. There is a natural hierachy between the two tasks here
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(a) Results on the language modeling task. The main, pre-training
loss is the next-token-prediction loss over the large c4 dataset, while
the auxiliary, specialization loss is the next-token-prediction loss
over the small RCV-1 dataset.
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(b) Results on the translation task. The main pre-training loss
is the translation loss over the large paracrawl dataset, while the
auxiliary specialization loss is the translation loss over the small
WMT dataset.

Figure 5. Trade-offs between the main and the auxiliary objectives in problems in natural language processing experiments with transformer
models, where the main loss is the loss over a large dataset and the auxiliary loss is a loss over a small dataset that can be overfitted easily.
We observe that Bloop gets a significantly better Pareto front than all other methods, which perform similarly to the mixed method. Bloop
gains in terms of optimization on the training losses transfer to the evaluation losses.

because identifying the CIFAR-10 label is more difficult
than identifying the MNIST one. For this dataset, we train
a ResNet18 with two classification heads to minimize the
two cross-entropy losses. In this experiment, we found that
taking ρ = 0.001 for Bloop gave better results.

Results. As shown in Figure 4, the trajectories of Bloop are
again much more different than those of the other methods,
which share quite similar behaviors. Moreover, Bloop gets
a slightly improved Pareto front over those methods.

5.4. Joint training on two datasets

With the advent of large foundation models, it becomes
increasingly common to train a model on multiple data
sources (Gunasekar et al., 2023; Sun et al., 2023; Xu et al.,
2023; Oquab et al., 2024). Yet, these datasets could have
intrinsically different characteristics, and it may be natural
to prioritize one over another, for instance when one dataset
has far more samples than another. We explore the benefit
of Bloop in such multi-dataset setting. Our experimental
setup is similar to that of Grangier et al. (2023).

Transformer pre-training. We consider the problem of
performing next-token-prediction with a decoder-only trans-
former on text data. The network is a transformer with 12
decoder layers, 8 attention heads, a residual dimension of
256, and a feed-forward latent dimension of 1024. The
main loss corresponds to the prediction loss over a large
pre-training dataset, while the auxiliary loss corresponds to
that on a smaller but higher-quality dataset. Due to the lack
of data, training only on the small high-quality dataset leads
to severe overfitting and poor performance; hence, we resort
to training on both datasets, using the proposed baselines or
Bloop. For the training set, we use 30M examples from the
c4 dataset (Raffel et al., 2020), while the auxiliary loss cor-

responds to 20K examples from the RCV-1 dataset (Lewis
et al., 2004).

Translation. In this experiment, we train a network to trans-
late English into German. The network is a transformer with
6 encoder layers and 6 decoder layers, 16 attention heads,
a residual dimension of 1,024, and a feed-forward latent
dimension of 4,096. Like in the pre-training experiment, we
have a large generic dataset, the Paracrawl dataset (Bañón
et al., 2020), with 36m sentence pairs, which defines the
main loss. The auxiliary loss is the loss over a smaller but
higher quality dataset, the 2009-2019 WMT dataset, yield-
ing 10k sentence pairs (Farhad et al., 2021). We use the
2020 WMT dataset (2k pairs) as an evaluation set.

Results. Figure 5 displays the results. We observe siginifi-
cantly improved results for Bloop, which has once again a
better Pareto front, and achieves smaller pre-training loss.
These gains are kept when looking at the evaluation losses.
Figure 6 gives a different perspective on those results.

5.5. Role of the EMA

We investigate the importance of the EMA parameter ρ in
Bloop. As already seen in Section 3, it is critical from a
theoretical point-of-view for the algorithm’s convergence.
We further illustrate this via the transformer pre-training
experiment with a fixed λ = 0.2.

Figure 7 displays the results. We see that when the EMA
is too small (ρ = 0.001), the value of gEMA

main is outdated
compared to the current value of the gradient gmain, and
therefore, the performance on both the main and auxiliary
losses is bad. On the contrary, taking a too-large EMA
(ρ = 0.9) means that gEMA

main has a high variance, and we
recover a trajectory extremely similar to that of the mixed
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Figure 6. A different look at the results in Figure 5a. We display the value of the final mixed loss (1− t)Lmain + tLaux for the different
values of λ in the algorithms we used. Bold lines correspond to evaluation loss, while dotted lines correspond to train loss. We see that
Bloop allows to get to a lower mixed loss when t is small. This is a striking phenomenon, since the mixed method directly minimizes that
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0k 100k 200k 300k
Iterations

1.05

1.10

1.15

1.20

Te
st

 m
ai

n 
lo

ss

EMA=0.001
EMA=0.01
EMA=0.1
No EMA
Mixed

0k 100k 200k 300k
Iterations

0.9

1.0

1.1

1.2

Te
st

 a
ux

. l
os

s

Figure 7. Effect of the EMA parameter ρ on Bloop’s performance.
We use the same next-token prediction losses as in Figure 5a, and
display the training curves for a fixed λ = 0.2.

method. Choices between these two extremes (ρ = 0.01, or
ρ = 0.1) lead to a tradeoff between main and auxiliary loss.

Discussion
A striking phenomenon that we observe in all our experi-
ments is that PCGrad and DB work very similarly to the
mixed method. We posit that this observation is due to the
high gradient variance coming from the main loss, which is
also what our theory predicts. Adding an EMA to reduce
this variance leads to the Bloop method, which here has
a different behavior to the other methods, often leading to
improved Pareto fronts.

In the Appendix C, we describe an experiment where Bloop
does not work better than the other methods. We attempted
to train a ResNet to have a good performance on Imagenet
and Cifar10, with a shared trunk and two classification heads.
We found that all methods performed equally well; in that
case, Bloop leads to the same Pareto front as the other
method. Yet, once again, PCGrad and DB have the same
practical performance as the mixed method.

Overall, adding an EMA to reduce variance in the projection
direction is a simple idea that can have a big impact on
gradient surgery methods.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix

A. Convergence analysis
In this appendix we provide proofs for the theoretical results of Section 3.

A.1. Proof of Proposition 1

In the following, we will prove the two implications in the proposition separately.

Small Bloop Vector→ Near-Stationary Point. By orthogonality, we have ∥d∥2 = ∥gmain∥2 + λ2∥π(gaux; gmain)∥2.
This implies immediately ∥gmain∥ ≤ ε and ∥π(gaux; gmain)∥ ≤ ελ−1 provided that ∥d∥ ≤ ε.

Let us next consider the case where Assumption 1 holds and that the Hessian of Lmain is M-Lipschitz continuous. With
the local error bound, i.e., Assumption 1, we know there exists θ∗ such that ∇Lmain(θ

∗) = 0 and ∥θ − θ∗∥ ≤ c∥gmain∥.
Performing a Taylor expansion with Lagrange form of the remainder of order 2, we obtain

∇Lmain(θ) = ∇Lmain(θ
∗) +∇2Lmain(θ

∗)(θ − θ∗) +
1

2
∇3Lmain(θ

′)[θ − θ∗, θ − θ∗]

= ∇2Lmain(θ
∗)(θ − θ∗) +

1

2
∇3Lmain(θ

′)[θ − θ∗, θ − θ∗], (7)

for some θ′ that lies on the line that connects θ and θ∗. Using the M-Lipschitzness of ∇2Lmain, the norm of r =
∇Lmain(θ)−∇2Lmain(θ)(θ − θ∗) can then be bounded by

∥r∥ = 1

2
∇3Lmain(θ

′)[θ − θ∗, θ − θ∗] ≤ M

2
∥θ − θ∗∥2 ≤ Mc2

2
∥gmain∥2 .

We now claim that the desired inequality holds true with

v =
⟨gaux, gmain⟩
∥gmain∥2

(θ − θ∗).

For this, we decompose
⟨gaux, gmain⟩
∥gmain∥2

gmain = ∇2Lmain(θ)v +
⟨gaux, gmain⟩
∥gmain∥2

r

Subsequently,

∥gaux −∇2Lmain(θ)v∥ ≤
∥∥∥∥gaux − ⟨gaux, gmain⟩

∥gmain∥2
gmain

∥∥∥∥+

∥∥∥∥ ⟨gaux, gmain⟩
∥gmain∥2

r

∥∥∥∥
≤ ∥π(gaux; gmain)∥+

Mc2∥gaux∥∥gmain∥
2

≤
(
λ−1 +

Mc2

2
∥gaux∥

)
ε.

Near-Stationary Point→ Small Bloop Vector. Reciprocally, by plugging θ = θ∗ + εv into (7), we get

gmain = ∇Lmain(θ) = ε∇2Lmain(θ
∗)v +

ε2

2
∇3Lmain(θ

′)[v, v] = ε∇2Lmain(θ
∗)v + o(ε).

Moreover, by continuity of ∇Laux and the optimality condition ∇Laux(θ
∗) = ∇2Lmain(θ)v, we have gaux =

∇2Lmain(θ
∗)v + o(1) when ε goes to 0.

12
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From here, we will prove limε→0 π(gaux; gmain) = 0 by distinguishing between two cases:

Case 1: Laux(θ
∗) = 0. In other words, ∇2Lmain(θ

∗)v = 0. Thus gaux = o(1). π(gaux; gmain) being a projection of gaux,
we have ∥π(gaux; gmain)∥ ≤ ∥gaux∥. This show π(gaux; gmain) = o(1).

Case 2: ∇Laux(θ
∗) ̸= 0. This indicates∇2Lmain(θ

∗)v ̸= 0. We use the formula

π(gaux; gmain) = gaux −
⟨gaux, gmain⟩
∥gmain∥2

gmain. (8)

With ⟨gaux, gmain⟩ = ε∥∇2Lmain(θ
∗)v∥2 + o(ε) and ∥gmain∥2 = ε2∥∇2Lmain(θ

∗)v∥2 + o(ε2), we have

ε⟨gaux, gmain⟩
∥gmain∥2

=
∥∇2Lmain(θ

∗)v∥2 + o(1)

∥∇2Lmain(θ∗)v∥2 + o(1)
= 1 + o(1),

where the last equality holds since ∥∇2Lmain(θ
∗)v∥2 ̸= 0.

On the other hand,
gmain

ε
= ∇2Lmain(θ

∗)v + o(1).

We have thus
⟨gaux, gmain⟩
∥gmain∥2

gmain = ∇2Lmain(θ
∗)v + o(1).

Using (8) and gaux = ∇2Lmain(θ
∗)v + o(1), we deduce π(gaux; gmain) = o(1).

Conclude. In the two cases, we have shown limε→0 π(gaux; gmain) = 0. Moreover, we also have limε→0 gmain = 0. Adding
the two we get exactly limε→0 d(θ

∗ + εv) = 0.

A.2. Proof of Theorem 2

Here, Lmain and Laux are the empirical risks

Lmain(θ) =
1

n

n∑
i=1

Li(θ) and Laux(θ) =
1

m

m∑
j=1

L′
j(θ).

We consider the Bloop method with SGD, which has an EMA gtEMA and parameters θt which are updated following

Sample i, j ∼ Uniform

gt+1
EMA = (1− ρ)gtEMA + ρ∇Li(θ

t)

dt = ∇Li(θ
t) + λπ(∇L′

j(θ
t); gtEMA)

θt+1 = θt − ηdt

Our analysis works by controlling two quantities: the distance from the EMA to the full-batch train gradient

ϕt
1 = E

[
∥gt+1

EMA −∇Lmain(θ
t)∥2

]
and the train loss

ϕt
2 = E

[
Lmain(θ

t)
]
.

Control of the EMA. For the EMA, we get by expanding

ϕt+1
1 = E

[
∥gtEMA − ρ(gtEMA −∇Li(θ

t))−∇Lmain(θ
t)∥2

]
= (1− ρ)2E

[
∥gtEMA −∇Lmain(θ

t)∥2
]
+ ρ2E

[
∥∇Li(θ

t)−∇Lmain(θ
t)∥2

]
≤ (1− ρ)E

[
∥gtEMA −∇Lmain(θ

t)∥2
]
+ ρ2C2

13
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where C2 upper bounds the train gradients variance and where ρ < 1. Let a = gtEMA − ∇Lmain(θ
t−1) and b =

∇Lmain(θ
t−1)−∇Lmain(θ

t). Since the inequality ∥a+ b∥2 ≤ (1 + δ)∥a∥2 + (1 + δ−1)∥b∥2 holds true for all δ, we have
specifically that

∥gtEMA −∇Lmain(θ
t−1)∥2 ≤ (1 + δ)ϕt

1 + (1 + δ−1)L2η2∥dt−1∥2

for δ = ρ
2 . Using (1− ρ)(1 + ρ

2 ) ≤ 1− ρ
2 then gives the descent lemma on the EMA:

ϕt+1
1 ≤

(
1− ρ

2

)
ϕt
1 + ρ2C2 +

2L2η2

ρ
∥dt−1∥2.

Next, we bound crudely ∥dt−1∥ ≤ D, and equalize the last two terms, i.e. take ρ =
(

2L2D2

C2

) 1
3

η
2
3 , so that the descent on

the EMA becomes
ϕt+1
1 ≤

(
1− ρ

2

)
ϕt
1 + 2ρ2C2

which in turn implies that
ϕt
1 ≤ 4ρC2.

Control of the loss. The L-smoothness of Lmain and the fact that Ei,j [d
t] = ∇Lmain(θ

t) + λπ(∇Laux; g
t
EMA) gives:

ϕt+1
2 ≤ ϕt

2 − η∥∇Lmain(θ
t)∥2 − ηλ⟨π(∇Laux; g

t
EMA),∇Lmain(θ

t)⟩+ Lη2

2
∥dt∥2.

We omit expectation from the above formula for the ease of presentation, and we will continue doing so for this part of the
proof. The annoying middle term is controlled by

−ηλ⟨π(∇Laux; g
t
EMA),∇Lmain(θ

t)⟩ = −ηλ⟨π(∇Laux; g
t
EMA),∇Lmain(θ

t)− gtEMA⟩
≤ ηλB∥∇Lmain(θ

t)−∇Lmain(θ
t+1)∥+ ηλB∥∇Lmain(θ

t+1)− gtEMA∥
≤ η2λLB∥dt∥+ ηλB∥∇Lmain(θ

t+1)− gtEMA∥

where B upper bounds ∥∇Laux∥. The last E[∥dt∥2] is simply bounded by D2. Hence we get the descent lemma on the train
loss:

ϕt+1
2 ≤ ϕt

2 − η∥∇Lmain(θ
t)∥2 + ηλB

√
ϕt
1 + η2

(
LD2

2
+ λLBD

)
.

Plugging the rate for ϕt
1, we finally get

ϕt+1
2 ≤ ϕt

2 − η∥∇Lmain(θ
t)∥2 + η

4
3C1 + η2C2

for some constants C1, C2 ≥ 0. In the above we have also used that

E[∥∇Lmain(θ
t+1)− gtEMA∥]2 ≤ E[∥∇Lmain(θ

t+1)− gtEMA∥2].

Taking η ≤
(

C1

C2

) 3
2

ensures that the last term is smaller than the previous, yielding the simple inequality:

ϕt+1
2 ≤ ϕt

2 − η∥∇Lmain(θ
t)∥2 + 2η

4
3C1.

We now have two kinds of results depending on the context:

Non-convex result. Without further assumption, summing the previous inequalities for t = 0 . . . T − 1 gives

1

T

T−1∑
t=0

E[∥∇Lmain(θ
t)∥2] ≤ Lmain(θ

0)

ηT
+ 2η

1
3C1.

Hence, taking η ≃ T− 3
4 gives a O(T− 1

4 ) rate.
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Figure 8. Results of all methods on the imagenet + L2 problem. PCGrad and DB have similar performance to the mixed method.

PL-result. We here assume that Lmain verifies the PL inequality 1
2∥∇Lmain(θ)∥2 ≥ µLmain(θ), where we posit

minLmain = 0 without loss of generalitiy. The descent lemma gives

ϕt+1
2 ≤ (1− 2ηµ)ϕt

2 + 2η
4
3C1.

By unrolling it we obtain

E[Lmain(θ
T )] ≤ (1− 2ηµ)TLmain(θ

0) + (1− (1− 2ηµ)T )
η

1
3C1

µ
.

This shows a linear convergence to a radius proportional to η
1
3 .

B. Experimental Details
In this appendix we report the missing details from Section 5.

Training smooth networks. For this experiment we use an MLP with ReLU activations. The features are of size
728→ 256→ 128→ 10. All the methods are trained with Adam optimizer at learning rate of 3× 10−4 for 100 epochs
and a cosine learning rate schedule. For consistency with the other classification experiments we also include 5 epochs of
warm-up. The batch size is fixed at 256, and we take a grid of λ with log10(λ) = −4,−3.5, . . . ,−0.5, 0.

Imagenet training with L2 regularization. For ImageNet training, we employ SGD with a batch size of 2048, Nesterov
momentum of 0.9, and a learning rate of 0.8. This learning rate is derived by scaling the base rate of 0.1 by a factor of 8,
corresponding to the ratio 2048/256. Additionally, we apply a cosine learning rate schedule with 5 warm-up epochs and
utilize random cropping and flipping for data augmentation during training. The network is trained for 100 epochs. This
configuration is known to work well for the ResNet50 architecture that we are using here. The grid of λ is 14 uniform values
in log scale between 10−6 and 10−2, and 0. We display results for all methods in Figure 8 with a slightly smaller grid of λ’s.

Multi-task learning with Cifar10Mnist. The overall setup for this problem is similar to that for Imagenet training, with the
exceptions that we use a smaller architecture—ResNet18 instead of ResNet50, and a smaller batch size—256 instead of
2048. We also scale down the learning rate to 0.1 to account for the smaller batch size. The values of the trade-off parameter
λ goes from 10−3 to 103 and are split equally on log scale. Unlike Adam, SGD does not adjust the learning rate scale
automatically. This causes unstable training when λ is too large. We thus futher scale the learning rate 0.1 by 1/(1 + λ) for
each independent run.

Next token prediction. Our model is a byte-level decoder-only transformer. It has 12 layers, 8 attention heads, a residual
dimension of 256, and a feed-forward dimension 1024. We use a batch-size of 128 for both datasets, the optimizer is Adam
with a learning rate of 0.002. We train the model for 300K iterations. The grid of λ consists of 16 values evenly spaced in
log-space between 10−4 and 10, as well as 0.

Translation. Our model is an encore-decoder transformer. It has 6 encoder and decoder layers, 16 attention heads, a residual
dimension of 1024, and a feed-forward dimension 4096. We use a batch-size of 256 for both datasets, the optimizer is
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Figure 9. Sample images from the Cifar10Mnist dataset.
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Figure 10. Results on the Imagenet / Cifar10 experiment. All algorithms perform generally similarly except for very high values of λ,
which leads to worse performance for all algorithms.

Adam with a learning rate of 0.0002. We train the model for 500K iterations. Our implementation is derived from the flax
example (Heek et al.). The grid of λ consists of 16 values evenly spaced in log-space between 10−4 and 10, as well as 0.

C. Additional Experiment
We present the results of another experiment, where all methods, including Bloop, gave similar Pareto fronts. Here, we
aim to perform classification on both the Imagenet and the CIFAR-10 datasets. The network is a ResNet50 with with two
separate classification heads. This problem sits in the middle ground between the multi-task learning and the joint dataset
training problem that we describe in Section 5: we have two separate datasets for the two distinct tasks. Similar to before,
the main loss is the training loss on the larger dataset, i.e., Imagenet, and the auxiliary loss is the training loss on the smaller
dataset, i.e. Cifar10. We choose λ to be equally split on log scale from 10−3 to 10. The remaining configurations follow the
experiment of Imagenet training with L2 regularization, except that we also scale the learning rate by 1/(1 + λ) to avoid
instability as in the multi-task experiment.

The results are shown in Figure 10. Unlike the experiments of Section 5, there is little trade-off between the two tasks.
We can increase accuracy on CIFAR-10 without sacrificing performance on Imagenet. For this reason, there are only very
few points at the Pareto front and all methods perform similarly at these points. We posit that here, the two losses are not
conflicting enough to see the gradient surgery methods have an edge.
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