
Q-value Regularized Transformer for Offline Reinforcement Learning

Shengchao Hu 1 2 Ziqing Fan 1 2 Chaoqin Huang 1 2 Li Shen 3 4 Ya Zhang 1 2 Yanfeng Wang 1 2 Dacheng Tao 5

Abstract
Recent advancements in offline reinforcement
learning (RL) have underscored the capabilities
of Conditional Sequence Modeling (CSM), a
paradigm that learns the action distribution based
on history trajectory and target returns for each
state. However, these methods often struggle with
stitching together optimal trajectories from sub-
optimal ones due to the inconsistency between
the sampled returns within individual trajectories
and the optimal returns across multiple trajecto-
ries. Fortunately, Dynamic Programming (DP)
methods offer a solution by leveraging a value
function to approximate optimal future returns for
each state, while these techniques are prone to
unstable learning behaviors, particularly in long-
horizon and sparse-reward scenarios. Building
upon these insights, we propose the Q-value reg-
ularized Transformer (QT), which combines the
trajectory modeling ability of the Transformer
with the predictability of optimal future returns
from DP methods. QT learns an action-value
function and integrates a term maximizing action-
values into the training loss of CSM, which aims
to seek optimal actions that align closely with the
behavior policy. Empirical evaluations on D4RL
benchmark datasets demonstrate the superiority
of QT over traditional DP and CSM methods,
highlighting the potential of QT to enhance the
state-of-the-art in offline RL.

1. Introduction
Offline reinforcement learning (RL) aims at learning effec-
tive policies entirely from previously collected data without
interacting with the environment (Fujimoto et al., 2019b).

1Shanghai Jiao Tong University, China 2Shanghai AI Laboratory,
China 3Sun Yat-sen University, China 4JD Explore Academy,
China 5Nanyang Technological University, Singapore. Correspon-
dence to: Li Shen <mathshenli@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Recent advancements in offline RL have taken a new per-
spective on the problem, departing from conventional meth-
ods for offline RL that concentrate on policy regularization
(Kumar et al., 2019a; Fujimoto et al., 2019b) or conser-
vatism for value function approximation (Kostrikov et al.,
2021a; Kumar et al., 2020). Instead, the problem is viewed
as a generic Conditional Sequence Modeling (CSM) task
(Chen et al., 2021; Janner et al., 2021), where past experi-
ences consisting of state-action-reward triplets are input to
Transformer (Vaswani et al., 2017a). The model generates
a sequence of action predictions using a goal-conditioned
policy, effectively converting offline RL to a supervised
learning problem. This approach relaxes the MDP assump-
tion by considering multiple historical steps to predict an
action, allowing the model to be capable of handling long
sequences and avoid stability issues associated with boot-
strapping (Srivastava et al., 2019; Kumar et al., 2019b).

However, the CSM approach fails to achieve the stitching
property desired in offline RL, which involves synthesiz-
ing optimal trajectories from sub-optimal ones (Fu et al.,
2020). The primary challenge lies in the inconsistency be-
tween sampled target returns and the optimal returns from
actions, as high-return trajectories might not reflect supe-
rior actions but rather fortunate circumstances (Wang et al.,
2023). CSM associates the return-to-go (RTG) token value
with individual trajectories, overlooking the stochastic na-
ture of state transitions and optimal future returns that span
across different trajectories (Paster et al., 2022). Addition-
ally, the intrinsic uncertainty and approximation errors in
behavior policies further exacerbate the inconsistency, lead-
ing to inferior performance in stitching tasks, particularly
when dealing with sub-optimal data (Wang et al., 2023).

Fortunately, conventional Dynamic Programming methods
(Q-learning1) provide a robust solution to handle this in-
consistency. By treating each timestep individually and
backpropagating optimal future returns for each state, these
methods enable agents to select actions that maximize long-
term returns. However, these techniques are prone to un-
stable learning behaviors, particularly in long-horizon and
sparse-reward scenarios (Yamagata et al., 2023). While the

1In this paper, the terms Q-learning and Dynamic Programming
(DP) will be used interchangeably to refer to any RL algorithm
that relies on the Bellman-backup operation.

1

Q-value Regularized Transformer for Offline Reinforcement Learning

conceptual integration of Q-learning with CSM is straight-
forward, developing a framework that effectively unites their
strengths and overcomes their limitations poses a signifi-
cant challenge. QDT (Yamagata et al., 2023) takes the first
attempt to combine these two methods by learning a con-
servative value function to relabel the RTG values while
remaining other components the same as DT (Chen et al.,
2021). This approach seeks to enhance stitching capabil-
ity by incorporating augmented trajectories into the training
dataset. However, empirical evaluations suggest that while it
may alleviate some issues, it still struggles with unmatched
RTG values during inference arising from trajectory-level
modeling (Wang et al., 2023), often achieving results com-
parable to but not exceeding existing methods (Figure 1).

Building upon these insights, we propose the Q-value reg-
ularized Transformer (QT), which combines the trajectory
modeling ability with the predictability of optimal future
returns from DP methods. Our policy is based on a Trans-
former structure, with an objective loss comprising two
components: 1) a conditional behavior cloning term that
aligns the Transformer’s action sampling with the training
set’s distribution, and 2) a policy improvement term for se-
lecting high-reward actions according to the learned Q-value.
This hybrid structure offers multiple advantages. First, the
trajectory prediction loss serves as an effective distribution-
matching technique, functioning as a robust, sample-based
policy regularization method, thus eliminating the need for
additional behavior cloning. Second, the integration of
policy improvement facilitates the identification and priori-
tization of higher-reward actions as per Q-values, ensuring
that the expected returns of sampled actions align with the
optimal returns. Third, the amalgamation of these two losses
achieves a balance between selecting optimal actions and
maintaining fidelity to the behavior policy, which mitigates
the risk of preferring out-of-distribution actions with over-
estimated values, leading to enhanced performance.

In summary, our contributions are three-fold2:

• QT, a new offline RL algorithm that leverages Transformer
to do precise policy regularization and Q-value regulariza-
tion to align the expected returns of sampled actions with
the optimal returns.

• QT aims to seek optimal actions that align closely with the
behavior policy, ensuring robust stitching capability and
effective trajectory modeling in scenarios characterized
by long horizons and sparse rewards.

• We test QT on the D4RL benchmark tasks and demon-
strate the superiority of QT over traditional DP and CSM
methods, highlighting the potential of QT to enhance the
state-of-the-art in offline RL.

2Our code is available at: https://github.com/
charleshsc/QT

umaze medium large
0

50

100

150

200

250 maze2d
CQL
DT
QDT
QT

(a)
hopper halfcheetah walker2d

0

20

40

60

80
MujoCo Gym delayed reward (medium)

(b)
Figure 1. Evaluation results for CQL, DT, QDT, and QT in the
Maze2D tasks (a) and MuJoCo Gym delayed reward (medium)
tasks (b). The results show that DT fails to effectively stitch trajec-
tories and CQL under-performs in sparse reward scenarios (delayed
reward). QDT yields consistent yet intermediate results across all
environments, while QT consistently secures the top performance
across all tested environments, showcasing its superiority.

2. Preliminary
2.1. Offline Reinforcement Learning

The goal of RL is to learn a policy πθ(a|s) max-
imizing the expected cumulative discounted rewards
E[
∑∞

t=0 γ
tR(st,at)] in a Markov decision process (MDP),

which is a six-tuple (S,A, T ,R, γ, d0), with state space
S, action space A, environment dynamics T (s′|s,a) :
S × S × A → [0, 1], reward function R : S × A →
R, discount factor γ ∈ [0, 1), and initial state distri-
bution d0 (Sutton & Barto, 2018). The action-value
or Q-value of a policy π is defined as Qπ(st,at) =
Eat+1,at+2···∼π[

∑∞
i=0 γ

iR(st+i, at+i)]. In the offline set-
ting (Levine et al., 2020), instead of the online environment,
a static dataset D = {(s,a, s′, r)}, collected by a behavior
policy πβ , is provided. Offline RL algorithms learn a policy
entirely from this static offline dataset D, without online
interactions with the environment.

2.2. Rethinking Stitching in CSM

To address the stitching ability of CSM, alternative ap-
proaches have been proposed. For example, EDT (Wu et al.,
2023) and CGDT (Wang et al., 2023) optimize the trajectory
by dynamically filtering the optimal trajectory according to
the learned value estimator; ESPER (Paster et al., 2022) clus-
ters trajectories and utilizes the average cluster returns as
conditions for the policy; DoC (Yang et al., 2022) conditions
the policy on a latent representation of future trajectories,
achieved by minimizing mutual information. Incorporat-
ing probabilistic statistics from multiple trajectories offers
a promising solution for sub-optimal data, which guides
policy behaviors with learned estimated returns from the
entire distribution of future trajectories. Although these
methods exhibit effectiveness in stitching ability, they often
necessitate complex objectives for representation learning
and additional steps such as statistics, thereby complicating
and burdening the training process.

2

https://github.com/charleshsc/QT
https://github.com/charleshsc/QT

Q-value Regularized Transformer for Offline Reinforcement Learning

Other approaches exploit the capabilities of Q-learning,
which propagates optimal future returns backward for each
state, considering each time step individually, thereby ef-
fectively stitching the optimal trajectory from sub-optimal
data. QDT (Yamagata et al., 2023) takes the first attempt
to combine these two methods by learning a conservative
value function to relabel the RTG tokens in the dataset, keep-
ing other components aligned with DT (Chen et al., 2021).
However, such adaptations essentially constitute simple data
augmentation, incorporating ”stitched” trajectories into the
training set but continuing to encounter unmatched RTG val-
ues during inference due to trajectory-level modeling (Wang
et al., 2023), thereby failing to consistently exceed existing
benchmarks. In contrast, QT employs the n-step Bellman
equation to approximate the Q-value function based on se-
quence history. This Q-value function is then integrated into
policy improvement to select high-reward actions while re-
taining the original DT loss for policy regularization. Such
an approach not only empowers the CSM with the stitch
ability but also keeps its original trajectory modeling ability
important for the sparse-reward scenario. To substantiate
this, we compared QT and QDT across various scenarios, in-
cluding stitching ability scenarios like Maze2D, and sparse
reward scenarios like MujoCo Gym with delayed rewards.
The results, as illustrated in Figure 1, show that QT consis-
tently achieves superior performance, while QDT’s results
are intermediate, failing to exceed existing methodologies
(more details are presented in Section 4.2).

3. Methodology
We present a method that combines the trajectory modeling
ability of Transformer with the predictability of optimal fu-
ture returns from DP methods, thereby constructing a robust
algorithm suitable for offline RL problems. Initially, we
detail the application of the Conditional Transformer Pol-
icy as an expressive policy framework for behavior cloning.
Subsequently, we describe the incorporation of a Q-value
module into the training phase of our transformer policy,
with the behavior cloning term serving as a policy regu-
larization mechanism. Finally, we illustrate how to do the
inference with the learned Q-value functions.

3.1. Conditional Transformer Policy

Transformer (Vaswani et al., 2017b), extensively studied in
NLP (Devlin et al., 2018; Fan et al., 2022) and CV (Doso-
vitskiy et al., 2020; Fan et al., 2024), has also been explored
in RL using the CSM pattern (Hu et al., 2022). Unlike the
majority of prior RL approaches that estimate value func-
tions or compute policy gradients, DT (Chen et al., 2021)
outputs desired future actions from the history sequence,
encompassing multiple state st, action at, and return-to-go
r̂t tuples. The return-to-go token quantifies the cumulative

reward from the current time step to the end of the episode.
During training with offline collected data, DT processes a
trajectory sequence τt in an auto-regressive manner which
encompasses the most recent K-step historical context:

τt = (r̂t−K+1, st−K+1,at−K+1, . . . , r̂t, st,at). (1)

The prediction head associated with a state token st is
trained to predict the corresponding action at. Regard-
ing continuous action spaces, the training objective is to
minimize the mean-squared loss:

LDT = Eτt∼D

[
1

K

t∑
i=t−K+1

(ai − π(τt)i)
2

]
, (2)

where π(τt)i denotes the i-th action output of the Trans-
former policy in an auto-regressive manner.

Theorem 3.1. Consider an MDP, behavior policy β, and
decision transformer π with condition function f . As-
sume the ϵ-near determinism of the MDP, where P (r ̸=
R(s,a) or s′ ̸= T (s,a)|s,a) ≤ ϵ at all s,a for some func-
tions T and R. Let g(τ) =

∑H
t=1 rt, when Pβ(g(τ) =

f(s1)|s1) ≥ αf for all initial states s1, we have:

Eτ∼β [g(τ)]− Eτ∼πf [g(τ)] ≤ ϵ(
1

αf
+ 2)H2, (3)

where H is the horizon of the MDP.

Theorem 3.1 demonstrates that training with the DT loss
LDT leads to the gradual convergence of the generated
policy towards the behavior policy β. This convergence,
however, imposes a constraint that restricts the generated
policy from exceeding the performance of the behavior tra-
jectories present in the offline dataset D. Moreover, training
exclusively with the DT loss LDT restricts the stitching
ability, resulting in a policy predominantly biased towards
actions observed in the training trajectories (Paster et al.,
2022). Due to limited space, the proof of this theorem, as
well as other results, are provided in the Appendix A.

3.2. Training with Q-value Regularization

To address the stitching challenge and develop a policy
capable of aligning the expected returns of sampled actions
with the optimal returns, we employ the Q-value module.

The Q-value function is learned conventionally, minimizing
the Bellman operator (Fujimoto et al., 2019b) and employ-
ing the double Q-learning technique (Hasselt, 2010). We
construct two Q-networks, Qϕ1

, Qϕ2
, along with their re-

spective target networks, Qϕ′
1
, Qϕ′

2
and target policy πθ′ .

Given that the input to the transformer policy includes tra-
jectory history, we opt for the n-step Bellman equation to
estimate the Q-value function. This choice is premised on

3

Q-value Regularized Transformer for Offline Reinforcement Learning

Algorithm 1 QT: Q-value regularized Transformer
Input: Sequence horizon K, offline datasets D, coefficient ρ, a set of candidate return-to-go {r̂00, r̂10, . . . , r̂m0 }.
Initialize policy network πθ, critic networks Qϕ1 and Qϕ2 , and target networks πθ′ , Qϕ′

1
and Qϕ′

2
.

// Train the QT
for t = 1 to T do

Sample sequence transition mini-batch B = {(r̂j , sj ,aj , rj)t+K
j=t } ∼ D.

// Q-value function learning
Sample ât+K ∼ πθ′(ât+K |r̂t:t+K , st:t+K ,at:t+K−1).
Update Qϕ1 and Qϕ2 by Equation 4.
// Policy learning
for i = 1 to K do

Sample ât+i ∼ πθ(ât+i|r̂t:t+i, st:t+i,at:t+i−1) in an auto-regressive way.
end for.
Update policy by minimizing Equation 5.
// Update target networks
θ′ = ρθ′ + (1− ρ)θ, ϕ′

i = ρϕ′
i + (1− ρ)ϕi for i = {1, 2}.

end for.
// Inference with QT
Given multiple target return-to-go choice r̂1:m0 and initial state s0.
repeat

Sample multiple actions with different return-to-go âit = πθ(â
i
t|r̂it−K+1:t, st−K+1:t,at−K+1:t−1) for i = 1, . . . ,m.

Compute Q value with candidate state-action pair (st, âit) for i = 1, . . . ,m.
Sample the action at from action set {âit}mi=1 with the max Q value by Equation 6.
Execute the action at and collect the reward rt and next state st+1.
Update current return-to-go r̂it+1 = r̂it − rt for i = 1, . . . ,m.

until Done is true.

its demonstrated improvement over the 1-step approxima-
tion (Sutton & Barto, 2018). The optimization of ϕi for
i = {1, 2} is carried out by minimizing following equation:

Eτt∼D,ât∼πθ′

t−1∑
m=t−K+1

∣∣∣∣∣∣Q̂m −Qϕi(sm,am)
∣∣∣∣∣∣2, (4)

where Q̂m =

t−1∑
j=m

γj−mrj + γt−m min
i=1,2

Qϕ′
i
(st, ât),

where γ is the discount factor and ât denotes the predicted
action output by the target model πθ′ .

To enhance the policy, we integrate a Q-value module dur-
ing the training phase, enabling the preferential sampling
of high-value actions. The final policy learning objective
emerges as a linear combination of policy regularization and
policy improvement elements:

π = argmin
πθ

{L(θ) := LDT (θ) + LQ(θ)} (5)

=argmin
πθ

LDT (θ)−α · Eτt∼DE(si,ai)∼τtQϕ(si, π(τt)i).

Considering the variation in the scale of the Q-value func-
tion across different offline datasets, we adopt a normaliza-
tion technique from Fujimoto & Gu (2021). We define α as
α = η

Eτt∼DE(s,a)∼τt
[|Qϕ(s,a)|] , where η is a hyper-parameter

that mediates the balance between the two loss terms. No-
tably, the Q-value in the denominator serves exclusively for
normalization and is not subject to differentiation.

Furthermore, we affirm the efficacy of Equation 5 from a
theoretical standpoint as delineated in Theorem 3.2, suggest-
ing that the learned final policy is anticipated to consistently
outperform the behavior policy in terms of the value func-
tion. Specifically, it highlights how the Q-value regulariza-
tion enhances the policy by enabling preferential sampling
of high-value actions, aligning the learning process more
closely with optimal returns. This implicitly ensures an
improvement over the baseline behavior policy β.

Theorem 3.2. Let π∗ be the optimal policy of Equation
5. For any s ∈ S, we have that V π∗

(s) ≥ V β(s) and
π∗(a|s) = 0 given β(a|s) = 0.

3.3. Inference with Q-value Module

Instead of carefully designing the return-to-go token value
in the previous conditional transformer policy, which needs
more trials and tuning to find the best value, we sample
multiple candidate return-to-go tokens {r̂00, r̂10, . . . , r̂m0 } and
simultaneously output actions in accordance with different
return-to-go values. Then we resort to the learned Q-value
function to preferentially sample actions with high returns,

4

Q-value Regularized Transformer for Offline Reinforcement Learning

Table 1. The performance of QT and SOTA baselines on D4RL Gym, Adroit, Kitchen, Maze2D, and AntMaze tasks. Results for QT
correspond to the mean and standard errors of normalized scores over 30 random rollouts (3 independently trained models and 10
trajectories per model) for all tasks, which generally exhibit low variance in performance. Our method outperforms all prior methods by a
clear margin in almost all domains, including the conventional Q-learning algorithms and CSM methods.

Gym Tasks CQL IQL BCQ BEAR TD3+BC MoRel BC DD DT StAR GDT CGDT QT

halfcheetah-medium-expert-v2 91.6 86.7 69.6 53.4 90.7 53.3 55.2 90.6 86.8 93.7 93.2 93.6 96.1 ± 0.2

hopper-medium-expert-v2 105.4 91.5 109.1 96.3 98.0 108.7 52.5 111.8 107.6 111.1 111.1 107.6 113.4 ± 0.4

walker2d-medium-expert-v2 108.8 109.6 67.3 40.1 110.1 95.6 107.5 108.8 108.1 109.0 107.7 109.3 112.6 ± 0.6

halfcheetah-medium-v2 49.2 47.4 41.5 41.7 48.4 42.1 42.6 49.1 42.6 42.9 42.9 43.0 51.4 ± 0.4

hopper-medium-v2 69.4 66.3 65.1 52.1 59.3 95.4 52.9 79.3 67.6 59.5 77.1 96.9 96.9 ± 3.1

walker2d-medium-v2 83.0 78.3 52.0 59.1 83.7 77.8 75.3 82.5 74.0 73.8 76.5 79.1 88.8 ± 0.5

halfcheetah-medium-replay-v2 45.5 44.2 34.8 38.6 44.6 40.2 36.6 39.3 36.6 36.8 40.5 40.4 48.9 ± 0.3

hopper-medium-replay-v2 95.0 94.7 31.1 33.7 60.9 93.6 18.1 100.0 82.7 29.2 85.3 93.4 102.0 ± 0.2

walker2d-medium-replay-v2 77.2 73.9 13.7 19.2 81.8 49.8 32.3 75.0 79.4 39.8 77.5 78.1 98.5 ± 1.1

Average 80.6 77.0 53.8 48.2 75.3 72.9 52.6 81.8 76.2 66.2 79.1 82.4 89.8

Adroit Tasks CQL IQL BCQ BEAR O-RL MoRel BC DD D-QL DT StAR GDT QT

pen-human-v1 37.5 71.5 66.9 -1.0 90.7 -3.2 63.9 66.7 72.8 79.5 77.9 92.5 129.6 ± 4.6

hammer-human-v1 4.4 1.4 0.9 0.3 0.2 2.7 1.2 1.9 0.2 3.7 3.7 5.5 35.6 ± 7.0

door-human-v1 9.9 4.3 -0.05 -0.3 -0.1 2.2 2.0 2.8 0.0 14.8 1.5 20.6 28.7 ± 2.4

pen-cloned-v1 39.2 37.3 50.9 26.5 60 -0.2 37.0 42.8 57.3 75.8 33.1 86.2 125.0 ± 2.8

hammer-cloned-v1 2.1 2.1 0.4 0.3 2.0 2.3 0.6 1.7 3.1 3.0 0.3 8.9 23.0 ± 2.3

door-cloned-v1 0.4 1.6 0.01 -0.1 0.4 2.3 0.0 1.3 0.0 16.3 0.0 19.8 20.6 ± 1.7

Average 15.6 19.7 19.8 4.3 25.5 1.0 17.5 19.5 22.2 32.2 19.4 38.9 60.4

Kitchen Tasks CQL IQL BCQ BEAR TD3+BC O-RL BC DD D-QL DT StAR GDT QT

kitchen-complete-v0 43.8 62.5 8.1 0.0 0.0 2.0 65.0 65.0 84.0 50.8 40.8 43.8 81.7 ± 1.2

kitchen-partial-v0 49.8 46.3 18.9 13.1 0.0 35.5 33.8 57.0 60.5 57.9 12.3 73.3 75.0 ± 0.1

Average 46.8 54.4 13.5 6.6 0.0 18.8 51.5 61 72.3 54.4 26.6 58.6 78.4

Maze2D Tasks CQL IQL BCQ BEAR TD3+BC COMBO BC Diffuser DD DT GDT QDT QT

maze2d-umaze-v1 94.7 42.1 49.1 65.7 14.8 76.4 88.9 113.9 116.2 31.0 50.4 57.3 105.4 ± 4.7

maze2d-medium-v1 41.8 34.9 17.1 25.0 62.1 68.5 38.3 121.5 122.3 8.2 7.8 13.3 172.0 ± 6.2

maze2d-large-v1 49.6 61.7 30.8 81.0 88.6 14.1 1.5 123.0 125.9 2.3 0.7 31.0 240.1 ± 2.5

Average 62.0 46.2 32.3 57.2 55.2 53.0 42.9 119.5 121.5 13.8 19.6 33.9 172.5

AntMaze Tasks CQL IQL BCQ BEAR TD3+BC O-RL BC DD D-QL DT StAR GDT QT

antmaze-umaze-v0 74.0 87.5 78.9 73.0 78.6 64.3 54.6 73.1 93.4 59.2 51.3 76.0 96.7 ± 4.7

antmaze-umaze-diverse-v0 84.0 62.2 55.0 61.0 71.4 60.7 45.6 49.2 66.2 53.0 45.6 69.0 96.7 ± 4.7

antmaze-medium-diverse-v0 53.7 70.0 0.0 8.0 3.0 0.0 0.0 24.6 78.6 0.0 0.0 6.0 59.3 ± 0.9

antmaze-large-diverse-v0 14.9 47.5 2.2 0.0 0.0 0.0 0.0 7.5 56.6 0.0 0.0 0.0 53.3 ± 4.7

Average 56.7 66.8 34.0 57.2 38.3 31.3 25.1 61.2 73.7 28.1 24.2 37.8 76.5

which could be formulated as:

argmax
âi
t

Qϕ′(st, â
i
t), (6)

where âit =π(r̂it−K+1:t, st−K+1:t,at−K+1:t−1)).

This process is highly parallelizable. By assigning differ-
ent RTG values to each batch, we can leverage GPU capa-
bilities to concurrently generate multiple action sequences,
thereby minimizing additional computational overhead. Cor-
responding ablation studies are conducted to demonstrate
the efficacy of this procedure, as detailed in Section 4.2 and
Appendix D. The training and inference procedures are thor-
oughly outlined in Algorithm 1, providing a comprehensive
summary of the processes involved.

4. Experiment
In this section, we present an extensive evaluation of our
proposed QT model using the widely recognized D4RL
benchmark (Fu et al., 2020). Our main objective is to assess
the effectiveness of QT across various domains, setting it
against two prevalent algorithms: Q-learning methods and
CSM algorithms. Each of these algorithms demonstrates
proficiency in specific domains while exhibiting sub-optimal
performance in others. Additionally, we execute an empiri-
cal ablation study to dissect and understand the individual
contributions of the core components of our methodology.

Datasets. We consider five different domains of tasks in
D4RL benchmark: Gym, Adroit, Kitchen, Maze2D, and

5

Q-value Regularized Transformer for Offline Reinforcement Learning

Table 2. Ablation on the role of different components. Average and standard deviation scores are reported over 3 seeds for the walker2d-
medium-replay task. ’CTP’ refers to the Conditional Transformer Policy as detailed in Section 3.1, ’none’ indicates the absence of the
Q-value module in the configuration, and ’Inf.’ is short for inference.

Exp Policy Q-value Update Train with Q-value Inf. with Q-value Performance
1 BC none 32.3 ± 9.8
2 BC n-step ✓ ✓ 82.2 ± 0.5
3 CTP none 79.4 ± 2.0
4 CTP n-step ✓ 87.6 ± 1.1
5 CTP n-step ✓ 97.7 ± 0.3
6 CTP 1-step ✓ ✓ 85.6 ± 1.7
7 CTP n-step ✓ ✓ 98.5 ± 1.1

AntMaze. The Gym-MuJoCo locomotion tasks, commonly
used as standard benchmarks, are relatively straightforward
and characterized by datasets with a significant proportion
of near-optimal trajectories and smooth reward functions. In
contrast, the Adroit datasets, primarily derived from human
behaviors, exhibit a limited state-action space, necessitating
robust policy regularization to maintain agent performance
within the expected range. The Kitchen environment poses
a multi-task challenge, requiring the agent to complete four
sequential sub-tasks to achieve a desired state configura-
tion, thereby emphasizing the importance of generalization
to unseen states rather than relying purely on trajectories
seen during training. Maze2D tasks are designed to assess
an offline RL algorithm’s capability to effectively stitch to-
gether sub-trajectories to identify the shortest path to a set
goal. Lastly, AntMaze presents more demanding scenar-
ios with sparse rewards, substituting the simpler 2D ball
in Maze2D for a complex 8-DoF “Ant” quadruped robot,
thereby elevating the difficulty level.

Baselines. We benchmark against a diverse array of baseline
methods, each excelling in specific domain tasks. For policy
regularization-based approaches, our selection includes IQL
(Kostrikov et al., 2021b), BCQ (Fujimoto et al., 2019a),
BEAR (Kumar et al., 2019a), TD3+BC (Fujimoto & Gu,
2021), and O-RL (Brandfonbrener et al., 2021). We also con-
sider the CQL (Kumar et al., 2020) for Q-value constraint
methods. In the realm of model-based offline RL, we evalu-
ate against MoRel (Kidambi et al., 2020) and COMBO (Yu
et al., 2021). For CSM approaches, our comparisons include
DT (Chen et al., 2021), StAR (Shang et al., 2022), QDT
(Yamagata et al., 2023), GDT (Hu et al., 2023a), and CGDT
(Wang et al., 2023). Additionally, we assess diffusion-based
methods such as Diffuser (Janner et al., 2022), DD (Ajay
et al., 2022), and Diffusion-QL (Wang et al., 2022). The
performance scores for these baseline methods are sourced
either from the best results published in their respective
papers or from our own runs, ensuring a fair comparison.

4.1. Main Results

We compare our QT with the baselines on five domains of
tasks and report the results in Table 1. To ensure fair com-

parisons, we normalize the scores according to the protocol
established in Fu et al. (2020), where a score of 100 corre-
sponds to an expert policy. We give the analysis based on
each specific domain.

Results for Gym Domain. We can see while most baseline
models demonstrate proficiency on Gym tasks, QT often
achieves further enhancements, particularly in ‘medium’
and ‘medium-replay’ tasks, surpassing other Transformer-
based methods by a large margin. It’s noteworthy that
these datasets encompass trajectories generated by an online
SAC (Haarnoja et al., 2018) agent, trained to reach roughly
one-third of an expert’s performance. Consequently, other
Transformer-based methods typically underperform com-
pared to Q-learning approaches in the absence of an ample
quantity of high-quality trajectories (Emmons et al., 2021),
as seen in the medium-expert dataset. As elucidated in Sec-
tion 3, the incorporation of a policy improvement term in
QT directs the policy towards optimal actions within the
explored action space subset, significantly contributing to
QT’s commendable empirical performance.

Results for Adroit and Kitchen Domain. In the Adroit
domain, where offline RL is particularly challenged by ex-
trapolation error due to the limited scope of human demon-
strations (Fu et al., 2020), robust policy regularization is
essential. Our Transformer-based policy, employing the DT
loss LDT , significantly outperforms diffusion-based base-
lines. This superiority is attributable to its high expressive-
ness and more effective policy regularization. Furthermore,
the Kitchen tasks, which demand generalization to unseen
states and long-term value optimization, also witness no-
table performance improvements with QT, underscoring its
adaptability and effectiveness in this domain.

Results for Maze2D and AntMaze Domain. The Maze2D
domain serves as a benchmark to evaluate the capacity of
offline RL algorithms to effectively stitch segments of dis-
parate trajectories (Fu et al., 2020). Integrating the Q-value
module with the Transformer policy enhances its ability to
navigate the shortest path to the goal using pre-collected
sub-trajectories. The AntMaze domain, characterized by
sparse rewards and an abundance of sub-optimal trajecto-

6

Q-value Regularized Transformer for Offline Reinforcement Learning

Table 3. Ablation on the stitching ability. Average and standard deviation scores are reported over 3 seeds for the Maze2D tasks. This
encompasses four increasingly complex mazes—open, umaze, medium, and large—each with two reward functions: normal and dense.
The highest average scores are highlighted in bold.

Dataset CQL DT QDT QT
Sp

ar
se

R
ew

ar
d maze2d-open-v0 216.7± 80.7 196.4± 39.6 190.1± 37.8 497.9 ± 12.3

maze2d-umaze-v1 94.7± 23.1 31.0± 21.3 57.3± 8.2 105.4 ± 4.8
maze2d-medium-v1 41.8± 13.6 8.2± 4.4 13.3± 5.6 172.0 ± 6.2
maze2d-large-v1 49.6± 8.4 2.3± 0.9 31.0± 19.8 240.1 ± 2.5

D
en

se
R

ew
ar

d maze2d-open-dense-v0 307.6± 43.5 346.2± 14.3 325.7± 61.4 608.4 ± 1.9
maze2d-umaze-dense-v1 72.7± 10.1 −6.8± 10.9 58.6± 3.3 103.1 ± 7.8
maze2d-medium-dense-v1 70.9± 9.2 31.5± 3.7 42.3± 7.1 111.9 ± 1.9
maze2d-large-dense-v1 90.9± 19.4 45.3± 11.2 62.2± 9.9 177.2 ± 7.8

ries, presents a more difficult challenge. A robust and stable
Q-learning approach is essential for achieving notable per-
formance in this setting. Empirically, QT, augmented with
our Q-value module and an optimally tuned hyper-parameter
η, either matches or exceeds the performance of existing
methods, whereas other Transformer-based approaches of-
ten struggle in ‘medium’ and ‘large’ tasks.

4.2. Ablation Study

This section delves into a quantitative analysis of QT’s su-
perior performance over other Transformer-based methods
on D4RL tasks. We undertake an ablation study to dissect
and quantify the contributions of QT’s main components
to its overall efficacy. Additionally, further ablations are
conducted to assess whether QT successfully integrates the
strengths of both CSM and Q-learning methods while over-
coming their limitations. We select CQL as the benchmark
for evaluating the Q-learning approach, and DT as the bench-
mark for assessing the CSM approach. We also include QDT
as a comparative benchmark in order to showcase the dif-
ferences between QDT and our approach. Note that further
discussion about QT is provided in Appendix D.

Role of Different Components. As delineated in Section
3, our methodology comprises three primary components,
alongside the Q-value update method, each warranting in-
dividual analysis. We select the walker2d-medium-replay
dataset as the benchmark due to its diverse range of agent
levels and the substantial performance enhancement QT
demonstrates compared to baselines. As indicated in Table
2, integrating our Q-value module significantly boosts per-
formance, as evidenced by the comparative results between
experiments 1 vs. 2, and 3 vs. 7. Notably, the Q-value
regularization (Equation 5) during the training stage is in-
strumental, manifesting as the most significant contributor
to performance enhancement, with the inference phase also
benefiting from the Q-value module (as seen in comparisons
among experiments 3 vs. 4, and 5 vs. 7). Furthermore, rely-
ing solely on the 1-step Bellman equation for updating the
Q-value function results in subpar performance compared

to the n-step Bellman equation (as seen in comparisons
between experiments 6 and 7), which underscores the criti-
cality of Q-value function accuracy in our methodology.

Stitching Ability. The Maze2D domain, a navigation task
with a fixed goal location, serves as a critical test for offline
RL algorithms’ ability to stitch together different trajectory
segments (Fu et al., 2020). This domain comprises four
increasingly complex mazes—open, umaze, medium, and
large—and utilizes two reward functions: normal and dense.
The normal reward is granted solely upon goal achievement,
while the dense reward is incrementally distributed at each
step, inversely proportional to the distance from the goal.
Table 3 summarizes the results. CQL performs notably
well, particularly with dense rewards. DT, however, often
struggles due to its limited stitching capability. QDT demon-
strates a marked improvement over DT but still lags behind
CQL. Significantly, QT excels across all tasks, affirming its
ability to not only endow the Transformer policy with stitch-
ing capacity but also synergistically merge the strengths of
both methodologies for enhanced performance.

Sparse Reward Ability. To illustrate the limitations of the
Q-learning approach (CQL), we follow Chen et al. (2021)
and evaluate the algorithms in a delayed (sparse) reward set-
ting, where rewards are withheld during the trajectory and
aggregated at the final timestep. Table 4 presents the results
for both delayed (sparse) and dense reward scenarios. As
anticipated, CQL exhibits difficulty in formulating an effec-
tive policy under sparse conditions, in contrast to DT, which
demonstrates commendable performance. QDT, which em-
ploys CQL for RTG token value relabeling, registers inferior
performance compared to DT, influenced by CQL’s inac-
curate value function estimations. Conversely, QT, while
similarly impacted by these inaccurate estimations in sparse
reward scenarios, benefits from our robust policy regulariza-
tion. This feature effectively mitigates the adverse effects
of the Q-value module, enabling QT to outperform these
methods across all assessed tasks.

Long Task Horizon Ability. While in a Markovian envi-
ronment, the state at the previous moment is often sufficient

7

Q-value Regularized Transformer for Offline Reinforcement Learning

Table 4. Ablation on the sparse reward ability. Average and standard deviation scores are reported over 3 seeds for the D4RL tasks. The
study includes three tasks—halfcheetah, hopper, and walker2d—each evaluated under two reward conditions: sparse and dense. The
highest average scores are denoted in bold.

Dataset Sparse Reward Dense Reward
DT CQL QDT QT DT CQL QDT QT

halfcheetah-medium-v2 42.2 ± 0.2 1.0 ± 1.0 42.4 ± 0.5 43.3 ± 0.2 42.6 ± 0.1 49.2 ± 0.5 42.3 ± 0.4 51.4 ± 0.4
hopper-medium-v2 57.3 ± 2.4 23.3 ± 1.0 50.7 ± 5.0 72.7 ± 3.9 67.6 ± 1.0 69.4 ± 13.1 66.5 ± 6.3 96.3 ± 3.1

walker2d-medium-v2 69.9 ± 2.0 0.0 ± 0.4 63.7 ± 6.4 80.7 ± 0.8 74.0 ± 1.4 83.0 ± 0.6 67.1 ± 3.2 88.8 ± 0.5

halfcheetah-medium-replay-v2 33.0 ± 4.8 7.8 ± 6.9 32.8 ± 7.3 42.5 ± 0.2 36.6 ± 0.8 45.5 ± 0.5 35.6 ± 0.5 48.9 ± 0.3
hopper-medium-replay-v2 50.8 ± 14.3 7.7 ± 5.9 38.7 ± 26.7 94.2 ± 2.2 82.7 ± 7.0 95.0 ± 2.9 52.1 ± 20.3 102.0 ± 0.2

walker2d-medium-replay-v2 51.6 ± 24.6 3.2 ± 1.7 29.6 ± 15.5 78.5 ± 2.1 66.6 ± 3.0 77.2 ± 1.1 58.2 ± 5.1 98.5 ± 1.1

Average 50.8 7.2 43.0 68.6 61.7 69.9 53.6 81.0

10 20 30 40 50 60 70 80
Sequence Horizon

70

80

90

100

Sc
or

e

Long Task Horizon Ability

QT
DT

Figure 2. Ablation on the long task horizon ability. This encom-
passes the performance comparison of different input sequence
horizons K ∈ [10, 80] in the walker2d-medium-replay-v2 task.

to determine the current action, the DT experiment reveals
that past information is valuable for the sequence modeling
method in some environments, where longer sequences tend
to yield better results than those of length 1. We then explore
the impact of different sequence lengths on performance
and compare the results of DT and QT, where Q-learning
methods often perform badly in the long horizon setting
(Yamagata et al., 2023; Bhargava et al., 2023). The results
are shown in Figure 2. As the sequence horizon K extends,
both agents exhibit improved performance. DT initially de-
teriorates after K = 20 but recovers at K = 80, whereas
QT consistently enhances its performance, demonstrating a
superior capability to manage extended task horizons.

5. Related Work
Offline RL algorithms learn a policy entirely from this static
offline dataset D, without online interactions with environ-
ment (Levine et al., 2020). This paradigm can be precious
in case the interaction with environment is expensive or
high-risk (e.g., safety-critical applications). However as the
learned policy might differ from the behavior policy, the
offline algorithms must mitigate the effect of the distribution
shift, which can result in a significant performance drop, as
demonstrated in prior research (Fujimoto et al., 2019b).

Q-learning method is one of the most prominent categories
to address the distribution shift problem. Especially, pre-

vious Q-learning works generally address this problem in
one of three ways: 1) constraining the learned policy to the
behavior policy (Kumar et al., 2019a; Fujimoto et al., 2019b;
Fujimoto & Gu, 2021; Wu et al., 2019; Lyu et al., 2022); 2)
constraining the learned policy by making conservative esti-
mates of future rewards (Kumar et al., 2020; Kostrikov et al.,
2021a; Chebotar et al., 2023); 3) introducing model-based
methods, which learn a model of the environment dynamics
to generate more data for policy training and perform pes-
simistic planning in the learned MDP (Janner et al., 2019;
Kidambi et al., 2020; Yu et al., 2021).

Weighted imitation learning addresses the distribution
shift without restricting the learned policy, which carries out
imitation learning by putting higher weights on the good
state-action pairs. These methods (Wang et al., 2018; Peng
et al., 2019; Wang et al., 2020; Chen et al., 2020; Siegel
et al., 2020) usually use an estimated advantage function as
the weight. As these approaches imitate the selected parts of
the behavior policy, they naturally restrict the learned policy
within the behavior policy.

Conditional sequence modeling is the other group of ap-
proaches without restricting the learning policy, which pre-
dicts subsequent actions from a sequence of past expe-
riences, encompassing state-action-reward triplets. This
paradigm lends itself to a supervised learning approach,
inherently constraining the learned policy within the bound-
aries of the behavior policy and focusing on a policy con-
ditioned on specific metrics for future trajectories (Chen
et al., 2021; Hu et al., 2023b; Brandfonbrener et al., 2022;
Hu et al., 2024b; Meng et al., 2023; Hu et al., 2024a). More-
over, the sequence of trajectories could also be formulated
as a conditional generative process and generated by the
diffusion model while satisfying conditioned constraints
(Janner et al., 2022; Ajay et al., 2022; Wang et al., 2022).

Our approach is distinct from but related to these primary
classes of offline RL algorithms. Essentially, our method is
a CSM approach as it learns the subsequent actions based
on historical sequences and sampled future rewards. Also,
the high-level framework of our approach is somewhat

8

Q-value Regularized Transformer for Offline Reinforcement Learning

akin to weighted imitation learning, wherein a value func-
tion is employed to assign weights to various state-action
pairs. However, the practical application of our components
markedly differs. Unlike approaches that use the value
function merely for training data weighting, our method in-
tegrates a learned Q-value module directly into the training
phase, which biases action sampling towards higher-return
options, a factor that has empirically demonstrated enhanced
performance in our experiments.

6. Conclusion
In this study, we introduce QT, which combines the trajec-
tory modeling ability of Transformer with the predictability
of optimal future returns from DP methods. QT offers
a novel framework for enhancing offline RL algorithms.
The Conditional Transformer Policy of QT allows for a
highly expressive policy class whose learning itself acts as
a strong policy regularization method. Additionally, the
integration of a Q-value regularization via a jointly learned
Q-value function biases action sampling towards optimal
regions within the exploration space. Empirical evaluations
on D4RL benchmark datasets demonstrate the superiority
of QT over traditional DP and CSM methods, highlighting
the potential of QT to enhance the SOTA in offline RL.

Limitation. We introduce a novel Transformer-based
policy for offline RL, achieving state-of-the-art performance
across various tasks. However, QT’s efficacy depends on
the availability of explicit reward signals. In scenarios lack-
ing explicit reward signals, such as datasets containing only
state-action pairs from human demonstrations, QT’s perfor-
mance may be limited.

Acknowledgements
This work is supported by the National Key R&D Pro-
gram of China (No. 2022ZD0160702), STCSM (No.
22511106101, No. 22511105700, No. 21DZ1100100),
111 plan (No. BP0719010) and National Natural Science
Foundation of China (No. 62306178). Dr Tao’s research is
partially supported by NTU RSR and Start Up Grants.

Impact Statement
This paper contributes to the advancement of Offline Rein-
forcement Learning. While there are many potential societal
consequences of our work, we believe that none require spe-
cific emphasis in this context.

References
Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N.,

Szepesvari, C., and Weisz, G. Politex: Regret bounds

for policy iteration using expert prediction. In Interna-
tional Conference on Machine Learning, pp. 3692–3702.
PMLR, 2019.

Ajay, A., Du, Y., Gupta, A., Tenenbaum, J., Jaakkola,
T., and Agrawal, P. Is conditional generative model-
ing all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

Bhargava, P., Chitnis, R., Geramifard, A., Sodhani, S.,
and Zhang, A. Sequence modeling is a robust con-
tender for offline reinforcement learning. arXiv preprint
arXiv:2305.14550, 2023.

Brandfonbrener, D., Whitney, W., Ranganath, R., and Bruna,
J. Offline rl without off-policy evaluation. Advances in
neural information processing systems, 34, 2021.

Brandfonbrener, D., Bietti, A., Buckman, J., Laroche, R.,
and Bruna, J. When does return-conditioned supervised
learning work for offline reinforcement learning? Ad-
vances in Neural Information Processing Systems, 35:
1542–1553, 2022.

Chebotar, Y., Vuong, Q., Hausman, K., Xia, F., Lu, Y., Irpan,
A., Kumar, A., Yu, T., Herzog, A., Pertsch, K., et al.
Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot
Learning, pp. 3909–3928. PMLR, 2023.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chen, X., Zhou, Z., Wang, Z., Wang, C., Wu, Y., and Ross,
K. Bail: Best-action imitation learning for batch deep
reinforcement learning. Advances in Neural Information
Processing Systems, 33, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Emmons, S., Eysenbach, B., Kostrikov, I., and Levine, S.
Rvs: What is essential for offline rl via supervised learn-
ing? arXiv preprint arXiv:2112.10751, 2021.

9

Q-value Regularized Transformer for Offline Reinforcement Learning

Fan, Z., Wang, Y., Yao, J., Lyu, L., Zhang, Y., and Tian, Q.
Fedskip: Combatting statistical heterogeneity with feder-
ated skip aggregation. In IEEE International Conference
on Data Mining, 2022.

Fan, Z., Yao, J., Han, B., Zhang, Y., Wang, Y., et al. Fed-
erated learning with bilateral curation for partially class-
disjoint data. Advances in Neural Information Processing
Systems, 2024.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. Advances in neural information
processing systems, 34:20132–20145, 2021.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional conference on machine learning, pp. 2052–2062.
PMLR, 2019a.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional conference on machine learning, pp. 2052–2062.
PMLR, 2019b.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hasselt, H. Double q-learning. Advances in neural informa-
tion processing systems, 23, 2010.

Hu, S., Shen, L., Zhang, Y., Chen, Y., and Tao, D. On
transforming reinforcement learning by transformer: The
development trajectory. arXiv preprint arXiv:2212.14164,
2022.

Hu, S., Shen, L., Zhang, Y., and Tao, D. Graph decision
transformer. arXiv preprint arXiv:2303.03747, 2023a.

Hu, S., Shen, L., Zhang, Y., and Tao, D. Prompt-tuning deci-
sion transformer with preference ranking. arXiv preprint
arXiv:2305.09648, 2023b.

Hu, S., Fan, Z., Shen, L., Zhang, Y., Wang, Y., and Tao, D.
Harmodt: Harmony multi-task decision transformer for
offline reinforcement learning. In International Confer-
ence on Machine Learning, 2024a.

Hu, S., Shen, L., Zhang, Y., and Tao, D. Learning multi-
agent communication from graph modeling perspective.
In The Twelfth International Conference on Learning
Representations, 2024b.

Hu, X., Ma, Y., Xiao, C., Zheng, Y., and Jianye, H. It-
eratively refined behavior regularization for offline re-
inforcement learning. In NeurIPS 2023 Workshop on
Distribution Shifts: New Frontiers with Foundation Mod-
els, 2023c.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. Advances
in neural information processing systems, 32, 2019.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. Ad-
vances in neural information processing systems, 34:
1273–1286, 2021.

Janner, M., Du, Y., Tenenbaum, J. B., and Levine, S. Plan-
ning with diffusion for flexible behavior synthesis. arXiv
preprint arXiv:2205.09991, 2022.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning.
Advances in neural information processing systems, 33:
21810–21823, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kostrikov, I., Fergus, R., Tompson, J., and Nachum, O. Of-
fline reinforcement learning with fisher divergence critic
regularization. In International Conference on Machine
Learning, pp. 5774–5783. PMLR, 2021a.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021b.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. Advances in Neural Information Processing
Systems, 32, 2019a.

Kumar, A., Peng, X. B., and Levine, S. Reward-conditioned
policies. arXiv preprint arXiv:1912.13465, 2019b.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Lyu, J., Ma, X., Li, X., and Lu, Z. Mildly conservative
q-learning for offline reinforcement learning. Advances
in Neural Information Processing Systems, 35, 2022.

10

Q-value Regularized Transformer for Offline Reinforcement Learning

Meng, L., Wen, M., Le, C., Li, X., Xing, D., Zhang, W.,
Wen, Y., Zhang, H., Wang, J., Yang, Y., et al. Offline
pre-trained multi-agent decision transformer. Machine
Intelligence Research, 2023.

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D.
Bridging the gap between value and policy based rein-
forcement learning. Advances in neural information pro-
cessing systems, 30, 2017.

Paster, K., McIlraith, S., and Ba, J. You can’t count on luck:
Why decision transformers and rvs fail in stochastic en-
vironments. Advances in Neural Information Processing
Systems, 35, 2022.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Shang, J., Kahatapitiya, K., Li, X., and Ryoo, M. S. Star-
former: Transformer with state-action-reward represen-
tations for visual reinforcement learning. In European
Conference on Computer Vision. Springer, 2022.

Siegel, N. Y., Springenberg, J. T., Berkenkamp, F., Abdol-
maleki, A., Neunert, M., Lampe, T., Hafner, R., Heess,
N., and Riedmiller, M. Keep doing what worked: Behav-
ioral modelling priors for offline reinforcement learning.
arXiv preprint arXiv:2002.08396, 2020.

Srivastava, R. K., Shyam, P., Mutz, F., Jaśkowski, W., and
Schmidhuber, J. Training agents using upside-down re-
inforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017a.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017b.

Wang, Q., Xiong, J., Han, L., Liu, H., Zhang, T., et al.
Exponentially weighted imitation learning for batched
historical data. Advances in Neural Information Process-
ing Systems, 31, 2018.

Wang, Y., Yang, C., Wen, Y., Liu, Y., and Qiao, Y. Critic-
guided decision transformer for offline reinforcement
learning. arXiv preprint arXiv:2312.13716, 2023.

Wang, Z., Novikov, A., Zolna, K., Merel, J. S., Springen-
berg, J. T., Reed, S. E., Shahriari, B., Siegel, N., Gulcehre,
C., Heess, N., et al. Critic regularized regression. Ad-
vances in Neural Information Processing Systems, 33,
2020.

Wang, Z., Hunt, J. J., and Zhou, M. Diffusion policies as an
expressive policy class for offline reinforcement learning.
arXiv preprint arXiv:2208.06193, 2022.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Wu, Y.-H., Wang, X., and Hamaya, M. Elastic decision
transformer. arXiv preprint arXiv:2307.02484, 2023.

Yamagata, T., Khalil, A., and Santos-Rodriguez, R. Q-
learning decision transformer: Leveraging dynamic pro-
gramming for conditional sequence modelling in offline
rl. In International Conference on Machine Learning, pp.
38989–39007. PMLR, 2023.

Yang, M., Schuurmans, D., Abbeel, P., and Nachum, O.
Dichotomy of control: Separating what you can control
from what you cannot. arXiv preprint arXiv:2210.13435,
2022.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S.,
and Finn, C. Combo: Conservative offline model-based
policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

11

Q-value Regularized Transformer for Offline Reinforcement Learning

A. Proofs
A.1. Proof of Theorem 3.1

First we introduce the following Lemma, which is motivated by the work of Brandfonbrener et al. (2022) on return-
conditioned supervised learning (RCSL).

Lemma A.1. (Brandfonbrener et al., 2022) Consider an MDP, behavior β, and conditioning function f . Assume the
following:

1. Return coverage: g(τ) =
∑H

t=1 rt, Pβ(g = f(s1)|s1) ≥ αf for all initial states s1.

2. Near determinism: P (r ̸= R(s,a) or s′ ̸= T (s,a)|s,a) ≤ ϵ at all s,a for some functions R and T . Note that this
does not constrain the stochasticity of the initial state.

3. Consistency of f : f(s) = f(s′) + r for all s.3

Let J(π) = Eτ∼π[g(τ)], then

Es1 [f(s1)]− J(πRCSL
f) ≤ ϵ

(
1

αf
+ 2

)
H2. (7)

Using the above lemma, we can prove the Theorem 3.1.

Proof. Considering the offline dataset collected by the behavior policy β, we choose the condition function f as f(s1) =∑
r1:H∼πβ(s1)

r and plug it into the left part of Equation 7, we can see:

Es1 [f(s1)]− J(πRCSL
f) = Es1 [

∑
r1:H∼πβ(s1)

r]− J(πRCSL
f) (8)

= Eτ∼πβ
[

H∑
t=1

rt]− J(πRCSL
f) (9)

= Eτ∼πβ
[g(τ)]− J(πRCSL

f) (10)

Then consider the reward-to-go r̂t =
∑H

i=1 ri defined in the Equation 1, it is obvious that the condition function r̂t satisfies
the requirement about the consistence of conditioning function, which we could get the following Equation:

Es1 [f(s1)]− J(πRCSL
f) = Eτ∼πβ

[g(τ)]− Eτ∼πf
[g(τ)] ≤ ϵ(

1

αf
+ 2)H2 (11)

Combining this with Lemma A.1 yields the result.

A.2. Proof of Theorem 3.2

Motivated by the proof in Hu et al. (2023c), we first give some lemmas to help the proof of Theorem 3.2.

We consider a k-armed one-step decision-making problem. Let ∆ be a k-dimensional simplex and q = (q(1), . . . , q(k)) ∈
Rk be the reward vector. The final optimization considers:

max
π∈∆

π · q + τH(π). (12)

The next result characterizes the solution of this problem (Lemma 4 of Nachum et al. (2017)).

3Note this can be exactly enforced (as in prior work) by augmenting the state space to include the cumulative reward observed so far.

12

Q-value Regularized Transformer for Offline Reinforcement Learning

Lemma A.2. (Nachum et al., 2017) For τ > 0, let

Fτ (q) = τ log
∑
a

eq(a)/τ , fτ (q) =
eq/τ∑
a e

q(a)/τ
= e

q−Fτ (q)
τ . (13)

Then there is

Fτ (q) = max
π∈∆

π · q + τH(π) = fτ (q) · q + τH(fτ (q)) . (14)

The second result provides the error decomposition when applying the Politex algorithm to compute an optimal policy, as
adopted from Abbasi-Yadkori et al. (2019).
Lemma A.3. (Hu et al., 2023c) Let π0 be the uniform policy and consider running the following iterative algorithm on a
MDP for t ≥ 0,

πt+1(a|s) ∝ πt(a|s) exp
(
qπt(a|s)

τ

)
, (15)

Then

v∗(s)− vπt(s) ≤ 1

(1− γ)2

√
2 log |A|

t
. (16)

Using the above lemmas, we can prove the Theorem 3.2.

Proof. First recall the in-sample optimality equation

q∗πβ
(s,a) = R(s,a) + γEs′∼T (·|s,a)

[
max

a′:πβ(a′|s′)>0
q∗πβ

(s′,a′)

]
, (17)

which could be viewed as the optimal value of a MDP MD covered by the behavior policy πβ , where MD only contains
transitions starting with (s,a) ∈ S ×A such that πβ(a|s) > 0. Then the result can be proved by two steps. First, the QT
algorithm will never consider actions such that πβ(a|s) = 0. This is directly implied by Lemma A.2. Second, we apply
Lemma A.3 to show the error bound of using QT on MD, which implies that V π∗

(s) ≥ V β(s). This finishes the proof.

B. Implementation Details
Conditional Transformer Policy. We build our policy as a Transformer-based model, which is based on minGPT
open-source code 4. The detailed model parameters are in Table 5.

Q networks. We build two Q networks with the same MLP setting as our diffusion policy, which has 3-layer MLPs with
Mish activations and 256 hidden units for all networks.

We use the Adam (Kingma & Ba, 2014) optimizer for the training of both Conditional Transformer Policy and Q networks.

C. Hyper-parameters
For QT, we consider two hyper-parameters in total: Q-value regularization weight η and gradient normalization. For
the Q-value regularization weight η, we consider values according to the characteristics of different domains, and we
also conduct simple ablations to investigate how to choose the value. As indicated in Equation 5, η is a critical hyper-
parameter that balances policy regularization and policy improvement losses. The walker2d-medium-replay dataset, in
both dense and sparse reward scenarios, is selected for benchmarking. Table 6 displays the outcomes, illustrating QT’s
sensitivity to η selection, with varying values yielding significantly different performances. A larger η enhances performance
when the Q-value is accurately estimated within the dataset. Conversely, in scenarios like sparse rewards where Q-value
estimation is challenging, a smaller η proves more efficacious. For the gradient normalization, we consider values in the grid
{5.0, 9.0, 15.0, 20.0}. Based on these considerations, we provide our hyper-parameter setting in Table 7.

4https://github.com/karpathy/minGPT

13

https://github.com/karpathy/minGPT

Q-value Regularized Transformer for Offline Reinforcement Learning

Table 5. Hyper-parameters of QT in our experiments.

Parameter Value

Number of layers 4

Number of attention heads 4

Embedding dimension 256

Nonlinearity function ReLU

Batch size 256

Context length K 20

Dropout 0.1

Learning rate 3.0e-4

Table 6. Ablation on the role of the hyper-parameter η. Average and standard deviation scores are reported over 3 seeds for the
walker2d-medium-replay task.

η 0.01 0.1 1 2 3
dense 88.0± 0.4 89.2± 1.0 95.4± 0.5 98.5± 1.1 98.4± 0.4
sparse 78.5± 2.1 72.3± 0.3 7.0± 4.6 8.5± 2.5 10.6± 6.1

Table 7. Hyper-parameter settings of all selected tasks.

Tasks η grad norm Tasks η grad norm

halfcheetah-medium-expert-v2 2.5 15.0 pen-human-v1 0.1 9.0

hopper-medium-expert-v2 1.0 9.0 hammer-human-v1 0.1 5.0

walker2d-medium-expert-v2 2.0 5.0 door-human-v1 0.005 9.0

halfcheetah-medium-v2 5.0 15.0 pen-cloned-v1 0.1 9.0

hopper-medium-v2 1.0 9.0 hammer-cloned-v1 0.01 9.0

walker2d-medium-v2 2.0 5.0 door-cloned-v1 0.001 9.0

halfcheetah-medium-replay-v2 5.0 15.0 kitchen-complete-v0 0.005 9.0

hopper-medium-replay-v2 3.0 9.0 kitchen-partial-v0 0.01 9.0

walker2d-medium-replay-v2 2.0 5.0 - - -

maze2d-open-v0 0.01 9.0 maze2d-open-dense-v0 0.01 9.0

maze2d-umaze-v1 5.0 20.0 maze2d-umaze-dense-v1 3.0 5.0

maze2d-medium-v1 5.0 9.0 maze2d-medium-dense-v1 5.0 9.0

maze2d-large-v1 4.0 9.0 maze2d-large-dense-v1 4.0 9.0

antmaze-umaze-v0 0.05 9.0 antmaze-medium-diverse-v0 0.01 9.0

antmaze-umaze-diverse-v0 0.01 9.0 antmaze-large-diverse-v0 0.005 9.0

D. Further Discussions
D.1. Performance of QT in the Atari Environment

Recognizing the importance of discrete action domains in RL, we expand our investigation to include Atari games, a domain
characterized by its high-dimensional visual inputs and the delayed reward challenge. We benchmark our QT method
against established baselines that are evaluated in the DT method, normalizing scores where 100 represents a professional
gamer’s score and 0 denotes a random policy. As detailed in Table 8, our findings demonstrate that QT consistently achieves
competitive performance, affirming its efficacy in discrete action domains.

14

Q-value Regularized Transformer for Offline Reinforcement Learning

Table 8. Results for 1% DQN-replay Atari datasets. We evaluate the performance of QT on four Atari games using three different seeds,
and report the mean and variance of the results. The best mean scores are highlighted in bold.

Game CQL QR-DQN REM BC DT QT

Breakout 211.1 17.1 8.9 138.9 ± 61.7 267.5 ± 97.5 423.9 ± 87.2
Qbert 104.2 0 0 17.3 ± 14.7 15.4 ± 11.4 46.7 ± 13.3
Pong 111.9 18 0.5 85.2 ± 20.0 106.1 ± 8.1 108.3 ± 2.0
Seaquest 1.7 0.4 0.7 2.1 ± 0.3 2.5 ± 0.4 4.0 ± 0.3

Average 107.2 8.9 2.5 69.9 97.9 145.7

Table 9. Ablation on the conditional action generation. Average and standard deviation scores are reported over 3 seeds for the walker2d-
medium-replay task. QT* indicates that only Q-value regularization is included in the training stage.

RTG 1000 2000 3000 4000 5000 Infer with Q-value function

QT* 51.0 ± 1.0 68.6 ± 0.7 95.3 ± 1.1 96.3 ± 0.4 97.2 ± 0.2 98.5 ± 1.1
DT 32.4 ± 1.2 58.8 ± 0.5 75.7 ± 0.6 79.4 ± 2.0 77.0 ± 0.6 87.6 ± 1.1

D.2. Conditional Action Generation

In pure DT approaches, the generation of diverse actions is conditioned on varying RTG values due to its trajectory-level
modeling. While this method offers diversity, it faces the challenge of unmatched RTG values, requiring significant human
effort to identify the optimal RTG for each scenario. Our QT method strategically avoids the manual selection of RTG
values, which often relies heavily on prior knowledge and can be labor-intensive, streamlining the learning process and
reducing dependency on manual intervention.

Specifically, QT addresses these challenges by integrating a Q-value maximization step within the training phase, guiding
the CSM policy toward generating actions aligned with optimal return objectives. Just as Table 9 shows, this adjustment
enhances the policy’s efficacy and reduces the reliance on precise RTG selection within a certain range, providing a more
efficient approach to action generation. However, QT may still encounter difficulties when there is a significant deviation
between the selected RTG and the optimal trajectory. Despite this, the QT framework incorporates a Q-value function during
the inference stage, offering a dynamic and adaptive strategy to ascertain optimal actions, thus augmenting the method’s
practicality and reducing the need for extensive manual calibration.

D.3. Differences Between QT and Other Q-Learning Methods

As delineated in Section 2.2, QDT (Yamagata et al., 2023) takes the first attempt to combine the CSM with Q-learning by
learning a conservative value function to relable the RTG tokens in the dataset, keeping other components aligned with DT.
However, such adaptations essentially constitute simple data augmentation, incorporating ”stitched” trajectories into the
training dataset but continuing to encounter unmatched RTG values during inference due to trajectory-level modeling.

Conversely, the Q-Transformer (Chebotar et al., 2023) introduces a nuanced utilization of the transformer architecture to
refine the learning of the Q-value function. It achieves this through action discretization, coupled with the novel application
of a conservative regularizer. This regularizer is specifically designed to constrain out-of-distribution Q-values, ensuring
their proximity to the minimal achievable cumulative rewards. However, the Q-Transformer still remains within the purview
of traditional Q-learning methodologies, albeit with a significant enhancement in feature representation capabilities through
the adoption of transformer architecture.

For a more granular comparison, Table 10 elucidates the key distinctions among these methods.

D.4. Sparse Reward Setting

We explore the performance of the QT in environments with varying reward densities, specifically focusing on the maze2d
and MuJoCo Gym tasks. Our findings indicate an inconsistency: in sparse settings of maze2d-medium and maze2d-large
environments, QT outperforms compared to denser reward configurations, contrary to the observed trend in MuJoCo tasks.

15

Q-value Regularized Transformer for Offline Reinforcement Learning

Table 10. Detailed comparison of QDT, QT, and Q-Transformer.

Aspect QDT QT Q-Transformer

Training dataset Augmented with relabeled
RTG tokens

Utilizes the original dataset Utilizes the original dataset

Training loss MSE Loss for continuous
actions

MSE Loss for continuous
actions, supplemented with
Q-value function
maximization

TD error coupled with
conservative regularization

Hindsight info Individual Return-to-Go
values

A set of candidate
Return-to-Go values

Does not utilize hindsight
information

Inference Relies on the transformer’s
output

Leverages the transformer
output with a selection
mechanism from the learned
Q-value function

Selects from the entire
action space through the
maximization of the learned
Q-value function

Table 11. Comparison of MuJoCo Gym and Maze2D Environments. The table shows the action dimension, state (observation) dimension,
and average episode length over the top 5% returns in the dataset.

Environment Action Dim State Dim Good Episode Average Length

hopper 3 11 708.2
halfcheetah 6 17 1000.0
walker2d 6 17 996.7

maze2d-open 2 4 49.8
maze2d-umaze 2 4 128.6
maze2d-medium 2 4 224.1
maze2d-large 2 4 314.6

A potential explanation for this discrepancy lies in the fundamental differences between these environments. Maze2d
environments, characterized by their simplicity and shorter episode lengths, contrast with the MuJoCo tasks, which feature
higher action/state dimensions and longer episode durations, as detailed in Table 11.

Another potential explanation is the reward structure in the maze2D-dense environments. In these settings, rewards are based
on the negative exponentiated distance to the target, potentially inflating the values for ‘failure’ trajectories that approximate
the target yet encounter obstacles. Our method, designed to sample high-value actions while adhering to the behavior policy,
may inadvertently prioritize these ‘false’ high-value actions, leading to suboptimal performance compared to sparse settings
where high-value actions are unequivocally associated with reaching the target. Conversely, in environments like open and
umaze, where obstacles are absent, QT demonstrates superior performance in dense settings, supporting this hypothesis.

D.5. How QT Improves Stitching Ability

While our theoretical exposition offers a robust motivation, which posits that the Q-value module serves as a pivotal
mechanism for policy improvement, the assertion that QT enhances the stitching capability is primarily evidenced through
empirical studies. In one word, the integration of Q-value regularization with DT addresses the alignment issues inherent
in pure CSM approaches to enhance the model’s ability to stitch together optimal actions, thereby improving the overall
effectiveness and robustness of the policy learned from offline data.

In pure CSM models, the RTG token significantly influences the learning process by providing a trajectory-level perspective.
However, this trajectory-centric approach can lead to potential misalignments between the RTG values and the current
state-action pairs during inference, potentially leading to suboptimal decision-making (Wang et al., 2023). To address
this concern and enhance the alignment between learning and inference, we integrate the Q-value function, which offers

16

Q-value Regularized Transformer for Offline Reinforcement Learning

a granular, state-action specific estimation of future returns. This integration allows for a more dynamic and responsive
decision-making process during training and inference, where actions are selected based on their immediate value rather
than a predetermined trajectory, and the learning and inference processes are aligned through the learned Q-value function.

During the learning phase, the model is trained to select actions that minimize the combined loss (as outlined in Equation 5),
which includes components from both the CSM and Q-value paradigms. This process ensures that the policy is grounded in
the distribution of the training dataset while also being attuned to the optimal action values as estimated by the Q-value
module. During inference, the model leverages the learned Q-value function to make decisions. Instead of relying on RTG
tokens, the model evaluates a set of candidate actions generated based on various RTG values and selects the one with
the highest Q-value. This approach ensures that the decision-making process is informed by both the trajectory modeling
insights from the CSM component and the optimal action value estimation from the Q-value component.

Our ablation studies, meticulously documented in Table 2, provide empirical substantiation for this methodology. When
inference relies on the learned Q-value function (Exp 4), it surpasses the performance of a purely CSM-based method (Exp
3), validating the phenomenon of unmatched RTG value in the trajectory-level modeling. Additionally, we have conducted
further ablation studies that vary RTG tokens within the context of pure CSM models in Table 9. These studies are designed
to rigorously examine the phenomenon of RTG value misalignment and its impact on the model’s performance. Moreover,
the integration of the Q-value module throughout both the learning and inference phases aligns the learning objectives with
the inference dynamics, which fosters a more robust and effective decision-making framework (Exp. 7 in Table 2).

D.6. How QT Addresses Overfitting of the Q-Value Function

In the training of our Q-value functions, the expected Q-value (Q̂m in Equation 4) is derived from the n-step Bellman
equation. The action at is selected according to the target policy πθ′ , generated by the CSM models. This design ensures
that the actions produced by the CSM models predominantly align with the distribution observed in the training dataset (with
small η), thus reducing the risk of overestimating Q-values for out-of-distribution actions. What’s more, during the inference,
the interplay between the candidate actions generated by the multiple RTG tokens and the Q-value function’s guidance
facilitates a more nuanced and effective action selection process, avoiding the pitfalls of direct Q-value maximization.

It is imperative to note that our policy derivation is distinct from traditional Q-learning methodologies. Our policy emerges
from the CSM models other than the Q-value function, primarily governed by the MSE loss delineated in Equation 2. Here,
the Q-value function serves as a component for policy enhancement, with its influence on the final policy modulated by the
hyper-parameter η. In scenarios where data is exceptionally sparse or noisy, which complicates accurate Q-value estimation,
modulating η can significantly mitigate the adverse effects of overfitting or incorrect Q-value approximation.

To empirically substantiate our claims, we have conducted an ablation study detailed in Table 6 above. We selected the
walker2d-medium-replay dataset in both dense and sparse reward settings. The results demonstrate that in environments
conducive to accurate Q-value estimation (dense reward scenario, where the performance of CQL is 77.2), a higher η
enhances performance. Conversely, in settings where Q-value estimation is challenging (sparse reward scenario, where the
performance of CQL is 3.2± 1.7), an elevated η exacerbates the training process, leading to diminished performance.

17

