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Abstract
We investigate the computational limits of the
memory retrieval dynamics of modern Hopfield
models from the fine-grained complexity analy-
sis. Our key contribution is the characterization
of a phase transition behavior in the efficiency
of all possible modern Hopfield models based on
the norm of patterns. Specifically, we establish
an upper bound criterion for the norm of input
query patterns and memory patterns. Only below
this criterion, sub-quadratic (efficient) variants of
the modern Hopfield model exist, assuming the
Strong Exponential Time Hypothesis (SETH). To
showcase our theory, we provide a formal exam-
ple of efficient constructions of modern Hopfield
models using low-rank approximation when the
efficient criterion holds. This includes a deriva-
tion of a lower bound on the computational time,
scaling linearly with max{# of stored memory
patterns, length of input query sequence}. In ad-
dition, we prove its memory retrieval error bound
and exponential memory capacity.

1. Introduction
We investigate the computational limits of modern Hop-
field models (Wu et al., 2024a;b; Hu et al., 2024a;b; 2023;
Ramsauer et al., 2021) from a fine-grained complexity anal-
ysis, and characterize a norm-based phase transition for all
possible efficient modern Hopfield model. This analysis
holds practical significance. Modern Hopfield models are
a type of associative memory model compatible with deep
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learning. More precisely, their deep learning derivatives
offer robust alternatives to attention mechanisms in various
transformer- and Hopfield-based methods (Hofmann et al.,
2024; Xu et al., 2024; Wu et al., 2024a;b; Hu et al., 2024a;
Schimunek et al., 2023; Fürst et al., 2022; Paischer et al.,
2022; Seidl et al., 2022; Widrich et al., 2020). However,
these models currently lack efficient implementations for
large-scale applications (Hu et al., 2023, Section C.2). This
issue becomes more relevant with the rise of Large Foun-
dation Models (Bommasani et al., 2021), where expansive
attention-based architectures, pre-trained on vast datasets,
are pivotal across multiple scientific fields, including natural
language processing (Brown et al., 2020; Floridi and Chiri-
atti, 2020), financial analytics (Wu et al., 2023), genomic
research (Zhou et al., 2024; 2023; Ji et al., 2021), medical
science (Thirunavukarasu et al., 2023; Singhal et al., 2023;
Moor et al., 2023) and more. This work makes a timely
theoretical analysis of their computational limits, aimed at
advancing (Hopfield-based) large foundation models.

Let x ∈ Rd be the input query pattern. The memory patterns
are stored in a matrix Ξ = [ξ1, · · · , ξM ] ∈ Rd×M . Hop-
field models are energy-based associative memory models.
These models store memory patterns Ξ on the local minima
of their energy landscapes, i.e. energy functions E. For
any input query x, they retrieve its closest memory pattern
through some energy minimization algorithms, i.e. retrieval
dynamics T , initialized at x.

Ramsauer et al. (2021) propose the Modern Hopfield Model
with a specific set of energy function E and memory re-
trieval dynamics T , and integrate it into deep learning ar-
chitectures via its connection with the transformer atten-
tion (Vaswani et al., 2017), offering enhanced performance,
and theoretically guaranteed exponential memory capacity.
Specifically, they introduce the energy function:

E(x) = − lse(β,ΞTx) +
1

2
⟨x,x⟩, (1.1)

where the retrieval dynamics is given by

xnew = TDense(x) = Ξ · Softmax(βΞTx). (1.2)

The function lse (β, z) := log
(∑M

µ=1 exp{βzµ}
)
/β is the

log-sum-exponential for any given vector z ∈ RM and β >
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0. Let X = [x1, . . . ,xL] ∈ Rd×L be a sequence of input
queries, such that (1.2) becomes Z := [xnew

1 , . . . ,xnew
L ] =

TDense(X), and hence

TDense(X) =

∈Rd×M︷︸︸︷
Ξ ·Softmax(β

∈RM×L︷ ︸︸ ︷
ΞT︸︷︷︸

∈RM×d

X︸︷︷︸
∈Rd×L

) ∈ Rd×L,

where the Softmax(·) applies column-wise normalization1.
Here we assume d = Lo(1), i.e., the growth rate of this
function is sub-polynomial concerning L.

To motivate the study of possible efficient implementations,
we make the following observation on (1.1):

The bottleneck of Hopfield-based methods is the time
to perform matrix multiplication in memory retrieval:
O(dML). Namely, (1.1) is inefficient with M =
Ω(ed) (large memory set) and L = Ω(ed) (long query
sequences).

Explicitly, if the associative space is d-dimensional, this ne-
cessitates d multiplication operations for the inner products
of {x} and {ξ}. Consequently, the complexity of comput-
ing a dot product is O(d). Each pattern in Z must associate
with every pattern in Ξ. Therefore, the time complexity for
sequences of length L and M with a pattern dimension of d
is O(dML). In this regard, this work aims to characterize
the fundamental limits on improvingO(dML). Specifically,
we ask the following questions:

Question 1. Is it possible to improve the time complexity
O(dML) with a controllable approximation error?

Question 2. More aggressively, is it possible to per-
form memory retrieval computations in almost linear time
L1+o(1) or M1+o(1) or (L+M)1+o(1)?

To address these questions, we explore approximate retrieval
computations with precision guarantees. We aim to find a
surrogate Tapprox. (also denoted as T̃Dense) for TDense such that

∥Tapprox. − TDense∥max ≤ δapprox.,

for some δapprox. > 0, where ∥A∥max := maxi,j |aij |.

To be concrete, we study the following approximation prob-
lem with the realistic setting δapprox. = 1/poly(L).

Problem 1 (Approximate Modern Hopfield Memory Re-
trieval Dynamics AHop(d,M,L, β,B, δH)). Let δH > 0.
Given Ξ ∈ Rd×M and X ∈ Rd×L such that ∥Ξ∥max ≤ B
and ∥X∥max ≤ B. We aim to study an approximation prob-
lem AHop(d,M,L, β,B, δH), that approximates Z with a

1Many existing works denote Z by Xnew.

matrix Z̃ := T̃Dense(X) such that∥∥∥Z̃−ΞD−1A
∥∥∥

max
≤ δH ,

where ΞD−1A = Z with

A = exp
{
βΞTX

}
, D = diag(A1M ).

In this work, we aim to investigate the computational limits
and potential efficient algorithms of AHop.

Contributions. Our contributions are threefold:

• Computational Limits. We answer Question 1 by identi-
fying a phase transition behavior on the norm of query and
memory patterns assuming the Strong Exponential Time
Hypothesis (SETH). Explicitly, let τ = max {M,L} be
the upper bound of the patterns’ lengths. We prove an
upper bound criterion B⋆ = Θ(

√
log τ) for ∥Ξ∥max and

∥X∥max such that, only below which, solving AHop in
τ2−Ω(1) (sub-quadratic) time is possible.

• Efficient Model. We answer Question 2 by providing an
efficient algorithm for AHop based on low-rank approx-
imation: an almost linear time modern Hopfield model.
Explicitly, we prove that the algorithm, under realistic
settings, performs the computation in almost linear time
τ1+o(1).

• Exponential Memory Capacity. Focusing on the almost-
linear-time modern Hopfield model, we derive its retrieval
error bound and show that this model achieves almost-
linear-time efficiency while maintaining the exponential
memory capacity characteristic of modern Hopfield mod-
els.

Background and Related Works

Modern Hopfield Models for Deep Learning. Classi-
cal Hopfield models (Hopfield, 1984; 1982; Krotov and
Hopfield, 2016) emulate human brain associative memory
by focusing on storing and retrieving memory patterns. In
machine learning community, a noticeable interest in these
models arises from (i) improved memory storage capacities
(from linear to polynomial (Krotov and Hopfield, 2016), to
exponential (Demircigil et al., 2017) and to kernelized (Wu
et al., 2024a)), (ii) novel architectures (Hoover et al., 2023;
Seidl et al., 2022; Fürst et al., 2022), and (iii) their biological
plausibility (Kozachkov et al., 2022; Krotov and Hopfield,
2021). Notably, the modern Hopfield models (Hu et al.,
2024a;b; 2023; Wu et al., 2024a;b; Burns and Fukai, 2023;
Brandstetter, 2021; Ramsauer et al., 2021) offer fast con-
vergence and expanded memory capacity. Importantly, they
serve as advanced extensions of attention mechanisms to
Transformer architecture. They have extensive applications
in diverse fields like tabular learning (Xu et al., 2024), drug
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discovery (Schimunek et al., 2023), immunology (Widrich
et al., 2020), time series forecasting (Wu et al., 2024b; Auer
et al., 2024), reinforcement learning (Paischer et al., 2022),
and large foundation models (Hu et al., 2024a; Fürst et al.,
2022).

Theory of Modern Hopfield Models. Besides empirical
successes, Modern Hopfield Models provide a model-based
theoretical framework for analyzing transformer attention
and Transformer architectures. (Hu et al., 2023) and Wu
et al. (2024b) propose a unified framework to analyze and
derive modern Hopfield models via entropic regularizers.
Significantly, their work presents sparse variants (sparse and
generalized sparse models) and incorporates the standard
modern Hopfield model (Ramsauer et al., 2021) as a partic-
ular example in their framework. Yet, they also note that the
modern Hopfield paradigm is incomplete and lacks efficient
implementations or variants (Hu et al., 2023, Section E).
Extending this foundation, Hu et al. (2024b) introduces a
principled construction of efficient variants from the non-
parametric perspective, including linear, top-K, and random
feature modern Hopfield models. This study aims to refine
this research direction towards efficient models. We believe
that this study is critical in guiding future research toward a
Hopfield-driven design paradigm, especially for large-scale
models.

Fine-Grained Complexity. Much of fine-grained com-
plexity theory relies on hypotheses concerning the time com-
plexity of three problems: Conjunctive Normal Form Satis-
fiability (CNFSAT), All-Pairs Shortest Paths (APSP), and
3-SUM (Williams, 2018). Impagliazzo and Paturi (2001)
introduce the Strong Exponential Time Hypothesis (SETH)
to address the complexity of CNF-SAT. SETH is a stronger
form of the P ̸= NP conjecture, suggesting that our current
best SAT algorithms are optimal. It states as follows:

Hypothesis 1 (SETH). For every ϵ > 0, there is a positive
integer k ≥ 3 such that k-SAT on formulas with n variables
cannot be solved in O(2(1−ϵ)n) time, even by a randomized
algorithm.

SETH is a popular conjecture for proving fine-grained lower
bounds for a wide variety of algorithmic problems, such as
k-Hitting Set and k-NAE-SAT (Cygan et al., 2016). See
Williams (2018) for a comprehensive review. Along this line,
we utilize the fine-grained reduction under SETH to analyze
the computational limits. In previous fine-grained reduction
works, Backurs et al. (2017) analyze the computational com-
plexity for multiple Empirical Risk Minimization problems,
such as kernel SVMs and kernel ridge. Alman et al. (2020)
study the applicability of efficient spectral graph theory on
geometric graphs under SETH. Aggarwal and Alman (2022)
focus on the computational limits of Batch Gaussian Kernel
Density Estimation problems. Alman et al. (2023) utilize

the weight-data correlation in a tree data structure for fast
neural network training. Alman and Song (2023; 2024b)
extend the previous work to transformer attention and intro-
duce a tensor generalization. Compared to existing works,
this work is, to the best of our knowledge, the first analysis
of computational limits for modern Hopfield (associative
memory) models (Hu et al., 2024a;b; Wu et al., 2024a;b; Hu
et al., 2023; Ramsauer et al., 2021). In addition, it offers a
more general characterization, encompassing computational
analyses of self-attention (Alman and Song, 2024b; 2023)
and cross-attention as special cases.

Notations. We denote (column) vectors by lower case
bold letters, and matrices by upper case bold letters. We
write ⟨a,b⟩ := aTb as the inner product for vectors a,b.
Let a[i] denotes the i-th component of vector a. The
index set {1, · · · , I} is denoted by [I], where I ∈ N+.
Let ∥A∥max := maxi,j |Aij | for any matrix A. We de-
note the memory patterns by ξ ∈ Rd and the query pat-
tern by x ∈ Rd, and Ξ := [ξ1, · · · , ξM ] ∈ Rd×M as
shorthand for stored memory patterns {ξµ}µ∈[M ]. We de-
note {τ 1, · · · , τ d} ⊂ R1×n for each row in the matrix
Z ∈ Rd×n.

2. Computational Limits
In this section, we characterize the computational limits of
all possible efficient variants of modern Hopfield models, i.e.
AHop, via fine-grained reduction. Our primary technique
involves casting the AHop problem (Problem 1) as a subrou-
tine in the Approximate Nearest Neighbor Search Problem
and deducing the hardness through reduction.

2.1. Background: Approximate Nearest Neighbor
Search Problem

Approximate Nearest Neighbor Search (ANNS) problem (In-
dyk and Motwani, 1998; Arya et al., 1998; Muja and Lowe,
2014; Li et al., 2019) shares the same objective with the
AHop problem of identifying a pattern closely resembling
a query pattern as a memory retrieval process. Further-
more, the ANNS problem, which is particularly useful in high-
dimensional spaces, seeks an approximate nearest neighbor
within acceptable bounds to avoid the prohibitive compu-
tational costs of finding the exact nearest neighbor (Indyk
and Motwani, 1998; Muja and Lowe, 2014). In this work,
we observe that ANNS aligns with the goal of memory re-
trieval to efficiently find and recall the most relevant mem-
ory pattern in response to a specific input query. In our
context, this translates to approximating the largest entry of
Softmax(ΞTx) in (1.2) for each query x, while maintaining
a bounded error.

In ANNS, one is given as input n vectors of dimension d,
and an error parameter δ > 0, and the goal is to find a
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pair of vectors whose distance is at most (1 + δ) times the
minimum distance between any pair of the vectors. The
straightforward algorithm for ANNS runs in quadratic time,
and it is known that it is impossible to solve ANNS in truly
sub-quadratic time assuming SETH (Rubinstein, 2018).

To be concrete, we state the ANNS problem considered in
this work as follows.

Definition 2.1 (Approximate Nearest Neighbor Search
ANNS). Given δ > 0, (1+ δ)-ANNS for sets A,B ⊂ {0, 1}d,
with |A| = |B| = n requires finding a∗ ∈ A,b∗ ∈ B such
that:

∥a∗ − b∗∥22 ≤ (1 + δ) min
a∈A,b∈B

∥a− b∥22. (2.1)

Next, we present the hardness results from Rubinstein
(2018) as an auxiliary lemma for later use. Specifically,
Rubinstein (2018) show that no sub-quadratic-time algo-
rithms exist for the ANNS.

Lemma 2.1 (Hardness for ANNS, Theorem 4.1 of (Rubin-
stein, 2018)). Assuming Hypothesis 1, for every q > 0,
there exist δ ∈ (0, 0.1) and C > 0 such that (1 + δ)-ANNS
with dimension d = C log n requires Ω(n2−q) time.

2.2. Fine-Grained Reduction for AHop

To study the computational limits, our proof strategy in-
volves connecting AHop to the hardness of ANNS (see
Lemma 2.1) through a fine-grained reduction. We do this
by introducing a decision problem Gap-ANNS as a (1 + δ)-
gap reduction (Demaine, 2014) of the ANNS optimization
problem (2.1), making the analysis more tractable while
maintaining the same level of hardness. To be more precise,
if we prove AHop is a reduction of Gap-ANNS, we also prove
AHop is a (1 + δ)-gap reduction of ANNS. We start with
Gap-ANNS in below.

Definition 2.2 (Gap Approximate Nearest Neighbor Search
Gap-ANNS(d, n, t, δ)). Given two sets of n input vectors
A = {a1, . . . ,an} ⊂ {0, 1}d and B = {b1, . . . ,bn} ⊂
{0, 1}d, the Gap-ANNS(d, n, t, δ) problem requires, for each
i ∈ [n], distinguish between the following two cases:
• Case 1: There exists at least one pair (ai,bj) ∈ A×B

such that ∥ai − bj∥22 < t.

• Case 2: For all bj ∈ B, it holds that ∥ai − bj∥22 ≥
(1 + δ) · t.

An algorithm for Gap-ANNS(d, n, t, δ) with log(nd) time
can binary search the answer of ANNS (Williams, 2018).

Then, we show that AHop serves as a subroutine within
Gap-ANNS, thereby establishing a connection between the
computational complexities of both problems.

Theorem 2.1 (Reduction from ANNS to AHop). Consider
Gap-ANNS with two sets of n input vectors, for every
q > 0, for any chosen constants C,C0 > 0, there ex-
ist δ ∈ (0, 0.1) and constants Cα, Cβ > 0 such that:
Gap-ANNS(d = C log n, n, t = C0 log n, δ) requires O(T +
n2−q) time if AHop(2d,M = 2n,L = 2n, β = 1/2d,B =
Cβ

√
log n, δH = n−Cα) requires time T .

Proof Sketch. To solve Gap-ANNS, we employ different ap-
proaches for two scenarios, either through

• Scenario 1: a brute-force approach, or

• Scenario 2: reducing Gap-ANNS to an AHop problem, and
translating AHop’s solution to Gap-ANNS’s solution (i.e.
distinguish the 2 cases in Definition 2.2).

The proof of Scenario 1 employs a brute-force algorithm
for Gap-ANNS. This algorithm iterates over vectors within a
Hamming distance of t from each input vector and checks
for a match in the target set. It results in a manageable time
complexity O(n2−q).

The proof for Scenario 2 adopts a complex strategy. Ini-
tially, an AHop instance is formulated to encompass the
Gap-ANNS problem. This formulation involves selecting spe-
cific parameters to ensure that resolving the AHop problem
concurrently addresses the Gap-ANNS challenge. Next, we
introduce t̃, a threshold exceeding the AHop algorithm’s
error bound, to effectively bridge the conditions of the
Gap-ANNS problem with the compound inequality derived
from AHop. Finally, by considering an illustrative set of
input vectors under the premise of a uniform distribution,
the method for resolving the Gap-ANNS is elucidated with
the established value of t̃. This approach simplifies the
decision-making process in solving Gap-ANNS.

Main Proof. Here is the main proof of Theorem 2.1.

Proof. Let {a1, · · · ,an,b1, · · · ,bn} ⊆ {0, 1}d denote
the input vectors of Gap-ANNS(d = C log n, n, t, δ). For
any given c satisfying{

c (logC + 1) ≤ 1− q
0 < c ≤ 1

2C,
(2.2)

we categorize two scenarios based on whether t < c log n.

Scenario 1: t < c log n.

The brute-force algorithm is described below:

1. For each i ∈ [n], iterate over all vectors b′ ∈ {0, 1}d
which have Hamming distance at most t from ai.

2. Check whether b′ ∈ {b1, · · · ,bn}.
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Since t < 1
2C log n < d, there are

(
d
t

)
choices for the vector

b′, so the algorithm takes O(n ·
(
d
t

)
) time. We know:

n ·
(
d

t

)
≤ n ·

(
C log n

c log n

)
≤

(
e
C

c

)c logn

≤ n1+c log(Ce).

Therefore, if we choose constant c satisfying (2.2), the algo-
rithm requires O(n2−q) time.

Scenario 2: t ≥ c log n.

Scenario 2 - Part 1. This part shows the associated AHop

problem. Our objective is to construct an instance of the
AHop problem in such a way that solving it also addresses
the Gap-ANNS problem. To this end, we configure the
AHop(d̃, ñ, ñ, β,B, δH) problem by selecting a specific set
of parameters:

d̃ := 2d, ñ := 2n, β := 1/d̃,

Cβ > 2
√

C/(C0δ), Cα >
C2

β

4
(3 + C0/C) + 1, (2.3)

B := Cβ

√
log n, δH := n−Cα , (2.4)

Note that δH is dependent on but not equal to δ.

We parametrize AHop’s input, Ξ and X, with Gap-ANNS
input {a1, · · · ,an,b1, · · · ,bn}:

Ξ := B·
[
a1 a2 · · · an 0d 0d · · · 0d
1d 1d · · · 1d 1d 1d · · · 1d

]
∈ Rd̃×ñ,

X := B·
[
b1 b2 · · · bn 0d 0d · · · 0d
0d 0d · · · 0d 1d 1d · · · 1d

]
∈ Rd̃×ñ.

By construction, we have ∥Ξ∥max ≤ B and ∥X∥max ≤ B.
This follows that:∥∥βΞTX

∥∥
max ≤ βB2d̃ = B2.

Consider the matrix A := exp
{
βΞTX

}
∈ Rñ×ñ:

A =

[
A1 A2

A3 A4

]
, (2.5)

where A1,A2,A3,A4 ∈ Rn×n:

A1 :=
[
exp

{
βB2 ⟨ai,bj⟩

}]
i∈[1,n],j∈[1,n]

,

A2 :=
[
exp

{
B2

}]
i∈[1,n],j∈[n+1,2n]

,

A3 := [0]i∈[n+1,2n],j∈[1,n] ,

A4 :=
[
exp

{
B2

}]
i∈[n+1,2n],j∈[n+1,2n]

.

We provide the explicit form of (2.5) in (B.1).

For each (i, j) ∈ [n]× [n], it holds

Ai,j = exp
{
βB2 ⟨ai,bj⟩

}
≤ exp

{
βB2d̃∥ai∥max∥bj∥max

}
≤ exp

{
B2

}
.

Thus,
0 ≤ Ai,j ≤ exp

{
B2

}
.

Since D = diag (A1ñ), for each i ∈ [ñ], we get

n exp
{
B2

}
≤ Di,i ≤ 2n exp

{
B2

}
. (2.6)

Scenario 2 - Part 2. This part shows the Gap-ANNS is
a part of the associated AHop problem. Given input ma-
trices D ∈ Rñ×ñ, A ∈ Rñ×ñ, if we have an algorithm
AHop(d̃, ñ, ñ, β,B, δH) such that its output Z̃ satisfies∥∥∥Z̃−ΞD−1A

∥∥∥
max
≤ δH . (2.7)

To connect (2.7) to Gap-ANNS, we define t̃ as

t̃ :=
1

3

exp
{

1
4B

2(1− t/d)
}

2n exp{B2}
.

It follows that

t̃ =
1

6n
exp

{
−3

4
B2 − 1

4
B2t/d

}
=

1

6n
exp

{
−3

4
B2 − 1

4
B2C0/C

}
=

1

6
exp

{
−3

4
C2

β log n−
1

4

C0

C
C2

β log n− log n

}
(
By (2.4)

)
=

1

6
n− 3

4C
2
β− 1

4
C0
C C2

β−1 ≥ n−Cα = δH .

Since t̃ ≥ δH , the last row vector of Z̃, i.e z̃d̃ ∈ R1×ñ for
all j ∈ [ñ], satisfying∣∣∣z̃d̃[j]− (

ξ
d̃
D−1A

)
[j]

∣∣∣ ≤ t̃, (2.8)

where ξ
d̃
= 1Tñ is the last row of Ξ.

Scenario 2 - Part 3. This part shows how to distinguish the
2 cases in the Gap-ANNS with z̃d̃ constructed in the previous
AHop(d̃, ñ, ñ, β,B, δH) problem.

For the sake of convenience, we assume each input vector
has an equal probability of being either 0 or 1, that is,{

∥ai∥22 = d/2, ∀i ∈ [n],

∥bj∥22 = d/2, ∀j ∈ [n].
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Hence, for each (i, j) ∈ [n]× [n],

βB2 ⟨ai,bj⟩ =
B2

4d
(∥ai∥22 + ∥bj∥22 − ∥ai − bj∥22)

=
B2

4d

(
d− ∥ai − bj∥22

)
. (2.9)

Our goal of solving Gap-ANNS(d, n, t, δ) is to determine,
for each i ∈ [n], whether there is a j ∈ [n] such that
∥ai − bj∥22 ≤ t, or whether ∥ai − bj∥22 > (1 + δ)t for all
j ∈ [n].

Case 1: If there exists an (i, j) ∈ [n] × [n] such that
∥ai − bj∥22 ≤ t, then

βB2 ⟨ai,bj⟩ ≥
1

4
B2(1− t/d).

(
By (2.9)

)
In this case,

z̃d̃[j] ≥
n∑
ι

D−1
ι,ι Aι,j − t̃

(
By (2.8)

)
≥ D−1

i,i exp
{
βB2 ⟨ai,bj⟩

}
− t̃

≥
exp

{
1
4B

2(1− t/d)
}

2n exp{B2}
− t̃

(
By (2.6)

)
= 2t̃.

Case 2: If ∥ai − bj∥22 > (1 + δ)t for all (i, j) ∈ [n]× [n],
then

βB2 ⟨ai,bj⟩ <
1

4
B2(1− (1 + δ)t/d).

(
By (2.9)

)
In this case,

z̃d̃[j] ≤
n∑
ι

D−1
ι,ι Aι,j + t̃

(
By (2.8)

)
=

n∑
ι

D−1
ι,ι exp

{
βB2 ⟨aι,bj⟩

}
+ t̃

<
n exp

{
1
4B

2(1− (1 + δ)t/d)
}

n exp{B2}
+ t̃

(
By (2.6)

)
=

exp
{

1
4B

2(1− t/d)
}

2n exp{B2}
2n

exp
{

δ
4B

2t/d
} + t̃

= 3t̃ · 2n

exp
{

δ
4C

2
β log nC0/C

} + t̃
(
By (2.3)

)
< 2t̃.

Therefore, by determining whether z̃d̃[j] ≥ 2t̃, we distin-
guish the two cases, or solve the Gap-Ann(n, d, t, δ). Fur-
thermore, the entire algorithm take T time, the same as the
time required for AHop(d̃, ñ, ñ, β, B, δH).

Corollary 2.1.1. Assuming Hypothesis 1, for every q > 0,
for any chosen C,C0 > 0, there exist δ ∈ (0, 0.1) and
Cα, Cβ > 0 satisfying (2.3) such that AHop(2d,M =
2n,L = 2n, β = 1/2d,B = Cβ

√
log n, δH = n−Cα)

requires Ω(n2−q) time.

Proof. By Lemma 2.1, suppose δ ∈ (0, 0.1), (1 + δ)-ANNS
with dimension d = C log n requires Ω(n2−q) time. By
Theorem 2.1, Gap-ANNS requires O(T + n2−q) time with
T being the computation time of AHop(d,M,L, β,B, δH).
For Gap-ANNS to have the same precision δ as (1+ δ)-ANNS,
we need O(T + n2−q) = Ω(n2−q). Consequently,
AHop(d,M,L, β,B, δH) requires T = Ω(n2−q) time. This
completes the proof.

Interestingly, Corollary 2.1.1 characterizes a phase transition
behavior in AHop problems assuming Hypothesis 1. To
extend the applicability of this corollary beyond the specific
case where M = L = n, we introduce τ := max{M,L} to
capture the larger dimension. That is, regardless of whether
M or L is larger, τ ensures that the hardness result considers
the worst-case scenario (i.e. extending the shorter one).
To sum up, we establish a criterion B⋆ = Θ(

√
log τ) for

∥Ξ∥max and ∥X∥max such that, only below which, solving
AHop in τ2−Ω(1) (sub-quadratic) time is possible.

3. An Almost Linear Modern Hopfield Model
To showcase our theory, this section presents an example
of an almost linear-time modern Hopfield model using low-
degree polynomial approximation. We show its almost lin-
ear lower bound on computational time in Section 3.2 and
its upper bound on memory retrieval error in the same sec-
tion. Additionally, we show that this model possesses a
marginally smaller, yet still exponential-in-d memory capac-
ity in Section 3.3, compared to standard modern Hopfield
associative memory models (Wu et al., 2024b; Hu et al.,
2023; Ramsauer et al., 2021).

3.1. Background: Polynomial Method for Low-Rank
Approximation

Consider a matrix A ∈ Rp×q, and a function f : R → R.
We define f(A) : Rp×q → Rp×q as the matrix obtained
by applying f entry-wise to A. The polynomial method
aims to find a low-rank approximation for f(A). Under
this method, if A possesses a low rank, and if function f
can be well-approximated by a low-degree polynomial, then
the matrix f(A) can be approximated by a low-rank matrix.
Furthermore, this low-rank approximation can be efficiently
computed in terms of its low-rank decomposition.

Aggarwal and Alman (2022) provide the bounds on the
degrees of the polynomial required for low-rank approx-
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imation of f(A), particularly when f is the exponential
function. Leveraging these results, we construct a low-rank
approximation for Softmax(βΞTX) in (1.1), satisfying the
following definition:

Definition 3.1 ((δA, r) Low-Rank Approximation). Let r ∈
N+ ≥ 1 and δA ∈ (0, 0.1). For a given A ∈ Rp×q, we say
Ã ∈ Rp×q is an (δA, r)-approximation of A if

• Ã = UVT with U ∈ Rp×r and V ∈ Rq×r, and

•
∣∣∣Ãij −Aij

∣∣∣ ≤ δA ·Aij for each i ∈ [p] and j ∈ [q].

3.2. Low-Rank Matrix Approximation for AHop

This section includes our linear time result for AHop via low-
rank approximation. Let ∥X∥max ≤ B and ∥Ξ∥max ≤ B.
Let Tmat(a, b, c) denote the time required for multiplica-
tion between an Ra×b matrix and an Rb×c matrix. In fact,
Tmat(a, b, c) ≤ O(abc).

We compute Ã as a (δA, r)-approximation of A:

Lemma 3.1. Suppose B > 1 and matrices Ξ ∈ Rd×M ,
X ∈ Rd×L have ∥X∥max ≤ B and ∥Ξ∥max ≤ B. Given
A = exp

{
βΞTX

}
∈ RM×L, for δA ∈ (0, 0.1), there is a

positive integer g upper bounded by

g = O
(
max

{
B2βd,

log(1/δA)

log [1/(B2βd) · log(1/δA)]

})
,

and a r ∈ N+ upper bounded by r ≤
(
2(g+d)

2g

)
such

that: There is a matrix Ã ∈ RM×L that is an (δA, r)-
approximation of A ∈ RM×L. Furthermore, the matrices
U1 and U2 defining Ã can be computed inO(max {M,L}·
rg) time.

Proof. For each (i, j) ∈ [M ]× [L], we have

∣∣(ΞTX)i,j
∣∣ = ∣∣∣∣∣

d∑
l=1

Ξl,iXl,j

∣∣∣∣∣ ≤ ∥Ξ∥max∥X∥maxd ≤ B2d.

Thus, the entries of the exp in A have upper bound:∥∥βΞTX
∥∥

max ≤ B2βd.

Applying Lemma A.2 with bound B2βd, there is a polyno-
mial function P (x) of degree g such that:

sup
Ξ,X

∣∣P ((βΞTX)ij)−Aij

∣∣ < δA ·Aij .

Applying Lemma A.3 with Ξ, X, there exists an algorithm
constructing U1,U2 inO(max {M,L} · rg) time such that
P (βΞTX) = U1U

T
2 .

Therefore, by Definition 3.1, Ã := P (βΞTX) is an (δA, r)-
approximation of A.

Prior to solving AHop, we compute the approximation er-
ror bound for Z̃ by utilizing a low-rank approximation
(Lemma 3.1) applied to Problem 1.

Lemma 3.2 (Approximation Error). Let δA ∈ (0, 0.1),
β > 0, B > 0, ∥X∥max ≤ B, and ∥Ξ∥max ≤ B. Let
A = exp

{
βΞTX

}
∈ RM×L, and let Ã ∈ RM×L such

that, for each (l, j) ∈ [M ]× [L],∣∣∣Ãl,j −Al,j

∣∣∣ ≤ δA ·Al,j . (3.1)

Let D = diag(A1M ) ∈ RM×M and D̃ = diag(Ã1M ) ∈
RM×M , for each l ∈ [M ], we have∣∣∣D̃l,l −Dl,l

∣∣∣ ≤ δA ·Dl,l. (3.2)

Hence, we have∥∥∥Z̃− Z
∥∥∥

max
=

∥∥∥ΞD̃−1Ã−ΞD−1A
∥∥∥

max
≤ 2MBδA.

(3.3)

Proof. To see (3.2), we observe∣∣∣D̃l,l −Dl,l

∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

Ãl,j −
n∑

j=1

Al,j

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣Ãl,j −Al,j

∣∣∣
≤

n∑
j=1

δA ·Al,j = δA ·Dl,l.
(
By (3.1)

)
By triangle inequality, we have∥∥∥ΞD̃−1Ã−ΞD−1A

∥∥∥
max

≤
∥∥∥ΞD̃−1Ã−ΞD−1Ã

∥∥∥
max︸ ︷︷ ︸

(I)

+
∥∥∥ΞD−1Ã−ΞD−1A

∥∥∥
max︸ ︷︷ ︸

(II)

.

Consider the (I) term; for each (i, j) ∈ [d]× [L], we have∣∣∣∣(ΞD̃−1Ã−ΞD−1Ã
)
i,j

∣∣∣∣
=

∣∣∣∣∣
M∑
l=1

Ξi,l

(
D̃−1

l,l −D−1
l,l

)
Ãl,j

∣∣∣∣∣
≤

M∑
l=1

∣∣∣(D̃−1
l,l −D−1

l,l

)
Ãl,j

∣∣∣ · ∥Ξ∥max

=

M∑
l=1

∣∣∣∣∣Dl,l − D̃l,l

Dl,lD̃l,l

Ãl,j

∣∣∣∣∣ · ∥Ξ∥max

≤ δAB

M∑
l=1

D̃−1
l,l Ãl,j

(
By ∥Ξ∥max ≤ B and (3.2)

)
≤ δAB ·M.
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Algorithm 1 The algorithm to solve AHop

Input: matrices Ξ ∈ Rd×M ,X ∈ Rd×L, with β, d,M,L,B, and error margin δA. Let τ := max {M,L}.
1: g ← O

(
max

{
B2βd, log(1/δA)

log[1/(B2βd)·log(1/δA)]

})
by Lemma 3.1

2: r ←
(
2(g+d)

2g

)
by Lemma 3.1

3: Compute U1 ∈ RM×r,U2 ∈ RL×r by Lemma A.3 // Time: O(τrg)
4: Compute D̃−1 = diag

(
U1(U

T
2 1L)

)
∈ RM×M // Time: O(τr)

5: Z̃← ΞD̃−1U1U
T
2 ∈ Rd×M // Time: O (τrd)

return Z̃

Consider the (II) term; for each (i, j) ∈ [d]× [L], we have∣∣∣∣(ΞD̃−1Ã−ΞD−1A
)
i,j

∣∣∣∣
=

∣∣∣∣∣
M∑
l=1

Ξi,lD
−1
l,l

(
Ãl,j −Al,j

)∣∣∣∣∣
≤

M∑
l=1

∣∣∣D−1
l,l

∣∣∣ · ∣∣∣(Ãl,j −Al,j

)∣∣∣ · ∥Ξ∥max

≤ δAB

M∑
l=1

D−1
l,l Al,j

(
By ∥Ξ∥max ≤ B and (3.1)

)
≤ δAB ·M.

Combining (I) and (II), we obtain∥∥∥ΞD̃−1Ã−ΞD−1A
∥∥∥

max
≤ 2MBδA.

This completes the proof of (3.3).

Lemma 3.2 states that the controllable approximation error
in Problem 1 takes the form of δH = 2MBδA by low-rank
approximation. Here M is the size of stored memory set Ξ,
δA is the precision of low-rank approximation and B is the
upper bound of ∥X∥max and ∥Ξ∥max.

Next, we show that AHop utilizing (δA, r)-approximation
requires only almost linear computational time.

Theorem 3.1 (Almost Linear AHop, Algorithm 1). Let τ :=
max {M,L} and δH := 2MBδA. For β > 0, d,M,L ∈
N+, δA > 0, ∥X∥max ≤ B and ∥Ξ∥max ≤ B with B ≥ 1,

there are g = O
(
max

{
B2βd, log(1/δA)

log[1/(B2βd)·log(1/δA)]

})
∈

N+ and r =
(
2(g+d)

2g

)
∈ N+ such that: There exists

an Algorithm 1 that runs in O (τrg + τrd) time to solve
AHop(d,M,L, β,B, δH). Thus, under realistic settings
where d = O(log τ), β = Θ(1/d), δH = MB/poly(τ),
if B = o(

√
log τ), Algorithm 1 requires time τ1+o(1).

Proof. In Algorithm 1, step 3 requires O (τrg) time by
Lemma 3.1; step 4 requires Tmat(r, L, 1) + Tmat(M, r, 1) =
O (τr) time; step 5 requires dM + Tmat(d,M, r) +

Tmat(d, r, L) = O (τrd) time. Thus, Algorithm 1 requires
O (τrg + τrd) time.

If the parameters satisfy d = O(log τ), β = Θ(1/d), B =
o(
√
log τ), and δA = 1/poly(τ) = τ−O(1), we have

g = O
(
max

{
B2βd,

log(1/δA)

log [1/(B2βd) · log(1/δA)]

})
= O

(
max

{
o(log τ),

log τ

log(log τ)

})
= o(log τ).

We write g as log τ/f with any f = ω(1), then

r =

(
2(d+ g)

2g

)
≤

(
e(d+ g)

g

)2g

= 2O(g log((d+g)/g))

≤ 2O(g log(log τ/g)) = 2O(log τ log f/f)

< 2o(log τ) < τo(1).

We know (log τ)O(1) ≤ τ c for all a, c > 0 and b > 1, so

O(τa(log τ)b) ≤ τa · τo(1) = τa+o(1),

where τa+o(1) means τa+o(1) grows slightly larger than τa.
Since d, r, g = O(log τ), there exists some constant K such
that d, r, g ≤ K log τ . Thus, Algorithm 1 requires time:

O (τrd+ τrg) ≤ O
(
τ(log τ)2

)
≤ τ1+o(1).

This completes the proof.

Theorem 3.1 provides a formal example of efficient com-
putation Algorithm 1 for AHop using low-rank approxi-
mation (Lemma 3.1) within a controllable approximation
error (Lemma 3.2). This corresponds to Corollary 2.1.1
when the efficient criterion holds. Specifically, to achieve
efficient computation under realistic settings, we require
B = o(

√
log τ), leading to almost linear running time

τ1+o(1).

3.3. Memory Retrieval Error Bound

Considering the standard modern Hopfield retrieval dynam-
ics with length-L query sequences from (1.1):

Z = ΞSoftmax
(
βΞTX

)
.
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Let Z̃ ∈ Rd×L be the output of the efficient memory re-
trieval dynamics by Algorithm 1 retrieving Xnew from stored
memory set Ξ ∈ Rd×M based on given query X ∈ Rd×L.

To see how this approximate model stores and retrieves
memory patterns, we first introduce the following defini-
tions.

Definition 3.2. Given a function T : Rd → Rd. A general-
ized fixed point of T is a point x ∈ Rd for which x ∈ T (x).

Definition 3.3 (Memory Storage and Retrieval). For each
µ ∈ [M ], let R := 1

2 Minµ,ν∈[M ];µ̸=ν ∥ξµ − ξν∥ be the
finite radius of each sphere Sµ centered at memory pattern
ξµ. We say ξµ is stored if all x ∈ Sµ are generalized
fixed points of T , x⋆

µ ∈ Sµ, and Sµ ∩ Sν = ∅ for µ ̸= ν.
We say ξµ is ϵ-retrieved by T with x for an error ϵ, if
∥T (x)− ξµ∥ ≤ ϵ.

Remark 3.1. A direct implication from Definition 3.3 is
that the approximation error of AHop (see Equation (2.7))
must satisfy δH = 2MBδA < R for successful memory
retrieval (and storage).

Additionally, we recall the following definition regarding
the separation between memory patterns.

Definition 3.4 (Separation of Patterns). The separation of
a memory pattern ξµ from all other memory patterns Ξ is
defined as its minimal inner product difference to any other
patterns: ∆µ := Minν,ν ̸=µ [⟨ξµ, ξµ⟩ − ⟨ξµ, ξν⟩].

Next, we present the retrieval error bound of Z̃.

Theorem 3.2 (Retrieval Error). Let Ξ be the ground truth
memory sequence corresponding to X. Suppose xl ∈ Sµ

with some µ ∈ [M ] for each l ∈ [L], it holds∥∥∥Z̃−Ξ
∥∥∥

max
(3.4)

≤ 2B(M − 1)e−β(⟨ξµ,x⟩−Maxν∈[M]⟨ξµ,ξν⟩) + 2MBδA.

Proof. We first decompose the RHS of (3.4) as∥∥∥Z̃−Ξ
∥∥∥

max
=

∥∥∥ (
Z̃− Z

)
︸ ︷︷ ︸

Approximation Error

+
(
Z−Ξ

)︸ ︷︷ ︸
Retrieval Error

∥∥∥
max

. (3.5)

Then, we bound the approximation error with Lemma 3.2
and bound the retrieval error with (Hu et al., 2023, eqn. 2.7).
By triangle inequality, we complete the proof.

Remark 3.2. By definition of ∥·∥max, this bound also holds
for retrieval based on single pattern x.
Remark 3.3. Similar to standard results of modern Hop-
field models (Wu et al., 2024a;b; Hu et al., 2023; Ramsauer
et al., 2021), (3.4) indicates that with sufficiently large ∆µ

and sufficiently small approximation error, Algorithm 1 re-
trieves memory patterns in a single iteration. This allows

this efficient modern Hopfield model to serve as a network
layer with a single activation, enabling its integration into
deep learning, similar to (Hu et al., 2024a; Xu et al., 2024;
Schimunek et al., 2023; Hoover et al., 2023; Seidl et al.,
2022; Fürst et al., 2022; Paischer et al., 2022).

Surprisingly, this model achieves almost linear time effi-
ciency while maintaining the exponential memory capacity
characteristic of modern Hopfield models.

Corollary 3.2.1 (Capacity Lower Bound, Informal). Sup-
pose all memory patterns are sampled from a sphere of
radius m. This efficient modern Hopfield (approximate
(1.1) with Algorithm 1) exhibits a exponential-in-d lower
bound M on the number of patterns it can store and retrieve.

Proof Sketch. We first derive the necessary condition for
a pattern to be stored and retrieved in the model, i.e., the
well-separation condition. Next, we combine it with the
separation analysis of random patterns (Hu et al., 2023). See
Appendix B.3 for a formal version and a detailed proof.

Remark 3.4. While the capacity M is slightly smaller than
those of (Wu et al., 2024b; Hu et al., 2023; Ramsauer et al.,
2021), it still scales exponentially in pattern dimension d.
Namely, AHop as per Algorithm 1 achieves almost linear
computation time with only a marginal sacrifice in memory
capacity.

4. Discussion and Conclusion
We apply the fine-grained reduction under the SETH hy-
pothesis to study the computational limits of the retrieval
dynamics of modern Hopfield associative memory models
(Hu et al., 2024a;b; Wu et al., 2024a;b; Hu et al., 2023; Ram-
sauer et al., 2021). This work holds practical significance
because of the robust link between transformer attention
mechanisms and modern Hopfield models. We make a key
observation by framing associative memory retrieval as an
Approximate Nearest Neighbor Search (ANNS) problem,
enabling the application of fine-grained reduction. This
allows us to identify a phase transition behavior on the effi-
ciency of all possible variants of modern Hopfield models
(Corollary 2.1.1) by tuning the norm bound of queries X
and memories Ξ. In addition, we showcase our theory with
an almost linear time variant of modern Hopfield models
(Theorem 3.1). We show this efficient model inherits the
defining characteristic of modern Hopfield models: exponen-
tial memory capacity (Corollary 3.2.1 and Theorem B.1).

Limitation. By the formal nature of this work, our results
do not lead to practical implementations. However, we antic-
ipate that our findings will offer valuable insights for future
efficient Hopfield-centric and transformer-based foundation
models and deep learning implementations.
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Supplementary Material

A. Supplementary Theoretical Backgrounds
A.1. Low-Degree Approximation of exp Function

Here we present some useful known results for later convenience.

Lemma A.1 (Approximation Degree of ex, Theorem 1.3 of (Aggarwal and Alman, 2022)). For any real number B ≥ 1 and
δ ∈ (0, 1), and function f : [0, B]→ R, there is a polynomial function P : R→ R of degree tightly bounded by

dB,δ(f = ex) = Θ

(
max

{
B,

log(1/δ)

log [1/B · log(1/δ)]

})
,

such that supx∈[0,B] |P (x)− exp{x}| < δ.

The polynomial P (x) with degree dB,δ(e
x) can be computed in poly(dB,δ(e

x)) time.

Lemma A.2 (Corollary 2.2 of (Alman and Song, 2023)). For any real number B ≥ 1 and δ ∈ (0, 1), and function
f : [−B,B]→ R, there is a polynomial function P : R→ R of degree tightly bounded by

dB,δ(f = ex) = Θ

(
max

{
B,

log(1/δ)

log [1/B · log(1/δ)]

})
,

such that supx∈[0,B] |P (x)− exp{x}| < δ · exp{x}.

For more related topics and techniques, please see (Gao et al., 2023a;b; Song et al., 2023; Reddy et al., 2022) for fast
approximation algorithms of attention and tensor regression via tensor trick, (Gu et al., 2024d) for low-rank matrix
completion, (Song et al., 2024a; Deng et al., 2023; Brand et al., 2023; Song et al., 2021) for attention kernel regression, and
(Gu et al., 2024a;b;c; Alman and Song, 2024a; Song et al., 2024b) for low-rank gradient computation in machine learning
and large foundation models.

A.2. Additional Theoretical Results: Matrix Multiplication Polynomial Approximation

Here, we introduce a helper lemma for approximating an exponential function where the exponent involves matrix
multiplication in the context of cross-attention. This lemma is instrumental in proving Lemma 3.1.

Lemma A.3 (Generalized from Lemma 3.2 of (Alman and Song, 2023)). Consider a polynomial function P (x) representing
a degree-g polynomial. Given matrices X ∈ RM×d and Y ∈ RL×d, there exists an algorithm with a running complexity
O(max {M,L} · rg), where r =

(
2(g+d)

2g

)
. This algorithm, upon receiving matrices X,Y as input, constructs matrices

U1,U2 that satisfy the equality P (XYT) = U1U
T
2 , where U1 ∈ RM×r and U2 ∈ RL×r.

Proof. See Appendix B.1 for a detailed proof.

14



On Computational Limits of Modern Hopfield Models: A Fine-Grained Complexity Analysis

B. Proofs of Main Text
B.1. Proof of Lemma A.3

Proof. For vectors u,v ∈ Rd, define the union of the components V := {u1, · · · , ud, v1, · · · , vd}. Define F as the set of
functions f such that:

F :=

{
f : V → {0, 1, 2, · · · , 2g}

∣∣∣∑
v∈V

f(v) ≤ 2g

}
.

The cardinality of F is derived by solving combination-with-repetition problems, leading to the expression:

|F| =
(
2d+ 2g

2g

)
.

P (x) can be written as:

P (x) =

g∑
i=0

ci · xi.

Let u := [u1, · · · , ud] ∈ Rd and v := [v1, · · · , vd] ∈ Rd. Consider the polynomial P (⟨u,v⟩):

P (⟨u,v⟩) =
g∑

i=0

ci · (⟨u,v⟩)i.

There exists a set of constant cf associated with each function f ∈ F , such that:

g∑
i=0

ci · (⟨u,v⟩)i =
∑
f∈F

cf ·
∏
v∈V

vf(v).

Define two vector-valued functions ϕu,ϕv : Rd → R|F|. For each f ∈ F , we define the elements of ϕu,ϕv as follows:

ϕu,f (u) = cf ·
d∏

l=1

u
f(ul)
l , ϕv,f (v) =

d∏
l=1

v
f(vl)
l .

Thus, P (⟨u,v⟩) becomes:

P (⟨u,v⟩) = ⟨ϕu(u),ϕv(v)⟩ .

Since f ≤ 2g, both ϕu,f and ϕv,f require O(g) time. Furthurmore, the inner product ⟨ϕu(u),ϕv(v)⟩ requires O(rg) time,
where r = |F|.

Consider the input matrices X,Y. Let {xi}i∈[L], {yi}i∈[L] be the i-th row vector of matrix X, Y. The polynomial can be
generalized to:

P (XYT) =


P (⟨x1,y1⟩) P (⟨x1,y2⟩) . . . P (⟨x1,yL⟩)
P (⟨x2,y1⟩) P (⟨x2,y2⟩) . . . P (⟨x2,yL⟩)

...
...

. . .
...

P (⟨xM ,y1⟩) P (⟨xM ,y2⟩) . . . P (⟨xM ,yL⟩)



=


⟨ϕu(x1),ϕv(y1)⟩ ⟨ϕu(x1),ϕv(y2)⟩ . . . ⟨ϕu(x1),ϕv(yL)⟩
⟨ϕu(x2),ϕv(y1)⟩ ⟨ϕu(x2),ϕv(y2)⟩ . . . ⟨ϕu(x2),ϕv(yL)⟩

...
...

. . .
...

⟨ϕu(xM ),ϕv(y1)⟩ ⟨ϕu(xM ),ϕv(y2)⟩ . . . ⟨ϕu(xM ),ϕv(yL)⟩

 .
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Therefore, we can constuct matrices U1 ∈ RM×|F| and U2 ∈ RL×|F| as follows:

U1 =
[
ϕu(X1) ϕu(X2) · · · ϕu(XM )

]T
,

U2 =
[
ϕv(Y1) ϕv(Y2) · · · ϕv(YL)

]T
.

It’s trivial to observe P (XYT) = U1U
T
2 . Moreover, constructing U1,U2 require time O(max {M,L} · rg).

B.2. A Matrix in Proof of Theorem 2.1

A =



exp
{

B2

d̃
⟨a1, b1⟩

}
exp

{
B2

d̃
⟨a1, b2⟩

}
· · · exp

{
B2

d̃
⟨a1, bn⟩

}
exp

{
B2

}
exp

{
B2

}
· · · exp

{
B2

}
exp

{
B2

d̃
⟨a2, b1⟩

}
exp

{
B2

d̃
⟨a2, b2⟩

}
· · · exp

{
B2

d̃
⟨a2, bn⟩

}
exp

{
B2

}
exp

{
B2

}
· · · exp

{
B2

}
...

...
. . .

...
...

...
. . .

...

exp
{

B2

d̃
⟨an, b1⟩

}
exp

{
B2

d̃
⟨an, b2⟩

}
· · · exp

{
B2

d̃
⟨an, bn⟩

}
exp

{
B2

}
exp

{
B2

}
· · · exp

{
B2

}
0 0 · · · 0 exp

{
B2

}
exp

{
B2

}
· · · exp

{
B2

}
0 0 · · · 0 exp

{
B2

}
exp

{
B2

}
· · · exp

{
B2

}
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 exp

{
B2

}
exp

{
B2

}
· · · exp

{
B2

}


.

(B.1)

B.3. Formal Statement and Proof of Corollary 3.2.1

Let δ := −2MBδA ≤ 0.

Theorem B.1 (Memory Capacity Lower Bound, Formal). Suppose the probability of successfully storing and retrieving
memory pattern is given by 1− p. The number of memory patterns sampled from a sphere of radius m that the
textitefficient modern Hopfield model (approximate (1.1) with Algorithm 1) can store and retrieve has a lower bound:
M ≥ √pC d−1

4 , where C is the solution for C = b/W0(exp{a+ln b}) with W0(·) being the principal branch of Lambert W
function, a := 4/d−1

{
ln [2m(

√
p−1)/(R−2MBδA)] + 1

}
and b := 4m2β/5(d−1).

Remark B.1. For details and background of Lambert W function, we refer the readers to (Olver et al., 2010).

Before the main proof, we introduce the following helper lemma. Let m := Maxµ∈[M ] ∥ξµ∥.

Lemma B.1. Then, the well-separation condition of memory patterns is:

∆µ ≥
1

β
ln

(
2(M − 1)m

R− 2MBδA

)
+ 2mR. (B.2)

If 2MBδA = 0, (B.2) reduces to well-separation condition of Softmax-based Hopfield model (Ramsauer et al., 2021).

Proof of Lemma B.1. Let TDense be the retrieval dynamics given by the dense modern Hopfield model (Ramsauer et al., 2021),
and ∥T (x)− ξµ∥ and ∥TDense(x)− ξµ∥ be the approximated efficient and dense modern Hopfield model, respectively.

By (Ramsauer et al., 2021, Lemma A.4), we have

∥TDense(x)− ξµ∥

≤ 2m(M − 1) exp

{
−β

(
⟨ξµ,x⟩ − Max

ν∈[M ]
⟨ξµ, ξν⟩

)}
,

≤ 2m(M − 1) exp{−β (∆µ − 2mR)},

where R is radius of the sphere Sµ.
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By Theorem 3.2, the retrieval error ∥T (x)− ξµ∥ has an upper bound:

∥T (x)− ξµ∥ ≤ 2(M − 1) exp{−β (∆µ − 2mR+ δ)}m− δ

Therefore, for T to be a mapping T : Sµ → Sµ, we need

2(M − 1) exp{−β (∆µ − 2mR+ δ)}m− δ ≤ R

This deduces the well-separation condition for this almost linear time model

∆µ ≥
1

β
ln

(
2(M − 1)m

R− 2MBδA

)
+ 2mR.

This completes the proof.

Now we start the main proof of Theorem B.1.

Proof of Theorem B.1. We first observe that (B.1) has a slightly tighter lower bound compared to its original counterpart
(Ramsauer et al., 2021), we note that under the condition identified in Remark 3.1, the new well-separation condition
Lemma B.1 features a smaller denominator inside the logarithmic term. Following a similar approach to that in (Wu et al.,
2024b, Lemma 3.4), we complete the proof and obtain a slightly smaller, yet still exponential-in-d, memory capacity lower
bound. This is an expected consequence of an efficient-accuracy tradeoff.
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