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Abstract
To address the shortcomings of real-world
datasets, robust learning algorithms have been de-
signed to overcome arbitrary and indiscriminate
data corruption. However, practical processes of
gathering data may lead to patterns of data cor-
ruption that are localized to specific partitions of
the training dataset. Motivated by critical appli-
cations where the learned model is deployed to
make predictions about people from a rich collec-
tion of overlapping subpopulations, we initiate the
study of multigroup robust algorithms whose ro-
bustness guarantees for each subpopulation only
degrade with the amount of data corruption inside
that subpopulation. When the data corruption
is not distributed uniformly over subpopulations,
our algorithms provide more meaningful robust-
ness guarantees than standard guarantees that are
oblivious to how the data corruption and the af-
fected subpopulations are related. Our techniques
establish a new connection between multigroup
fairness and robustness.

1. Introduction
The gap between standard distributional assumptions and
practical dataset limitations has been well-studied in ma-
chine learning literature – from unintended distribution shift
to adversarially crafted data manipulations. Corresponding
notions of robustness have been developed to reflect the goal
of learning well in the presence of adversarially corrupted
data, as well as attacks demonstrating that small amounts of
corrupted data can seriously impact performance.

While attacks that target specific subgroups have been pro-
posed (Jagielski et al., 2021), they give the adversary the
power to change any point in the dataset to achieve its goal–
even the ability to modify seemingly unrelated points out-
side the subgroup of interest. While this is reasonable as a
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strong worst-case adversarial assumption, data corruption
issues are often far more localized in reality. In surveys,
response bias may compromise answers from certain sub-
populations (Meng, 2018; Bradley et al., 2021). As another
example, when amassing internet data for training large
models, certain sources can be less trustworthy or more
toxic than others (Dodge et al., 2021). Since limitations to
datasets may be isolated to certain groups, it is important
to develop a fine-grained notion of robustness that ensures
groups do not suffer undue harm due to corruption in unre-
lated data.

A fine-grained robustness notion We consider a new
data-aware notion of robustness that we term multigroup
robustness. At a high-level, a multigroup-robust learning
algorithm guarantees that the effects of dataset corruption on
every subpopulation-of-interest are bounded by the amount
of corruption to data within that subpopulation (Figure 1).

More formally, we consider a binary-label learning problem
where data from a domain X labeled with y ∈ {0, 1} is
inputted into a deterministic learning algorithm A : (X ×
{0, 1})∗ → [0, 1]X that outputs a predictor p ∈ [0, 1]X .
Given a set of subpopulations C ⊆ 2X , we say that A
is multigroup robust with respect to C if, given a dataset
S = {(x1, y1), ..., (xn, yn)} where the xis are each drawn
i.i.d. from some unknown distribution DX , given any other
potentially corrupted dataset S′ = {(x′

1, y
′
1), ..., (x

′
m, y′m)},

we can guarantee that the difference in the mean prediction
of every group C ∈ C is bounded by the amount of change
to C between S and S′, i.e.,

|EDX
[(A(S)(x)−A(S′)(x))1[x ∈ C]]| ≤ distC(S, S

′)

where distC(S, S
′) is a measure of the changes to the set

of points belonging to C between S and S′, which we will
formalize in Section 4.

Intuitively, this definition asks that when the points from a
group are unchanged or change very little in S′ (i.e., trans-
lating to a small distC(S, S′)), then the average prediction
outputted by A on that group should also not change by
much, thus preserving the group’s accuracy-in-expectation.
It is easy to construct algorithms that satisfy multigroup
robustness, but are not very useful as learning algorithms;
for example, the algorithm that always outputs the same
predictor for any dataset. Thus, we will concentrate on the
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Figure 1: Intuitive illustration of multigroup robustness: for every
group C, if points within the group are not modified, a multigroup
robust algorithm produces a predictor that achieves marginal mean
consistency with the clean data predictor (See Definition 4.1).

particular question of whether there exist efficient learning
algorithms that provide multigroup robustness as well as an
agnostic learning guarantee, i.e., that the predictor outputted
by A performs at least as well as the best predictor from
some benchmark set P ⊆ [0, 1]X .

Standard algorithms are not multigroup robust Classic
agnostic learning algorithms such as empirical risk mini-
mization over the benchmark class can fail to satisfy multi-
group robustness even for extremely simple families of sub-
populations. Consider as an example the benchmark class
containing the all ones or all zeros predictors, P = {p0, p1},
and a uniform distribution over X where half of the points
(x ∈ X0) are labeled with 0s, and half of the points
(x ∈ X1) are labelled with ones. Given a sample from
this half-and-half distribution, ERM will output the predic-
tor matching the majority label in the dataset. However,
because most datasets drawn will be close to half ones and
half zeros, this means that only a tiny number of corrupted
labels can drastically change the output from p0 to p1 or
vice versa, impacting the predictions of a huge number of
points despite not changing the overall accuracy by much.

In Section 7, we empirically demonstrate that several stan-
dard models for classification fail to preserve multigroup
robustness under simple label-flipping and data addition
attacks on the Adult Income Dataset.

Connections to multiaccuracy In light of these success-
ful attacks, new ideas are necessary to develop algorithms
that can match the performance guarantees of standard learn-
ing approaches while being multigroup robust.

When we only care about a small number of disjoint groups,
a naive solution that provides multigroup robustness could

be to simply train a separate model on each group’s data.
However, this approach becomes inefficient as we consider
a growing number of possibly overlapping groups. More-
over, the individually trained models may lose out on the
predictive power that could be gained from using the dataset
as a whole.

Instead, we turn to the notion of multiaccuracy, a learning
objective originating in the algorithmic fairness literature
that asks for a predictor to satisfy accuracy-in-expectation si-
multaneously on many groups (Hébert-Johnson et al., 2018;
Kim et al., 2019). In Section 5 we outline how multiaccu-
racy’s rigorous group-level guarantees can connect to our
goal of multigroup robustness. However, because standard
multiaccuracy algorithms assume access to i.i.d. data, we
encounter challenges to using them in our setting where
due to adversarial corruption, we cannot assume data is
i.i.d.. We demonstrate how to bypass these obstacles by
making appropriate modifications to standard multiaccuracy
algorithms, and present a set of sufficient conditions for
algorithms that provably achieve multigroup robustness. In
Section 5.3, we supplement our results with a lower bound
showing that multiaccuracy is a necessary property of any
non-trivial algorithm that satisfies multigroup robustness.

Achieving multigroup robustness With these sufficient
conditions in hand, in Section 6 we present an efficient
post-processing approach that can be used to augment any
existing learning algorithm to add both multigroup robust-
ness and multiaccuracy guarantees, while preserving the
performance guarantees of the original learning algorithm.

In Section 7, we supplement our theoretical results with
experiments on real-world census datasets demonstrating
that our post-processing approach can be added to exist-
ing learning algorithms to provide multigroup robustness
protections without a drop in accuracy.

1.1. Our Contributions

To summarize, we list our main contributions below:

• Define a new notion of data-aware robustness, multi-
group robustness, that ensures subgroups do not suffer
undue harm due to corruptions in unrelated data (Sec-
tion 4).

• Demonstrate general sufficient conditions for an algo-
rithm to be multigroup robust by drawing connections
to multiaccuracy (Section 5), and show that multiac-
curacy is necessary for non-trivial multigroup robust
algorithms (Section 5.3).

• Present an efficient post-processing algorithm that can
provide an arbitrary learning algorithm with multi-
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group robustness guarantees while preserving perfor-
mance (Section 6).

• Empirically validate that standard learning algorithms
are vulnerable to simple attacks on multigroup robust-
ness, and that our postprocessing method successfully
protects against these attacks while preserving accu-
racy (Section 7).

2. Related Work
Robust Machine Learning Our work considers two no-
tions of adversarial power similar to notions present in the
literature on robust machine learning literature: distribution
shift and datapoint corruption. Robustness to distribution
shift considers worst-case guarantees when training data is
drawn i.i.d. from a training distribution that does not match
the true distribution, but is guaranteed to be in some uncer-
tainty set around the true distribution, often a ball bounded
by some notion of distance (see e.g. Ben-Tal et al. (2009)).
Our notion of distance in the distribution shift setting is
most similar to that of Ben-David et al. (2010) in that it also
separates out the amount of covariate shift and label shift
between distributions. We do so at a group level rather than
at a population level, and consider label shift in terms of
change in the mean rather than L1 distance, which means
that their notion of distance is an upper bound to ours. Addi-
tionally, rather than bounding the size of the uncertainty set,
we present adaptive guarantees that scale with the amount
of distribution shift.

Moving beyond distribution shift, our strongest adversarial
model is one of direct data corruption, in which an adversary
can directly change points in a provided input dataset. This
setting is similar to that of Kearns & Li (1988) and Bshouty
et al. (2002), however the main difference is that most ex-
isting works limit the adversary’s power by either allowing
only a certain fraction of points to be corrupted, or allowing
each point to be independently corrupted with some prob-
ability. We instead do not limit the adversary’s power, but
allow our bounds to adapt to the level of corruption and
give better guarantees when the amount of corruption in
a group is small. We choose to do this because we care
about delivering heterogenous guarantees to a complex set
of possibly overlapping groups in a population based on
their level of corruption. Classic notions of constrained
power such as allowing the adversary to change at most a
certain fraction of datapoints are insufficient to distinguish
between the case where corruptions are concentrated within
a particular group, or more uniformly distributed throughout
a population.

Algorithmic Stability Our work also has connections to
the area of algorithmic stability, in that it provides guar-
antees about the outputs of algorithms under small pertur-

bations of the inputs (Bousquet & Elisseeff, 2000; Bassily
et al., 2016). We choose to present our work as a robustness
notion because it focuses on the goal of preserving group
mean accuracy in the presence of corruption, and considers
significant amounts of data corruption rather than the leave-
one-out analysis usually employed in algorithmic stability
works which considers only very small data perturbations
(see e.g. (Bousquet & Elisseeff, 2000)).

Fairness and Data Poisoning/Robustness Prior works
have demonstrated that the fairness properties of machine
learning models can be degraded by modifying small sub-
sets of the training data (Solans et al., 2020; Van et al.,
2022; Chai & Wang, 2023). Jagielski et al. (2021) show that
subpopulations can be directly targeted in data poisoning
attacks. Algorithms for finding fair predictors that are ro-
bust to data poisoning to any part of the dataset have also
been proposed (Jin & Lai, 2023; Konstantinov & Lampert,
2022; Celis et al., 2021). These papers consider the task
of learning a binary classifier in the presence of corrupted
data, and they would like the classifier to be robust in that it
satisfies certain fairness metrics such as equalized odds or
demographic parity, whereas we measure robustness with
respect to subgroup accuracy-in-expectation. These works
are similar in that they consider robustness with respect to a
set of groups, but differ in that they do not consider the loca-
tion of corruption and how it relates to the affected groups.
Moreover, they consider group fairness metrics that only
consider disjoint groups whereas our multigroup approach
can handle complex sets of overlapping groups. “Subgroup
robustness” in recent literature refers to the performance of
the worst (Martinez et al., 2021; Gardner et al., 2022). In
distribution shift literature, “subgroup robustness” is used
interchangeably with “worst group robustness” (Sagawa
et al., 2019). In contrast, our definitions focus on how mod-
ifications to some groups in the training data can impact
other unrelated groups.

Multiaccuracy and Multicalibration Multiaccuracy and
multicalibration are multigroup fairness notions that require
a predictor to provide meaningful statistical guarantees (e.g.,
accuracy in expectation, calibration) on a large family of
possibly overlapping subgroups of a population (Kleinberg
et al., 2017; Hébert-Johnson et al., 2018; Kearns et al., 2018;
Kim et al., 2019). Kim et al. (2022) show that multicalibra-
tion can ensure a predictor’s robustness against distribution
shift, achieving universal adaptability. They focus on co-
variate shift while assuming the conditional distribution of
y given x remains the same and assume that the covariate
shift can be represented by a propensity score function from
a given family. Our work considers general forms of data
corruption, both in covariate x and label y, and the corrupted
data need not be i.i.d. from any distribution.
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Robust Statistics Algorithms for estimating a variety of
statistical quantities on corrupted data have been studied
extensively in the literature, where the quantities to esti-
mate include mean (Diakonikolas et al., 2019; Lai et al.,
2016), covariance matrix (Diakonikolas et al., 2019; 2018),
principal components (Candès et al., 2011), and beyond.
In the typical setup of robust statistics, the corrupted data
is formed by modifying or hiding a significant fraction of
an otherwise i.i.d. dataset. The goal is to ensure that the
estimation error is small relative to the fraction of corrupted
data.

3. Preliminaries and Notation
A deterministic learning algorithm is defined as any algo-
rithm A : (X × {0, 1})∗ → P that takes a sample of data
points (x1, y1), ..., (xn, yn) ∈ X × {0, 1} for any n ∈ Z+

as input and outputs a predictor p ∈ P where X is a finite
domain of points.

Given two datasets S = {(x1, y1), ..., (xn, yn)} and S′ =
{(x′

1, y
′
1), ..., (x

′
m, y′m)}, we use the notation S∆XS′ to

denote a set containing the symmetric difference in terms of
the multisets {x1, ..., xn} and {x′

1, ..., x
′
m}.

More formally, because these datasets could have duplicates
of certain x-values, we cannot use a standard set definition
of symmetric difference. This can be thought of as reinter-
pretting each {x1, ..., xn} as a map µ from X to Z≥0 where
µ(x) is equal to the number of times x appears in the sam-
ple, µ(x) = |{i ∈ {1, . . . , n} : xi = x}|. Having similarly
defined such a µ′ for {x′

1, ..., x
′
m}, the multiset symmetric

difference of these two collections is defined as the map µ∆

such that for all x ∈ X , µ∆(x) = |µ(x)− µ′(x)|.

Given two distributionsD,D′ over a discrete domain X and
a subpopulation C ⊆ X , we denote the statistical distance
between D and D′ restricted to C as

∆C(D,D′) :=∑
x∈C

∣∣∣ Pr
X∼D

[X = x]− Pr
X∼D′

[X = x]
∣∣∣ .

4. Multigroup Robustness
In this section, we define our notion of multigroup ro-
bustness. We consider a setting where a learner is
provided with a sample of binary-labelled data points
(x1, y1), ..., (xn, yn) ∈ X × {0, 1}. We assume that the
points could have been adversarially corrupted.

We consider two different levels of adversarial power. The
strongest adversary we consider can make label-change
adjustments to this dataset by replacing a point (x, y) with
a new (x, y′), as well as add or delete new points to the
dataset. Our main definition is designed to protect against

these strong data-dependent adversaries, and we state it
formally below:

Definition 4.1 (Binary-label Multigroup Robustness). Let
C be a subpopulation class consisting of subsets C ⊆ X .
For any n ∈ Z+, ε > 0, δ ∈ [0, 1], we say that a deter-
ministic learning algorithm A : (X × {0, 1})∗ → P is
(C, n, ε, δ)-multigroup robust if for every distribution DX

over X , the following holds with probability at least 1− δ
over Xn = (x1, ..., xn) drawn i.i.d. from DX : for any
(y1, ..., yn) ∈ {0, 1}n and (x′

1, y
′
1), ..., (x

′
m, y′m) ∈ (X ×

{0, 1})m, let S and S′ denote the two samples {(xi, yi)}ni=1

and {(x′
i, y

′
i)}mi=1, respectively.

Defining p := A(S) and p′ := A(S′), we have

|Ex∼DX
[(p(x)− p′(x))1(x ∈ C)]|

≤ 1

n

∣∣∣∣∣∣
n∑

i=1

yi1[xi ∈ C]−
m∑
j=1

y′j1[xj ∈ C]

∣∣∣∣∣∣
+

1

n
|(S∆XS′) ∩ C|+ ε

(1)

for every C ∈ C.

We highlight that our definition makes no distributional
assumptions about the ground-truth y-values in the original
dataset S, meaning that multigroup robustness implies a
strong distribution-free robustness property that holds even
when the original y-values were not i.i.d..

Here, the abstract distC(S, S′) used in the introduction is
formalized to capture label flipping performed by the ad-
versary (the first term) as well as addition and deletion of
points (the second symmetric difference term). This means
that this definition can also give a definition of robustness
in settings where the adversary can only flip labels.

We also consider a weaker adversary that can only change
the distribution the data is drawn from, and the particular
training set is still drawn i.i.d. from that distribution:

Definition 4.2 (Binary-label Multigroup Robustness to Dis-
tribution Shift). Let C be a subpopulation class consisting
of subsets C ⊆ X . For any n ∈ Z+, ε > 0, δ ∈ [0, 1],
we say that a deterministic learning algorithm A : (X ×
{0, 1})∗ → P is (C, n, ε, δ)-multigroup robust to distribu-
tion shift if for any two distributions D,D′ over X ×{0, 1},
the following holds with probability at least 1 − δ over
S = ((x1, y1), ..., (xn, yn)), S′ = ((x′

1, y
′
1), ..., (x

′
n, y

′
n))

drawn i.i.d. from D and D′:

Defining p := A(S) and p′ := A(S′), we have

|Ex∼DX
[(p(x)− p′(x))1(x ∈ C)]|

≤
∣∣E(x,y)∼D[y1[x ∈ C]]− E(x′,y′)∼D′ [y′1[x′ ∈ C]]

∣∣
+∆C(DX ,D′

X) + ε
(2)
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for every C ∈ C.

Note that here, the distC(S, S
′) bound has been replaced

with a measure of the distance between the corrupted and
uncorrupted distribution, however the first term still captures
the amount of label shift while the second term speaks to
the covariate shift in the corrupted distribution.

5. Multigroup Robustness from Multiaccuracy
In this section, we give principled conditions for algorithms
that provably achieve multigroup robustness. Our proofs
are largely inspired by previous algorithms for multiaccu-
racy. We identify several key challenges in using those
algorithms in our setting with corrupted data, and address
these challenges by making appropriate modifications.

We first introduce the definition of multiaccuracy (Hébert-
Johnson et al., 2018), a notion of algorithmic fairness that
requires a predictor be accurate in expectation for every
group in some collection of subgroups C ⊆ 2X . Formally,
we define multiaccuracy as follows:

Definition 5.1 (Multiaccuracy (Hébert-Johnson et al.,
2018)). Let C be a subpopulation class consisting of subsets
C ⊆ X and D some target distribution over X × {0, 1}.
For ε > 0, we say a predictor p : X → [0, 1] is (C, ε)-
multiaccurate (MA) on D if for every C ∈ C:∣∣E(x,y)∼D [(y − p(x))1[x ∈ C]]

∣∣ ≤ ε. (3)

Throughout the paper, it will be useful to talk about algo-
rithms that provide multiaccuracy guarantees. We formally
define such an algorithm as follows:

Definition 5.2 (Multiaccurate Learning Algorithm). Let
C ⊆ 2X be a subpopulation class. Given n ∈ Z+, ε > 0,
δ ∈ [0, 1], we say that a deterministic learning algorithm
A : (X × {0, 1})∗ → [0, 1]X is (C, n, ε, δ)-multiaccurate
if for any distribution D over X × {0, 1}, given n i.i.d.
data points S = (x1, y1), ..., (xn, yn) from D, the predictor
A(S) satisfies (C, ε)-MA on D with probability at least
1− δ.

5.1. Standard Multiaccuracy Gives Multigroup
Robustness under Distribution Shift

We begin by considering a setting where an adversary can
only corrupt the data distribution rather than the sampled
datapoints themselves, and show that in this setting, learners
that output multiaccurate predictors with respect to a collec-
tion C are also multigroup robust to distribution shift with
respect to C.

For ease of notation, for a given distribution D, predictor
p, and subpopulation C ⊆ X we denote MA-errD(p, C) :=
E(x,y)∼D[(y − p(x))1[x ∈ C]].

Lemma 5.3 (Robustness from MA). Given two distribu-
tions D,D′ over X × {0, 1} and a collection of subsets
C ⊆ 2X , let p and p′ be (C, ε)-MA predictors with respect
to D and D′, respectively. Then it holds that for all C ∈ C,

|ED[(p(x)− p′(x))1[x ∈ C]]|
≤ |MA-errD(p

′, C)−MA-errD′(p′, C)|+ 2ε.
(4)

Intuitively, the left-hand-side of equation 4 already bears
resemblance to a multigroup robustness statement with re-
spect to p and p′. By reinterpretting the upper bound, we
can show that multiaccurate learners provide multigroup
robustness to distribution shift:

Lemma 5.4. Let C ⊆ 2X be a collection of subpopulations
and let A : (X × {0, 1})n → [0, 1]X be a deterministic
learning algorithm satisfying (C, n, ϵ, δ)-MA. Then, A is
also (C, n, 2ε, 2δ)-multigroup robust to distribution shift.

5.2. Leveraging Uniform Convergence for Stronger
Robustness

In total, we have shown so far that learning algorithms
for multiaccuracy such as those of (Hébert-Johnson et al.,
2018; Kim et al., 2019) additionally give out-of-the-box
multigroup robustness guarantees against weak adversaries
that can corrupt the data distribution. This result relies on
the key assumption that while the corrupted distribution may
be arbitrarily warped compared to the original distribution,
we can still assume that the training data is drawn i.i.d. from
the corrupted distribution. This is a key property that allows
us to apply multiaccuracy algorithms that assume access to
an i.i.d. datasource.

Moving beyond distributional shifts, we are also interested
in stronger adversaries that can directly corrupt a data sam-
ple either through label change or addition/deletion of points.
In the presence of these stronger adversaries, we can no
longer assume access to an “clean” i.i.d. datasource. In
the absence of i.i.d. data, we can still work with the em-
pirical distribution: the uniform distribution over the data
points. However, because multigroup robustness is a state-
ment about the predictor similarity over the true marginal
distribution DX , it’s not clear whether relying on the cor-
rupted empirical distribution alone can give us these distri-
butional guarantees necessary for robustness.

Despite this obstacle, our main result shows that by leverag-
ing an additional uniform-convergence assumption, we can
in fact achieve multigroup robustness against strong dataset-
dependent adversaries for any algorithm that guarantees
multiaccuracy on the empirical distribution. Our analysis
for handling adversarially corrupted data differs from typ-
ical analyses where the uniform convergence assumption
is applied to a learning algorithm with i.i.d. input data (see
Remark 5.9).

5



Multigroup Robustness

We begin by showing in Lemma 5.6 that guaranteeing em-
pirical multiaccuracy already yields a guarantee of predictor-
closeness when measured over the empirical distribution of
the uncorrupted dataset. We formally define an empirically
robust learning algorithm as follows:

Definition 5.5 (Empirically Multiaccurate Learning Algo-
rithm). Let C be a subpopulation class consisting of sub-
sets C ⊆ X . Given ε > 0, we say that a deterministic
learning algorithm A : (X × {0, 1})∗ → [0, 1]X is (C, ε)-
empirically-multiaccurate if when given as input data points
S = (x1, y1), ..., (xn, yn) from X×{0, 1} for any n ∈ Z+,
the predictor p := A(S) satisfies∣∣∣∣∣ 1n

n∑
i=1

(yi − p(xi))1[xi ∈ C]

∣∣∣∣∣ ≤ ε

for all C ∈ C.

Lemma 5.6 (Pointwise Robustness from Empirical MA).
Given two datasets S = {(xi, yi)}ni=1, S′ = {(x′

j , y
′
j)}mj=1

from X × {0, 1} and a collection of subsets C, let p and
p′ be (C, ε)-MA and (C, ε′)-MA predictors with respect to
Uni(S) and Uni(S′), respectively. Then it holds that for all
C ∈ C,∣∣E(x,y)∼Uni(S)[(p

′(x)− p(x))1[x ∈ C]]
∣∣

≤ 1

n

∣∣∣∣∣∣
∑

(x,y)∈S

y1[x ∈ C]−
∑

(x′,y′)∈S′

y′1[x′ ∈ C]

∣∣∣∣∣∣
+

1

n
|(S∆XS′) ∩ C|+ ε+

m

n
ε′.

(5)

While the right side of the statement of Lemma 5 matches
the definition of multigroup robustness, the left side
is still an expectation over the empirical distribution
Uni(S) rather than the uncorrupted target distribution
DX . This means that to show that multigroup robust-
ness holds, it suffices to show that the empirical quan-
tity

∣∣E(x,y)∼Uni(S)[(p
′(x)− p(x))1[x ∈ C]]

∣∣ is close to its
population limit, |Ex∼Dx

[(p′(x)− p(x))1[x ∈ C]]|, for all
C ∈ C.

Our main result uses this reasoning to show that a learning
algorithm that outputs a predictor multiaccurate with respect
to the empirical distribution satisfies multigroup robustness
whenever we can guarantee uniform convergence over all
possible outputted predictors and subpopulations (See Def-
inition 5.7 for a formal definition). We additionally show
that under this assumption we can guarantee the outputted
predictor is multiaccurate with respect to the target distribu-
tion when the learning algorithm is given uncorrupted i.i.d.
data (Theorem 5.8).

Definition 5.7. Let C ⊆ 2X be a class of subpopulations,
and let P ⊆ [0, 1]X be a family of predictors. We say
that P satisfies (C, n, ε, δ)-uniform convergence if for any

distribution D over X ×{0, 1}, we are guaranteed that with
probability at least 1− δ over the randomness of datapoints
(x1, y1), ..., (xn, yn) drawn i.i.d. fromD, we are guaranteed
that the following inequalities hold for all p ∈ P and C ∈ C:∣∣∣∣∣ 1n

n∑
i=1

p(xi)1(xi ∈ C)− ED[p(x)1(x ∈ C)]

∣∣∣∣∣ ≤ ε, (6)∣∣∣∣∣ 1n
n∑

i=1

yi1(xi ∈ C)− ED[y1(x ∈ C)]

∣∣∣∣∣ ≤ ε. (7)

Theorem 5.8. Let A : (X × {0, 1})∗ → P be a deter-
ministic learning algorithm that outputs predictors from the
family P ⊆ [0, 1]X . For a family of subpopulations C ⊆ 2X ,
suppose that A satisfies empirical (C, ε1)-multiaccuracy
and additionally suppose that P satisfies (C, n, ε2, δ2)-
uniform convergence. Then, A is (C, n,

(
1 + m

n

)
ε1 +

2ε2, δ2)-multigroup robust as well as (C, n, ε1 + 2ε2, δ2)-
multiaccurate.

Remark 5.9 (Strong use of uniform convergence). Uniform
convergence is a standard technique for establishing the gen-
eralization of a learning algorithm and is typically applied
to algorithms given uncorrupted, i.i.d. training data. The im-
portant difference in our approach is that we apply uniform
convergence to algorithms whose input data is adversarially
corrupted and cannot be treated as i.i.d. from any distribu-
tion. In our setting, i.i.d. data is first given to an unrestricted
adversary to produce corrupted data, which is then given to
the learning algorithm whose output model is restricted to a
class. Since we do not restrict the behavior of the adversary,
our analysis makes a stronger use of uniform convergence
than typical analyses.

5.3. Lower Bounds

We now explore whether multiaccuracy is a necessary con-
dition of a multigroup robust algorithm under a weak non-
triviality assumption (see details in Appendix C).

Theorem 5.10 (Lower Bound). Let C be a class of sub-
populations, P ⊆ [0, 1]X a family of predictors containing
the all ones predictor p(x) = 1 for all x ∈ X , and A :
(X×{0, 1}∗)→ P a deterministic learning algorithm. IfA
is (C, n, ε1, δ1)-multigroup robust and (n, ε2, δ2)-accurate-
in-expectation, and P satisfies (C, n, ϵ3, δ3)-uniform con-
vergence, then A is a (C, n, ϵ1 + ϵ2 + 2ϵ3, 2δ1 + 2δ2 + δ3)-
multiaccurate learning algorithm.

6. Implementing Multigroup Robustness
So far, we have demonstrated sufficient conditions for a
learning algorithm to satisfy multigroup robustness (empiri-
cal multiaccuracy and uniform convergence). We now show
that multigroup robustness can be achieved efficiently in
parallel with standard accuracy objectives. In particular,
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we present a post-processing procedure that can convert
any black-box learning algorithm into a multigroup robust
learning algorithm that minimizes ℓ2 error.

6.1. Post-processing Approach

We consider a setting where we are given access to an arbi-
trary deterministic learning algorithmA : (X×{0, 1})∗ →
[0, 1]X . We will demonstrate how to post-process this algo-
rithm to produce a new algorithm PPA : (X × {0, 1})∗ →
[0, 1]X (Algorithm 1) that provides comparable performance
to that of A in terms of ℓ2 error while also satisfying multi-
group robustness. We present our post-processing approach
in Algorithm 1.

Algorithm 1 Multiaccuracy Boost on Empirical Distribution

Parameters: n ∈ Z≥0, ε ∈ R≥0, C ⊆ {0, 1}X
Input: data points (x1, y1), ..., (xn, yn) ∈ X × {0, 1},
learning algorithm A : {0, 1}n → [0, 1]X

Output: predictor p : X → [0, 1]
Step 1: Training
initialize p← A((x1, y1), ..., (xn, yn))
Step 2: Post-processing
while ∃C ∈ C s.t. | 1n

∑n
i=1(p(xi)− yi)1(xi ∈ C)| > ε

do
vC := sgn (

∑n
i=1(p(xi)− yi)1(xi ∈ C))

for all x ∈ C do
p(x)← p(x)− vCϵ
p(x)← max{0,min{p(x), 1}}

end for
end while
Return: p

Algorithm 1 uses an iterative auditing approach to bring the
predictor closer to being multiaccurate with each iteration
of the While loop in Step 2. This is similar to standard algo-
rithms for multiaccuracy presented in the literature (Hébert-
Johnson et al., 2018; Kim et al., 2019), but is differentiated
in that it audits using the entire dataset at each iteration,
rather than sampling fresh data for each update step. This
alteration is necessary in order to guarantee we achieve
empirical multiaccuracy.

It follows immediately from the definition of Algorithm 1
that it outputs an empirically multiaccurate predictor (See
Lemma B.3). We can also show that the algorithm is guar-
anteed to terminate in a bounded number of steps, and thus
the class of predictors it can output is also bounded, giving
us a uniform convergence result that we state formally and
prove in Lemma B.6.

Lemmas B.3 and B.6 give us the two sufficient conditions
for multigroup robustness described in Section 4 (empiri-
cal multiaccuracy and uniform convergence, respectively).
Thus, we can show that PPA satisfies multigroup-robustness

and multiaccuracy:

Theorem 6.1. Let A : (X × {0, 1})∗ → P be a deter-
ministic learning algorithm that is guaranteed to output
from a finite set of predictors P ⊆ [0, 1]X . Let PPA be
the algorithm defined by Algorithm 1 on input A with input
parameter ϵ > 0. Then, for any δ ∈ [0, 1], PPA satisfies
(C, n, (3 + m

n )ϵ, δ)-multigroup robustness and (C, n, 3ϵ, δ)-

multiaccuracy for any n ≥ log(|P|(2|C|)1/ϵ
2+1/δ)

2ϵ2 .

Proof. The theorem follows immediately by combining
Theorem 5.8 with Lemmas B.3 and B.6.

6.2. Loss Minimization Guarantee

Lastly, we show that the post-processed predictor is not
much worse than the initial predictor outputted by the origi-
nal learning algorithm. Intuitively, this result follows from
Lemma B.4, which tells us that each iteration of the post-
processing step decreases the predictor’s empirical ℓ2-loss
by at least ϵ2. With this fact in hand, we can appeal to
uniform convergence to show that the loss decrease also
generalizes to the entire distribution. The following corol-
lary is a general statement that holds for any run of the
algorithm and follows from a stronger version of this result
included in the appendix (Theorem B.7).

Corollary 6.2 (Corollary to Theorem B.7). Let A : (X ×
{0, 1}∗) → P be a deterministic learning algorithm that
is guaranteed to output from a finite set of predictors P ⊆
[0, 1]X . Let PPA be the algorithm defined by Algorithm 1
on input A with parameter ϵ > 0. Given a sample S =
{(x1, y1), ..., (xn, yn)} drawn i.i.d. from some distribution
D over X × {0, 1}, let p := A(S) be the predictor output
by A on S, and let pPP := PPA be the predictor output
after post-processing. Then, for any δ ∈ [0, 1] and n ≥
log(|P|(2|C|)1/ϵ

2
)

2ϵ2 , we are guaranteed that with probability at
least 1− δ

ED[(y − pPP(x))
2] ≤ ED[(y − p(x))2] + 2ϵ.

6.3. Additional Extensions and Remarks

A data-efficient alternative algorithm. Previous algo-
rithms for multicalibration require fresh data in each “boost-
ing” iteration or apply adaptive data analysis techniques
to ensure generalization (Hébert-Johnson et al., 2018; Kim
et al., 2019). In contrast, Theorem 5.8 shows that the iter-
ations can instead simply reuse the same data as in Algo-
rithm 1, as long as the final model belongs to a class with
bounded complexity. This property is often guaranteed for
multicalibration algorithms (see e.g., Lemma B.6).1 At a

1While our results are stated for multiaccuracy, they can be
applied to multicalibration with appropriate modifications.
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Adult Income Dataset: Effect of Label Shift in White Male Group on Other Subgroups

subgroup White Female Black or AA Male All Female model Clf Clf-PP Sanitized

Figure 2: The effect of label change (0 to 1) in White male group on other subpopulations. For MA-err (closer to 0 is better), the base
models (CLF) are susceptible to noise other groups, Algorithm 1 produces multigroup robust predictors (CLF-PP).

0 2 4 6 8
Noise Rate

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

Accuracy 
 Logistic Regression

0 2 4 6 8
Noise Rate

0.005

0.000

0.005

0.010

0.015

0.020

M
A

-E
rr

Multi-Accuracy Error 
 Logistic Regression

0 2 4 6 8
Noise Rate

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

Accuracy 
 MLP

0 2 4 6 8
Noise Rate

0.000

0.005

0.010

0.015

M
A

-E
rr

Multi-Accuracy Error 
 MLP

Adult Income Dataset: Data Addition of White Male Group Targeting White Female Group
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Figure 3: The effect of targeting the White female subgroup when only data addition from the White male subgroup is allowed.
Multigroup robust predictors (CLF-PP) maintain a consistently low MA-err and high accuracy as more corrupted data is injected.

high level, previous multicalibration algorithms are analo-
gous to the original boosting algorithm (Schapire, 1990),
whereas ours are analogous to AdaBoost algorithm (Freund
& Schapire, 1997). Using this alternative approach is crucial
for our robustness guarantees.

Omniprediction. Recent work has explored the concept
of an omnipredictor–a predictor whose predictions can be
post-processed to select near-optimal actions for a large
variety of loss functions, rather than needing to train the
predictor to optimize for a specific loss function (Gopalan
et al., 2022; 2023; Hu et al., 2023; Garg et al., 2024). It is
known that multicalibration (a strengthening of multiaccu-
racy) is a sufficient condition for omniprediction. We note
that our algorithm can be extended to the setting of mul-
ticalibration with appropriate modifications, which would
provide a multigroup robust omniprediction algorithm that
could provide accuracy guarantees beyond ℓ2 loss. However,
we note that while such an algorithm would be multigroup
robust with respect to the outputted predictor, it is not clear
if it would be multigroup robust with respect to the post-
processed optimal actions. We leave this as a direction for
future work.

Postprocessing on Fresh Data. While we envision using
our post-processing step as part of an end-to-end learn-

ing pipeline and thus use the original data during post-
processing, in certain settings, the original learning al-
gorithm’s training data may be unavailable and the post-
processing step might need to use fresh data. In this case, we
would continue to preserve accuracy guarantees, but could
only guarantee multigroup robustness against strong adver-
saries with respect to the dataset used for post-processing.
In the weaker distribution shift setting, fresh data for post-
processing is enough to ensure overall multigroup robust-
ness assuming that the distribution of the post-processing
set is the same as that of the training data.

7. Experiments
Models and Datasets Due to the multigroup focus of
our work, we examine several standard fairness datasets
including Folktables-Income, Employment, Public Cover-
age (Ding et al., 2021), Bank (Moro & Cortez, 2012), and
Law School (Sander, 2004) 2. For the Folktables-Income
task, we seek to predict whether the income of individuals
was above $50k and we examine subgroups defined by race
and sex. As an excerpt of our full results, we compare ro-

2See Section D.1 for full experiments for all datasets, different
models classes, detailed data, and algorithm descriptions. Code
to replicate experiments can be found at: https://github.
com/heyyjudes/multigroup-robust
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bustness to different attacks in three settings for two models:
(1) CLF: Base classifier model: either logistic regression
(LR) or a two-layer neural network (MLP), and (2) CLF-PP:
Base classifier with post-processing using Algorithm 1, and
(3) SANITATION: Label sanitation for input data points for
each base classifier (Feng et al., 2014). We additionally
investigate a robust linear regression baseline (Paudice et al.,
2019) and find that the Multiacuracy performance was an
order of magnitude worse than our models3.

We report subgroup C accuracy and multi-accuracy error
for each model at different noise rates:

• AccD(p, C): 1
|C|

∑
(xi,yi)∈C 1[yi = 1[p(xi) > γ]]

• MA-errD(p, C): 1
n

∑n
i=1(p(xi)− yi)1(xi ∈ C)

We seek to measure these quantities since the multi-accuracy
error is the supremum of this MA-errD(p, C) across all iden-
tifiable subgroups C ∈ C and AccD(p, C) gives an average
classification metric where the γ threshold is optimized on
the entire held-out validation set.

Label-Change We first consider robustness to label
change when the set of training examples is unchanged.
The noise rate represents the proportion of data points in
the modified subgroup that has been shifted from 0 to 14.
Figure 2 shows the effect of randomly shifting labels in the
White male group on three other groups that are unchanged:
White female, Black or African American Male and Female
subgroups. For Logistic Regression, the base classifier CLF,
results in increased bias as the noise rate increases while the
CLF-PP predictor retains a low multi-accuracy error while
maintaining similar accuracy to the original model. A simi-
lar phenomenon is observed in the neural network (MLP)
where CLF-PP remains multigroup robust. Label saniti-
zation is more robust than the base models at small noise
levels but is worse at larger noise levels; this is expected
since the sanitation procedure uses neighboring labels.

Addition/Deletion We also demonstrate the robustness of
Algorithm 1 through to additional data points designed to
attack a specific target group. We employ a similar strategy
as prior work designing subpopulation attacks (Jagielski
et al., 2021) with the additional constraint that only data
points outside of the target group can be used to create the
poisoning dataset. To find data points to add that would
affect the target group, we first cluster data points in a held-
out set (not used for training or testing) using K-means.
For each cluster where the target subgroup appears, we
shift the labels of the of points we are allowed to modify

3We discuss detailed results in Section D.1
4Full algorithms can be found in Section D.2 for label change

and D.3 for Addition/Deletion

and add them to the training data. The amount of noise
in this attack is scaled by how many times the identified
data points are replicated before being added to the poi-
soned dataset. In Figure 3, we see that even at low levels
of noise (i.e., poisoned points are replicated once or twice),
the Logistic Regression and Neural Network (MLP) clas-
sifiers exhibit worsened multi-accuracy error while their
post-processed counterparts (CLF-PP) exhibit consistently
low MA-err without lower accuracy. Similar, to the label
change setting, label sanitation helps in the small noise rate
regime.

8. Discussion and Future Work
Motivated by practical scenarios where subgroups in
datasets may be corrupted, we present multigroup robust-
ness and provide an algorithm that gives meaningful ro-
bustness guarantees. Moreover, we empirically show that
while standard models allow unrelated groups to suffer un-
der data poisoning attacks, our algorithm applied to post-
processing these predictors using the same poisoned data
achieves multigroup robustness. While our analysis was
limited to the binary setting, notions of multigroup robust-
ness in the multi-class setting are an exciting direction for
future work.
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A. Detailed Related Work
Fairness and influential Datapoints The fairness outcomes of machine learning models can be attributed to training data
(Roh et al., 2021). For example, demographic parity and equality of opportunity can depend on very few instances in the
dataset according to influence scores. As a result, simply removing highly influential points can yield a dataset that results in
models that are Pareto optimal for error and fairness metrics (Sattigeri et al., 2022). More generally beyond just fairness
metrics, Ilyas et al. (2022) present a framework for prediction model prediction based on different subsets of the training
data.

Fairness and Data Poisoning Prior works have demonstrated that the fairness properties of machine learning models
can be degraded by modifying small subsets of the training data (Solans et al., 2020; Van et al., 2022; Chai & Wang,
2023). Furthermore, Jagielski et al. (2021) shows empirically that subpopulations can be directly targeted in data poisoning
attacks while minimizing the impact on non-target subpopulations. Algorithms for finding fair predictors that are robust to
data poisoning to any part of the dataset have also been proposed for regression (Jin & Lai, 2023). The term “subgroup
robustness” has also appeared in recent literature to mean the performance of the worst, often intersectional group (Martinez
et al., 2021; Gardner et al., 2022). In the context of distribution shift, “subgroup robustness” is used interchangeably with
“worst group robustness” (Sagawa et al., 2019). In contrast, our definitions focus on characterizing how modifications to
training data, due to adversaries or sampling biases, impact different subgroups.

Multiaccuracy and Multicalibration Multiaccuracy and multicalibration are multigroup fairness notions introduced
by Hébert-Johnson et al. (2018) (see also Kearns et al., 2018; Kleinberg et al., 2017). These notions require a predictor
to provide meaningful statistical guarantees (e.g., accuracy in expectation, calibration) on a large family of possibly
overlapping subgroups of a population. Kim et al. (2019) apply post-processing to neural network models to achieve
multiaccuracy. Recently, Błasiok et al. (2023) show that minimizing a proper loss over neural networks of a certain size
yields multicalibration w.r.t. all subgroups identifiable by neural nets of a smaller size.

Kim et al. (2022) show that multicalibration can ensure a predictor’s robustness against distribution shift, achieving universal
adaptability. They focus on covariate shift, where the marginal distribution of x may change between training and testing,
but the conditional distribution of y given x remains the same. Their results assume that the covariate shift can be represented
by a propensity score function from a given class. Our work considers general forms of data corruption, both in covariate x
and label y, and the corrupted data need not be i.i.d. from any distribution.

B. Missing Proofs
B.1. Section 5

Proof of Lemma 5.3. The proof follows by invoking the definition of multiaccuracy. Consider any C ∈ C. Because p and p′

are both ε-MA with respect to D and D′, respectively, we are guaranteed that

|MA-errD(p, C)−MA-errD′(p′, C)| ≤ 2ε (8)

Expanding out the definition of MA-err gives us

MA-errD(p, C)−MA-errD′(p′, C) (9)
= MA-errD(p, C)−MA-errD′(p′, C) (10)
+ E(x,y)∼D[p

′(x)1[x ∈ C]] (11)
− E(x,y)∼D[p

′(x)1[x ∈ C]] (12)
= E(x,y)∼D[(p

′(x)− p(x))1[x ∈ C]] (13)
+MA-errD(p

′, C)−MA-errD′(p′, C) (14)

And thus we are guaranteed that the absolute value of the equation spanning lines 13 and 14 is at most 2ε. By moving the
terms in line 14 to the right-hand-side, we get the lemma’s statement:

|ED[(p(x)− p′(x))1[x ∈ C]]| (15)
≤ |MA-errD(p

′, C)−MA-errD′(p′, C)|+ 2ε. (16)

12
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This completes the proof.

Proof of Lemma 5.4. For an arbitrary predictor p′ and C ∈ C, we expand the quantity in the upper bound of Lemma 4:

MA-errD(p
′, C)−MA-errD′(p′, C)

= ED[(y − p′(x))1[x ∈ C]]− ED′ [(y − p′(x))1[x ∈ C]]

= ED[y1[x ∈ C]]− ED′ [y1[x ∈ C]]

+ ED′
X
[p′(x)1[x ∈ C]]− EDX

[p′(x)1[x ∈ C]]

Where we note that we can upper bound the quantity on the last line by

ED′
X
[p′(x)1[x ∈ C]]− EDX

[p′(x)1[x ∈ C]]

=
∑
x∈C

(
Pr

X∼D′
X

[X = x]− Pr
X∼DX

[X = x]

)
p′(x)

≤
∑
x∈C

| Pr
X∼D′

X

[X = x]− Pr
X∼DX

[X = x]|

= ∆C(DX ,D′
X).

Therefore,

|MA-errD(p
′, C)−MA-errD′(p′, C)|

≤ |ED[y1[x ∈ C]]− ED′ [y1[x ∈ C]]|+∆C(DX ,D′
X)

Thus, whenever p and p′ are both ε-MA, we can apply Lemma 5.3 to conclude that

|ED[(p(x)− p′(x))1[x ∈ C]]|
≤ |ED[y1[x ∈ C]]− ED′ [y1[x ∈ C]]|
+∆C(DX ,D′

X) + 2ε.

(17)

It remains to show that this happens with probability at least 1− 2δ over the randomness of the samples from D and D′.
This follows from observing that the probability that A fails to output a multiaccurate predictor is at most δ, and so the
probability A outputs a p or p′ that is not multiaccurate is at most 2δ by a union bound. We conclude that equation 17 holds
with probability at least 1− 2δ over the random samples from D and D′, completing the proof.

Proof of Lemma 5.6. For ease of notation, we denote E(x,y)∼Uni(S) and E(x,y)∼Uni(S′) by ES and ES′ respectively.

Consider any C ∈ C. We rewrite the LHS of equation 5 as

|ES [(p
′(x)− p(x))1[x ∈ C]]|

= |ES [(y − p(x))1[x ∈ C]]|+ |ES [(p
′(x)− y)1[x ∈ C]]|

≤ |ES [(p
′(x)− y)1[x ∈ C]]|+ ε

where the last line invokes the assumption that p is (C, ε)-MA with respect to Uni(S). Moreover, we have

|ES [(p
′(x)− y)1[x ∈ C]]|+ ε

≤
∣∣∣ES [(p

′(x)− y)1[x ∈ C]]− m

n
ES′ [(p′(x)− y)1[x ∈ C]]

∣∣∣
+

m

n
|ES′ [(p′(x)− y)1[x ∈ C]]|+ ε

≤
∣∣∣ES [p

′(x)1[x ∈ C]]− m

n
ES′ [p′(x)1[x ∈ C]]

∣∣∣
+
∣∣∣ES [y1[x ∈ C]]− m

n
ES′ [y1[x ∈ C]]

∣∣∣+ m

n
ε′ + ε

13
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Where this time we use the assumption that p′ is (C, ε′)-MA with respect to Uni(S′). Substituting in the definition of the
uniform distributions over S and S′, we have∣∣∣ES [p

′(x)1[x ∈ C]]− m

n
ES′ [p′(x)1[x ∈ C]]

∣∣∣ (18)

+
∣∣∣ES [y1[x ∈ C]]− m

n
ES′ [y1[x ∈ C]]

∣∣∣+ m

n
ε′ + ε (19)

=
1

n

∣∣∣∣∣∣
n∑

i=1

p′(xi)1[xi ∈ C]]−
m∑
j=1

p′(x′
j)1[x

′
j ∈ C]]

∣∣∣∣∣∣ (20)

+
1

n

∣∣∣∣∣∣
n∑

i=1

yi1[xi ∈ C]]−
m∑
j=1

y′j1[x
′
j ∈ C]]

∣∣∣∣∣∣+ m

n
ε′ + ε (21)

Thus, it suffices to show that 20 is upper-bounded by 1
n |(S∆XS′)∩C|. Indeed, we can rewrite in terms of maps µS and µ′

S

for the multisets {x1, ..., xn} and {x′
1, ..., x

′
m} to get

1

n

∣∣∣∣∣∣
n∑

i=1

p′(xi)1[xi ∈ C]]−
m∑
j=1

p′(x′
j)1[x

′
j ∈ C]]

∣∣∣∣∣∣
=

1

n

∣∣∣∣∣∑
x∈X

(µS(x)− µS′(x))p′(x)1[x ∈ C]

∣∣∣∣∣
≤ 1

n

∣∣∣∣∣∑
x∈X

|µS(x)− µS′(x)|1[x ∈ C]

∣∣∣∣∣
=

1

n
|(S∆XS′) ∩ C|.

This completes the proof.

Proof of Theorem 5.8. We restate the theorem as two separate lemmas (B.1 and B.2) and provide proofs for each below.
The result immediately follows from the combination of these lemmas.

Lemma B.1. Let A : (X × {0, 1})∗ → P be a deterministic learning algorithm that outputs predictors from the
family P ⊆ [0, 1]X . For a family of subpopulations C ⊆ 2X , suppose that A satisfies empirical (C, ε1)-multiaccuracy and
additionally suppose that P satisfies (C, n, ε2, δ2)-uniform convergence. Then,A is (C, n,

(
1 + m

n

)
ε1+2ε2, δ2)-multigroup

robust.

Lemma B.2. Let A : (X × {0, 1})∗ → P be a deterministic learning algorithm that outputs predictors from the family
P ⊆ [0, 1]X . For a family of subpopulations C ⊆ 2X , suppose that A satisfies empirical (C, ε1)-multiaccuracy and
additionally suppose that P satisfies (C, n, ε2, δ2)-uniform convergence. Then for any distribution D over X × {0, 1}, A is
a (C, n, ε1 + 2ε2, δ2)-multiaccurate learning algorithm.

Proof of Lemma B.1. Take any C ∈ C and distribution DX . Let x1, ..., xn be points drawn i.i.d. from DX , and let
S = (x1, y1), ..., (xn, yn), S′ = (x′

1, y
′
1), ..., (x

′
m, y′m) be datasets where the points other than x1, ..., xn can be any value.

We consider the LHS of the multigroup robustness criterion:

|EDX
[(p(x)− p′(x))1[x ∈ C]]| (22)

≤ |EDX
[(p(x)− p′(x))1[x ∈ C]]− ES [(p(x)− p′(x))1[x ∈ C]]| (23)

+ |ES [(p(x)− p′(x))1[x ∈ C]]| (24)
(25)

14
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Due to our assumption of empirical multiaccuracy, we know that p and p′ are (C, ε1)-MA predictors with respect to Uni(S)
and Uni(S′), respectively. Thus, we can apply Lemma 5.6 to upper bound 24 to get

|EDX
[(p(x)− p′(x))1[x ∈ C]]− ES [(p(x)− p′(x))1[x ∈ C]]| (26)

+ |ES [(p(x)− p′(x))1[x ∈ C]]| (27)
≤ |EDX

[(p(x)− p′(x))1[x ∈ C]]− ES [(p(x)− p′(x))1[x ∈ C]]| (28)

+
1

n

∣∣∣∣∣∣
n∑

i=1

yi1[xi ∈ C]−
m∑
j=1

y′j1[x
′
j ∈ C]

∣∣∣∣∣∣ (29)

+
1

n
|(S∆XS′) ∩ C|+

(
1 +

m

n

)
ε1. (30)

(31)

Finally, we use our uniform convergence assumption to upper-bound 28:

|EDX
[(p(x)− p′(x))1[x ∈ C]]− ES [(p(x)− p′(x))1[x ∈ C]]|

≤ |EDX
[p(x)1[x ∈ C]]− ES [p(x)1[x ∈ C]]|

+ |EDX
[p′(x)1[x ∈ C]]− ES [p

′(x)1[x ∈ C]]|
≤ 2ε2

where the final bound follows from uniform convergence and holds simultaneously for all C ∈ C with probability at least
1− δ2.

Substituting this into our original bound, we conclude that with probability at least 1− δ2, for all C ∈ C, p and p′ satisfy

|EDX
[(p(x)− p′(x))1[x ∈ C]]|

≤ 1

n

∣∣∣∣∣∣
n∑

i=1

yi1[xi ∈ C]−
m∑
j=1

y′j1[x
′
j ∈ C]

∣∣∣∣∣∣
+

1

n
|(S∆XS′) ∩ C|+

(
1 +

m

n

)
ε1 + 2ε2.

Thus, we conclude that A is (C, n,
(
1 + m

n

)
ε1 + 2ε2, δ2)-multigroup robust.

Proof of Lemma B.2. Consider any D and let p = A((x1, y1), ..., (xn, yn)) where each (xi, yi) is drawn i.i.d. from D for
sufficiently large n ≥ m(C, ε2, δ2).

Consider any C ∈ C. We note that

|ED[(y − p(x))1[x ∈ C]]|

=

∣∣∣∣∣ED[(y − p(x))1[x ∈ C]] +
1

n

n∑
i=1

(yi − p(xi))1[xi ∈ C]− 1

n

n∑
i=1

(yi − p(xi))1[xi ∈ C]

∣∣∣∣∣
≤

∣∣∣∣∣ED[(y − p(x))1[x ∈ C]]− 1

n

n∑
i=1

(yi − p(xi))1[xi ∈ C]

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

(yi − p(xi))1[xi ∈ C]

∣∣∣∣∣
≤

∣∣∣∣∣ED[(y − p(x))1[x ∈ C]]− 1

n

n∑
i=1

(yi − p(xi))1[xi ∈ C]

∣∣∣∣∣+ ε1

Where the last step holds by our assumption that p is empirically multiaccurate. Continuing to simplify, we get
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∣∣∣∣∣ED[(y − p(x))1[x ∈ C]]− 1

n

n∑
i=1

(yi − p(xi))1[xi ∈ C]

∣∣∣∣∣+ ε1

≤

∣∣∣∣∣ED[p(x)1[x ∈ C]]− 1

n

n∑
i=1

p(xi)1[xi ∈ C]

∣∣∣∣∣+
∣∣∣∣∣ED[y1[x ∈ C]]− 1

n

n∑
i=1

yi1[xi ∈ C]

∣∣∣∣∣+ ε1

By our uniform convergence guarantee, we are guaranteed that the above quantity is bounded by 2ε2 + ε1 simultaneously
for all C with probability at least 1− δ2, and thus we know that with probability at least 1− δ2, p satisfies

|ED[(y − p(x))1[x ∈ C]]| ≤ 2ε2 + ε1

for all C ∈ C, and thus is (C, 2ε2 + ε1)-MA with probability at least 1− δ2, completing the proof.

B.2. Section 6

Lemma B.3 (Empirical MA of Algorithm 1). Algorithm 1 satisfies empirical (C, ε)-multiaccuracy.

Proof. Note that the stopping condition of Algorithm 1 implies that for all C ∈ C,∣∣∣∣∣ 1n
n∑

i=1

(yi − p(xi))1[xi ∈ C]

∣∣∣∣∣ ≤ ε.

Thus, p must be empirically (C, ε)-MA.

While we have verified that the algorithm will satisfy empirical multiaccuracy upon termination, we have yet to verify
whether it satisfies the uniform convergence property, which together with Lemma B.3 would imply multigroup robustness
by our result in Theorem 5.8. Moreover, we need to show that the post-processing step does not decrease the predictor’s ℓ2
error by too much, and also that the algorithm is actually guaranteed to terminate in a small number of steps. All of these
properties will follow from the following lemma, which shows that each update step can only decrease the predictor’s ℓ2
error on the empirical distribution.

Lemma B.4. Given an arbitrary dataset S = {(x1, y1), ..., (xn, yn)}, let νS : [0, 1]X → R≥0 be a function capturing the
empirical ℓ2 error of a predictor on S:

νS(p) =
1

n

n∑
i=1

(yi − p(xi))
2.

Given input data S, every iteration of the while loop in Algorithm 1 strictly decreases νS by at least ϵ2, or terminates.

Proof of Lemma B.4. Let p ∈ [0, 1]X be an arbitrary predictor and consider one iteration of the while loop in Algorithm 1.

If there exists no C ∈ C with
∣∣ 1
n

∑n
i=1(p(xi)− yi)1[xi ∈ C]

∣∣ > ε, then the algorithm terminates by definition.

In the other case, there exists some C ∈ C with
∣∣ 1
n

∑n
i=1(p(xi)− yi)1[xi ∈ C]

∣∣ > ε. Let vC = sgn( 1n
∑n

i=1(p(xi) −
yi)1[xi ∈ C]), and let p′ be the updated predictor such that

p′(x) = p(x)− vCε1[x ∈ C].

We consider the difference in potential functions:

νS(p)− νS(p
′) =

1

n

n∑
i=1

(p(xi)− yi)
2 − (p′(xi)− yi)

2
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we note that for all xi ̸∈ C, p(xi) = p′(xi), so we can cancel out these terms to get

1

n

∑
xi,yi∈S,xi∈C

(p(xi)− yi)
2 − (p′(xi)− yi)

2

=
1

n

∑
xi,yi∈S,xi∈C

(p(xi)− yi + p′(xi)− yi)(p(xi)− yi − p′(xi) + yi)

=
1

n

∑
xi,yi∈S,xi∈C

(2(p(xi)− yi)− vCϵ)vCϵ

= 2ϵ

∣∣∣∣∣ 1n
n∑

i=1

(p(xi)− yi)1[xi ∈ C]

∣∣∣∣∣− |{xi, yi ∈ S, xi ∈ C}| ϵ2

n

≥ 2ϵ2 − |{xi, yi ∈ S, xi ∈ C}| ϵ2

n

≥ 2ϵ2 − ϵ2

= ϵ2

so, we have shown that νS(p)− νS(p
′) ≥ ϵ2. Note that there is a final update to clip p′ to be [0, 1] values on all x. However,

because every yi ∈ [0, 1], this can only reduce the ℓ2 error (νS) of the updated predictor, and so we conclude that every
non-terminating iteration of the algorithm reduces νS by at least ϵ2, proving the claim.

As promised, a number of nice properties can now be derived using Lemma B.4. First, we can bound the number of iterations
of the algorithm via a potential function argument (See the appendix B.2 for details):

Lemma B.5 (Stopping Time of Algorithm 1). Algorithm 1 makes at most 1/ϵ2 iterations of the while loop before terminating.

Proof of Lemma B.5. Given input dataset S = {(x1, y1), ..., (xn, yn)}, we use the empirical ℓ2 error,

νS(p) =
1

n

n∑
i=1

(yi − p(xi))
2

as a potential function. We note that by definition, for any p, we are guaranteed that 0 ≤ νS(p) ≤ 1.

Thus, applying the result of Lemma B.4, we can conclude that the number of iterations without termination can be at most
1/ϵ2, otherwise νS would become negative, resulting in a contradiction.

Next, we show a uniform convergence result by bounding the set of predictors that can be outputted by Algorithm 1.
Intuitively, we do this by using the result of Lemma B.5 to conclude that not too many updates are made to the predictor
during post-processing, and thus the class of predictors output by the post-processing step is not too much more complex
than that of the original learning algorithm.

Lemma B.6. Let A : (X × {0, 1})∗ → P be a deterministic learning algorithm that is guaranteed to output from a
finite set of predictors P ⊆ [0, 1]X . Let PPA be the algorithm defined by Algorithm 1 on input A and ϵ > 0. Then,
for any δ ∈ [0, 1] the family of predictors that can be output by PPA satisfies (C, n, ϵ, δ)-uniform convergence for any

n ≥ log(|P|(2|C|)1/ϵ
2+1/δ)

2ϵ2 .

Proof of Lemma B.6. Let PPP be the family of predictors that can be output by PPA. We proceed by bounding the size of
PPP.

Note that the predictor output by the initialization step of PPA must be from P , and so there are |P| possible predictors that
can be output at the initialization step of the algorithm.

From there, for any particular predictor output during initialization, note that at each iteration of the algorithm, there are at
most 2|C| possible different updates that can be made to the predictor.
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Thus, applying the result of Lemma B.5 that says the number of iterations is bounded by 1/ϵ2, we can conclude that the
number of possible predictors that can be output by the algorithm is at most (|P|) (2|C|)

1
ϵ2 .

By Chernoff bounds, for any particular p and C, the probability that∣∣∣∣∣ 1n
n∑

i=1

p(xi)1[xi ∈ C]− ED[p(x)1[x ∈ C]

∣∣∣∣∣ > ϵ

is upper bounded by 2 exp(−2nϵ2).

Including the ys noted in the definition of uniform convergence, this means that we need the above condition to hold for a
total of (

(|P|) (2|C|)
1
ϵ2 + 1

)
|C|

pairs of p and C.

Thus, it suffices to take

n ≥ log(|P|(2|C|)1/ϵ2+1/δ)

2ϵ2

and thus PPP satisfies (C, n, ϵ, δ)-uniform convergence for any n ≥ log(|P|(2|C|)1/ϵ
2+1/δ)

2ϵ2 .

Theorem B.7. Let A : (X × {0, 1}∗)→ P be a deterministic learning algorithm that is guaranteed to output from a finite
set of predictors P ⊆ [0, 1]X . Let PPA be the algorithm defined by Algorithm 1 on input A with parameter ϵ > 0. Given a
sample S = {(x1, y1), ..., (xn, yn)} drawn i.i.d. from some distribution D over X × {0, 1}, let p := A(S) be the predictor
output by A on S, and let pk be the predictor after k ≥ 0 iterations of the post-processing update in PPA(S). Then, for any
δ ∈ [0, 1] and n ≥ log(|P|(2|C|)k)

2ϵ2 , we are guaranteed that with probability at least 1− δ

ED[(y − pk(x))
2] ≤ ED[(y − p(x))2] + 2ϵ− kϵ2.

Proof of Theorem B.7. Note that by Lemma B.4, we are guaranteed that after k iterations, the empirical squared loss has
decreased by at least kϵ2, and thus

1

n

n∑
i=1

(yi − pk(xi))
2 ≤ 1

n

n∑
i=1

(yi − p(xi))
2 − kϵ2.

Note that by a Chernoff bound, for any fixed predictor p, we have that

∣∣∣∣∣ED[(y − p(x))2]− 1

n

n∑
i=1

(yi − p(xi))
2

∣∣∣∣∣ < ϵ

with probability at most 2 exp(−2nϵ2).

Using the same reasoning as in Lemma B.6, both p and pk are guaranteed to belong to a subset of predictors of size at most
|P|(2|C|)k.

Thus, taking n ≥ log(|P|(2|C|)k)
2ϵ2 guarantees that with probability at least 1− δ, we have both∣∣∣∣∣ED[(y − p(x))2]− 1

n

n∑
i=1

(yi − p(xi))
2

∣∣∣∣∣ < ϵ

and ∣∣∣∣∣ED[(y − pk(x))
2]− 1

n

n∑
i=1

(yi − pk(xi))
2

∣∣∣∣∣ < ϵ

18



Multigroup Robustness

Thus, substituting these inequalities into our empirical expression gives us

ED[(y − pk(x))
2] ≤ ED[(y − p(x))2]− kϵ2 + 2ϵ,

completing the proof.

C. Lower Bounds
Thus far, we’ve seen that certain multiaccurate learning algorithms can provide strong multigroup robustness guarantees
while preserving performance guarantees when used as a post-processing step on an existing predictor.

In this section, we explore whether multiaccuracy is a necessary condition of a multigroup robust algorithm under a weak
non-triviality assumption.

Clearly, a learning algorithm that always outputs the same predictor trivially satisfies multigroup robustness while not being
multiaccurate, but is not a very useful learning algorithm. In order to circumvent these edge cases, we introduce a very weak
non-triviality assumption, namely that an algorithm matches the overall mean of the true outcomes.

Definition C.1 (Accuracy in Expectation). We say a learning algorithmA : (X×{0, 1})∗ → [0, 1]X is (n, ε, δ)-accurate-in-
expectation if given n i.i.d. datapoints (x1, y1), ..., (xn, yn) from any distribution D over X × {0, 1}, A outputs a predictor
p = A((x1, y1), ..., (xn, yn)) satisfying

|ED[y − p(x)]| ≤ ε

with probability at least 1− δ.

Note that this is a far weaker assumption than multiaccuracy, in that the predictor only needs to match the overall mean of
the true outcomes, rather than on any particular groups. However, we will show that even this weak accuracy assumption
paired with multigroup robustness implies multiaccuracy.

Theorem C.2 (Lower Bound, Theorem 5.10). Let C be a class of subpopulations, P ⊆ [0, 1]X a family of predictors
containing the all ones predictor p(x) = 1 for all x ∈ X , and A : (X × {0, 1}∗) → P a deterministic learning
algorithm. If A is (C, n, ε1, δ1)-multigroup robust and (n, ε2, δ2)-accurate-in-expectation, and P satisfies (C, n, ϵ3, δ3)-
uniform convergence, then A is a (C, n, ϵ1 + ϵ2 + 2ϵ3, 2δ1 + 2δ2 + δ3)-multiaccurate learning algorithm.

Proof of Theorem 5.10. Let A be the algorithm described in the theorem that is (C, n, ε1, δ1)-multigroup robust and
(n, ε2, δ2)-accurate-in-expectation.

Consider any D over X × {0, 1} with marginal DX and let S = {(x1, y1), ..., (xn, yn)} be drawn i.i.d. from D.

Consider the two amended datasets S0 = {(x1, 0), ..., (xn, 0)} and S1 = {(x1, 1), ..., (xn, 1)}. Let p0 = A(S0), p1 =
A(S1), p = A(S).

Because S0 and S1 are identical to i.i.d. samples from distributions with the same marginal distribution but all zeros or all
ones, we know that with probability at least 1− 2δ2, we have

EDX
[p0(x)] ≤ ε2,EDX

[1− p1(x)] ≤ ε2.

When these two inequalities hold true, we also have for all C ∈ C:

EDX
[p0(x)1[x ∈ C]] ≤ ϵ2,

EDX
[p1(x)1[x ∈ C]] ≥ Pr

DX

[x ∈ C]− ϵ2.

Now, by multigroup robustness, we are guaranteed that with probability at least 1 − 2δ1, we have the following two
inequalities for all C ∈ C:

|EDX
[(p0(x)− p(x))1[x ∈ C]| ≤ 1

n

n∑
i=1

yi1[xi ∈ C] + ϵ1
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|EDX
[(p1(x)− p(x))1[x ∈ C]| ≤ 1

n

n∑
i=1

(1− yi)1[xi ∈ C] + ϵ1

Simplifying the first inequality gives us

EDX
[p(x)1[x ∈ C]]

≤ EDX
[p0(x)1[x ∈ C]] +

1

n

n∑
i=1

yi1[xi ∈ C] + ϵ1

≤ 1

n

n∑
i=1

yi1[xi ∈ C] + ϵ1 + ϵ2

≤ ED[y1[x ∈ C]] + ϵ1 + ϵ2 + ϵ3

Where the last step holds by uniform convergence for all C ∈ C with probability at least 1− δ3.

Similarly, the second inequality simplifies to

EDX
[p(x)1[x ∈ C]]

≥ EDX
[p1(x)1[x ∈ C]] +

1

n

n∑
i=1

yi −
1

n

n∑
i=1

1[xi ∈ C]− ϵ1

≥ Pr
DX

[x ∈ C] +
1

n

n∑
i=1

yi1[xi ∈ C]− 1

n

n∑
i=1

1[xi ∈ C]− ϵ1 − ϵ2

≥ ED[y1[x ∈ C]]− ϵ1 − ϵ2 − 2ϵ3

where the last step follows by two applications of uniform convergence and our assumption that P contains the constant
ones predictor, and also hold simultaneously for all C ∈ C with probability at least 1− δ3.

Thus, we conclude that with probability at least 1− (2δ1 + 2δ2 + δ3), it holds that

|ED[(p(x)− y)1[x ∈ C]| ≤ ϵ1 + ϵ2 + 2ϵ3

for all C ∈ C and thus A is (C, n, ϵ1 + ϵ2 + 2ϵ3, 2δ1 + 2δ2 + δ3)-multiaccurate.

D. Full Experiments
D.1. Models and Datasets

Due to the fairness focus of our work, we use Folktables (Ding et al., 2021), a modern version of the UCI Adult Dataset
based on the yearly American Community Survey. In this section, we expand on the Income experiments in the main text to
other tasks. We look at 3 binary tasks with different feature dimensions, subgroup ratios, and positive class ratios (Table
1). These datasets were taken from a mid-sized state where there is significant racial diversity: Louisiana (the 25th most
populous state in the US). For each task, we consider subgroups defined by race and sex. We consider the three most
common racial groups as coded by: White Alone (62%), Black or African American Alone (32.8%), and Asian Alone (2%).
Although the Hispanic and Latino populations constitute 5.6% of the population in Louisiana, 5 the Census Bureau officially
states that “People who identify their origin as Hispanic, Latino, or Spanish may be of any race”6. Thus we include the
three aforementioned racial identifiable groups for our experiments.

For this task, we seek to predict whether the income of individuals was above $50k and we examine subgroups defined by
race and sex. We compare robustness to different attacks in three settings for 5 different models:

• MAEMP: Multiaccuracy Boost on Empirical Distribution (Algorithm 1)

• CLF: Base classifier model: We evaluate performance across 5 models of different model classes

5https://www.census.gov/quickfacts/fact/table/LA/RHI725222#RHI725222
6https://www.census.gov/quickfacts/fact/note/US/RHI625222
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Dataset Task n Features Positive
Class
Ratio

White
Ratio

Black or
AA Ratio

Asian Ra-
tio

Male Ratio

ACS Income Income >
50k

20667 47 0.332 0.710 0.235 0.020 0.507

ACS Employ-
ment

Employed 43589 69 0.414 0.675 0.266 0.018 0.483

ACS Public
Coverage

Covered
by Public
Health
Insurance

16879 76 0.406 0.589 0.344 0.023 0.424

Bank Dataset Open
a Term
Deposit

45,221 17 0.113 N/A N/A N/A N/A

Law School Bar Exam
Passage

20800 11 0.890 0.841 0.058 0.038 0.062

Table 1: Task summary for Folktables, Law School and Bank Datasets. Since race information is not available for the bank
dataset, we will use communication preference and age.

– LR: Logistic Regression Classifier. Probabilities from this model are probability estimates of each class from the
logistic function.

– DT: Decision Tree classifier. Probabilities from this model are the fraction of samples of the same class in a leaf7.
– kNN: k-Nearest Neighbors algorithm with parameter search from 3, 5, and 7 nearest neighbors. Probabilities from

this model represent the proportion of neighbors in the predicted class.
– XGB: XGBoost algorithm using the default binary-logistic objective. Probabilities are class probabilities summed

and normalized across trees within the boosting system.
– MLP: Multi-Layer Perceptron neural network with 2 layers after performing hyperparameter search over the

learning rate and l2 regularization weight. Probabilities are the output of the logistic function for each class.

• CLF-PP: Base classifier with post-processing using Multiaccuracy Boost on Empirical Distribution.

• SANITIZATION: Data sanitization before training with each base classifier following prior work (Feng et al., 2014)

• ROBUST LOGISTIC REGRESSION: Logistic Regression Algorithm to minimize the effect of outliers proven to be
effective against data poisoning attacks in general (Paudice et al., 2019).

To evaluate each model, we report subgroup accuracy and multi-accuracy error for each model at different noise rates. More
formally, for subgroup C:

• AccuracyD(p, C): 1
|C|

∑
(xi,yi)∈C 1[yi = 1[p(xi) > γ]]

• MA-errD(p, C): 1
n

∑n
i=1(p(xi)− yi)1(xi ∈ C)

We seek to measure these quantities since multi-accuracy error is the supremum of this MA-errD(p, C) across all identifiable
subgroups C ∈ C and Accuracy gives an average classification metric where the γ threshold is optimized on a held-out
validation set. We measure all of these results on a test set while both training and post-process with Algorithm 1 are done
on the training set.

D.2. Label-Change
7https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.

html
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Algorithm 2 Label Change Algorithm

Parameters: target: t ∈ {0, 1, ∗}, modify group C ⊆ {0, 1}X , noise ratio σ ∈ [0, 1].
Input: clean dataset D = (x1, y1), ..., (xn, yn) ∈ X × {0, 1}
Output: corrupted dataset D′ = (x1, y

′
1), ..., (xn, y

′
n) ∈ X × {0, 1}

D′ = {}
for all (xi, yi) ∈ D do
z ∼ Uniform([0, 1])
if z < σ and yi == t then
y′i = 1− yi

else
y′i = yi

end if
D′ = D′ ∪ (xi, y

′
i)

end for
Return: D′
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Figure 4: Effect of label change in the white male group on other groups with a Logistic Regression Classifier. As the amount of noise
increases, the MA-err of the resulting predictor grows away from 0. The direction depends on whether the shift in label is from 0 to 1 or
from 1 to 0.

Designing Label Shift First, we consider robustness to label noise when the set of training examples is unchanged (See
Section 4). We randomly (1) flip labels, (2) shift labels to 1, and (3) shift labels to 0 within a subgroup and observe the
effects on other subgroups. Algorithm 2 describes the generation of all three types of label change. The noise rate in this
corruption represents the proportion of data points in the modified subgroup that has been shifted.

We compare the different effects of label shifts first on the Logistic Regression model to understand the impact of label
change. Figures 4, 5, and 6 show the effect of different types to label change when different groups are modified. We
observed significant changes in MA-err on other groups particularly when the white male group and white female group are
modified by shifting the labels from 0 to 1. We proceed with experiments in label change by modifying the white male
group by shifting labels from 0 to 1 in different ratios. These preliminary results also show that due to the low ratio of the
Asian population, MA-err will remain small for this population since the normalization term is the total test set size. Moving
forward, we will use the 4 larger subpopulations white-male, white-female, black or AA-male, and black or AA female to
measure the results of our proposed algorithm.

Robust Logistic Regression and Label Shift Table 3 summarizes the overall accuracy at different levels of label shift.
The robust LR algorithm actually achieves higher accuracy. However, in Table 2, the multiaccuracy of robust logistic
regression is an order of magnitude larger than the baselines and our empirical multiaccuracy algorithm.

Robustness to label change through Multi-Accuracy Boosting and Post Processing For the ACSIncome dataset, Figure
7 (Also Figure 1 in the main text) shows the effect of randomly shifting labels in the White Male group on three other
groups: White Female, Black or African American Male, and Black or African American Female. For Logistic Regression,
we see that the base classifier (dotted line), results in increased bias as the noise rate increases while the MAEMP predictor
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Figure 5: Effect of label change in the white female group on other groups with a Logistic Regression Classifier. In this group, flipping
the labels has a large effect on the Black population.
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Figure 6: Effect of label change in the black male group on other groups with a Logistic Regression Classifier. Since this group is a
smaller fraction of the population, the induced change in MA-err is much smaller.
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Adult Income Dataset: Label Change of White Male Group

subgroup Black or AA Male White Female Black or AA Female model MAEmp Clf Clf-PP

Figure 7: Comparison of different predictors on corrupted data with label change at various ratios on the ACSIncome
Dataset. When labels are shifted from 0 to 1 in the white male group, baseline classifiers such as Logistic Regression,
k-Nearest Neighbors, and Neural Network (MLP) also become more biased for other subgroups (i.e., increasing MA-err).
However, both the uniformly initialized and post processed predictor using Algorithm 1 are robust to label change in other
groups.
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Figure 8: Comparison of different predictors on corrupted data with label change at various ratios on the ACSIncome
Dataset: 0 to 1 label shift in the white female group. A similar result as modifying the white male group follows.

Table 2: ACS Income MultiAccuracy (Signed Group Mean Error) with increasing noise from label shift. Modified Group:
White Men - Target/Effect Group: White Women (standard error i.e. mean over 10 runs)

Algorithm 0.0 (×10−2) 0.1 (×10−2) 0.2 (×10−2) 0.5 (×10−2) 0.7 (×10−2)

LR Standard 0.15 (0.000) 0.35 (0.003) 0.55 (0.003) 1.10 (0.005) 1.14 (0.003)
LR with Sanitization -0.17 (0.000) 0.04 (0.009) 0.29 (0.011) 1.04 (0.012) 1.62 (0.014)
Robust LR 8.06 (0.000) 7.94 (0.010) 7.93 (0.009) 7.91 (0.008) 7.89 (0.006)
LR-MA-Emp 0.22 (0.000) 0.23 (0.003) 0.25 (0.003) 0.27 (0.005) 0.28 (0.003)

retains a low and consistent level of multi-accuracy guarantee. Furthermore, post-processing the Linear Regression classifier
with Empirical MABoost also results in similar accuracy to the original model and multi-accuracy regardless of the level of
noise. A similar phenomenon is observed in the neural network (NN) and k-nearest neighbors models where MAEMP and
CLF-PP are robust to label noise. Moreover, we observe that reducing MA-err comes at no cost to the overall accuracy:
the accuracies of the post-processed predictors are comparable to the original predictors. In Figure 8, we observe a similar
phenomenon but in the white male group as well as both black male and female groups.

For the ACS employment dataset, there is a significantly larger positive class ratio (Table 1) but similar subgroup ratios
since this dataset comes from the same state. In Figure 9, we see a similar pattern to the income data set in terms of the
multi-accuracy boosting algorithm producing predictors that are robust to changes in disjoint groups. Here we see that the
accuracy of the post proceed predictor can be higher than before pre-processing (e.g., Logistic Regression - black female
and black male subgroups). We see similar patterns in the predictor robustness when the white female group is modified in
the ACSEmployment dataset.

For the ACS Coverage dataset, the predictors are trained to predict the probability that an individual is covered by public
health insurance. Figure 11 and 12 illustrate the results for label shift from 0 to 1 in the white male and white female
subgroups respectively. For shifts in both these subgroups, the impact on other groups is only significant for the logistic
regression classifier. For logistic regression, we observe the base models suffering from more biased predictions (MA-err) on
unmodified groups as the level of noise increases while the post-processed logistic regression predictor retains a consistently
low MA-err for all unmodified subgroups.

Boosting Classifiers and Multi-Accuracy Error Across all datasets (e.g., Income, Coverage, and Employment), we
observe that the boosting classifiers are relatively calibrated already. For Decision Trees, in particular, the base and
post-processed predictors are the same. This is due to the fact that we did not limit the depth of the model, the tree branches
on subgroups since subgroup labels are a part of the features. A similar phenomenon exists for XGBoost where there is
some randomization that allows some post-processing improvements but the base classifier is already multi-group robust.
This is not surprising since for both Decision Trees and XGBoost, the ability to branch exactly based on group membership
would reduce the effect of noise and corruption of unrelated subgroups.

24



Multigroup Robustness

Table 3: ACS Income Accuracy - (Signed Group Mean Error) with increasing noise from label shift. Modified Group: White
Men - Target/Effect Group: White Women (standard error i.e. mean over 10 runs)

Algorithm 0.0 0.1 0.2 0.5 0.7

LR Standard 0.73 (0.000) 0.73 (0.004) 0.76 (0.006) 0.78 (0.002) 0.77 (0.002)
LR with Sanitization 0.71 (0.000) 0.71 (0.004) 0.73 (0.003) 0.77 (0.001) 0.78 (0.001)
Robust LR 0.76 (0.000) 0.75 (0.002) 0.77 (0.003) 0.79 (0.000) 0.75 (0.001)
LR-MA-Emp 0.73 (0.000) 0.73 (0.003) 0.76 (0.002) 0.78 (0.002) 0.76 (0.010)
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Figure 9: Comparison of different predictors on corrupted data in the white male group with label change at various ratios
on the ACS Employment.
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Figure 10: Comparison of different predictors on corrupted data in the white female group with label change at various
ratios on the ACS Employment dataset.

D.3. Addition/Deletion

We also demonstrate the robustness of Algorithm 1 through corruptions to data in the form of additional data points. We
employ a similar strategy as prior work designing subpopulation attacks (Jagielski et al., 2021) with the additional constraint
that only data points outside of the target group can be added to create the poisoning dataset. To find data points to add that
would affect the target group, we first cluster data points in a held-out set (not used for training or testing) using K-means.
For each cluster where the target subgroup appears, we shift the labels of the group we are allowed to modify. We then
add these shifted points from the held-out group to the training data. The amount of noise in this attack is scaled by how
many times the identified data points are replicated before being added to the poisoned dataset. Algorithm 3 describes the
algorithm we use to generate a corrupted dataset D′ of size m. For these data poisoning attacks, we also target 0 labels in
each cluster to shift. This attack is more precise than random shifts in subgroups since there is a specific targeted subgroup.

Robust Logistic Regression and Data Addition Table 5 summarizes the overall accuracy at different levels of label shift.
Similar to label shift, the robust LR algorithm achieves higher accuracy than the other baselines. However, in Table 4, the
multiaccuracy of robust logistic regression is an order of magnitude larger than the baselines and our empirical multiaccuracy
algorithm. These patterns both in data addition and label shift illustrate that robust logistic regression might introduce
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Figure 11: Comparison of different predictors on corrupted data in the white male group with label change at various ratios
on the ACS Coverage dataset.
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Figure 12: Comparison of different predictors on corrupted data in the white female group with label change at various
ratios on the ACS Coverage dataset.

Algorithm 3 Data Addition Algorithm

Parameters: modify group and target group: Cmod, Ctgt ⊆ {0, 1}X , noise factor α ∈ [1, 10], num clusters k, cluster
threshold γ, target: t ∈ {0, 1, ∗}
Input: clean dataset D = (x1, y1), ..., (xn, yn) ∈ X × {0, 1}, held out dataset Daux

Output: corrupted dataset D′ = (x1, y
′
1), ..., (xm, y′m) ∈ X × {0, 1}

D′ = {}
centers = CLUSTER(Daux, k)
for all c ∈ centers do
Dc = {(x, y)|CLOSESTCENTER((x, y)) = c, (x, y) ∈ Daux}
Dtgt = {(x, y)|(x, y) ∈ Ctgt, (x, y) ∈ Dc}
Dmod = {(x, y)|(x, y) ∈ Cmod, (x, y) ∈ Dc}
if |Dtgt| ≥ γ then

for all (x, y) ∈ Dmod do
if y == t then

y′ = 1− y
D′ = D′ ∪ (x, y′)

α

end if
end for

end if
end for
Return: D′ = D′ ∪D

26



Multigroup Robustness

undesirable group mean bias for unaffected groups even though overall performance is not affected.

Table 4: ACS Income MultiAccuracy with increasing noise from data addition. Modified Group: White Men - Target/Effect
Group: White Women (standard error i.e. mean over 10 runs)

Algorithm 0 (×10−2) 1 (×10−2) 2 (×10−2) 4 (×10−2) 8 (×10−2)

LR Standard 0.15 (0.000) 0.41 (0.002) 0.61 (0.003) 0.87 (0.004) 1.19 (0.005)
LR with Sanitization -0.17 (0.000) 0.25 (0.003) 0.71 (0.003) 1.65 (0.003) 1.97 (0.003)
Robust LR 8.06 (0.000) 7.95 (0.010) 7.94 (0.009) 7.91 (0.008) 7.88 (0.007)
MA-Emp 0.22 (0.000) 0.22 (0.001) 0.22 (0.001) 0.22 (0.002) 0.22 (0.003)

Table 5: ACS Income Accuracy with increasing noise from data addition. Modified Group: White Men - Target/Effect
Group: White Women (standard error i.e. mean over 10 runs)

Algorithm 0 1 2 4 8

LR Standard 0.73 (0.000) 0.75 (0.005) 0.78 (0.001) 0.78 (0.001) 0.78 (0.001)
LR with Sanitization 0.71 (0.000) 0.73 (0.001) 0.76 (0.008) 0.78 (0.001) 0.78 (0.001)
Robust LR 0.76 (0.000) 0.75 (0.002) 0.77 (0.003) 0.79 (0.004) 0.75 (0.001)
MA-Emp 0.73 (0.000) 0.74 (0.006) 0.76 (0.005) 0.78 (0.001) 0.77 (0.001)

In Figure 13 (Figure 3 in the main text), we see that even at low levels of noise (i.e., poisoned points are replicated once
or twice), the Logistic Regression, k-Nearest Neighbors, and Neural Network base classifiers (CLF) exhibit worsened
multi-accuracy error. However, with post-processing (CLF-PP), the mult-accuracy error remains consistent around 0
regardless of the noise ratio. Moreover, the benefits of low multi-accuracy error come without cost to the accuracy. These
effects are not just on the target group, white female, but also appear in other subgroups such as the black male and female
subgroups. Figure 14 shows the effects when the target group is the black male group where a similar effect exists.

D.4. Law School Dataset

Since the positive class ratio is high for the law school dataset, we use label shift labels from 1 to 0 in the modified group.
Figure 19 shows the impact of MA post-processing of different models on the law school dataset. Label shift and data
addition severely impact the logistic regression model model but our post-processing manages to maintain the multi-accuracy
for unaffected groups. It is interesting to note that for KNN, the post-processed model also achieves better accuracy with
lower MA. Figure 20 shows a similar phenomenon for logistic regression. In addition, the neural network models area also
significantly impacted by noise. Our empirical MA algorithms can maintain multiaccuracy with increasing noise.

D.5. Bank Dataset

We also run our experiments on the Bank Data. Since the positive class is only 11% of the dataset, we also flip the labels
from 0 to 1 in our label shift attack. Figure 21 shows that shifting the labels in the group of cell phone users aged 18-29
affects the other groups of cell phone users and 18-29 telephone users. Figure 22 shows that for the data addition attacks, a
similar pattern occurs. Our post-processed predictors consistently maintain multiaccuracy while not negatively affecting the
overall accuracy.
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Adult Income Dataset: Addition Attack 
 Target: White female group Modified: White male group

subgroup Black or AA Male White Female Black or AA Female model MAEmp Clf Clf-PP

Figure 13: Comparison of different predictors on a corrupted dataset with injected data (Algorithm 3) at various levels on
the ACSIncome Dataset. Baseline classifiers such as Logistic Regression, k-nearest Neighbors, and Neural Networks (MLP)
become more biased (i.e., increasing MA-err) for the target subgroup (Ctgt: White female) even though only data from
the white male group (Cmod) has been added. However, both the uniformly initialized and post-processed predictor using
Algorithm 1 are robust to label change in other groups while preserving comparable accuracy.
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Adult Income Dataset: Addition Attack 
 Target: Black male group Modified: White male group

subgroup Black or AA Male White Female Black or AA Female model MAEmp Clf Clf-PP

Figure 14: Comparison of different predictors on a corrupted dataset with injected data from the white male group (Cmod)
with the black male group as the target group (Ctgt) at various levels on the ACSIncome Dataset.
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Adult Employment Dataset: Addition Attack 
 Target: White female group Modified: White male group

subgroup Black or AA Male White Female Black or AA Female model MAEmp Clf Clf-PP

Figure 15: Comparison of different predictors on a corrupted dataset with injected data from the white male group (Cmod)
with the white female group as the target group (Ctgt) at various levels on the ACSEmployment Dataset.
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Adult Employment Dataset: Addition Attack 
 Target: Black male group Modified: White male group

subgroup Black or AA Male White Female Black or AA Female model MAEmp Clf Clf-PP

Figure 16: Comparison of different predictors on a corrupted dataset with injected data from the white male group (Cmod)
with the black male group as the target group (Ctgt) at various levels on the ACSEmployment Dataset.
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Adult Coverage Dataset: Addition Attack 
 Target: White female group Modified: White male group

subgroup Black or AA Male White Female Black or AA Female model MAEmp Clf Clf-PP

Figure 17: Comparison of different predictors on a corrupted dataset with injected data from the white male group (Cmod)
with the white female group as the target group (Ctgt) at various levels on the ACS Coverage Dataset.
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Adult Coverage Dataset: Addition Attack 
 Target: Black male group Modified: White male group

subgroup Black or AA Male White Female Black or AA Female model MAEmp Clf Clf-PP

Figure 18: Comparison of different predictors on a corrupted dataset with injected data from the white male group (Cmod)
with the black male group as the target group (Ctgt) at various levels on the ACS Coverage Dataset.
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Adult Lawschool Dataset: Label Change of White Male Group

subgroup white-female hispanic-male black-male model Clf Clf-PP

Figure 19: Comparison of different predictors on a corrupted dataset with shifted labels in the white male group (Cmod) at
various levels of noise the law school dataset.
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Adult Lawschool Dataset: Addition Attack 
 Target: White female group Modified: White male group

subgroup white-female hispanic-male black-male model Clf Clf-PP

Figure 20: Comparison of different predictors on a corrupted dataset with injected data from the white male group (Cmod)
with the white female group as the target group (Ctgt) at various levels of noise on the Law School Dataset.
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Bank Dataset: Label Change of Cell Age18 29 Group

subgroup cell-age30-44 cell-age45-59 cell-age60+ tele-age18-29 model Clf Clf-PP

Figure 21: Comparison of different predictors on a corrupted dataset with shifted labels in the aged 18-29 cell phone users
group (Cmod) at various levels of noise in the Bank Dataset.
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Bank Dataset: Addition Attack 
 Target: Cell age30 44 group Modified: Cell age18 29 group

subgroup cell-age30-44 cell-age45-59 cell-age60+ tele-age18-29 model Clf Clf-PP

Figure 22: Comparison of different predictors on a corrupted dataset with injected data from the aged 18-29 cell phone users
group (Cmod) with the aged 30-44 cell phone users group as the target group (Ctgt) at various levels of noise on the Bank
Dataset.
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