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Abstract

Despite the impressive performance in a variety
of complex tasks, modern large language mod-
els (LLMs) still have trouble dealing with some
math problems that are simple and intuitive for
humans, such as addition. While we can easily
learn basic rules of addition and apply them to
new problems of any length, LLMs struggle to
do the same. Instead, they may rely on similar
cases seen in the training corpus for help. We
define these two different reasoning mechanisms
as “rule-based reasoning” and “case-based rea-
soning”. Since rule-based reasoning is essential
for acquiring systematic generalization ability, we
aim to explore exactly whether transformers use
rule-based or case-based reasoning for math prob-
lems. Through carefully designed intervention
experiments on five math tasks, we confirm that
transformers are performing case-based reason-
ing, no matter whether scratchpad is used, which
aligns with the previous observations that trans-
formers use subgraph matching/shortcut learning
to reason. To mitigate such problems, we propose
a Rule-Following Fine-Tuning (RFFT) technique
to teach transformers to perform rule-based rea-
soning. Specifically, we provide explicit rules
in the input and then instruct transformers to re-
cite and follow the rules step by step. Through
RFFT, we successfully enable LLMs fine-tuned
on 1-5 digit addition to generalize to up to 12-
digit addition with over 95% accuracy, which
is over 40% higher than scratchpad. The sig-
nificant improvement demonstrates that teaching
LLMs to use rules explicitly helps them learn rule-
based reasoning and generalize better in length.
Code is available at https://github.com/
GraphPKU/Case_or_Rule.
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1. Introduction
Large language models (LLMs) such as ChatGPT (OpenAI,
2022) and GPT-4 (OpenAI, 2023) have exhibited remark-
able capabilities in a wide range of tasks from some classical
NLP tasks such as translation and summarization to com-
plex reasoning tasks about commonsense, math, logic and
so on (OpenAI, 2022; 2023; Brown et al., 2020; Touvron
et al., 2023a; Chowdhery et al., 2023; Thoppilan et al., 2022).
Some people believe LLMs present a seemingly promising
route to AGI (Bubeck et al., 2023). At the same time, some
theoretical work also gives their support to this applauded
prospect by proving that transformer-based LLMs can learn
an intrinsic mechanism for some complex tasks such as
linear regression (Akyürek et al., 2023), dynamic program-
ming (Feng et al., 2023) or modular addition (Zhong et al.,
2023; Nanda et al., 2023; Power et al., 2022; Liu et al.,
2022).

Although LLMs have demonstrated impressive results and
possibility both in performance and theory, they are, sur-
prisingly, still puzzled by some basic calculation tasks (Qin
et al., 2023; Bian et al., 2023; Koralus & Wang-Maścianica,
2023; Dziri et al., 2023; Xu et al., 2023; Zhou et al., 2023b).
Notably, there has been a line of work paying efforts to teach
transformers to perform addition of two large numbers (Nye
et al., 2021; Qian et al., 2022; Zhou et al., 2022; 2023b;
Shen et al., 2023; Kazemnejad et al., 2023; Lee et al., 2023;
Zhou et al., 2024). Despite ongoing efforts, transformers
have yet to successfully generalize to new inputs that are
significantly longer than the training data, without relying
on external tools. In contrast, humans can easily solve ad-
dition of two numbers of any length after learning basic
rules of column addition. Language models often astonish
us with their proficiency in complex tasks, yet they can also
perplex us with unexpected failures in seemingly straightfor-
ward tasks. This dichotomy in performance raises intriguing
questions about their underlying reasoning mechanisms.

Previous work has argued over the open questions. Nanda
et al. (2023); Zhong et al. (2023) study how transformers
do modular addition and claim that they derive certain al-
gorithms to solve the problem, such as the clock algorithm
where input numbers are represented as angles and then
added together. However, another line of work (Dziri et al.,
2023; Wu et al., 2023; Zhang et al., 2023) worries that the
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1. adding unit’s digit: 2+7=9, carry 0;

2. adding ten’s digit: 4+5=9, carry 0;

→ the result is 99

case-based reasoning rule-based reasoning

QUESTION: 42+57=?

42+57=?

42+56=98 52+57=10932+57=89

42+58=100 42+67=10942+47=89

43+57=10041+57=98

RULE: adding digit by digit

referring to similar cases to reason

Figure 1. Illustrations of case-based and rule-based reasoning.

impressive reasoning ability of LLMs can be mainly at-
tributed to the extensive training corpus. They argue that
transformers are just recalling similar instances from seen
data to solve reasoning tasks instead of capturing underlying
rules and applying them to new problems.

In this paper, we study the hotly-debated questions more
directly through intervention experiments. We hypothe-
size that transformers significantly depend on certain cases
in training data to do math reasoning, which we denote as
“case-based reasoning”. It should be noted that here by “case-
based reasoning” we do not mean a non-parameterized ma-
chine learning algorithm that really retrieves similar cases
from a database. Rather, we describe a behavior that trans-
formers show in reasoning. Specifically, if a model employs
case-based reasoning, the removal of those dependent cases
from the training set would significantly affect its accuracy
on certain test examples. On the contrary, if a model does
not rely on similar cases but instead masters the underlying
rules for reasoning—a mechanism we define as “rule-based
reasoning”—the absence of these cases should not affect
the performance. An illustration of these two contrasting
reasoning paradigms is shown in Figure 1.

To verify our hypothesis, we fine-tune LLMs respectively on
five basic and representative math tasks: addition, modular
addition, base addition, linear regression, and chicken &
rabbit problems. As a sanity check for each task, we first
make sure that the model achieves 100% performance on
the test set when the dataset is randomly split. Then, we
artificially split the dataset by leaving out some continuous
regions of examples as the test set with the remaining ones as
the training set and re-train the model. This method ensures
that most test examples do not have close training cases to
support their inference. Our results show that in all tasks,
the model performance drops significantly in the second
setting, despite that the size of the training set (above 95%
of the whole dataset) is entirely sufficient to achieve 100%
accuracy under random split. See Figure 2 and Figure 3 for
example.

The results of our intervention experiments provide direct
evidence suggesting that transformers perform case-based

reasoning for math problems. This also aligns with previous
work (Dziri et al., 2023) showing transformers rely on seen
computation subgraphs for multi-step reasoning. However,
there are notable distinctions in our approach and findings:
Dziri et al. (2023) look at the frequency difference of seen
subgraphs in correct and incorrect samples respectively as
indirect evidence that models rely on seen subgraphs to
generate correct answers, while we present direct evidence
of case-based reasoning by showing the performance gap
before and after removing the cases. Besides, we study
both single-step and multi-step reasoning while Dziri et al.
(2023) mainly focus on compositional reasoning.

So why is rule-based reasoning so important? Rule-based
reasoning is essential for models to achieve systematic and
length generalization so that they can be applied to new, un-
seen scenarios without re-training. As our last contribution,
we propose a method to shift transformers from case-based
to rule-based reasoning, thereby fostering a more robust
and generalizable reasoning paradigm. Focusing again on
the addition of large numbers, we propose a technique that
teaches transformers to follow rules step by step. Specif-
ically, we explicitly put rules in the input and enforce the
model to step-by-step recite and follow the necessary rules
to complete reasoning, which we call Rule-Following Fine-
Tuning (RFFT). Through RFFT, LLMs trained on addition
of numbers of 1-5 digits successfully generalize to up to 12-
digit addition, verifying its effectiveness in teaching LLMs
to perform rule-based reasoning. It is noteworthy that the
training set is as small as 100 samples, demonstrating that
RFFT enables models with sufficient fundamental capabili-
ties to grasp the rules through a small set of examples, which
aligns with humans’ few-shot rule learning ability.

2. Related Work
LLM reasoning. Recent years have seen enormous im-
provement in LLMs’ capabilities. LLMs show impressive
performance in a wide range of tasks (OpenAI, 2022; 2023;
Brown et al., 2020; Touvron et al., 2023a; Chowdhery et al.,
2023; Thoppilan et al., 2022). However, various tasks of
complex reasoning are still challenging for LLMs (Srivas-
tava et al., 2022). In particular, Dziri et al. (2023); Xu
et al. (2023); Zhou et al. (2023b; 2024) show that LMs still
struggle with math reasoning, even with basic calculation
operations.

Previous work has come up with methods to simplify the
tasks by decomposing them to simpler intermediate steps.
For example, Nye et al. (2021); Zhou et al. (2022) intro-
duce finetuning models with cases containing scratchpads
to improve arithmetic reasoning of LLMs. Wei et al. (2023);
Kojima et al. (2023); Zhou et al. (2023a); Khot et al. (2023);
Zhu et al. (2023) propose various prompting methods to
teach the model to generate rationales before the final an-
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swer with in-context learning. However, even with these
methods, LLMs are still far from completely solving arith-
metic reasoning tasks. The failures inspire us to study how
exactly LLMs perform math reasoning. Besides, we study
the effects of the methods of task simplification on case-
based reasoning in our paper. Specially, Zhu et al. (2023)
improve the model performance by providing the cases the
reasoning process may depend on in the input, which in fact
aligns with our case-based reasoning paradigm.

Memorization or generalization. As reasoning capabili-
ties of LLMs can be mainly attributed to the scaling effects
of the training corpus and the model size, the question of
whether the seemingly impressive reasoning abilities are
the results of capturing general rules lying under the natural
language or just reciting seen cases from the huge train-
ing corpus is drawing more and more attention. Wu et al.
(2023); Zhang et al. (2023) investigate into the gap of ca-
pabilities of LLMs to conduct reasoning over factual and
counterfactual situations and show the significant perfor-
mance drop in counterfactual cases, suggesting LLMs are
reciting answers of common cases in the training corpus. A
recent work Dziri et al. (2023) models reasoning tasks as
computation graphs and show empirically that LLMs con-
duct reasoning via subgraph matching instead of developing
systematic problem-solving skills. We study the question of
interest in a straightforward way by removing certain sam-
ples from the training set and show significant performance
gap. By tracing back to the effective training datapoints,
we confirm that transformer-based LLMs are relying on
surrounding cases in the training set to do math reason-
ing instead of learning generalizable rules. On the other
hand, Hou et al. (2023) study the problem through probing
the models’ attention patterns and claim that transformers
are implementing reasoning trees in the reasoning process.
Yang et al. (2023) propose that LLM’s reasoning ability
comes from memorizing some templates, which are some
fixed parts in the reasoning process, enabling generalization
within tasks.

Grokking. Recent work has shown the phenomenon of
model capturing generalizable rules of arithmetic reason-
ing tasks long after overfitting the training set, known as
grokking (Power et al., 2022; Liu et al., 2022). Nanda et al.
(2023); Zhong et al. (2023) study the algorithms transform-
ers learn in the task of modular addition. The series of
work show through experiments that the model learns sys-
tematic rules to solve modular addition through embedding
the numbers as angles and operating on their trigonometric
functions. We also try to observe the phenomenon in the
same setting as in Zhong et al. (2023) with certain samples
removed from the training set. Although we observe the
growth of test performance after the model overfitting the
training set, there is still a wide gap between training accu-

racy and test accuracy, suggesting the model fails to learn
the rules. This phenomenon indicates that even the ability
to learn and apply generalizable arithmetic algorithms in
grokking deeply depends on certain cases in the training set.
The results and experiments are described in Appendix H.

Theoretical expressiveness. (Feng et al., 2023; Akyürek
et al., 2023; Dai et al., 2023; von Oswald et al., 2023; Garg
et al., 2023) There have been a large number of work study-
ing the expressive power of transformers. Yun et al. (2020)
proved that transformers are universal approximators of
continuous sequence-to-sequence functions on a compact
domain. More recently, Garg et al. (2023) reveals that auto-
regressive transformers can learn basic functions including
sparse linear functions, MLPs and decision trees. Further-
more, Akyürek et al. (2023) demonstrates that transformers
can in-context learn linear regression by implementing the
algorithm of gradient descent (Dai et al., 2023; von Oswald
et al., 2023). Feng et al. (2023) shows how chain-of-thought
prompting help transformers complete tasks including basic
calculations, linear equations and dynamic programming.
In our work, we conduct empirical experiments and show
how auto-regressive transformers do basic math reasoning
in practice. We include tasks like addition, linear regression
and linear functions that have been studied in the theoretical
work.

Length generalization. Length generalization calls for
the ability to generalize to longer sequences than seen in
training samples, which remains a challenge for transform-
ers (Abbe et al., 2023; Anil et al., 2022; Zhou et al., 2023b).
Previous work has shown that data format and positional
encoding are crucial to length generalization ability through
experiments on small transformers across various tasks such
as arithmetic reasoning (Lee et al., 2023; Kazemnejad et al.,
2023; Shen et al., 2023; Zhou et al., 2023b; 2024). However,
these works require specifically designed tricks for each
task and train small transformers from scratch. Our work
explores length generalization in the settings of fine-tuning
pre-trained LLMs and shows that the technique of RFFT
we propose in §5 greatly enhances length generalization.
Furthermore, we demonstrate that the models with sufficient
fundamental capabilities can generalize well with only a
small set of training samples.

3. Case-based and Rule-based Reasoning
One main focus of our paper is to discuss whether auto-
regressive transformer-based language models are solving
basic math problems based on cases or rules. In this section,
we intuitively motivate these two reasoning paradigms and
provide a direct method to distinguish them through data
intervention.
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Case-based Reasoning. A model engaging in case-based
reasoning exhibits sensitivity in its test performance to the
division of the dataset into training and test sets. Specifi-
cally, if a model relies on shortcuts, either by referencing
similar cases encountered during training or by merely re-
peating previously seen examples to solve new problems,
its effectiveness diminishes when these cases are removed
from the training set. This reduction in relevant training
data results in a notable decrease in the model’s ability to
accurately respond to test questions.

Rule-based Reasoning. In contrast to case-based reason-
ing, the paradigm of rule-based reasoning allows the model
to learn the underlying rules, which are insensitive to the
data split. For example, if a model is developing the sys-
tematic rules of addition during the training process, its test
performance should not be affected severely if we leave
some of the training samples out of the training set and add
some others to keep the same training-test ratio. It should be
noted that the training set should always provide the necessi-
ties for the model to learn the underlying rule. For example,
the training set should at least cover all the tokens used in
the test set in order to develop a systematic rule that applies
to the whole dataset. In all our experiments, we carefully
design the setups to ensure the above.

Based on the above discrimination, we propose a natural
method to determine whether a model is performing case-
based reasoning or rule-based reasoning through data inter-
vention. That is, we artificially remove certain regions of the
training data to see its effect on test performance. For exam-
ple, in math reasoning tasks such as addition, if the model
is severely relying on some seen cases to do reasoning, a
natural hypothesis is that it is relying on some surrounding
cases of the test question, as shown in Figure 1 left. Based
on the hypothesis, we can remove a small set of surrounding
cases from the training set and see whether the model can
still answer the question. If it succeeds when we leave the
surrounding cases in the training set but fails when we take
them out, we can judge that the model is relying on the small
set of surrounding cases to do math reasoning. Otherwise,
if the model can perform well in the test set no matter how
we split the dataset, it is likely performing rule-based rea-
soning which guarantees robust generalization independent
of dataset split.

It is important to recognize that rule-based reasoning also
involves a degree of memorization. For example, in the
process of digit-by-digit addition, we inherently rely on
memorized knowledge of possible single-digit sums. Take
the calculation of 42+57 as an instance; it is essential to
know that 2+7 equals 9 and 4+5 equals 9. We refer to this
fundamental knowledge required for rule-based reasoning
as “unit rules”. These unit rules are tailored to specific rea-
soning patterns. The more basic these unit rules are, the less

memorization the reasoning process requires, indicating a
more pronounced reliance on rule-based reasoning. Con-
versely, if a model relies on case-based reasoning through
sheer memorization—learning that 42+57 equals 99 only
by encountering this exact case, then the unit rules for this
pattern of reasoning are the cases themselves.

So how do we judge whether the unit rules are elemen-
tal enough to ensure a rule-based rather than case-based
reasoning? We define the model is performing rule-based
reasoning if the set of unit rules the model requires to solve
the task is finite and can be easily covered by a training
set of a reasonable size. Otherwise, if it is hard or even
impossible for a training set to cover all the unit rules, we
consider the model performing case-based reasoning.

4. Transformers are Doing Case-based
Reasoning

In this section, we provide direct evidence that transformers
perform case-based reasoning through intervention experi-
ments on five representative math tasks.

4.1. Experimental Setup

Datasets We focus on binary operations, which take two
numbers a, b as inputs. Denoting c as the target label, we
construct datasets like D = {((ai, bi), ci)} for five math
tasks including addition, modular addition, base addition,
linear regression, and chicken & rabbit problem:

• Addition. The input to the transformer is “a + b”, the
output is “c”, where c = a+ b. a, b range from 0 to 99.

• Modular addition. The input to the transformer is “a+
b”, the output is “c”, where c = a+b mod P . a, b range
from 0 to 112. We set P = 113 as a constant.

• Base addition. This task is the same as addition, except
that all numbers a, b, c are expressed in the base-n numer-
ical system. In this paper, we set n = 9 as a constant.

• Linear regression. This task requires the transformer to
learn a linear regression function. The input is “(a, b) =”,
the output is “c”, where c = m · a+ n · b+ p. a, b range
from 0 to 99. We set m = 1, n = 2, p = 3 as constants.

• Chicken & rabbit problem. We construct a dataset of
chicken & rabbit problems with natural language ques-
tions and answers. The input to the transformer is “Q:
Rabbits have 4 legs and 1 head. Chickens have 2 legs
and 1 head. There are a legs and b heads on the farm.
How many rabbits and chickens are there?”. The out-
put is “A: There are c rabbits and d chickens.”, where
c = (a− 2b)/2, d = (4b− a)/2. b ranges from 0 to 99.
For each b, a ranges from 2b to 4b with a step of 2. It is a
representative task involving solving a system of linear
equations.
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Figure 2. Accuracy of Leave-Square-Out method on addition, modular addition, base addition, and linear regression. The vertical and
horizontal axes are a and b, respectively. The area inside red boxes represents the test squares. During generation, we set the model
temperature to 1 and sample 10 generations to evaluate the accuracy on each test point. We only leave one test square out in this
experiment. The square center (ak, bk) is (50, 50) for addition, base addition and linear regression and (56, 56) for modular addition.
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Figure 3. We randomly select 3 centers of test squares (ak, bk) and corresponding lengths lk ranging from 20 to 40 to see whether the
locations and the side lengths affect the case-based reasoning behavior for datasets including addition, modular addition, base addition
and linear regression. The area inside red boxes represents the test squares. We sample 10 generations at each data point and report the
accuracy. The figure shows that holes consistently appear with the locations and side lengths of the test squares varying.

Models We use GPT-2, GPT-2-medium (Radford et al.,
2019), and Llama-2-7B (Touvron et al., 2023b) in this sec-
tion. We fine-tune GPT-2 by default respectively on each
dataset for 100 epochs under different training-test splits,
with batch size set to 30 and learning rate set to 10−4.

4.2. Method

Leave-Square-Out To test whether the model is relying
on certain cases to solve the problem, we need to first locate
such cases and then remove them from the training set to see
whether they affect the model performance. Our hypothesis
is that when facing a certain test sample, transformers tend
to rely on training samples “close” to the test sample to
perform reasoning. Thus, we construct a square test set
to isolate the test samples from the training samples.
For example, suppose the square center is (ak, bk) and the
side length is lk, we construct a square test set as Tk =
{((ai, bi), ci) | ak− lk

2 ≤ ai ≤ ak+
lk
2 , bk−

lk
2 ≤ bi ≤ bk+

bk
2 }. All the remaining samples constitute the training set.

According to our hypothesis, case-based models should fail
to generate correct answers for test samples near (ak, bk),
as there are no close cases in the training set.

4.3. Appearance of Holes Verifies Case-Based Reasoning

In our study, we apply the Leave-Square-Out method to
each dataset. Specifically, we extract a square comprising
441 samples (from a total of approximately 10,000 samples)
with a side length of 20 to form our test set, leaving the
remainder as the training set. It is important to note that,
despite removing a small portion of training samples, we
ensure that all tokens present in the dataset appear in the
training set. This precaution is to prevent the models from
failing simply due to encountering unseen tokens. We then
proceed to fine-tune GPT-2 and GPT-2-medium models
using this specific training-test split for each dataset. For
comparison, we also fine-tune these models on datasets that
are randomly split, where each training set comprises 70%
of the total dataset.

Models achieve 100% accuracy easily in the random split
settings across all datasets, which suggests that the size of
training sets in the Leave-Square-Out setting (above 95% of
each dataset) is totally sufficient to complete the task. How-
ever, in the Leave-Square-Out setting, as shown in Figure 2,
there are “holes” appearing in the accuracy distribution of
the test squares over a and b. The appearance of holes in the
figure indicates that the test samples away from the bound-
ary of the training set are hard for the models to correctly
infer, while the models can easily handle the test samples
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near the boundary. This suggests that in the basic math
reasoning tasks, when faced with an unseen test case, trans-
formers rely on the surrounding training cases to predict
the answer, verifying the case-based reasoning hypothesis.
As for random split, every test sample has close training
samples to support its inference, thus reaching 100% accu-
racy. In Figure 2, we only show the results of GPT-2 on the
first four tasks; the results of GPT-2-medium and the results
of chicken & rabbit problem are shown in Appendix D.

4.3.1. DO LOCATIONS SIZE OF TEST SQUARES MATTER?

To see whether the locations of test squares affect the ex-
perimental results, we randomly select three square centers
(ak, bk) and three corresponding side lengths lk ranging
from 20 to 40 for each dataset. As shown in Figure 3, holes
consistently appear in various locations of the dataset, sug-
gesting that the model behavior of performing case-based
reasoning does not change with the location of test sets.

4.3.2. DOES THE SIZE OF TEST SQUARE MATTER?

We test on various lengths of test squares including lk set to
10, 20, 30, 40 with GPT-2 and GPT2-medium. As shown
in Figure 5, test accuracy drops with the side length of the
test square increasing. This phenomenon is natural in the
context of case-based reasoning. As the test square becomes
larger, the ratio of test samples that do not have close sup-
porting training samples becomes higher, thus decreasing
the test accuracy. Besides, it is shown in Figure 5 that GPT-
2 achieves 100% accuracy when we set lk to 10. In other
words, the hole disappears when the test square shrinks
to less than a small size where all the samples in the test
set have close training samples for the model to refer to.

4.3.3. DOES ADDING SCRATCHPAD HELP?

Nye et al. (2021) has proposed a technique of teaching mod-
els to explicitly generate intermediate computation steps
into a “scratchpad” before arriving at the final answer to
improve their math reasoning capabilities. The scratchpad
technique enables the model to decompose addition into
incremental digit-by-digit operations, potentially reducing
the model’s dependence on surrounding cases. An example
input-output pair of scratchpad is shown in the bottom left
of Figure 6 (scratchpad). We employ scratchpad fine-tuning
to examine its impact on the model’s tendency towards
case-based reasoning, specifically investigating whether the
scratchpad technique can enable transformers to perform
rule-based reasoning.

In particular, we alter the input of the addition dataset by
providing scratchpad steps of adding two numbers digit by
digit before presenting the final answer, instead of directly
providing the answer following the question. Then we per-
form Leave-Square-Out on the altered dataset with GPT-2

and GPT-2-medium. The test accuracy vs. side length re-
sults are also shown in Figure 5. In the settings where side
length of the left-out square lk ≥ 20, adding the scratch-
pad greatly boosts the model performance. However, for
lk = 10, models trained with scratchpad inputs lag behind
those trained with direct answers. Besides, the test accuracy
of models trained with scratchpad maintain relatively stable
with the increase of test square’s side length, in contrast
to the sharp decline in performance seen in models trained
with direct answers. To explain the phenomenon, we show
the test accuracy distribution over a and b of models trained
with scratchpad in Figure 4. It is clear that the model behav-
ior of relying on cases “nearby” to solve new problems has
changed. The holes shift to (a series of) triangles with their
hypotenuses along the “carry boundary” at the unit’s and
ten’s digits. For example, in the setting of lk = 20 (the sec-
ond subfigure), there are two triangle holes where the model
shows almost zero accuracy. We explain why the model
fails in each triangle and why the model succeeds in the rest
of the test set as follows. Firstly for the small triangle, the
model fails to answer questions like 47+48. 47+48 can be
decomposed into 2 steps: 7+8=5, carry 1; 4+4+1=9. As
there are no cases in the training set containing the step
of 4+4+1 in the ten’s digit, the model fails. In contrast, for
those test points that do not involve carry in the ten’s digit,
like 42+43, the model succeeds because it can learn 4+4=8
from plenty of training data. Secondly for the large triangle,
the model fails to answer 57+58. 57+58 can be decomposed
into 2 steps: 7+8=5, carry 1; 5+5+1=1, carry 1. As there are
no training cases performing 5+5 in the ten’s digit which
requires carry 1 to the hundred’s digit, the model fails.

The shapes and locations of the holes indicate that the mod-
els succeed in test cases where every step of the corre-
sponding scratchpad has appeared in the training set
and fail otherwise. This conclusion aligns with Dziri et al.
(2023) that transformers rely on seen computation subgraphs
for complex reasoning. More importantly, this phenomenon
demonstrates even scratchpad cannot teach transformers
to perform rule-based reasoning—the models still me-
chanically recite the seen unit rules, but fail to flexibly
generalize them.

4.3.4. DOES THE MODEL AND DATA SIZE MATTER?

As the emergent ability (Wei et al., 2022) suggests that the
model size is crucial to unlocking a wide range of com-
plex tasks, we first explore the effects of model size on
the reasoning mechanisms through experiments on GPT-2,
GPT-2-medium and Llama-2-7B. GPT-2 has 124M parame-
ters, and GPT-2-medium has 355M parameters. As shown
in Figure 5, when trained with direct answers instead of
scratchpads, GPT-2-medium generally outperforms GPT-2
when lk ≥ 20. On the contrary, GPT-2-medium lags behind
GPT-2 when lk = 10. Besides, when trained with scratch-
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Figure 4. Test accuracy distribution of GPT-2 trained with scratchpad in the task of addition. Note that all points in the figure are test
samples; each subfigure here corresponds to a left-out square in the original plane. From left to right, the side length of test square is set to
lk = 10, 20, 30, 40. For each test point, we sample 10 generations and show the accuracy of generating the correct answer.
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Figure 5. In the task of addition, we show the average accuracy
over all test samples (samples within the square) with side length
lk = 10, 20, 30, 40. We test four models: GPT-2, GPT-2 with
scratchpad, GPT-2-medium and GPT-2-medium with scratchpad.

pad, GPT-2-medium performs slightly better than GPT-2.
Overall, model size has a more pronounced impact on test
performance in scenarios of training with direct answers, as
opposed to training with scratchpad, probably because the
single steps in scratchpad is easier to memorize. We put the
experiments on Llama-2-7B and GPT-3.5 to Appendix E.2
and Appendix E.3. Both models show holes within the test
square, indicating that the trend of case-based reasoning still
exists.

We also study how data size affects the behavior of case-
based reasoning. We expand the range of a, b from 100 to
200 and 500, respectively. We also scale up the side length
of the test square linearly with the data range. With the
increasing of data size, the holes still appear, suggesting
that increasing the data size helps little. We show the test
accuracy distribution in Appendix E.1.

4.4. In-context Learning

Another aspect of LLMs’ reasoning ability is attributed to in-
context learning (ICL). This method draws upon knowledge
not only ingrained during the pre-training but also from spe-

cific examples supplied within the context. The underlying
mechanisms that make ICL effective are among the most
intriguing and unanswered questions in the field. We ex-
tend our investigations to ICL in Appendix C, revealing that
LLMs’ ICL reasoning ability also exhibits characteristics of
case-based learning.

5. Teaching Transformers to Do Rule-Based
Reasoning by Rule-Following Fine-Tuning

In §4, we show that transformers are performing case-based
reasoning in a wide range of math problems. However,
the case-based reasoning behavior sets strong limits to the
generalization ability of transformers. To be more specific,
based on the results in §4, transformers rely on surrounding
cases to do addition, so they naturally cannot generalize in
length by training on finite-digit addition data. In contrast,
rule-based reasoning can robustly generalize in length. In
this section, we explore how to teach transformers to do
rule-based reasoning.

We first revisit the failure of the scratchpad attempt. Despite
providing step-by-step intermediate computations, scratch-
pad fine-tuning fails to teach transformers the actually ap-
plied “rule” behind each step. This is like teaching children
addition only by showing them examples, without telling
them the rationales behind each step. Motivated by this
intuition, we propose Rule-Following Fine-Tuning (RFFT)
to explicitly teach transformers to use rules at each step.

RFFT has two steps. First, we explicitly list the rules for
solving a given task in the input. For example, in the task of
addition, we provide the code of adding two long integers
digit by digit in the input. It should be noted that there
are various ways to represent the rules, including programs,
pseudo-code, first-order logic, natural language, etc. We use
programs in this section, and explore using natural language
representations of rules in Appendix F.5. Second, we fine-
tune the model to follow the rules step by step. Specifically,
the model need to explicitly recite which rule it is using
in each step, as well as updating the intermediate variables
after applying this rule, as shown in Figure 6 right.
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input:
59+13=

output:
72

input:
Follow the code step by step to 
answer the question:
[5, 9]+[1, 3]=
def sum_digit_by_digit(num1, num2):

result=[]
carry=0
while num1 or num2:

digit1=num1.pop() if num1 else 0
digit2=num2.pop() if num2 else 0
total=digit1+digit2+carry
result.insert(0,total%10)
carry=total//10

if carry:
result.insert(0,carry)

return result

output:
num1 = [5,9]
num2 = [1,3]
1. Initialize Result and Carry
result = []
carry = 0

2. Loop Through Each Digit
```while num1 or num2:```
2.1 check the stop criterion
num1 = [5,9]
num2 = [1,3]
bool(num1) = True
bool(num2) = True
num1 or num2 = True
enter the loop
2.2 one iteration
```digit1=num1.pop() if num1 else 0```
num1 = [5,9]
bool(num1) = True
num1.pop()
num1 = [5]
digit1 = 9
```digit2=num2.pop() if num2 else 0```
num2 = [1,3]
bool(num2) = True
num2.pop()
num2 = [1]
digit2 = 3

```total=digit1+digit2+carry```
total = digit1+digit2+carry =
9+3+0 = 12
```result.insert(0,total%10)```
result = []
total%10 = 12%10 = 2
result = [2]
```carry=total//10```
carry = 12//10 = 1
2.3 back to the start of the loop
...
3. Check Remaining Carry
```if carry: result.insert(0,carry)```
result = [7,2]
carry = 0
bool(carry) = False
pass
result = [7,2]
4. Return Result
```return result```
result = [7,2]

direct answer

input:
59+13=

output:
59+13, , C:0
# added 9+3+0=2
5+1, 2, C:1
# added 5+1+1=7
+, 72, C:0

72

scratchpad

rule following

Figure 6. Examples of input-output sequence of question 59 + 13 in 3 different settings, including direct answer, scratchpad and rule
following. In the setting of rule-following, we provide the Python program of adding two numbers together digit by digit in the input, and
provide the step-by-step rule-following process in the output. Examples of the full input-output pairs are shown in Appendix I.

5.1. Experimental Setup

In this section, we use two models, Llama-2-7B and GPT-
3.5-turbo-1106. We fine-tune Llama-2-7B ourselves, and
fine-tune GPT-3.5-turbo-1106 through the OpenAI API ser-
vice. We focus on the length generalization problem of
addition of two large numbers a and b, and put additional
experiments on the task of concatenating last letters to Ap-
pendix F.7. We randomly sample a and b to construct the
training data, where the numbers of digits of a and b range
from 1 to 5, constituting about 500k samples in total for
Llama-2-7B. When fine-tuning GPT-3.5, we reduce the train-
ing set to as small as 100 samples. We expect models with
sufficient fundamental capabilities to be able to grasp rules
through only a small set of training cases, which aligns with
how humans learn calculations. During test, we randomly
generate 1,500 samples for each digit length from 1 to 9
for Llama-2-7B, and generate 500 samples for each digit
length from 6 to 15 for GPT-3.5. The digit length consid-
ers the context window size of each model. For GPT-3.5,
due to the smaller training set, we perform five independent
experiments and report the average accuracy and standard
deviation. We employ direct answer, scratchpad, and RFFT
as three fine-tuning methods for comparison. The training
details are shown in Appendix F.1.

5.2. Results and Analysis

Overall Results The results are presented in Figure 7.
Overall, rule-following significantly outperforms direct and
scratchpad. When using Llama-2-7B with Rule-Following
Fine-Tuning (RFFT), the model shows impressive gener-
alization capabilities in performing addition with 6 to 9
digits, maintaining 91.1% accuracy even with 9-digit sums.
In comparison, the scratchpad method achieves less than
40% accuracy in similar tasks. With GPT-3.5-turbo, which

possesses more advanced foundational abilities, the RFFT
method enables it to astonishingly generalize to additions
involving up to 12 digits, with still over 95% accuracy on 12-
digit addition despite seeing only 100 training samples. This
significantly surpasses the results from the scratchpad and
direct answer fine-tuning methods. These results highlight
the effectiveness of our Rule-Following Fine-Tuning tech-
nique in steering transformers towards rule-based reasoning,
showcasing its potential in enhancing model generalization.
We provide detailed ablation studies in Appendix F.2.

Error Analysis We also delve into failure cases to investi-
gate why rule-following fails to achieve a perfect general-
ization with 100% accuracy. We find that the models can
always select the right rule to execute in each step in a re-
cursive way, but sometimes make mistakes when executing
some basic operations, such as “pop”. Consider the example
“num2=[9,0,7,6,9,3,7]”; the expected output after
“num2.pop()” should be “num2=[9,0,7,6,9,3]”,
while the models in some rare cases will generate
“num2=[9,0,7,6,9]”. As the length increases (e.g.,
more than 9-digit addition), the phenomenon becomes more
severe, which could be attributed to hallucinations or the
limited long context abilities of current LLMs (Li et al.,
2023). As mentioned in Min et al. (2023), the tendency for
hallucinations grows as the length of the generated content
expands. These basic capabilities of LLMs might be the
bottleneck that limits their strict length generalization under
RFFT. It is also analogous to that we humans also tend to
make sloppy mistakes when calculating long numbers by
copying the wrong digits or forgetting to carry.

Comparison to Scratchpad Our RFFT technique pro-
vides the explicit rules in the input and also teaches LLMs
to quote the part of rules used in each step, which helps
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(a) Accuracy of Llama-7B fine-tuned with three
methods tested on addition with 1-9 digits.
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(b) Accuracy of GPT-3.5 fine-tuned with three
methods tested on addition with 6-15 digits.

Figure 7. Accuracy of Llama-2-7B and GPT-3.5-turbo fine-tuned
with direct answer, scratchpad and rule following on addition.

LLMs understand what each step is doing without having
to refer to the long preceding texts. For example, with
clear instructions “total=digit1+digit2+carry”,
an LLM knows it need to find and add these three variables
together. In comparison, scratchpad requires LLMs to learn
that the third number “0” in the formula “7+6+0=3” is the
carry from last digit, increasing the difficulty of learning.
Some example errors of RFFT and scratchpad are included
in Appendix F.4. We also discuss RFFT’s differences from
scratchpad tracing in Appendix F.5.

RFFT as a Meta Learning Ability As mentioned in §5.1,
we find that Llama-2-7B requires 150k training samples to
generalize to 9 digits while GPT-3.5 can grasp the rules and
generalize to 12 digits with only 100 samples. Thus, we
hypothesize that rule-following is a meta learning ability—
it might be “learned” through pre-training on diverse rule-
following data and transfer to new unseen domains, and the
stronger the foundation model is, the easier it can understand
and learn the rules. This also aligns with human’s ability
to learn new rules, where experienced learners often learn
much faster. To provide more evidence, we further fine-tune
a larger model Llama-2-70b than Llama-2-7b and a slightly
weaker model davinci-002 than GPT-3.5. Our results show
that stronger models indeed need less examples to learn

rules. See details in Appendix F.3.

Scratchpad vs Direct Answer We observe that GPT-3.5,
when fine-tuned with scratchpad, underperforms that with
direct answer fine-tuning, which contradicts with our intu-
ition that scratchpad is more suitable for arithmetic tasks
as well as the results observed in Llama-2-7B. This phe-
nomenon might be attributed to the different mechanisms
of addition between scratchpad and direct answer. For ex-
ample, scratchpad performs digit-by-digit addition from the
lowest digit to the highest one, while direct answer always
generates the highest digits first. Fine-tuning with scratch-
pad would strongly change the inherent addition mechanism
of the model. At the same time, integer addition is in fact
a relatively familiar task for GPT-3.5, wherein the model
exhibits some degree of addition ability even when asked
to directly generate the answer with an accuracy of 46.2%
on 15-digit addition. This makes adopting scratchpad not
always more helpful than direct answer fine-tuning. In con-
trast, RFFT explicitly interpret the step-by-step mechanism,
making learning the addition rules much easier. To further
support our hypothesis, we increase the number of train-
ing examples for scratchpad to 5,000 and observe much
improved performance. See Appendix G for details.

5.3. In-context Learning

As we discussed in §4.4, LLMs encounter difficulties in
autonomously extracting rules from ICL examples. The
subsequent inquiry pertains to the capacity of LLMs to
follow explicit rules supplied by in-context examples. Our
conclusion is that given detailed rules, LLMs have certain
abilities to follow the rules, which allows the models to
show some reasoning ability on unfamiliar tasks. However,
they do not gain a competitive edge from the rules in tasks
already familiar to them. See Appendix C.3.

6. Conclusion
In our paper, we study whether transformers are performing
“case-based reasoning” or “rule-based reasoning” when solv-
ing math problems. First, we describe the two reasoning
paradigms and show how to distinguish one from the other.
Then, we show through intervention experiments on five ba-
sic math tasks that transformers are relying on surrounding
cases to do math reasoning. To mitigate the limitations of
case-based reasoning, we propose a Rule-Following Fine-
Tuning (RFFT) framework to teach transformers to perform
rule-based reasoning by asking the model to explicitly quote
and follow the rule used in each step. RFFT outperforms
scratchpad fine-tuning by large margins, successfully en-
abling GPT-3.5-turbo fine-tuned on 1-5 digit addition to
generalize to up to 12 digit addition.
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and Carlini, N. Counterfactual memorization in neural
language models, 2023.

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The clock
and the pizza: Two stories in mechanistic explanation of
neural networks, 2023.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.,
Schuurmans, D., Cui, C., Bousquet, O., Le, Q., and Chi,
E. Least-to-most prompting enables complex reasoning
in large language models, 2023a.

Zhou, H., Nova, A., Larochelle, H., Courville, A.,
Neyshabur, B., and Sedghi, H. Teaching algorithmic
reasoning via in-context learning, 2022.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can transformers learn? a study in length general-
ization, 2023b.

Zhou, Y., Alon, U., Chen, X., Wang, X., Agarwal, R., and
Zhou, D. Transformers can achieve length generalization
but not robustly, 2024.

11

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533


Case-based or Rule-based: How Do Transformers Do the Math?

Zhu, Z., Xue, Y., Chen, X., Zhou, D., Tang, J., Schuurmans,
D., and Dai, H. Large language models can learn rules,
2023.

12



Case-based or Rule-based: How Do Transformers Do the Math?

A. Limitations
Rule-following fine-tuning (RFFT) is temporarily a task-specific method and requires carefully designed input-output
sequences. Besides, we mainly focus on fine-tuning models for specific tasks instead of exploring the reasoning mechanism
of pretrained models. There also remain further questions to be explored, for example, how various prompting techniques,
such as CoT, least-to-most prompting, and program-aided prompting, affect the model behavior of case-based reasoning or
rule-based reasoning. These questions are left for future work.

B. Collections of Hyper-parameters
We list all the hyper-parameters used in the paper in Table 1.

Models training epoch batch size learning rate

case-based reasoning
GPT-2 100 30 1× 10−4

Llama-2-7B 4 4 2× 10−5

rule-following fine-tuning
GPT-3.5 4 4 OpenAI API default value

Llama-2-7B 1 8 2× 10−5

Table 1. Hyper-parameters

C. In-context Learning
C.1. Case-based Reasoning in ICL

We have discussed two reasoning mechanism of case-based reasoning and rule-based reasoning in experiments of fine-tuning
LLMs. However, another crucial aspect of LLMs’ reasoning ability is attributed to in-context learning (ICL). This method
draws upon knowledge not only ingrained during the pre-training but also from specific examples supplied within the
context. The underlying mechanisms that make ICL effective are among the most intriguing and unanswered questions
in the field. In this section, we extend our investigations to ICL, revealing that LLMs’ ICL reasoning ability also exhibits
characteristics of case-based learning.

Because ICL is an emergent ability (Brown et al., 2020), we choose a stronger model: GPT-3.5-turbo-0125. We use the base
addition task where we randomly add two base-9 integers with 3 digits. The adopted GPT-3.5 can rarely solve the task only
with a task description, making sure that the investigated reasoning power comes from ICL. See the zero-shot results in
Appendix C.2.

To study whether ICL reasoning relies on rules or similar cases in the context, we randomly collected pairs of base-9 integers
whose zero-shot addition accuracy is less than 20%. Then, we provide 10 few-shot examples with the correct answers
for each pair of integers, five of which are randomly selected (called random group), and another five are obtained by
simultaneously replacing only one digit of the pair (thus are considered as more similar examples than the first five, and
called similar group). Scratchpad is used in each few-shot example to provide step-by-step intermediate results. We choose
the 14 test samples where the improvement with few-shot examples is more than 80%.

To determine the contribution of each example, we adopt an intervention experiment similar to §4.2 where we mask some
in-context examples from either the similar group or the random group and compare the accuracy drop. Considering the
interaction between individual examples, we choose to traverse all mask possibilities within a group instead of masking only
one example. For example, for the similar group, we will have 25 − 1 = 31 possible masks (excluding the empty mask).
Specifically, we measure the contribution of the i-th in-context example as

ci =

( ∑
m∈M

1{i ∈ m} · accum − accuorig

accuicl − accuorig

)/
Ni ,

where accuorig, accuicl and accum represent the accuracy without few-shot examples, with all examples and with non-
masked examples, respectively. M is the mask set that contains all possible combinations in the random and similar group.
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Figure 8. The contribution of similar and random ICL examples in 14 tests. For contribution in each experiment, the contribution of
similar examples is significantly larger than that of random ones.

Ni is the number of masks that contain i (which is a constant 16). We report the contribution of similar and random examples
to the 14 test samples in Figure 8. The contribution of the similar group is significantly greater than that of the random
group in all experiments, with the p-value of 14 average values < 0.001.

These results suggest that the model relies more on directly discovering shortcuts from similar cases rather than summarizing
the reasoning rules of the task. This phenomenon seems contrary to some previous views on ICL which point out that
the contribution of in-context examples lies mainly on hints about “tasks” and “domains” rather than specific functions,
implying a more rule-based method. We believe the difference comes from the basic capacity of LLMs to solve the task. For
some tasks where LLMs have captured the essential reasoning abilities, ICL examples may help them “recall” the task so
that the model can benefit from even some dissimilar examples. In contrast, when the model is unfamiliar with the task, it is
difficult to solve the problem through recalling the pre-training knowledge. In this case, only similar examples can improve
model performance by providing more direct shortcuts. In a word, our experiments suggest that it may not be possible to
expect the model to extract rules that were not obtained during the pre-training phase by summarizing ICL examples.

C.2. Zero-shot Results

Base addition is an “unfamiliar” task that the model cannot solve without few shot examples. To show it, we test GPT-3.5-
turbo-0125 with 100 pairs of base 9 integers with 3 digits. We use the system message as “You are a helpful assistant to
solve arithmetic problems. You will be provided with two base 9 integers and you need to return the sum of the two integers
in base 9.” the user message as “ Int a: a; Int b: b.” The model can happen to generate the correct answer by summing two
numbers in base 10. For example, 236+321, which is equal to 557 in either base 10 or base 9. So we also test the model on
the test set where these easy samples are removed. The results is shown in Table 2.

Task 0-shot base addition 0-shot base addition (hard)

Accuracy 8.8%± 10.5% 8.0%± 10.0%

Table 2. Zero-shot accuracy of GPT-3.5-turbo on base addition

C.3. Rule Following Ability from In-context learning

C.3.1. ADDITION

We first conduct experiments on a the standard base-10 addition, which is familiar to GPT-3.5. Utilizing the GPT-3.5-turbo-
0125 model, for the maximal digit length among these two integers from 1 to 10, we randomly selected 100 pairs of integers
respectively. Each test pairs repeat 5 computations to obtain the average accuracy. We provided identical in-context examples
for all inputs, consisting of 5 examples with a maximum length of 5 digits. These in-context examples are presented in
direct, scratchpad, and rule-following formats. The accuracy of each digit under these three formats is illustrated in Figure 9
left. Rule-following prompting lags behind directly asking the model to generate the answer. This may be because the model
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may find shortcuts to do addition as it has been trained on a huge corpus containing various addition calculations.
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Figure 9. In-context learning performance on addition task (left) and base addition task (right).

C.3.2. BASE ADDITION

Then, we test the performance on the base-9 addition task. Here we provides 5 examples with maximal digits 5 in direct
answer, scratchpad and rule-following format, shown in Figure 9 right. On this task, rule-following still shows good
performance, but the performance of direct and scratchpad is greatly reduced, compared to addition task. This shows that
in both direct and scratchpad prompt modes, the model still relies heavily on its basic capabilities. Therefore, the rule
following method is particularly suitable for complex and unfamiliar tasks. This kind of detailed and clear rule guidance
helps the model quickly master a certain degree of reasoning with little knowledge of the corresponding task, but for tasks
where the model has learned some shortcuts, it may not help performance. The shortcut learned in the pre-training stage
cannot help each other with the rules in ICL. Therefore, on the latter task, if you want the model to follow the rules for
reasoning, finetuning is necessary.

D. Additional Results of Leave-Square-Out
Chicken & rabbit problem We show the results of leaving test squares out of the datasets chicken and rabbit problem in
Figure 10. We experiment on two models including GPT-2 and GPT-2 Medium. The center and the length of the test square
in the experiment of leaving 1 square out is (70, 50), lk = 20. The lengths of the test squares in the experiment of 3 holes
are randomly sampled in [10, 30).
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Figure 10. Accuracy distributions of GPT-2 and GPT-2 Medium on chicken & rabbit problem.
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GPT-2 medium We show the results of performing Leave-Square-Out on GPT-2 Medium on datasets including addition,
modular addition, base addition and linear regression in Figure 11 (leaving 1 square out) and Figure 12 (leaving 3 square
out). Besides, we show the results of leaving a square out on GPT-2 Medium trained on input-output pairs containing
scratchpads in Figure 13.
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Figure 11. Accuracy of leaving a test square of length lk = 20 out on GPT-2 Medium.
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Figure 12. Accuracy of leaving 3 test squares out on GPT-2 Medium.
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Figure 13. Test accuracy of GPT-2 Medium trained on input-output pairs containing scratchpads on the task of addition.

Training curve We show the training loss of GPT-2 and GPT-2 medium in the Leave-Square-Out experiments in Figure 14.

Besides, to have a clearer look into the training process, we conduct Leave-Square-Out experiments by fine-tuning GPT-2
on the addition task for 1, 2, 3,..., 10, 20, 30,..., 100 epochs, respectively. The results are in Figure 15. The center of the test
square (ak, bk) is set to (50, 50), and the length lk is 20. During generation, we set the model temperature to 1 and sample
10 generations to evaluate the accuracy on each test point.

The results show that after the model’s training loss is lower than a certain value (after epoch 4), the model exhibits obvious
case-based reasoning behavior (holes appear in the test square). In the earlier epochs like epoch 1 and 2, the training has not
saturated, thus both training and test accuracy are extremely low, which also indicates the necessity of fine-tuning for such
tasks.

GPT-2 trained from scratch We additionally experiment on GPT-2 trained from scratch on the task of base addition
to see how the process of pre-training affects the reasoning mechanism. We show the results of leaving one test square
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Figure 14. Log training loss of GPT-2 and GPT-2 medium in the Leave-Square-Out experiments.
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Figure 15. Model performance of GPT-2 fine-tuned after different num of epochs on the whole addition dataset. The area inside the red
box represents the test square.
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with length lk = 20 and center (50, 50) out in Figure 16. Besides, we conduct the experiments of training the model in
the random-split setting with training set accounting for 70% of the whole dataset. The model can achieve more than 98%
accuracy on the test set in the random-split setting. As shown in Figure 16, there is a black hole in the test square, suggesting
the behavior of case-based reasoning is still obvious when we directly train the model from scratch. Besides, we observe in
the training process that the training loss converges much more slowly than in the setting of fine-tuning a pre-trained model.
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Figure 16. Accuracy of GPT-2 trained from scratch on the task of base addition when we leave a test square out. The center and the length
of the test square is (50, 50), lk = 20

Considerations for class imbalance As some may worry that the method of leaving a test square out may cause data
imbalance, thus confusing the model, we conduct an additional experiment to study the effect of class imbalance issue by
upsampling those numbers that originally occur less in the training set of the addition task, thereby maintaining a balanced
distribution of numbers and digits in the new training set. In Figure 17, we show the digit frequency before and after
upsampling. It shows that both the numbers and digits are balanced after upsampling.

Then, we fine-tune the model on this updated training set and repeat the experiment of Figure 2. The new results are
illustrated in Figure 18. As we can see, the hole still appears, demonstrating the behavior of case-based reasoning. This
indicates that class imbalance is not a confounder of our results.

Besides, we also show the frequency of number a in the original training set in Figure 17. It should be noticed that our
original training set is not a dataset with extreme data imbalance, as we only leave 20 out of 100 samples of certain numbers.

E. Ablations for Leave-Square-Out
E.1. Ablation for Data Size

To explore the effects of datasize on the model behavior, we conduct experiments of Leave-Square-Out on the task of
addition of different range of a, b, including [0, 100), [0, 200), [0, 500). Correspondingly, we scale up the length of test
square to be lk = 20, 40, 100 respectively. We use GPT-2 and use the same hyper-parameters in each dataset. We train the
model with 100 epochs, batch size set to 30 and learning rate set to 10−4. The results are shown in Figure 19. Holes can still
be observed in the setting where a, b ∈ [0, 500) (the dataset scales up 25 times), suggesting that the models are still doing
case-based reasoning when the data size scales up.
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Figure 17. The frequency of numbers a and b, the frequency of unit digits and tens digits of a and b, and the frequency of digits in both a
and b. We show the digit frequency after upsampling with blue histograms and that before upsampling with orange histograms.
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Figure 18. Performance of fine-tuned GPT-2 on addition after upsampling.
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Figure 19. Test accuracy of models trained on addition of different data size.

E.2. Ablation for Model Size: Llama-2-7B

To show the effects of model size on case-based reasoning, we conduct experiments on Llama-2-7B on the task of base
addition because Llama-2 has already learned addition to a some degree. To further eliminate the effect of pre-training, we
train the model from scratch instead of fine-tuning.

We maintain the same data size as GPT-2, i.e., setting the range of a and b to [0, 100) and leave out a test square with center
(50, 50) and side length lk = 20. Despite this, the test accuracy in the Leave-Square-Out setting is 30.2%, far lower than the
random split accuracy. As the comparison, the test accuracy in the random split setting reaches 92%. There are still holes in
the accuracy distribution of the test squares, as shown in Figure 20(a).

Note that different from GPT-2, the test accuracy in the random split setting cannot reach 100% even after training for 500
epochs where training loss has almost converged, suggesting overfitting. In light of this, we also conduct an experiment
where we correspondingly enlarge the range of a and b to [0, 700) with the side length of test square lk = 140 and center
(350, 350), forming a training set accounting for about 96% of the whole dataset. We first conducted the experiment in the
random-split setting with 70%-30% training-test ratio and verified the model can reach 100% accuracy. Then we perform
the Leave-Square-Out experiment. Figure 20(b) shows the results. The model still demonstrates significant case-based
reasoning behavior by failing to answer a large portion of test samples. This indicates that the trend of case-based reasoning
still exists when the model scales up. Furthermore, we also plot it with base-9 coordinates in Figure 20(c), which shows a
highly structured pattern possibly related to the task structure. Here, we provide a preliminary analysis in Appendix E.2,
leaving a more in-depth exploration for future work.
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Digit Length 4-digit 5-digit 6-digit

Accuracy 91.88% 74.14% 51.46%

Table 3. Performance of Fine-tuned Llama-2-7b on OOD samples of base addition. We test 5,000 samples.
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Figure 21. Performance of Llama-2-7B fine-tuned on base-9 addition.

Fine-tuning or train from scratch? Also, we conduct experiments of fine-tuning pretrained Llama-2-7B on base-9
addition. The results are shown in Figure 21.

Firstly, we observe that the results are indeed different from training from scratch. There are no obvious holes in the test
square. Instead, model performance drops in areas of anti-diagonals of both training and test regions.

Admittedly, the results do not provide evidence for case-based reasoning, however, it does not necessarily indicate that the
model is performing rule-based reasoning either. The reasons are as follows:

1. It is possible that the left-out square are not really the dependent cases for pretrained Llama-2-7B on this task.
Our hypothesis that surrounding cases are the dependent cases may not hold for this setting. It is possible that other
training/test spliting method can reveal case-based reasoning behavior again.

2. There might be data leakage during pretraining. Without considering data leakage, pretraining may still have introduced
strong biases that happen to suit base addition well, making the model generalize to most parts of the test square. It
should be noticed that introducing biases is essentially different from enhancing the model’s foundamental reasoning
abilities or equipping it with the ability to perform rule-based reasoning after fine-tuning, because the biases may
only suit some specific tasks or representations, rather than uniformly helping models to learn rules for different
tasks/representations (as will be discussed in the following base-9 addition with exotic digits experiment).

3. We test the fine-tuned model on OOD samples involving 4/5/6 digits. The results are listed in Table 3. The results
indicate that the model at least does not learn rules that can generalize across different lengths. In other words, the
model might learn some shortcuts working on same-length samples, but fail to learn the most faithful base addition
rules that allows for length generalization.

To further investigate the reasoning mechanism of pretrained Llama-2-7B and mitigate the risk of data leakage, we alter
the representations of base-9 numbers and fine-tune Llama-2-7B on the new and more challenging task. Specifically, we
replace the digits 0-8 with letters A-I to create a counterfactual dataset which has little chance to have been exposed to the
pretrained model. For example, we replace “1+8=10” with “B+I=BA”. We call the new task with replaced digits base-9
addition with “exotic digits”.
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Figure 22. Performance of fine-tuned Llama-2-7B on base-9 addition with exotic digits. The area inside the red box represents the test
square.

For Llama trained from scratch, there should be nearly no distinction between these two representations if we ignore
tokenization differences. For fine-tuned Llama, if it relies on a systematic mechanism to induce rules from examples, it
should be able to learn these rules regardless of whether native digits or exotic digits (i.e. A-I letters) are used. However, the
test performance and accuracy distribution reveal significant discrepancies from the native-digit setting, despite the training
still achieves close to 100% accuracy. We show the new accuracy distribution in Figure 22.

As we can see, after using letter representations for base-9 numbers, there is a hole in the test square, demonstrating
case-based reasoning behavior. This might indicate that the large-scale pretraining does not equip models with systematic
and general rule-learning abilities. Instead, it is more likely that pretraining introduces biases suitable only for certain tasks
and representations, enabling certain degree of generalization.

In conclusion, we first fine-tune pretrained Llama on regular base addition and the model performance drops in anti-diagonal
areas but shows no holes, demonstrating different patterns from training from scratch. However, the phenomenon does not
necessarily indicate that the model is performing rule-based reasoning. To dig deeper, we change the representations of
digits into exotic letters and fine-tune Llama on the new task, which shows clear evidence of case-based reasoning. This
suggests that the reasoning behavior of LLMs can be highly dependent on the input representations. Besides, large-scale
pretraining seems not equip the model with the ability of systematic rule learning that can adapt to various representations.

Error analysis of Llama-2-7B on base addition In the experiment of training larger model Llama-2-7B on base-9
addition task as described in Appendix E.2, we find that there is still a hole in the test set, indicating that even if the models
scale up, they struggle to learn to perform rule-based reasoning. Furthermore, we conduct a more detailed analysis. We
observed the model usually generates wrong answers when both “a” and ‘b” input values had hundreds of digits of “4”. For
instance, the model can correctly output “400 + 388 = 788”, however, it failed when presented with “400 + 400”, generating
the output as “500”. It appears to draw from the “closeness” between 400 and 388, failing to grasp the difference of 1 in
base-9 as opposed to a difference of 12 in base-10, resulting in an erroneous output. Moreover, for the sequences “400+401
=”, “400+402 =”, and “400+403 =”, the model output “501”, “502”, “503” respectively. These findings suggest that the
model relies heavily on the context of closely related cases for its calculations rather than utilizing rule-based reasoning.

E.3. Ablation for Model Size: GPT-3.5-turbo

To verify whether the conclusions are consistent for larger models, we conduct additional experiments on GPT-3.5-turbo. To
be more specific, we choose the task of base-9 addition (less likely to appear in pre-training corpus than addition) and leave
a test square with center (ak, bk) = (350, 350) and length lk = 300 (accounting for 18.5% of the whole dataset) out of the
whole dataset with a ∈ [0, 700), b ∈ [0, 700). We fine-tune GPT-3.5 for 1 epoch with batch size set to 80.

The training and test accuracy distribution of the fine-tuned model is shown in Figure 23. Due to the limited budget, we
randomly sample 20% datapoints out of the test set and 10% datapoints out of the training set to do inference. For each
sample, we perform single generation with model temperature set to 0. As we can see from the figure, there is still a “hole”
in the test square, demonstrating case-based reasoning behavior.
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Figure 23. The training and test accuracy distribution of fine-tuned GPT-3.5-turbo on base-9 addition. The area inside the red box
represents the test square. The figure needs to be scaled up to see the light pink samples that are correctly answered.

Training Accuracy (square) Test Accuracy (square) Test Accuracy (random)

0.9999 0.9751 0.9998

Table 4. The left two columns shows training and test accuracy of GPT-3.5 fine-tuned in the Leave-Square-Out experiments. The rightmost
column shows test accuracy of the model fine-tuned in the random-split setting.

More specifically, we list train/test accuracy in the Leave-Square-Out experiment and test accuracy in the corresponding
random-split setting in Table 4. In the random-split experiment, the training set accounts for 70% of the dataset, while in
the Leave-Square-Out experiment, the training set accounts for 81.5% of the whole dataset. As can be seen in the table,
although test accuracy (square) is high (∼97.5%), there are still gaps from training accuracy (square) (∼100%) and test
accuracy (random) (∼100%). In other words, despite using more training data in the leave-square-out experiment, the test
accuracy cannot saturate like that in the random-split experiment. In Figure 23, we show the samples where the model
generates wrong answers with black points (corresponding to the accuracy gap) to highlight the “hole” area where the
model’s performance drops. This indicates that there is still a small area where the model is relatively easy to fail, and
the ability to perfectly solve the test cases in this specific area relies on training on the test square. This exactly implies
case-based reasoning. Nevertheless, the hole is not as large as those in the experiments of smaller models, indicating that
stronger LLMs might have better capability to leverage longer-dependency cases so that most cases in the test square may
still find some dependent cases in the training set.

F. Training Details and Additional Results of Rule-following Finetuning
F.1. Training Details of Rule-following Finetuning

When fine-tuning Llama, we use the same hyper-parameters for each of three different settings, excluding the
model max length varied to 64, 512, and 4096 for direct, scratchpad and rule-following. To be more specific, we train the
models with 1 epoch, 8 batch sizes, a dropout rate of 0.05 and a learning rate of 2e-5, saving the best model at the last step.
We use greedy decoding in the inference stage to generate output with a temperature of 0.

When finetuning GPT-3.5-turbo, we use a training set of 100 samples and train the models with OpenAI API with 4 epochs,
4 batch sizes.
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Model 6 digit 7 digit 8 digit 9-digit

Llama-2-7b 99.6 99.4 96.2 90.1
Llama-2-70b 99.3 97.8 97.0 89.8

Table 7. Accuracy of fine-tuned Llama-2-7b and Llama-2-70b on 6-9 digit addition task

input: 687042+86208=

model output: 687042+86208,,C:0
68704+8620,0,C:1 # added 2+8+0=0
6870+862,50,C:0 # added 4+0+1=5
687+86,250,C:1 # added 0+2+0=2
68+8,4250,C:1 # added 7+6+1=4
6+,74250,C:1 # added 8+8+1=7
+,774250,C:0 # added 6+0+1=7
774250

Table 5. The generation of fine-tuned Llama-2-7B with scratchpad

input: 496943+2382=

model output: 496943+2382,,C:0
49694+238,6,C:0 # added 4+2+0=6
4969+23,26,C:1# added 4+8+0=2
496+2,326,C:1 # added 9+3+1=3
49+,9326,C:0 # added 6+2+1=9
4+,99326,C:0 # added 9+0+0=9
+,499326,C:0 #4+0+0=4
499326

Table 6. The generation of fine-tuned Llama-2-7B with scratchpad

F.2. Ablation Study of RFFT

We conduct ablation studies of 5 modules of RFFT, including: 1. process: simplify the process of each iteration (addition of
each digit), outputting multiple lines of code in one step; 2. variable: skip recalling relevant variables before executing each
line of code; 3. rule: remove rules from the input (but still requires reciting the used rule in each output step); 4. caption:
remove natural language instructions such as ”1. Initialize Result and Carry” from the output which correspond to comments
in the code; 5. cite: remove line-by-line recitation of the code from the output.

It is shown in Figure 5 that the model’s performance deteriorates significantly when removing cite and caption components,
especially cite. Both of the modules aid the model in recalling rules. Variable also has some performance impact as it helps
the model reduce its reliance on distant text. On the contrary, process and rule do not have a significant impact, and in
some cases, there is even a performance improvement. This may be because reducing the context length is beneficial for the
model so that it can put more strength on rule execution, and an extremely detailed guidance in step-by-step rule-following
(process) is not necessary for this task. In conclusion, reciting the rule used in each step and reminding LLMs what the
current step is doing is crucial for RFFT’s success, while there maybe room for simplifying the rule representation and
execution, which is left for future research.
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Figure 24. Ablations for RFFT.

F.3. Rule-following as a Meta Learning Ability
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Figure 25. Accuracy of GPT-3.5 and davinci-002 fine-tuned with RFFT on addition with 6-15 digits

We fine-tune a larger model Llama-2-70b than Llama-2-7b and a slightly weaker model davinci-002 than GPT-3.5. For
Llama-2-70b, we reduce the training set to 20k samples, smaller than 150k used in Llama-2-7b but achieve comparable
results to Llama-2-7b as shown in Table 7. For davinci-002, we use the same data size as GPT-3.5 and Figure 25 shows that
davinci-002 can achieve up to 8 digits generalization, worse than GPT-3.5. These results indicate that models with more
advanced foundational abilities can achieve better length generalization after applying RFFT, even with small data, revealing
that RFFT might be a meta learning (learning to learn) ability. Through more advanced pre-training, models might have
“learned” the rule following ability so that a few examples are enough to learn a new task.

F.4. Failure Cases of RFFT and Scratchpad

F.4.1. SCRATCHPAD

As discussed in Section 5.2, scratchpad struggles to learn the rationales behind each step without explicitly providing rules.
We offer two failure examples in Table 6 and 5. Specifically, the model makes mistakes at the “# added 4+2+0=6” step,
indicating that it fails to locate the rightmost digit of the first number. Besides, the table 5 shows that the model cannot
correctly compute the carry C. These issues are likely due to the model cannot comprehend the principle behind the ’added’
step. In contrast, when rules are clearly provided, the model is better equipped to understand the rationale and perform the
rule-following process, thereby reducing the difficulty in the learning process.

F.4.2. RFFT

Although RFFT can teach transformers to do rule-based reasoning, the basic capabilities of LLMs might limit their strict
generalization, leading to occasional errors during some basic operations. Refer to Table 8. We observe that the model fails
to output the correct digit popped out, resulting in its eventual incorrect answer.
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F.5. Rule-following with Code Representations and Natural Language Representations

We offer two types of rule-following input-output sequences including code representations and natural language representa-
tions to show that rules can be of various formats. We provide examples of full input-output sequences for reference in
Appendix I. The results are shown in Figure 26.

Besides, we will discuss the difference of our work from previous work Nye et al. (2021) which teaches LLMs to execute
code (which they call scratchpad tracing) as follows. Our RFFT aims at teaching LLMs to follow explicitly provided
rules to reason rather than to execute programs like an interpreter. We show in Figure 26 that rule can be of various forms
including programs and natural language. Besides, we provide detailed natural language instructions in the rule-following
input-output sequences with code representations. We expect the instructions may help LLMs to recall knowledge learned in
the pre-training corpus.
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Figure 26. Test accuracy of GPT-3.5-turbo fine-tuned on 1-5 digit addition. We train the model in 4 different settings. The full input-output
pair can be found in Appendix I.

F.6. Comparing RFFT with Scratchpad Tracing

We propose the technique of RFFT in §5, which instructs LLMs to follow rules of various forms. In §5, we use rules
represented by programs; in Appendix F.5, we provide another option of rules represented by natural language. A related
work Nye et al. (2021) introduces a method of fine-tuning LLMs to predict the program execution trace line by line, called
“scratchpad tracing”. We here state the difference between scratchpad tracing and our RFFT with programs as rules: 1)
we provide the detailed execution process of each line of the code instead of directly giving the value of variables after
line-by-line execution, through which we decompose each step of execution in a more fine-grained way; 2) we provide
natural language instructions or the rationales behind each step to help the LLMs to understand the execution steps, for
example “1. Initialize Result and Carry”, “2. Loop Through Each Digit”, etc. In summary, RFFT with programs teaches
LLMs to execute code in a more human-readable way, simulating how human read, understand, and execute the code in
their mind, while scratchpad tracing directly predicts program traces using raw machine formats.

To further demonstrate the effectiveness of our technique, we use scratchpad tracing to fine-tune GPT-3.5-turbo-1106 on the
addition task. We still maintain the same data size and training parameters as RFFT, i.e., 100 training samples with 4 epochs
and batch size of 4. The full input-output pair is provided in Appendix I. Considering the expensive cost with OpenAI
API, we generate 100 test samples for each digit length and perform three independent experiments and report average
accuracy and standard deviation. We show the results of RFFT and scratchpad tracing in Figure 27. RFFT significantly
outperforms scratchpad tracing. The results show that the detailed execution process of each line of code and natural
language instructions enhance the model’s rule learning ability and improve length generalization.

F.7. RFFT on Other Tasks

Besides addition shown in §5, we conduct experiments of RFFT on two additional tasks including base-9 addition and last
letter concatenation. Last letter concatenation is introduced in Wei et al. (2023). In the task, the model is asked to concatenate
the last letters of words. We choose the words from top one-thousand last names from https://namecensus.com/.

We fine-tune GPT-3.5-turbo-1106 with a training set of 100 samples of 1-5 digit base addition or of concatenating the last
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Figure 27. Results of RFFT and scratchpad tracing on addition.
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Figure 28. Results of direct, scratchpad and RFFT on base addition (left) and last letter concatenation (right).

letter of 1-5 words respectively for two tasks. We train the models with OpenAI API with 4 epochs, 4 batch sizes like in
Appendix F.1. Then, we test the model on test samples of 6-15 length. We list the full prompt for last letter concatenation in
Appendix I.2, as the prompt for base addition is basically the same as that for addition.

The results are shown in Figure 28. RFFT outperforms the method of direct answer and scratchpad significantly, showing
that RFFT enhances the model ability of following given rules to solve problems.

G. Scratchpad vs Direct Answer on Addition
We increase the number of training samples for scratchpad to 5,000 on the task of addition with GPT-3.5-turbo. In detail, we
average the results over 3 models fine-tuned for 1 epoch respectively. We use a test set of 100 samples. As is shown in
Figure 29, scratchpad with 5,000 training samples outperforms direct answer with 100 samples but is still worse than RFFT
with 100 samples.
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Figure 29. Results of direct answer with 100 training samples, scratchpad with 100 and 5,000 training samples respectively.

H. Experiments of Grokking
Nanda et al. (2023); Zhong et al. (2023) have claimed that transformers can learn systematic rules to solve modular addition.

They show through experiments that transformers are embedding numbers as angles (points on the unit circles) and complete
modular additions by operating on trigonometric functions of the angles. We perform the Leave-Square-Out method in
the same settings as in Zhong et al. (2023). The only change is the training-test data split. Specifically, the task is a+ b
mod 59 =, a ∈ [0, 58], b ∈ [0, 58]. We leave a square test set of side length lk = 16 (8% of the whole set) out and train 5
transformers with the same setting, while Zhong et al. (2023) split the dataset randomly with training set accounting for 80%
of the whole dataset. We show that holes still appear, indicating that even such ability to learn the systematic algorithms and
apply them to unseen samples rely severely on seeing similar cases. We describe the experiment in detail as follows.

The task is a+ b mod 59 =, a ∈ [0, 58], b ∈ [0, 58]. We leave a test square of length lk = 16 and center (29, 29) out. Our
training set accounts for about 92% of the whole dataset while the training set accounts for 80% in Zhong et al. (2023).
The model can achieve 100% accuracy when the dataset is randomly split with training set accounting for 80%. This
shows that the size of our training set is entirely sufficient for the model to solve the problem. Besides, we use the same
hyper-parameters and model settings as given in the code of Zhong et al. (2023). We list them in Table 9.

The results are shown in Figure 30. There are holes in the test square, indicating that the model can not perform well in the
test square. This shows that even in the settings where grokking happens, the ability to learn the systematic rules and apply
it to test samples may still rely on seeing similar cases.
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Figure 30. Accuracy distribution of the whole dataset when we leave a test square out. The test square is of length lk = 16 and center
(29, 29). We repeat the experiment for 5 times with the same settings.
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epoch 20000
batch size 3481

learning rate 0.001
weight decay 2.0

model dimension 128
n head 4
n layer 1

Table 9. Hyperparameters and model details of the experiments of grokking.

I. Full Input-Output Sequences
In this section, we list the full input-output pairs used in §5 and in Appendix F.7.

I.1. Addition

We list the input-output sequences of addition as follows.

Direct answer We list an example of the input-output sequences for direct answer in Table 10.

Scratchpad We list an example of the input-output sequences for scratchpad in Table 11.

Scratchpad tracing We list an example of the input-output sequences for scratchpad tracing Table 12.

Rule-following We list an example of the input for rule-following in Table 13 and an example of the output in Table 14.

Rule-following with natural language representations We list an example of the input for rule-following with NL
representations in Table 19 and an example of the output in Table 20.

I.2. Last letter concatenation

We list the input-output sequences of last letter concatenation as follows.

Direct answer We list an example of the input-output sequences for direct answer in Table 15.

Scratchpad We list an example of the input-output sequences for scratchpad in Table 16.

Rule-following We list an example of the input for rule-following in Table 17 and an example of the output in Table 18.
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input: Follow the code step by step to answer the ques-
tion:
[7, 8, 5, 3]+[8, 6, 8, 8, 1, 0]=
def sum digit by digit(num1, num2):

# Initialize the result list and carry
result=[]
carry=0
...

model output: num1=[7, 8, 5, 3]
num2=[8, 6, 8, 8, 1, 0]
1. Initialize Result and Carry
result=[]
carry=0
2. Loop Through Each Digit
‘‘‘
while num1 or num2:
‘‘‘
2.1 check the stop criterion
num1=[7,8,5,3]
num2=[8,6,8,8,1,0]
bool(num1)=True
bool(num2)=True
num1 or num2=True
enter the loop
2.2 one iteration
‘‘‘
digit1=num1.pop() if num1 else 0
‘‘‘
num1=[7,8,5,3]
bool(num1)=True
num1.pop()
num1=[7,8,5]
digit1=3
...
result=[3]
‘‘‘
carry=total//10
‘‘‘
carry=3//10=0
...
2.2 one iteration
‘‘‘
digit1=num1.pop() if num1 else 0
‘‘‘
num1=[7,8,5]
bool(num1)=True
num1.pop()
num1=[7,8]
digit1=5

‘‘‘
digit2=num2.pop() if num2 else 0
‘‘‘
num2=[8,6,8,8,1]
bool(num2)=True
num2.pop()
num2=[8,6,8,8]
digit2=8
‘‘‘
total=digit1+digit2+carry
‘‘‘
total=digit1+digit2+carry=5+8+0=13
‘‘‘
result.insert(0,total%10)
‘‘‘
result=[3] total%10=13%10=3 result=[3,3]
carry=13//10=1
...
2.3 back to the start of the loop
‘‘‘
while num1 or num2:
‘‘‘
2.1 check the stop criterion
num1=[]
...
num1 or num2=False
end the loop
3. Check Remaining Carry
‘‘‘
if carry:

result.insert(0, carry)
‘‘‘
result=[8,7,6,7,3,3]
carry=0
bool(carry)=False
pass
4. Return Result
‘‘‘
return result
‘‘‘
result=[8,7,6,7,3,3]

Table 8. The generation of fine-tuned Llama-2-7B with RFFT.
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input: 7+6=

output: 13

Table 10. Input-output sequence for direct answer on addition.

input: 7+6=

output: 7+6,,C:0
# added 7+6+0=3
+,3,C:1
# added 0+0+1=1
+,13,C:0
13

Table 11. Input-output sequence for scratchpad on addition.
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input: def sum digit by digit(num1, num2):
result=[]
carry=0
while num1 or num2:

digit1=num1.pop() if num1 else 0
digit2=num2.pop() if num2 else 0
total=digit1+digit2+carry
result.insert(0,total%10)
carry=total//10

if carry:
result.insert(0, carry)

return result

output = sum digit by digit([7, 3], [4, 8])

output: state: {}
line: def sum digit by digit(num1, num2):
state: {‘sum digit by digit’: ‘<callable object sum digit by digit>’}
line: result=[]
state: {‘num1’: [7, 3], ‘num2’: [4, 8], ‘result’: []}
line: carry=0
state: {‘num1’: [7, 3], ‘num2’: [4, 8], ‘result’: [], ‘carry’: 0}
line: while num1 or num2:
state: {‘num1’: [7, 3], ‘num2’: [4, 8], ‘result’: [], ‘carry’: 0}
line: digit1=num1.pop() if num1 else 0
state: {‘num1’: [7], ‘num2’: [4, 8], ‘result’: [], ‘carry’: 0, ‘digit1’: 3}
line: digit2=num2.pop() if num2 else 0
state: {‘num1’: [7], ‘num2’: [4], ‘result’: [], ‘carry’: 0, ‘digit1’: 3, ’digit2’: 8}
line: total=digit1+digit2+carry
state: {‘num1’: [7], ‘num2’: [4], ‘result’: [], ‘carry’: 0, ‘digit1’: 3, ‘digit2’: 8, ‘total’: 11}
line: result.insert(0,total%10)
state: {‘num1’: [7], ‘num2’: [4], ‘result’: [1], ‘carry’: 0, ‘digit1’: 3, ‘digit2’: 8, ‘total’: 11}
line: carry=total//10
state: {‘num1’: [7], ‘num2’: [4], ‘result’: [1], ‘carry’: 1, ‘digit1’: 3, ‘digit2’: 8, ‘total’: 11}
line: while num1 or num2:
state: {‘num1’: [7], ‘num2’: [4], ‘result’: [1], ‘carry’: 1, ‘digit1’: 3, ‘digit2’: 8, ‘total’: 11}
line: digit1=num1.pop() if num1 else 0
state: {‘num1’: [], ‘num2’: [4], ‘result’: [1], ‘carry’: 1, ‘digit1’: 7, ‘digit2’: 8, ‘total’: 11}
line: digit2=num2.pop() if num2 else 0
state: {‘num1’: [], ‘num2’: [], ‘result’: [1], ‘carry’: 1, ‘digit1’: 7, ‘digit2’: 4, ‘total’: 11}
line: total=digit1+digit2+carry
state: {‘num1’: [], ‘num2’: [], ‘result’: [1], ‘carry’: 1, ‘digit1’: 7, ‘digit2’: 4, ‘total’: 12}
line: result.insert(0,total%10)
state: {‘num1’: [], ‘num2’: [], ‘result’: [2, 1], ‘carry’: 1, ‘digit1’: 7, ‘digit2’: 4, ‘total’: 12}
line: carry=total//10
state: {‘num1’: [], ‘num2’: [], ‘result’: [2, 1], ‘carry’: 1, ‘digit1’: 7, ‘digit2’: 4, ‘total’: 12}
line: if carry:
state: {‘num1’: [], ‘num2’: [], ‘result’: [2, 1], ‘carry’: 1, ‘digit1’: 7, ‘digit2’: 4, ‘total’: 12}
line: result.insert(0, carry)
state: {‘num1’: [], ‘num2’: [], ‘result’: [1, 2, 1], ‘carry’: 1, ‘digit1’: 7, ‘digit2’: 4, ‘total’: 12}
line: return result
state: {‘sum digit by digit’: ‘<callable object sum digit by digit>’, ‘output’: [1, 2, 1]}

Table 12. Input-output sequence for scratchpad tracing on addition.
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input: Follow the code step by step to answer the question:
[7]+[6]=
def sum digit by digit(num1, num2):

# Initialize the result list and carry
result=[]
carry=0
# Loop through each digit
while num1 or num2:

# Get the current digits, defaulting to 0 if one number is shorter
digit1=num1.pop() if num1 else 0
digit2=num2.pop() if num2 else 0
# Calculate the sum of the current digits and the carry
total=digit1+digit2+carry
# Insert the last digit of total to the beginning of the result and update carry
result.insert(0,total%10)
carry=total//10

# If there’s a remaining carry, insert it to the beginning of the result
if carry:

result.insert(0, carry)
# Return the result
return result

Table 13. Input for rule-following on addition.
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output: num1=[7]
num2=[6]
1. Initialize Result and Carry
result=[]
carry=0
2. Loop Through Each Digit
‘‘‘
while num1 or num2:
‘‘‘
2.1 check the stop criterion
num1=[7]
num2=[6]
bool(num1)=True
bool(num2)=True
num1 or num2=True
enter the loop
2.2 one iteration
‘‘‘
digit1=num1.pop() if num1 else 0
‘‘‘
num1=[7]
bool(num1)=True
num1.pop()
num1=[]
digit1=7
‘‘‘
digit2=num2.pop() if num2 else 0
‘‘‘
num2=[6]
bool(num2)=True
num2.pop()
num2=[]
digit2=6
‘‘‘
total=digit1+digit2+carry
‘‘‘
total=digit1+digit2+carry=7+6+0=13

‘‘‘
result.insert(0,total%10)
‘‘‘
result=[]
total%10=13%10=3
result=[3]
‘‘‘
carry=total//10
‘‘‘
carry=13//10=1
2.3 back to the start of the loop
‘‘‘
while num1 or num2:
‘‘‘
2.1 check the stop criterion
num1=[]
num2=[]
bool(num1)=False
bool(num2)=False
num1 or num2=False
end the loop
3. Check Remaining Carry
‘‘‘
if carry:

result.insert(0, carry)
‘‘‘
result=[3]
carry=1
bool(carry)=True
result=[1,3]
4. Return Result
‘‘‘
return result
‘‘‘
result=[1,3]

Table 14. Output for rule-following on addition.

input: Concatenate the last letter of the following names:
King, Kaur

output: gr

Table 15. Input-output sequence for direct answer on last letter concatenation.
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input: Concatenate the last letter of the following names:
King, Kaur

output: # Concatenating the last letter of King
g
# Concatenating the last letter of Kaur
gr

Table 16. Input-output sequence for scratchpad on last letter concatenation.

input: Follow the code step by step to concatenate the last letter of the following names:
King, Kaur
def last letter concat(names):

# Initialize Result
result = ””
# Main Loop
for name in names:

result += name[-1]
return result

Table 17. Input for rule-following on last letter concatenation.

output: names = [’King’,’Kaur’]
1. Initialze result
result = ””
2. Main Loop
2.1 one iteration
‘‘‘
for name in names:
‘‘‘
name = ”King”
‘‘‘
result += name[-1]
‘‘‘
result = ””
name[-1] = ”g”
result += ”g”
result = ”g”

2.1 one iteration
‘‘‘
for name in names:
‘‘‘
name = ”Kaur”
‘‘‘
result += name[-1]
‘‘‘
result = ”g”
name[-1] = ”r”
result += ”r”
result = ”gr”
3. Return Result
‘‘‘
resturn result
‘‘‘
result = ”gr”

Table 18. Output for rule-following on last letter concatenation.
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input: Follow the rules step by step to answer the question: ‘6‘+‘7‘=
Add two numbers in order from the lowest digit to the highest digit. The operation rules are as follows:
1. In the initial state, the carry from the previous digit is 0 and the result is <empty>.
2. Begin the loop through each digit:

2.1. Determine whether the two numbers are <empty>. If both are <empty>, the loop is over. If one of
them is not <empty>, go to the iteration.

2.2. One iteration:
2.2.1. Find the rightmost digit of each number and remove the digit from the number. If one of them is

<empty>, the digit is 0.
2.2.2. Calculate the sum of the current digits and the carry.
2.2.3. Insert the last digit of the summation to the beginning of the result and update carry. If the sum is

larger than 9, carry is 1. Otherwise, carry is 0.
2.3. Back to the start of the loop.

3. When the loop through each digit is over, if there’s a remaining carry, insert it to the beginning of the result.
4. Return the result.

Table 19. Input for rule-following-NL.
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output: num1=‘6‘; num2=‘7‘
‘‘‘
1. In the initial state, the carry from the previous digit is 0 and the result is <empty>.
‘‘‘
Initialize the carry as 0 and the result is ‘<empty>‘.
‘‘‘
2. Begin the loop through each digit:
2.1. Determine whether the two numbers are <empty>. If both are <empty>, the loop is over. If one of them
is not <empty>, go to the iteration.
‘‘‘
num1 ‘6‘ is not <empty>. num2 ‘7‘ is not <empty>.
Because both are not <empty>, go to the iteration.
‘‘‘
2.2. One iteration:
2.2.1. Find the rightmost digit of each number and remove the digit from the number. If one of them is
<empty>, the digit is 0.
‘‘‘
The rightmost digit of num1 ‘6‘ is ‘6‘. The rightmost digit of num2 ‘7‘ is ‘7‘. Then the remaining num1
‘6‘ is ‘<empty>‘ and the remaining num2 ‘7‘ is ‘<empty>‘.
‘‘‘
2.2.2. Calculate the sum of the current digits and the carry.
‘‘‘
The sum of ‘6‘, ‘7‘ and carry ‘0‘ is 6 + 7 + 0 = 13.
‘‘‘
2.2.3. Insert the last digit of the summation to the beginning of the result and update carry.
‘‘‘
The last digit of the summation is 13 % 10 = 3. The previous result is ‘<empty>‘, now the result is: ‘3‘.
The carry is 13 // 10 = 1.
‘‘‘
2.3. Back to the start of the loop. ‘‘‘
‘‘‘
2.1. Determine whether the two numbers are <empty>. If both are <empty>, the loop is over. If one of them
is not <empty>, go to the iteration.
‘‘‘
num1 is ‘<empty>‘. num2 is ‘<empty>‘.
Because both are <empty>, the loop is over.
‘‘‘
3. When the loop through each digit is over, if there’s a remaining carry, insert it to the beginning of the result.
‘‘‘
The carry is 1, so add an 1 to the beginning of the result ‘3‘. So the final result is ‘1,3‘.
‘‘‘
4. Return the result. ‘‘‘
The final result is ‘1,3‘.

Table 20. Output for rule-following-nl.
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