
ReconBoost: Boosting Can Achieve Modality Reconcilement

Cong Hua 1 2 Qianqian Xu 1 Shilong Bao 3 4 Zhiyong Yang 2 Qingming Huang 2 1 5

Abstract
This paper explores a novel multi-modal alter-
nating learning paradigm pursuing a reconcilia-
tion between the exploitation of uni-modal fea-
tures and the exploration of cross-modal interac-
tions. This is motivated by the fact that current
paradigms of multi-modal learning tend to explore
multi-modal features simultaneously. The result-
ing gradient prohibits further exploitation of the
features in the weak modality, leading to modality
competition, where the dominant modality over-
powers the learning process. To address this is-
sue, we study the modality-alternating learning
paradigm to achieve reconcilement. Specifically,
we propose a new method called ReconBoost to
update a fixed modality each time. Herein, the
learning objective is dynamically adjusted with a
reconcilement regularization against competition
with the historical models. By choosing a KL-
based reconcilement, we show that the proposed
method resembles Friedman’s Gradient-Boosting
(GB) algorithm, where the updated learner can
correct errors made by others and help enhance
the overall performance. The major difference
with the classic GB is that we only preserve the
newest model for each modality to avoid overfit-
ting caused by ensembling strong learners. Fur-
thermore, we propose a memory consolidation
scheme and a global rectification scheme to make
this strategy more effective. Experiments over
six multi-modal benchmarks speak to the efficacy
of the method. We release the code at https:
//github.com/huacong/ReconBoost.
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Figure 1. The performance among multi-modal learning competi-
tors on the CREMA-D dataset. For audio modality and visual
modality, we evaluate the encoders of different competitors by
training linear classifiers on them. Uni represents the uni-modal
training method.

1. Introduction
Deep learning has significantly advanced uni-modal tasks
(He et al., 2016; Tang et al., 2017; Li et al., 2019; Zhang
et al., 2020). However, most real-world data usually follows
a multi-modal nature (say text, video, and audio) in various
fields such as data mining (Cai et al., 2011; Jiang et al.,
2019), computer vision (Gallego et al., 2022; Wan et al.,
2023; Shao et al., 2024), and medical diagnosis (Chen et al.,
2022; Ruan et al., 2021). Because of this, the deep learn-
ing community has recently focused more on multi-modal
learning (Wei et al., 2022; Jiang et al., 2023a; Feng et al.,
2022; Zhang et al., 2024). The prevailing paradigm in multi-
modal learning typically employs a joint learning strategy,
wherein a wealth of studies (Shahroudy et al., 2017; Chen
et al., 2020; Wang et al., 2020b; Deng & Dragotti, 2021;
Zhang et al., 2023; Jiang et al., 2023b; Shao et al., 2023)
primarily focus on integrating modality-specific features
into a shared representation for various downstream tasks.

Despite great success, numerous experimental observations
(Du et al., 2023; Peng et al., 2022) and recent theoretical
evidence (Huang et al., 2022) have pointed out that cur-
rent paradigms of multi-modal learning encounter Modal-
ity Competition, where the model is dominated by some
of the modalities. Various studies (Peng et al., 2022; Fan
et al., 2023; Du et al., 2023) have been made to mitigate
the modality competition issue. The primary concern is
how to balance optimization progress across multi-modal
learners and improve uni-modal feature exploitations. For
instance, G-Blending (Wang et al., 2020a) adds a uni-modal
classifier with additional supervised signals in multi-modal
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learning to blend modalities effectively. OGM (Peng et al.,
2022) and PMR (Fan et al., 2023) work on reducing the
influence of the dominant modality and aiding the training
of others through adaptive gradient modulation and dynamic
loss functions, respectively. Besides, UMT (Du et al., 2023)
distills knowledge from well-trained uni-modal models in
multi-modal learning which can effectively benefit from
uni-modal learning.

However, as depicted in Fig.1, existing algorithms still fol-
low the joint learning strategy, suffering from limited
performance trade-offs for modality competition. Expand-
ing the gradient update rule, we find that joint learning tends
to neglect the gradient from weak modality. The domi-
nant modality that converges more quickly would eventually
overpower the whole learning process.

Therefore, in this paper, we turn to the following question:

Can we achieve modality reconciliation via other
learning paradigms?

In search of an answer, we propose an effective method
named ReconBoost, where we alternate the learning for
each modality. Intuitively, it naturally alleviates modality
competition in the gradient space since the modality-specific
gradients must be employed separately. To further enhance
the effect of individual modalities, we propose a reconcile-
ment regularization to maximize the diversity between the
current update and historical models. Dynamically adjust-
ing the learning objective via the regularization term further
alleviates the modality competition issue induced by stick-
ing to a particular modality. Theoretically, we show that
by choosing a KL divergence (Kullback & Leibler, 1951)
based reconcilement term, our proposed method can realize
an alternating version of the well-known gradient boosting
method (Friedman, 2001). Specifically, the updated modal-
ity learner can focus on the errors made by others, thereby
highlighting their complementarity. Unlike traditional boost-
ing techniques (Freund, 1995; Freund & Schapire, 1997),
which use weak learners like decision trees, our method
employs DNN-based learners which are over-parameterized
models. To avoid overfitting, we discard historical learners
and only preserve the last learner for each modality, creating
an alternating-boosting strategy. Additionally, considering
the differences between the traditional boosting techniques
and our alternating-boosting strategy, we present a memory
consolidation scheme and a global rectification scheme to
reduce the risk of forgetting critical patterns in historical
updates.

Finally, we conduct empirical experiments on six multi-
modal benchmarks and demonstrate that 1) ReconBoost can
consistently outperform all the competitors significantly on
all datasets. 2) ReconBoost can achieve Modality Recon-
cilement.

2. Preliminary
In this section, we first review the task of multi-modal learn-
ing. Then, we further explain the current difficulties encoun-
tered in multi-modal learning. Due to space limitations, we
present a brief overview of prior arts in App.A.

2.1. The Task of Multi-modal Learning

Let Dtrain = {(xi, yi)}Ni=1 be a multi-modal dataset,
where N is the number of examples in the training set.
Herein, each example i consists of a set of raw features
xi = {mk

i }Mk=1 from different M modalities and a one-hot
label yi = {ci,j}Yj=1 , where ci,j = 1 if the label for i is j,
otherwise ci,j = 0; Y is the total number of categories.

Given M modality-specific feature extractors {Fk(θk)}Mk=1,
with Fk typically being a deep neural network with param-
eters θk, {Fk(θk;m

k
i )}Mk=1 denotes the latent features of

i-th sample, where Fk(θk;m
k
i ) ∈ Rdk . Then, we define the

predictor S as a mapping from the latent feature space to
the label space. The objective of multi-modal learning is to
jointly minimize the empirical loss of the predictor:

L(S({Fk(x)}Mk=1), y) =
1

N

N∑
i=1

ℓ(S({Fk(θk;m
k
i )}Mk=1), yi)

(1)

where ℓ is the CE loss. In multi-modal learning, a key step is
to merge the modality-specific representations. To this end,
the predictor is often formalized as a composition: g ◦ f ,
where g is a simple classifier and f is a cross-modal fusion
strategy. For example, one can use the concatenate operation
to implement the fusion strategy and use a linear model to
implement the classifier. In this case, the resulting predictor
becomes:

S({Fk(θk;m
k
i )}Mk=1) = W · [F1(θ1;m

1
i ) : · · · : FM (θk;m

k
i )]

=
∑
k

Wk · Fk(θk;m
k
i ),

(2)
where W ∈ RY×

∑
k dk is the last linear classifier, Wk ∈

RY×dk is a block of W for the k-th modality.

In contrast to uni-modal training, information fusion in
multi-modal learning can help explore cross-modal inter-
actions, enhancing performance across various real-world
scenarios. However, under the current paradigm of multi-
modal learning, the limitations in effectively exploiting uni-
modal features have constrained the performance of the
multi-modal learning model. We state the corresponding
challenges herein in the upcoming subsection.

2.2. The Challenge of Multi-modal Learning

Current paradigms synchronously optimize the objective
across all modalities. In this setting, a joint gradient descent
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(a) Testing Acc. on CREMA-D (b) Training Loss on CREMA-D

(c) Testing Acc. on MOSEI (d) Training Loss on MOSEI

Figure 2. The phenomenon of modality competition is observed
in the concatenation fusion method when applied to two datasets:
CREMA-D with two modalities and MOSEI with three modalities.
In CREMA-D, the learning process is primarily influenced by
the audio modality, leading to insufficient learning of the visual
modality. In MOSEI, the text modality takes control of multi-
modal learning, causing challenges in updating the parameters of
both the audio and visual modalities.

update will trigger the modality competition. To see this, we
expand the update rule for each modality. Here, we denote
the merged score function as:

Φt
M (xi) =

M∑
k=1

W t
k · Fk(θ

t
k;m

k
i ) (3)

Then the update for the k-th modality-specific parameters
can be written as:

θt+1
k = θtk − η · ∇θt

k
L(Φt

M (x), y)

= θtk − η · 1

N

N∑
i=1

(
∂Wk · Fk(θ

t
k;m

k
i )

∂θtk

)⊤

= θtk − η · 1

N

N∑
i=1

L̃
N∑
i=1

L̃
n∑

i=1

n∑
i=1

·
∂ℓ

(
Φt

M (xi), yi
)

∂Φt
M (xi)︸ ︷︷ ︸

shared

W t+1
k = W t

k − η · ∇W t
k
L(Φt

M (x), y)

= W t
k − η · 1

N

N∑
i=1

(
Fk(θ

t
k;m

k
i )
)⊤

· ∂ℓ(Φ
t
M (xi), yi)

∂Φt
M (xi)︸ ︷︷ ︸

shared

,

where η is the learning rate. The modality competition issue
arises from the shared score gradient across modalities:

∂ℓ(Φt
M (xi), yi)

∂Φt
M (xi)

= σt
i − yi (4)

where σi ∈ RY means the prediction score for the i-th
example. Once the gradient for the shared score is small,
the update for all modalities will be stuck simultaneously.
A modality k is said to have a consistent gradient with the
shared scoring function if ∂ℓ(ϕt

k(xi),yi)
∂ϕt

k(xi)
strongly resembles

∂ℓ(Φt
M (xi),yi)

∂Φt
M (xi)

, where ϕk is the uni-modal score for modality
k. If not, we consider modality k to have an inconsistent
gradient with the shared scoring function. If the modality k
has a consistent gradient with the shared score, then we can
learn it well under this setting. On the opposite, if modality
k has an inconsistent gradient with the shared score, it will
be stuck at bad local optimums, leading to performance
degradation. This phenomenon is depicted in Fig.2. To
address this issue, our goal is to achieve reconcilement
among modalities, where one can find a better trade-off
between the exploitation of modality-specific patterns and
the exploration of modality-invariance patterns.

Despite recent efforts to design various strategies (S men-
tioned above) in multi-modal learning to avoid modality
competition, only limited improvements can be achieved,
given the nature of synchronous optimization. The limita-
tions inspire us to explore a modality-alternating learning
strategy.

3. Methodology
In this section, we propose a modality-alternating frame-
work called ReconBoost. The overall framework is illus-
trated in Fig.3. On top of the alternating update rule, we
also incorporate a reconcilement regularization strategy to
maximize the diversity between the current and historical
models. Further details on ReconBoost will be discussed in
the following.

3.1. Modality-alternating Update with Dynamic
Reconcilment

Notations. Given M modality-specific classifiers
{Wk}Mk=1, along with modality-specific feature extrac-
tors, {ϕk(ϑk)}Mk=1 represents M modality learners, where
ϕk(ϑk) = Wk ·Fk(θk). ϑk represents the parameters of the
k-th modality learner and ϕk(ϑk;m

k
i ) ∈ RY .

We first introduce the naive version of modality-alternating
learning.

Step 1: Each time, we pick a specific modality learner ϕk

to update, and keep the others fixed. The gradient rule is
formalized as follows:

ϑt+1
k = ϑt

k − η · ∇ϑt
k
L
(
ϕt
k(m

k), y
)

(5)

where

L
(
ϕt
k(m

k), y
)
=

1

N

N∑
i=1

ℓ
(
ϕk(ϑ

t
k;m

k
i ), yi

)
(6)
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Figure 3. The overview of proposed ReconBoost. In round s, we pick up a specific modality learner to update and keep the others fixed.
The updated modality learner can correct errors and enhance the overall performance.

is the loss for the k-th modality.

Step 2: After the alternating training procedure, multi-
modal features are merged in the following way to produce
the final score ΦM (xi) =

∑M
k=1 ϕk(ϑk;m

k
i ).

When model updates are alternated, the gradients across
different modalities are naturally disentangled from each
other, alleviating the modality competition issue. While this
approach ensures the exploitation of uni-modal features, it
neglects the investigation of cross-modal diversity, limit-
ing overall performance. It motivates us to design a more
effective modality-specific supervised signal.

At each fixed time s in the update in step 1), we explore
reconcilement regularization by introducing the following
term in the loss:

Ds

(
ΦM/k(xi), ϕk(ϑk;m

k
i )
)

where ΦM/k(xi) =
∑M

j=1,j ̸=k ϕj(ϑj ;m
j
i ). Here, Ds could

be regarded as a diversity measure between the current block
being updated and the historical models in the updating
sequence. In pursuit of a dynamical reconcilement, in round
s in Step 1), we turn to use the following objective:

L̃s(ϕk(m
k), y) =

1

N

N∑
i=1

ℓ(ϕk(ϑk;m
k
i ), yi

)
︸ ︷︷ ︸

agreement term

−λ · Ds

(
ΦM/k(xi), ϕk(ϑk;m

k
i )
)

︸ ︷︷ ︸
reconcilement regularization term


(7)

In this new formulation, the loss function is no longer the
same. In each round, we try to dynamically maintain the
trade-off between the agreement item to align the overall
predictor with the ground truth and the reconcilement reg-
ularization term to leverage complementary information
between modalities. The parameter λ is a trade-off coeffi-
cient. The exploration of the impact of λ on the performance
is presented in Sec.4.4 ablation experiments.

3.2. Connection to the Boosting Strategy: Theoretical
Guanratee

At first glance, the dynamical variation of the loss function
makes the optimization property of ReconBoost unclear. To
further explore its theoretical foundation, we investigate the
connection with the well-known Gradient-Boosting (GB)
method (Freund, 1995; Friedman, 2001; Freund et al., 1996;
Freund & Schapire, 1997), which is a powerful boosting
method for additive expansion of models. The theoretical
result is shown as follows:

Theorem 3.1. When the reconcilement regularization satis-
fies,

λ · ∇ϕkDs

(
ΦM/k(xi), ϕk(ϑk;m

k
i )
)
= ∇ϕkℓ

(
ϕk(ϑk;m

k
i ), yi

)
−∇ϕkℓ

(
ϕk(ϑk;m

k
i ),−∇ΦM/k

ℓ(ΦM/k(xi), yi)
)

It leads to equivalent optimization goals:

∇ϑk
L̃s

(
ϕk(m

k), y
)

⇐⇒ ∇ϑk
L
(
ϕk(m

k),

−∇ΦM/k
ℓ(ΦM/k(x), y)

)
4
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Please refer to App.B for the proof in detail.

Here, to better understand the generality of our method and
theorem, we will consider the case where the optimization
loss function is CE loss. As a corollary of the theorem we
have:

Corollary 3.2. Let the reconcilement regularization be a
KL divergence (Kullback & Leibler, 1951) function:

Ds

(
ΦM/k(xi), ϕk(ϑk;m

k
i )
)
= DKL,s

(
ΦM/k(xi)∥ϕk(ϑk;m

k
i )
)

Then,

∇ϑk
L̃s

(
ϕk(m

k), y
)

⇐⇒ ∇ϑk
L
(
ϕk(m

k),

−∇ΦM/k
ℓ(ΦM/k(x), y)

)
where ℓ is the CE loss.

Similar to the GB algorithm, optimizing the dynamic loss
function L̃ in ReconBoost consistently optimizes the orig-
inal loss L with a progressively changing pseudo-label
−∇ΦM/k

ℓ(ΦM/k(x), y). The pseudo-label is a gradient
descent step at the space of Φ for the current time. The
major difference from traditional GB is that we only em-
ploy the sum of the last updates for each modality, creating
an alternating-boosting strategy. This is a selective ad-
ditive expansion of the gradient decent on the functional
space. This could be considered an implicit bias when
the weak learners in traditional GB are replaced with over-
parametrized deep learning models.

3.3. Enhancement Schemes

In this subsection, we elaborate on two enhancement
schemes in ReconBoost, memory consolidation regulariza-
tion, and global rectification scheme.

Memory Consolidation Regularization (MCR). In con-
trast to GB, our alternating-boosting strategy preserves the
newest learner for each modality while forgetting histori-
cal ones. Each updated modality learner fits the residual
and effectively corrects errors from others. However, for-
getting may result in modality-specific learners struggling
with samples where others excel. To compensate for the
discards, we propose MCR to enhance the performance of
the modality-specific learner, formalized as:

Lmcr(−∇ϕk−1ℓ(ϕk−1(m
k−1), y),−∇ϕkℓ(ϕk(m

k), y))

=
1

N

N∑
i=1

∥∥∥∇ϕkℓ(ϕk(m
k
i ), yi)−∇ϕk−1ℓ(ϕk−1(m

k−1
i ), yi)

∥∥∥2

(8)

where ϕk−1 represents the previous modality learner. Intu-
itively, optimizing Eq.8 ensures that the predictions of ϕk

will not be too far from that of ϕk−1, avoiding excessive

focus on errors and benefiting consolidating memory of the
modality-specific learner.

Global Rectification Scheme (GRS). Following the stan-
dard paradigm of boosting, only the parameters of the k-th
weak learner get updated during step k to greedily fit the
residual, leaving the parameters of other learners unchanged.
However, when dealing with modality learners implemented
as over-parameterized neural networks in our alternating-
boosting strategy, greedy learning strategy in the standard
paradigm of boosting may cause the ensemble multi-modal
learning model to fall in poor local minima easily, hindering
the optimization of the objective. Drawing inspiration from
(Badirli et al., 2020), we introduce GRS to overcome the
challenge. After each update of the modality learner, instead
of keeping the parameters of the k − 1 modality learners
fixed, we allow their parameters to be updated:

ϑt
m = ϑt−1

m − η∇ϑt−1
m

L(Φt−1
M (x), y),∀m ∈ [1,M ] (9)

where ΦM represents adding the updated ϕk to ΦM/k; t
means the t-th iteration in the rectification stage and η is the
learning rate. In summary, these two schemes will enhance
the performance of the proposed alternating-boosting strat-
egy. Moreover, they provide insights into applying boosting
techniques in the deep learning community.

3.4. Final Goal

Upon completing a cycle involving M stages, we reach the
overall optimization objective for our proposed method in
Eq.10.

Lall =
∑

k∈[1,M]

L(ϕk(m
k
), y)

︸ ︷︷ ︸
agreement term

−λ
∑

k∈[1,M]

DKL(ΦM/k(x)∥ϕk(m
k
))

︸ ︷︷ ︸
KL-based reconcilement regularization term

+ α
∑

k∈[1,M]

Lmcr(−∇ϕk−1
ℓ(ϕk−1(m

k−1
), y),−∇ϕk

ℓ(ϕk(m
k
), y))

︸ ︷︷ ︸
MCR term

+
∑

k∈[1,M]

L(ΦM (x), y)

︸ ︷︷ ︸
GRS term

(10)

The pseudo-code of training ReconBoost is detailed in Alg.1.
In lines 4 to 7, we calculate the dynamic modality-specific
loss including the agreement term, KL-based reconcilement
regularization term, and MCR term to update the k-th modal-
ity learner. After updating, in lines 10 to 13, we employ
the GRS to perform global rectification. The process then
continues with the update of the next modality learner.

4. Experiments
In this section, we provide the empirical evaluation across a
wide range of multi-modal datasets to show the superior per-
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Algorithm 1: ReconBoost Algorithm
Input: Observations Dtrain, iterations of each

stage T , lr in alternating-boosting stage γ, lr
in global rectification stage η

Output: Well-trained model ΦM

1 repeat
2 ▷ Alternating-boosting Strategy
3 In round s, pick up a modality-specific learner

ϕk, k ∈ [1,M ] to be updated in order;
4 for t = 0 to T − 1 do
5 Sample ∀{xi, yi} ∈ Dtrain;
6 Calculate modality-specific loss ℓA (ϕt

k) =

ℓ(ϕt
k(m

k
i ), yi)− λDKL,s + αℓmcr;

7 Update ϑt+1
k = ϑt

k − γ · ∇ϑt
k
ℓA (ϕt

k);

8 Add the model ϕT
k into the ΦM/k, denoted as

ΦM,s;
9 ▷ Global Rectification Scheme

10 for t = 0 to T − 1 do
11 Sample ∀{xi, yi} ∈ Dtrain;
12 Calculate loss:

ℓG(Φ
t
M,s) = ℓ(

∑M
k=1 ϕ

t
k(m

k
i ), yi);

13 Update all modality learners ∀m ∈ [1,M ]
ϑt+1
m = ϑt

m − η · ∇ϑt
m
ℓG(Φ

t
M,s);

14 until converge;
15 return ΦM .

formance of ReconBoost. Due to space limitations, please
refer to App.C and D for an extended version.

4.1. Experimental Setup

Dataset Descriptions. We conduct empirical experiments
on several common multi-modal benchmarks. Specifically,
AVE (Tian et al., 2018) dataset is designed for audio-visual
event localization and includes 28 event classes. CREMA-
D (Cao et al., 2014) is an audio-visual video dataset for
speech emotion recognition including 6 emotion classes.
ModelNet40 (Wu et al., 2015) a large-scale 3-D model
dataset, with the front and rear view to classify the object,
following (Wu et al., 2022) and (Du et al., 2023). MO-
SEI (Zadeh et al., 2018), MOSI (Zadeh et al., 2016), and
CH-SIMS (Yu et al., 2020) are multi-modal sentiment anal-
ysis datasets including three modalities, namely audio, im-
age, and text. We defer the detailed introductions of these
datasets to App.C.1

Competitors. To demonstrate the effectiveness of the pro-
posed method, we compare it with some recent multi-modal
learning methods that focus on alleviating modality compe-
tition. These competitors include G-Blending (Wang et al.,
2020a), OGM-GE (Peng et al., 2022), PMR (Fan et al.,
2023), UME (Du et al., 2023) and UMT (Du et al., 2023).

Table 1. Performance comparisons on AVE, CREMA-D, and Mod-
elNet40 in terms of Acc(%). In the MN40 dataset, following UMT
(Du et al., 2023), we use different views, so there are no prediction
results of uni-audio modality, denoted as ’-’.

Method AVE CREMA-D MN40

AudioNet 59.37 56.67 -
VisualNet 30.46 50.14 80.51

Concat Fusion 62.68 59.50 83.18
G-Blending 62.75 63.81 84.56
OGM-GE 62.93 65.59 85.61

PMR 64.20 66.10 86.20
UME 66.92 68.41 85.37
UMT 67.71 70.97 90.07

Ours 71.35 79.82 91.78

We also include the Concatenation fusion method and Uni-
modal methods. Detailed explanations of these competitors
will be provided in App.C.2.

Implementation Details. All experiments are conducted on
GeForce RTX 3090 and all models are implemented with
Pytorch (Paszke et al., 2017). Specifically, for the AVE,
CREMA-D and ModelNet40 datasets, we adopt ResNet-
18 (He et al., 2016) as the backbone and modify the input
channel according to the size of different modalities. For
MOSEI, MOSI, and SIMS datasets, we conduct experiments
with fully customized multimodal features extracted by the
MMSA-FET toolkit. The uni-modal models are similar to
(Williams et al., 2018). We adopt SGD (Robbins & Monro,
1951) as the optimizer. Specific data preprocessing, network
design and optimization strategies are provided in App.C.3.

4.2. Overall Performance

The experimental results are presented in Tab.1 and Tab.2.
Our proposed methods consistently outperform all com-
petitors significantly across all datasets, underscoring the
efficacy of our approach. In Tab.1, within a dataset featuring
two modalities, all multi-modal learning methods exhibit
improvements compared to the naive concatenation fusion
method. This observation confirms the existence of modal-
ity competition in multi-modal joint learning, demonstrating
the effective alleviation of modality competition by the com-
pared methods. Specifically, given a well-trained AudioNet,
our method achieves the most significant improvements
when incorporating the visual modality, which justifies that
our method can effectively make the most of cross-modal
information.

In contrast to prior studies, we also evaluate the effectiveness
of various modulation strategies on tri-modality datasets.
Some earlier strategies (Peng et al., 2022; Fan et al., 2023)
focused on mitigating competition between two modalities
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Table 2. Performance comparisons on MOSEI, MOSI, and CH-
SIMS datasets in terms of Acc(%).

Method MOSEI MOSI CH-SIMS

AudioNet 52.29 54.81 58.20
VisualNet 50.35 57.87 63.02
TextNet 66.41 75.94 70.45

Concat Fusion 66.71 76.23 71.55
G-Blending 66.93 76.45 71.55
OGM-GE 66.67 76.01 71.10

PMR 66.41 76.12 70.90
UME 63.88 76.97 71.77
UMT 67.04 75.80 71.55

Ours 68.61 77.96 73.88

Table 3. Performance comparisons on the AVE and CREMA-D
datasets in terms of mAP(%).

Method Overall Audio Visual

Concat Fusion 36.43 34.71 20.08
OGM-GE 38.50 36.59 24.42

PMR 39.34 36.97 25.10
UME 40.02 37.12 30.45
UMT 42.58 35.65 32.41

Ours 60.52 40.58 54.26

and lacked generalization to multiple modalities. For these
methods, we test combinations of different modalities and
select better models for presentation. Our approach treats
a multi-modal learning framework as a generalized ensem-
ble model and demonstrates robust generalization across
multiple modalities.

To further demonstrate ReconBoost’s adaptability in broader
contexts, we applied it to the retrieval task, a crucial area
within computer vision. We assessed its performance using
the Mean Average Precision (MAP) metric on the CREMA-
D as shown in Tab.3. The detailed comparison results are
provided in App.D.1

Applicable to Other Fusion Schemes. Our ReconBoost
framework can be easily combined with several decision-
level fusion methods, such as QMF (Zhang et al., 2023)
and TMC (Han et al., 2021). Additionally, we benchmark
against two straightforward baselines, Learnable Weighting
(LW) and Naive Averaging (NA). To ensure fairness, we also
included complex feature-based fusion, specifically MMTM
(Joze et al., 2020), into our main competitors: OGM-GE,
PMR, and UMT. As shwon in Tab.4, our method consistently
outperforms others, highlighting the potential of more flexi-
ble fusion strategies to enhance performance. This reaffirms
the effectiveness of ReconBoost. The detailed comparison

Table 4. Performance comparisons on the AVE and CREMA-D
dataset in terms of Acc(%) with different fusion strategies. †
indicates that MMTM is applied.

Method AVE CREMA-D

OGM GE † 66.14 69.83
PMR † 67.72 70.14
UMT † 70.16 74.35

Ours + NA 71.35 79.82
Ours + LW 72.40 80.11

Ours + TMC 72.96 80.68
Ours + QMF 73.20 81.11

Table 5. Performance of the encoders trained by Uni-modal, Con-
catenation fusion, OGM-GE, UMT, and Ours in terms of Acc(%).
We evaluate the encoders of all methods by training linear classi-
fiers on them.

Method
CREMA-D AVE

Visual Audio Visual Audio

Uni-train 50.14 56.67 30.46 59.37
Concat Fusion 26.81 54.86 23.96 55.47

OGM-GE 29.17 55.42 25.52 56.51
PMR 29.21 55.60 26.30 57.20
UMT 45.69 58.47 31.25 60.70

Ours 73.01 60.23 39.06 61.20

results and analysis are provided in App.D.6.

4.3. Quantitative Analysis

Modality-specific Encoder Evaluation. We evaluate the
encoders of Concatenation fusion, OGM-GE, PMR, UMT,
and Ours by training linear classifiers on top of them. As
shown in Tab.5, in most methods, the dominant modality (au-
dio modality) encoder can achieve comparable performance
compared with its uni-modal counterpart, however, the weak
modality (visual modality) encoder is far behind. Uni-modal
information remains underutilized, and uni-modal features
suffer corruption during joint training. For UMT, employing
a uni-modal distillation strategy aids in exploiting sufficient
uni-modal features, enabling some encoders of UMT to
slightly outperform their uni-modal counterparts. However,
distilled knowledge will be slightly corrupted in the fusion
due to modality competition.

Compared to them, the encoders trained by our proposed
method achieve significant improvements. Benefiting from
the alternating-learning paradigm, ReconBoost can avoid
modality competition and ensure sufficient exploitations
of uni-modal features. Furthermore, the innovative recon-
cilement regularization term effectively leverages comple-
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Figure 4. The visualization of the modality-specific feature among
different competitors in the CREMA-D dataset by using the t-SNE
method (Van der Maaten & Hinton, 2008).

mentary information between modalities. Our method’s
encoders achieve remarkable performance, which surpasses
that of the uni-trained model.

Fig.4 shows the 2D embeddings of modality-specific fea-
tures. In other methods, modality competition still exists.
The features of the visual modality scatter randomly, reflect-
ing low feature quality. Our approach focuses on improving
the quality of latent features for each modality. Distinct
clusters within each modality further highlight its effective-
ness in reducing modality competition compared to other
methods. The detailed comparison results are provided in
App.D.9.

Modality Competition Analysis. Modality competition
worsens the performance gap between modalities. To quan-
tify this competition, we first measure the performance gap
between modalities using the modality imbalance ratio
(MIR). Moving further, we define the MIR of multi-modal
learning methods relative to that of uni-modal learning as
the degree of modality competition (DMC). Fig. 5(a) sum-
marizes the modality imbalance ratio for all competitors on
the AVE dataset. Although the MIR of various competitors
is lower than that of naive concatenation fusion, it remains
higher than the MIR under uni-modal learning, indicating
the persistent challenge of modality competition. In contrast,
our method effectively avoids modality competition, as re-
vealed by the results. Fig.5(b) illustrates the DMC value
of the concatenation fusion method across all datasets. No-
tably, as the degree of modality competition rises, so does
the improvement our method offers. The in-depth analysis
regarding the phenomena are shown in App.D.3.

Mutual Information Analysis. We quantify task-relevant
mutual information (Liang et al., 2023b) in different multi-
modal models. Firstly, we decompose the mutual informa-
tion into shared information and modality-specific unique

1.6

1.8

2.0

2.2

Uni
Naive

G−Blending
OGM−GE

PMR UMT Ours

M
od

al
ity

 Im
ba

la
nc

e 
R

at
io

(a) MIR

1

2

3

0.99 1.01 1.03 1.1 1.19 1.81
DMC

lo
g 

im
pr

ov
em

en
t r

at
e 

(%
)

(b) DMC

Figure 5. Quantitative analysis of modality competition. (a) Modal-
ity imbalance ratio (MIR) for all competitors on the AVE dataset.
(b) The correlation between the DMC in the concatenation fusion
method and the improvement of our method is consistent across
all datasets.
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Figure 6. Quantitative analysis of task relevant mutual information
in audio modality on the CREMA-D dataset and in front view on
the MN40 dataset.

information. When only one modality X1 exists, the uni-
modal only contains unique information. Then, in a multi-
modal setting, maximize the information that X2 can bring
becomes the key to improving the performance of multi-
modal learning algorithms. We measure the information
that X2 can bring using the difference in accuracy between
using the multi-modal approach and the uni-modal model.
As shown in Fig.6, we evaluate it among different com-
petitors on two benchmarks and our method consistently
outperforms others, demonstrating the potential of maximiz-
ing the useful information in each modality. The in-depth
analysis are provided in App.D.4.

4.4. Ablation Study

Sensitivity analysis of λ. Fig.7 demonstrates the perfor-
mance of ReconBoost with varying λ on CREMA-D and
MOSEI. We observe that a proper λ could extract comple-
mentary information and significantly improve the perfor-
mance. Leveraging λ too aggressively may hurt the per-
formance since excessive disagreement with others will
damage modality-specific prediction accuracy. The detailed
comparison results are provided in App.D.8.

Impact of Memory Consolidation Scheme. Fig.7 also
explores the role of the α parameter in demonstrating the
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(a) CREMA-D (b) MOSEI

Figure 7. Sensitivity analysis about λ and α on CREMA-D and
MOSEI datasets.
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Figure 8. Abation study of global rectification scheme (GRS) on
CREMA-D and AVE Dataset.

efficacy of the MCS. Keeping λ constant, we note that ad-
justments in α yield marginal yet meaningful improvements
in performance. Given that λ primarily governs the level of
agreement, its adjustment can significantly enhance memory
consolidation in modality-specific learning. This suggests
that while λ offers a broader range of manipulation for per-
formance enhancement, fine-tuning with α allows for more
precise and subtle improvements.

Effect of Global Rectification Scheme. Fig.8 illustrates
the effectiveness of the global rectification scheme by com-
paring w/o GRS and Ours. GRS facilitates the optimization
of the multi-modal learning objective, preventing the en-
semble model from falling into unfavorable local minima.
Even without GRS, our model achieves relatively good re-
sults, demonstrating that our alternating-boosting strategy
effectively promotes the optimization of the objective.

4.5. Convergence

We present the convergence results on two benchmark
datasets during the training process, including AVE and
CREMA-D datasets. The performance results are shown in
Fig.9. For ReconBoost, the updates of all modality learners
are alternated, and the gradients across different modalities
are naturally disentangled from each other. Therefore, the
modality-specific loss curve descends without getting stuck.

(a) AVE Dataset (b) CREMA-D Dataset

Figure 9. Convergence results of ReconBoost on AVE and
CREMA-D Dataset.

5. Conclusion
In this paper, we propose an effective multi-modal learning
method based on an alternating learning paradigm to address
the modality competition problem. Our method achieves
a reconciliation between the exploitation of uni-modal fea-
tures and the exploration of cross-modal interactions, with
the crucial idea of incorporating a KL divergence based
reconcilement regularization term. We have proven that
optimizing modality-specific learners with this regulariza-
tion is equivalent to the classic gradient-boosting algorithm.
Therefore, the updated modality learner can fit the resid-
ual gap and promote the overall performance. We discard
historical learners and only preserve the newest learners,
forming an alternating-boosting strategy. Finally, the ex-
periment results over a range of multi-modal benchmark
datasets showcase significant performance improvements,
affirming the effectiveness of the proposed method.

Acknowledgements
This work was supported in part by the National Key
R&D Program of China under Grant 2018AAA0102000, in
part by the National Natural Science Foundation of China:
62236008, U21B2038, U23B2051, 61931008, 62122075,
61976202, 62206264 and 92370102, in part by Youth Inno-
vation Promotion Association CAS, in part by the Strategic
Priority Research Program of the Chinese Academy of Sci-
ences, Grant No. XDB0680000, in part by the Innovation
Funding of ICT, CAS under Grant No.E000000.

Impact Statement
We propose a general multi-modal learning method to deal
with the bias toward weak modalities. When the weak
modalities are sensitive to a potential group of people in
society, it might be helpful to improve the overall fairness
of the learning system.

9



ReconBoost: Boosting Can Achieve Modality Reconcilement

References
Badirli, S., Liu, X., Xing, Z., Bhowmik, A., and Keerthi,

S. S. Gradient boosting neural networks: Grownet. ArXiv,
abs/2002.07971, 2020.

Baltrusaitis, T., Zadeh, A., Lim, Y. C., and Morency, L.-P.
Openface 2.0: Facial behavior analysis toolkit. In IEEE
International Conference on Automatic Face and Gesture
Recognition, pp. 59–66, 2018.
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A. Prior Arts
In this section, we briefly review the closely related studies along with our main topic.

A.1. Multi-modal Learning

Recent decades have witnessed the development of multi-modal learning research which covers various fields like cross-
modal retrieval (Jiang et al., 2023a; Feng et al., 2022), video frame interpolation (Gao et al., 2023), image reconstruction
(Wang et al., 2024; Jiang et al., 2023b), visual question answering (Yang et al., 2022), and clustering (Jiang et al., 2019; Hu
et al., 2017). Intuitively, multi-modal models integrate information from multiple sensors to outperform their uni-modal
counterparts. For example, event cameras as new vision sensors can compensate for the shortcomings of standard cameras in
the face of abnormal light conditions or challenging high-speed scenarios (Gallego et al., 2022). These examples underscore
the effectiveness of multi-modal approaches in addressing specific challenges and highlight the advantages arising from the
fusion of diverse sensor modalities.

Numerous studies (Liang et al., 2023c; Du et al., 2023; Liang et al., 2023c; Hessel & Lee, 2020; Zhang et al., 2023; Li
et al., 2022; Liang et al., 2023a) mainly concentrate on integrating modality-specific features into a shared representation for
diverse tasks. Employed fusion methods encompass early/intermediate fusion (Seichter et al., 2021; Nagrani et al., 2021)
as well as late fusion (Peng et al., 2022; Fan et al., 2023; Du et al., 2023; Wang et al., 2020a). Recent intermediate fusion
methods utilize attention mechanisms that connect multi-modal signals during the modality-specific feature learning stage
(Nagrani et al., 2021). While intermediate fusion may enhance representation learning, late fusion consistently stands out
as the most prevalent and widely used approach, owing to its interpretability and practicality. Evolving from the naive
late-fusion method, more methods are using dynamic fusion (Guan et al., 2018; Zhang et al., 2023) approaches to unleash
the value of each modality and reduce the impact of low-quality multi-modal data.

A.2. Balanced Multi-modal Learning

However, recent theoretical evidence (Huang et al., 2022) illustrated that current paradigms of multi-modal learning encounter
Modality Competition. Such a problem occurs when the objective for different modalities is optimized synchronously. In
optimization, the modality with faster convergence dominates the learning process. Therefore, the learning parameters
of other modalities can not be updated in a timely and effective manner. It will limit the optimization of the uni-modal
branch and cannot fully exploit the information of the uni-modal, becoming a bottleneck in the performance of multi-modal
learning.

To fill this gap, several studies (Wang et al., 2020a; Peng et al., 2022; Du et al., 2023; Fan et al., 2023) are proposed to
balance the optimization process across different modality learners and promote the uni-modal learning. G-Blending (Wang
et al., 2020a) incorporates uni-modal classifiers with extra supervised signals in multi-modal learning to effectively blend
modalities. OGM-GE (Peng et al., 2022) focuses on suppressing the dominant modality and assisting the training of others
through adaptive gradient modulations. PMR (Fan et al., 2023) employs the prototypical cross-entropy loss to accelerate the
learning process of the weak modality. Additionally, UMT (Du et al., 2023) distills knowledge from well-trained uni-modal
models in multi-modal learning, which can effectively benefit from uni-modal learning. In general, the majority of prior
studies adopt a synchronous learning paradigm.

A.3. Boosting

Boosting is a commonly used learning approach in machine learning (Friedman, 2001; Freund, 1995; Friedman, 2001;
Freund et al., 1996; Freund & Schapire, 1997). It enhances the performance of a basic learner by combining multiple weaker
learners. In each iteration of boosting, the weaker learner focuses on the residual between the truth and its estimation.
Decision trees are the most common weak learners that are used in boosting frameworks. Popular boosting algorithms
include AdaBoost (Freund & Schapire, 1997), GBDT(Friedman, 2001), and XGBoost (Chen & Guestrin, 2016).

Inspired by the success of boosting in machine learning, boosting has recently received research attention in the deep
learning community. Unlike traditional methods to construct ensembles of learners, SelfieBoost (Shalev-Shwartz, 2014)
boosts the accuracy of a single network while discarding intermediate learners. (Huang et al., 2018) builds a ResNet-style
architecture based on multi-channel telescoping sum boosting theory. AdaGCN (Sun et al., 2019) interprets a multi-scale
graph convolutional network as an ensemble model and trains it using AdaBoost. BGNN (Ivanov & Prokhorenkova, 2021)
combines the GBDT and GNN by iteratively adding new trees that fit the gradient updates of GNN.
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B. Proof of Theorem 3.1
Restate of Theorem 3.1. When the reconcilement regularization satisfies,
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If the left-hand side is the optimization strategy, then the objective becomes:
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Through gradient optimization, we update the k-th modality learner’s parameters:
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Thus, we conclude that
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Here, to better understand the generality of our method and theorem, we will consider the case where the optimization loss
function is Cross Entropy loss. CE loss is widely used for problems like classification, retrieval, and contrastive learning. As
a corollary of the theorem we have:

Restate of Corollary 3.2. Let the reconcilement regularization be a KL divergence (Kullback & Leibler, 1951) function:
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Proof. By using the right-hand side as the objective for gradient boosting, the k-th modality learner’s parameters can be
updated as:
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σi ∈ RY means the prediction score for i-th sample.
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Here, ρki is the prediction of the k-th modality learner on the i-th sample.

The left-hand objective is

L̃s(ϕk(m
k), y) =

1

N

N∑
i=1

ℓ (ϕk

(
ϑk;m

k
i

)
, yi
)
− λ · DKL,s

(
ΦM/k (xi) ∥ϕk

(
ϑk;m

k
i

))︸ ︷︷ ︸
KL-based reconcilement regularization

 (21)

=
1

N

N∑
i=1

− Y∑
j=1

ci,j log
(
ρki,j
)
− λ ·

Y∑
j=1

σi,j ln
σi,j

ρki,j

 (22)

=
1

N

N∑
i=1

− Y∑
j=1

ci,j log
(
ρki,j
)
+ λ ·

Y∑
j=1

σi,j ln ρ
k
i,j − λ ·

Y∑
j=1

σi,j lnσi,j

 (23)

Through gradient optimization, in t-th iteration, the parameters of the k-th modality learner can be updated as:
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Thus, with specific λ, we can reach the conclusion.

C. Additional Experiment Setting
In this section, we elaborate on the setup of the main experiment, including dataset description, several state-of-the-art
baselines, and implementation details.

C.1. Dataset Description

We perform empirical studies on six public benchmark datasets, including:

• AVE1 (Tian et al., 2018). The AVE dataset is designed for audio-visual event localization. The dataset contains 4143
videos covering 28 event categories and videos in AVE are temporally labeled with audio-visual event boundaries.
Each video contains at least one 2s long audio-visual event. The dataset covers a wide range of audiovisual events from
different domains, such as, human activities, animal activities, music performances, and vehicle sounds. All videos are
collected from YouTube. The training and testing split of the dataset follows (Tian et al., 2018).

1https://sites.google.com/view/audiovisualresearch
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• CREMA-D2 (Cao et al., 2014). The CREMA-D dataset is an audio-visual video dataset for speech emotion recognition,
which consists of 7442 original clips of 2-3 seconds from 91 actors speaking several short words. It comprises six
different emotions: anger, disgust, fear, happy, neutral, and sad. Categorical emotion labels were collected using
crowd-sourcing from 2443 raters. The training and testing split of the dataset follows the split (Cao et al., 2014).

• ModelNet403 (Wu et al., 2015). The ModelNet40 is from a large-scale 3-D CAD model dataset ModelNet for object
classification. ModelNet40 is a subset of ModelNet, which contains 40 popular object categories. We use the front
view and the rear view to classify the 3-D object, following (Wu et al., 2022) and (Du et al., 2023). The dataset split for
training and testing follows the standard protocol as described in (Wu et al., 2015).

• MOSI4 (Zadeh et al., 2016). The CMU-MOSI dataset is one of the most popular benchmark datasets for multi-modal
sentiment analysis (MSA). It comprises 2199 short monologue video clips taken from 93 Youtube movie review video.
Human annotators label each sample with a sentiment score from −3 (strongly negative) to 3 (strongly positive). We
view this as a three classification problem, with the categories being negative, neutral, and positive. The training and
testing split of the dataset follows the split (Zadeh et al., 2016).

• MOSEI4 (Zadeh et al., 2018). The CMU-MOSEI dataset expands its data with a higher number of utterances, greater
variety in samples, speakers, and topics over CMU-MOSI.The dataset contains 23453 annotated video utterances, from
5000 videos, 1000 distinct speakers and 250 different topics. The training and testing split of the dataset follows the
split (Zadeh et al., 2018).

• CH-SIMS4 (Yu et al., 2020). The SIMS dataset is a Chinese MSA benchmark with fine-grained annotations of modality.
The dataset consists of 2281 refined video segments collected from different movies, TV serials, and variety shows with
spontaneous expressions, various head poses, occlusions, and illuminations. Human annotators label each sample with
a sentiment score from −1 (strongly negative) to 1 (strongly positive). We treat this as a three classification problem,
with the categories being negative, neutral, and positive. The training and testing split of the dataset follows the split
(Yu et al., 2020).

To summarize, the overall statistical information is included in Tab.6.

Table 6. The statistics of all datasets used in the experiments.

Dataset Task # Train # Test # Category
Modality

Audio Visual Text

CREMAD Speech emotion recognition 6698 744 6 ✓ ✓ %

AVE Event localization 3339 402 28 ✓ ✓ %

ModelNet40 Object classification 9438 2468 40 % ✓ %
MOSEI Emotion recognition 16327 4659 3 ✓ ✓ ✓
MOSI Emotion recognition 1284 686 3 ✓ ✓ ✓
SIMS Emotion recognition 1368 457 3 ✓ ✓ ✓

C.2. Competitors

We compare the performance of our proposed method with several state-of-the-art baselines, including:

• G-Blending (Wang et al., 2020a) proposes Gradient Blending to obtain an optimal blending of modalities based on
their over-fitting behaviors.

• OGM-GE5 (Peng et al., 2022) proposes on-the-fly gradient modulation to adaptively control the optimization of each
modality, via monitoring the discrepancy of their contribution towards the learning objective.

2https://github.com/CheyneyComputerScience/CREMA-D
3https://modelnet.cs.princeton.edu/
4https://drive.google.com/drive/folders/1A2S4pqCHryGmiqnNSPLv7rEg63WvjCSk?usp=sharing
5https://github.com/GeWu-Lab/OGM-GE_CVPR2022
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• PMR6 (Fan et al., 2023) proposes the prototypical modal rebalance strategy to address the modality imbalance problem,
accelerating the slow modality with prototypical cross entropy loss and reducing the inhibition from dominant modality
with prototypical entropy regularization term.

• UME7 (Du et al., 2023) weights the predictions of well-trained uni-modal model directly.

• UMT7 (Du et al., 2023) distills the well-trained uni-modal features to the corresponding parts of multi-modal late-fusion
models and fusion the multi-modal features to obtain the final score.

C.3. Implementation Details

C.3.1. NETWORK ARCHITECTURE

With respect to AVE, CREMA-D, and ModelNet40 datasets, the ResNet18 (He et al., 2016) is adopted as the backbone. For
AVE, 3 frames of size 224× 224× 3 are uniformly sampled from each 10-second clip as visual input and the whole audio
data is transformed into a spectrogram of size 257× 1004 by librosa8 using a window with a length of 512 and overlap of
353. For CREMA-D, 1 frame of size 224× 224× 3 is extracted from each video clip, and audio data is transformed into a
spectrogram of size 257× 299 with a length of 512 and overlap of 353. In ModelNet40, we resize the input front and rear
views of a 3D object and CenterCrop it to 224× 224× 3. To make the model compatible with the different data modalities
mentioned above, we modify the input channel of ResNet-18 while keeping the remaining parts unchanged. Specifically, it
takes the images as inputs and generates 512 dimension features, and takes the audio as inputs and outputs 512 dimension
features, respectively. Then, a fully connected layer is established on top of the backbone model to make modality-specific
predictions. Finally, multi-modal predictions are merged to obtain the final score.

For MOSEI, MOSI, and SIMS datasets, we conduct experiments with fully customized multimodal features extracted
by the MMSA-FET9 toolkit. The language features are extracted from pre-trained Bert(Devlin et al., 2018) and the
pre-trained feature dimensions are 768 for all three datasets. Both MOSI and MOSEI use Facet10 and SIMS uses the
MultiComp OpenFace2.0 toolkit(Baltrusaitis et al., 2018) to extract facial expression features. The pre-trained visual feature
dimensions are 20 for MOSI, 35 for MOSEI, and 709 for SIMS. Both MOSI and MOSEI extract acoustic features from
COVAREP(Degottex et al., 2014) and SIMS uses LibROSA(McFee et al., 2015) speech toolkit with default parameters to
extract acoustic features at 22050Hz. The pre-trained audio feature dimensions are 74 for MOSEI, 5 for MOSI, and 33 for
SIMS. For these three datasets, we feed the pre-trained features into modality-specific backbones to extract the latent feature,
with the hidden dimension set to 128. Following (Williams et al., 2018), the AudioNet and VisualNet are composed of three
fully connected layers and the TextNet uses LSTM to capture long-distance dependencies in a text sequence. Then, a fully
connected layer is established on top of the backbone model to make modality-specific predictions. Finally, multi-modal
predictions are merged to obtain the final score.

C.3.2. TRAINING DETAILS

All experiments are conducted on a Ubuntu 20.04 LTS server equipped with Intel(R) Xeon(R) Gold 5218 CPU@2.30GHz
and RTX 3090 GPUs, and we implement all algorithms with PyTorch (Paszke et al., 2017). We adopt SGD (Robbins &
Monro, 1951) as the optimizer and set the same learning rate in the alternating-boosting stage and rectification stage. The
learning rate is 0.01 initially and multiplies 0.1 every 30 stages for the CREMA-D dataset, while multiplies 0.5 after 40
stages for the AVE dataset. For MOSEI, MOSI, CH-SIMS, and ModelNet40, the learning rate is 0.01 and remains constant.
In one alternating-boosting stage, we will pick one modality learner to update and this modality learner will experience T1
epochs. Then, we will step into global rectification stage and the model will experience T2 epochs. T1 and T2 will vary
depending on the datasets. In AVE, CREMA-D, ModelNet40, MOSEI, MOSI and SIMS, T1 is 4, 4, 4, 1, 1, 1 and T2 is 4,
4, 4, 1, 1, 1 respectively.

D. Additional Experiment Analysis
In this section, we provide additional experimental results and analysis to further support the conclusions in the main text.

6https://github.com/fanyunfeng-bit/Modal-Imbalance-PMR
7https://openreview.net/forum?id=mb7VM83DkyC
8https://librosa.org/
9https://github.com/thuiar/MMSA-FET

10https://imotions.com/products/imotions-lab/
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Table 7. Performance comparisons on the AVE and CREMA-D datasets in terms of mAP(%).

Method
AVE CREMA-D

MAP Audio MAP Visual MAP MAP Audio MAP Visual MAP

Concat Fusion 35.25 37.23 18.82 36.43 34.71 20.08
OGM-GE 36.92 35.43 20.04 38.50 36.59 24.42

PMR 36.75 35.71 20.32 39.34 36.97 25.10
UME 34.91 33.41 21.93 40.02 37.12 30.45
UMT 36.72 34.64 21.76 42.58 35.65 32.41

CMCL 40.21 38.15 23.41 53.31 38.31 41.25
HSR 41.49 39.21 24.01 55.22 39.20 44.67

Ours 43.85 42.71 25.22 60.52 40.58 54.26

Table 8. Performance comparisons on the CREMA-D dataset in terms of Acc(%) when 50% of the image data is corrupted with Gaussian
noise i.e., zero mean with the variance of σ2.

Method σ2 = 0.0 σ2 = 0.1 σ2 = 0.3 σ2 = 0.5 σ2 = 1.0

VisualNet 50.14 47.42 43.71 40.30 35.35
Concat Fusion 59.50 58.70 58.13 57.70 57.10

OGM-GE 65.59 64.20 62.50 61.70 60.17
PMR 66.10 65.58 63.39 62.10 61.08
UME 68.41 66.49 63.28 62.04 61.46
UMT 70.97 68.76 64.92 63.01 62.23
Ours 79.82 74.75 68.26 65.73 63.95

D.1. Performance on Retrieval Task

To further demonstrate ReconBoost’s adaptability in broader contexts, we apply it to the retrieval task, a crucial area
within computer vision. For this purpose, we employ modality-specific pre-trained encoders to obtain latent features from
each modality. For modality-specific retrieval, we utilize the respective latent features, whereas, for holistic retrieval, we
combine all latent features to make predictions. Cosine similarity served as the metric for our retrieval scores. We assess
its performance using the Mean Average Precision (MAP) metric on the CREMA-D and AVE datasets, as detailed in the
subsequent Tab.7.

Additionally, we benchmark our approach against recent advancements in retrieval tasks. CMCL(Jing et al., 2021) introduces
a cross-modal center loss for learning distinctive and modality-invariant features, showing impressive results in both
in-domain and cross-modal retrieval. HSR(Jiang et al., 2023a) develops a hierarchical representation strategy, utilizing
hierarchical similarity for retrieval tasks.

These comparisons reveal that the challenge of modality competition persists in retrieval tasks. However, ReconBoost
effectively mitigates this issue, leading to superior performance.

D.2. Robustness Performance

Our initial learning approach assumes all modalities are of high quality. To assess how our method handles noisy data, we
introduce Gaussian noise into different modalities and evaluate the performance using the CREMA-D dataset.

Case 1: In scenarios where 50% of the image data is distorted with Gaussian noise ϵ ∼ N (µ, σ2) (µ = 0), we observe the
outcomes across various levels of noise intensity σ, as detailed in the Tab.8.

Case 2: Similarly, when 50% of the audio data encounters the same type of noise distortion, we document the performance
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Table 9. Performance comparisons on the CREMA-D dataset in terms of Acc(%) when 50% of the audio data is corrupted with Gaussian
noise i.e., zero mean with the variance of σ2.

Method σ2 = 0.0 σ2 = 0.1 σ2 = 0.3 σ2 = 0.5 σ2 = 1.0

AudioNet 56.67 51.70 49.20 46.70 44.80
Concat Fusion 59.50 57.01 55.56 54.74 52.27

OGM-GE 65.59 63.28 62.09 59.56 56.49
PMR 66.10 63.74 62.83 60.29 57.10
UME 68.41 63.01 61.64 60.83 58.57
UMT 70.97 66.29 64.71 63.40 60.37
Ours 79.82 73.65 68.19 65.05 63.24

Table 10. Performance comparisons on the CREMA-D dataset in terms of Acc(%) when 50% of the image data and the audio data are
corrupted with Gaussian noise i.e., zero mean with the variance of σ2.

Method σ2 = 0.0 σ2 = 0.1 σ2 = 0.3 σ2 = 0.5 σ2 = 1.0

AudioNet 56.67 51.70 49.20 46.70 44.80
VisualNet 50.14 47.42 43.71 40.30 35.35

Concat Fusion 59.50 55.31 52.34 49.42 47.23
OGM-GE 65.59 60.14 57.36 54.26 50.38

PMR 66.10 62.57 58.19 55.14 51.25
UME 68.41 62.95 58.84 55.72 51.91
UMT 70.97 65.02 63.50 60.63 55.74
Ours 79.82 71.83 67.17 63.09 57.60

changes with different noise intensities σ, as shown in Tab.9.

Case 3: In cases where both audio and image data are 50% corrupted by Gaussian noise ϵ ∼ N (µ, σ2) (µ = 0), the impacts
on performance with varying noise levels σ are summarized in the Tab.10.

Our observations indicate that despite the presence of noise, our method consistently outperforms competing approaches in
all the scenarios mentioned above.

D.3. Modality Competition Analysis

In this subsection, we quantify the modality competition and analyze this phenomenon in more detail.

Given input data X that consists of M modalities, X = {X1, · · · ,XM}, Y represents the ground-truth labels. We can train
M separate encoders {φuni

1 , · · · , φuni
M } and classifiers {funi

1 , · · · , funi
M } for each modality through uni-modal training.

We can also train encoders {φmul
1 , · · · , φmul

M } for all modalities through multi-modal learning. Then, we build a classifier
on the frozen modality-specific encoder, denoted as {fmul

1 , · · · , fmul
M } for all modalities. Acc(·) represents the accuracy

evaluation function.

For any two modalities Xi (the strong modality) and Xj (the weak modality), we define the modality imbalance ratio
(MIR) in a uni-modal setting as:

MIRuni(Xi,Xj) =
Acc(funi

i ◦ φuni
i (Xi))

Acc(funi
j ◦ φuni

j (Xj))
(26)

In a multi-modal setting, the definition of MIR is:

MIRmul(Xi,Xj) =
Acc(fmul

i ◦ φmul
i (Xi))

Acc(fmul
j ◦ φmul

j (Xj))
(27)
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MIR effectively measures the accuracy ratio between any two modalities, where a higher MIR indicates a more pronounced
imbalance in learning across different modalities.

Furthermore, to assess the competition between multi-modal and uni-modal learning, we introduce the Degree of Modality
Competition (DMC). Specifically, DMC compares the MIR of a multi-modal learner to that of a uni-modal learner:

DMC(Xi,Xj) =
MIRmul(Xi,Xj)

MIRuni(Xi,Xj)
(28)

A higher DMC value indicates more intense modality competition. We also expand DMC to accommodate three modalities
by calculating the geometric mean of all modality pairs:

DMC(Xi,Xj ,Xk) =
3

√√√√ ∏
m,n∈{i,j,k}

m ̸=n

DMC(Xm,Xn) (29)

Tab.11 summarizes the modality imbalance ratio of different multi-modal learning methods on both the CREMA-D and
AVE datasets. Tab.12 shows the DMC value of the concatenation fusion method across all datasets. Notably, as the degree
of modality competition rises, so does the improvement our method offers.

Table 11. Modality imbalance ratio (MIR) and the degree of modality competition (DMC) for all competitors on the CREMA-D and AVE
dataset. Audio modality is a strong modality.

Method
CREMAD Dataset AVE Dataset

Audio Visual MIR DMC Audio Visual MIR DMC

Uni-train 56.67 50.14 1.13 - 59.37 30.46 1.95 -
Concat Fusion 54.86 26.81 2.05 1.81 55.47 23.96 2.32 1.19

G-Blending 54.90 28.05 1.96 1.73 55.80 24.12 2.31 1.19
OGM-GE 55.42 29.17 1.90 1.68 56.51 25.52 2.21 1.14

PMR 55.60 29.21 1.90 1.68 57.20 26.30 2.17 1.12
UMT 58.47 45.69 1.28 1.13 60.70 31.07 1.95 1.00

Ours 60.23 73.01 0.82 0.73 61.20 39.06 1.57 0.80

Table 12. The correlation between the Degree of Modality Competition (DMC) using the concatenation fusion method and the enhancement
of our method compared to that across all datasets. If the dataset lacks this modality, it is denoted as ’-’.

Dataset
Uni-modal Concat-fusion

DMC Concat Ours Relative Improvement
Audio Visual Text Audio Visual Text

CREMA-D 56.67 50.14 - 54.86 26.81 - 1.81 59.50 79.82 34.15%
AVE 59.37 30.46 - 55.47 23.96 - 1.19 62.68 71.35 13.83%

MOSEI 52.29 50.35 66.41 49.02 49.02 66.13 1.01 66.71 68.61 2.85%
MOSI 54.81 57.87 75.94 54.25 54.37 74.05 0.99 76.23 77.96 2.27%

CH-SIMS 58.20 63.02 70.45 54.27 59.74 68.71 1.03 71.55 73.88 3.26%
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Figure 10. The visualization of the multi-modal information. This figure is derived from (Liang et al., 2023b).

D.4. Analysis of Mutual Information in Modalities

In this subsection, we will illustrate the effectiveness of our method from the perspective of mutual information. Assume
that two modalities are denoted as X1 and X2. Y represents the groud-truth labels. Following (Liang et al., 2023b), we
decompose the multi-modal information I(X1,X2;Y) into three conditional mutual information (MI) terms and visualize
the multi-modal information as Fig.10.

I(X1,X2;Y) = I(X1;X2;Y)︸ ︷︷ ︸
S(X1,X2)=relevant shared info.

+ I(X1,Y|X2)︸ ︷︷ ︸
U(X1)=relevant unique info. in X1

+ I(X2,Y|X1)︸ ︷︷ ︸
U(X2)=relevant unique info. in X2

(30)

When only one modality X1 exists, the uni-modal only contains unique information U(X1). Then, in a multi-modal setting,
maximize the information that X2 can bring becomes the key to improving the performance of multi-modal learning
algorithms. We measure the information that X2 can bring using the difference in accuracy between using the multi-modal
approach and the uni-modal model, as:

U(X2) + S(X1,X2) = Acc(X1,X2)− Acc(X1) (31)

where Acc(X1) and Acc(X2) denote the accuracy of the unimodal learning algorithm using only X1 and X2 modalities,
respectively; Acc(X1,X2) denote the accuracy of the multi-modal learning algorithm using both X1 and X2 modalities.

Then, we evaluate it among different competitors on three benchmarks. Overall, as shown in Fig.11, our method consistently
outperforms others, demonstrating the potential of maximizing the valuable information in each modality. This further
illustrates the effectiveness of our method.

D.5. Modality Selection Strategy

In this subsection, we investigate the effect of different modality selection strategies. Our method expects to tackle the issue
of modality competition. To this end, we alternate learning for each modality. This approach intuitively eases modality
competition in gradient space by requiring separate use of modality-specific gradients. We now explore quality-guided
criteria for modality selection. We introduce two additional modality selection schemes based on loss value as a measure of
modality-specific data quality:

• S1: We select the modality learner with the lowest loss value for updates in each round, favoring high-quality modalities.

• S2: We select the modality learner with the highest loss value for updates in each round, prioritizing low-quality
modalities.

We evaluate the effectiveness of these two optimization orders using the AVE dataset, as shown in Tab.13.

The results demonstrate that our method surpasses those based on quality selection. This might be because the S1 strategy
could cause low-quality modality learners to get stuck at poor local optima. Conversely, the S2 strategy may restrict the
potential of high-quality modalities.
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Figure 11. Quantitative analysis of task relevant mutual information in modalities on the AVE, CREMA-D, and MN40 datasets.

Table 13. Performance comparisons on the AVE dataset in terms of Acc(%) with different selection strategies.

Optimization Order Overall Acc Audio Acc Visual Acc

S1 61.45 60.03 24.11
S2 68.75 57.20 38.90

Ours 71.35 61.20 39.06

D.6. Applicable to Other Fusion Schemes

In this subsection, we investigate how to combine our approach with some multi-modal fusion methods to better improve
performance. Multi-modal fusion methods are typically divided into two categories: feature-level and decision-level fusions
(Baltrušaitis et al., 2019). Feature-level fusion combines latent features before making predictions, commonly used in
multi-modal joint-learning approaches. In contrast, decision-level fusion aggregates predictions from each modality to
reach a final decision. Our main paper demonstrates that joint learning can cause modality competition. To mitigate this,
we introduced a new multi-modal learning framework based on decision-level fusion strategies, enhancing adaptability to
complex decision-making scenarios. We modify our original decision aggregation formula as follows:

ΦM (xi) =

M∑
k=1

wk · ϕk(ϑk;m
k
i ) (32)

where wk signifies the importance of the k-th modality during inference.

Our ReconBoost framework can be easily combined with other fusion methods, particularly:

• QMF (Zhang et al., 2023) employs a dynamic, uncertainty-aware weighting mechanism at the decision level.

• TMC (Han et al., 2021) uses a dynamic approach to integrate modalities through the Dempster-Shafer theory efficiently.

Additionally, we benchmark against two straightforward baselines:
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• Learnable Weighting (LW): Assigns trainable weights wk to each modality and learns these weights alongside other
parameters.

• Naive Averaging (NA): Averages predictions across modalities, setting wk = 1 for all modalities.

Furthermore, to emphasize the superiority of our approach, we also evaluate a novel feature-based fusion competitor,
MMTM (Joze et al., 2020), on the AVE and CREMA-D datasets.

Table 14. Performance comparisons on the AVE and CREMA-D dataset in terms of Acc(%) with different fusion strategies.

Method
AVE CREMA-D

Overall Acc Audio Acc Visual Acc Overall Acc Audio Acc Visual Acc

OGM GE + MMTM 66.14 58.23 28.09 69.83 58.76 53.35
PMR + MMTM 67.72 58.47 28.73 70.14 58.94 54.23
UMT + MMTM 70.16 60.40 35.83 74.35 60.86 62.83

Ours + NA 71.35 61.20 39.06 79.82 60.23 73.01
Ours + LW 72.40 61.31 39.13 80.11 60.09 73.30

Ours + TMC 72.96 61.51 40.20 80.68 60.37 73.86
Ours + QMF 73.20 61.96 40.85 81.11 60.94 73.87

Overall, as shown in Tab.14, our method consistently outperforms others, highlighting the potential of more flexible fusion
strategies to enhance performance. This reaffirms the effectiveness of ReconBoost.

D.7. Impact of Different Classifiers

In Tab.5, we limit classifiers to linear models to assess the effectiveness of our proposed ensemble method. Herein, we
expand our evaluation to include non-linear classifiers featuring multiple fully connected (FC) layers and ReLU functions.
Specifically, we develop non-linear classifier architecture, Fc+Relu+Fc, and FC+Relu+FC+Relu+FC, for the encoders used
in all methods and test its performance on the CREMA-D dataset. As shown in Tab.15, we arrive at the conclusion that 1)
modality competition exists no matter which classifier is used. 2) Our approach, ReconBoost, enhances the performance of
encoders with various classifiers, demonstrating that our model effectively learns high-quality latent features.

D.8. Sensitivity Analysis of λ

To assess the impact of λ, we carry out additional sensitivity tests by altering λ’s value. We present the results for CREMA-D,
AVE, and ModelNet40 in the Tab.16. The performance of our method stays consistent with λ values between [1/4, 1/2].
Additionally, our method continues to achieve state-of-the-art results within this λ range.

Table 15. Performance comparisons on the CREMA-D dataset in terms of Acc(%) with different classifiers.

Method
FC FC+Relu+FC FC+Relu+FC+Relu+FC

Visual Audio Visual Audio Visual Audio

Uni-train 50.14 56.67 50.25 56.97 50.31 57.10
Concat Fusion 26.81 54.86 26.89 54.91 26.96 55.02

OGM-GE 29.17 55.42 29.72 56.03 29.91 56.11
PMR 29.21 55.60 29.81 56.22 30.05 56.45
UMT 45.69 58.47 46.73 58.71 47.01 58.93
Ours 73.01 60.23 73.34 60.24 73.86 60.37
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Table 16. Sensitivity analysis of λ on the CREMA-D, AVE and ModelNet40 datasets.

Method AVE CREMA-D MN40

Concat Fusion 62.68 59.50 83.18
G-Blending 62.75 63.81 84.56
OGM-GE 62.93 65.59 85.61

PMR 64.20 66.10 86.20
UME 66.92 68.41 85.37
UMT 67.71 70.97 90.07

Ours λ = 1/4 71.35 79.26 91.13
Ours λ = 1/3 70.31 79.82 91.78
Ours λ = 1/2 69.53 77.13 91.25

Ours λ = 1 69.49 70.31 89.91

D.9. Latent Embedding Visualization

Taking a step further, we visualize the latent embedding of modality-specific features among different competitors on the
CREMA-D datasets. Specifically, we first regard the outputs of the backbone as the latent vectors of images and then
project them into a 2D case by t-SNE (Van der Maaten & Hinton, 2008). Comparing these results, we can see that our
proposed method outperforms other competitors in all modalities since the cluster results of ReconBoost are more significant,
especially in the weak modality. This again ascertains the advantages of our proposed approach.

Figure 12. The visualization of the modality-specific feature among competitors in the CREMA-D dataset by using the t-SNE method
(Van der Maaten & Hinton, 2008).
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