
Conformal Prediction for Deep Classifier via Label Ranking

Jianguo Huang * 1 2 † Huajun Xi * 1 Linjun Zhang 3 Huaxiu Yao 4 Yue Qiu 5 Hongxin Wei 1

Abstract
Conformal prediction is a statistical framework
that generates prediction sets containing ground-
truth labels with a desired coverage guarantee.
The predicted probabilities produced by machine
learning models are generally miscalibrated, lead-
ing to large prediction sets in conformal predic-
tion. To address this issue, we propose a novel
algorithm named Sorted Adaptive Prediction Sets
(SAPS), which discards all the probability values
except for the maximum softmax probability. The
key idea behind SAPS is to minimize the depen-
dence of the non-conformity score on the probabil-
ity values while retaining the uncertainty informa-
tion. In this manner, SAPS can produce compact
prediction sets and communicate instance-wise
uncertainty. Extensive experiments validate that
SAPS not only lessens the prediction sets but also
broadly enhances the conditional coverage rate of
prediction sets.

1. Introduction
Machine learning is being deployed in many high-stakes
tasks, such as autonomous driving (Bojarski et al., 2016),
medical diagnostics (Caruana et al., 2015), and financial
decision-making. The trust and safety in these applications
are critical, as any erroneous prediction can be costly and
dangerous. To assess the reliability of predictions, a popular
solution is to quantify the model uncertainty, such as confi-
dence calibration (Guo et al., 2017), MC-Dropout (Gal &
Ghahramani, 2016), and Bayesian neural network (Smith,
2013). However, these methods lack theoretical guarantees
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of the model performance. This gives rise to the importance
of Conformal Prediction (CP) (Vovk et al., 2005; Shafer
& Vovk, 2008; Balasubramanian et al., 2014; Angelopou-
los & Bates, 2021), which yields prediction sets containing
ground-truth labels with a desired coverage guarantee.

To determine the size of the prediction set, CP algorithms
generally design non-conformity scores to quantify the devi-
ation degree between a new instance and the training data. A
higher non-conformity score is associated with a larger pre-
diction set or region, indicating a lower confidence level in
the prediction. For example, Adaptive Prediction Sets (APS)
(Romano et al., 2020) calculates the score by accumulating
the sorted softmax values in descending order. However, the
softmax probabilities typically exhibit a long-tailed distribu-
tion, allowing for easy inclusion of those tail classes in the
prediction sets. To alleviate this issue, Regularized Adap-
tive Prediction Sets (RAPS) (Angelopoulos et al., 2021)
excludes unlikely classes by appending a penalty to classes
beyond a specified threshold. Yet, the non-conformity score
of RAPS involves unreliable softmax probabilities, leading
to suboptimal performance in conformal prediction. This
motivates our question: does the probability value play a
critical role in conformal prediction?

In this work, we show that the value of softmax probability
might be redundant information for conformal prediction.
We provide an empirical analysis by removing the exact
value of softmax probability while preserving the relative
rankings of labels. The results indicate that APS without
probability value yields much more compact prediction sets
than APS using the softmax outputs, at the same cover-
age rate. Theoretically, we show that, by removing the
probability value, the size of prediction sets generated by
APS is consistent with the model prediction accuracy. In
other words, a model with higher accuracy can produce
smaller prediction sets, using APS without access to the
probability value. The details of the analysis are presented
in Section 3.1.

Inspired by the analysis, our key idea is to minimize the
dependence of the non-conformity score on the proba-
bility values, while retaining the uncertainty information.
Specifically, we propose the Sorted Adaptive prediction sets
(dubbed SAPS), which discards all the probability values
except for the maximum softmax probability in the construc-
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tion of non-conformity score. After sorting in descending
order, this can be achieved by replacing the non-maximum
probability values with a constant. In effect, SAPS can
not only produce sets of small size but also communicate
instance-wise uncertainty. In addition, we show that as
the constant approaches infinity, the expected value of set
size from SAPS is asymptotically equivalent to that of APS
without probability value (see Figure 3b).

To verify the effectiveness of our method, we conduct thor-
ough empirical evaluations on common benchmarks, includ-
ing CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and
ImageNet (Deng et al., 2009). The results demonstrate that
SAPS is superior to the compared methods, including APS
and RAPS. For example, our approach reduces the aver-
age size of prediction sets from 20.95 to 2.98 – only 1

7 of
the prediction set size from APS. Compared to RAPS, we
show that SAPS produces a higher conditional coverage
rate and exhibits better adaptability to the instance difficulty.
Code are publicly available at https://github.com/ml-stat-
Sustech/conformal prediction via label ranking.

We summarize our contributions as follows:

1. We show that the probability value might be unnec-
essary for APS. Specifically, APS without probability
value generates smaller prediction sets than vanilla
APS. Theoretically, we show that this variant of APS
can provide stable prediction sets, in which the set size
is consistent with the prediction accuracy of models.

2. We propose a novel non-conformity score – SAPS that
minimizes the dependency on probability value while
retaining the uncertainty information.

3. Extensive experimental results demonstrate the effec-
tiveness of our proposed method. We show that SAPS
lessens the prediction sets and broadly enhances the
conditional coverage rate.

4. We provide analyses to improve our understanding
of the proposed method. In particular, we validate
that both retaining the maximum softmax probability
and confidence calibration are important for SAPS to
generate compact prediction sets (see Section 5).

2. Preliminaries
In this work, we consider the multi-class classification task
with K classes. Let X ⊂ Rd be the input space and
Y := {1, . . . ,K} be the label space. We use π̂ : X → RK

to denote the pre-trained neural network that is used to
predict the label of a test instance. Let (X,Y ) ∼ PXY de-
note a random data pair satisfying a joint distribution PXY .
Ideally, π̂y(x) can be used to approximate the conditional
probability of the class y given an image feature x, i.e.,

P[Y = y|X = x]. Then, the model prediction in classifica-
tion tasks is generally made as: ŷ = argmax

y∈Y
π̂y(x).

Conformal prediction. To provide a formal guarantee for
the model performance, conformal prediction (Vovk et al.,
2005) is designed to produce prediction sets containing
ground-truth labels with a desired probability. Instead of
predicting one-hot labels from the model outputs, the goal
of conformal prediction is to construct a set-valued mapping
C : X → 2Y , which satisfies the marginal coverage:

P(Y ∈ C(X)) ≥ 1− α, (1)

where α ∈ (0, 1) denotes the desired error rate and C(X) is
a subset of Y .

Before deployment, conformal prediction begins with a cali-
bration step, using the calibration set Dcal := {(xi, yi)}ni=1.
The samples of the calibration set are i.i.d., having been
drawn from the distribution PXY . Specifically, we calculate
a non-conformity score si = S(xi, yi) for each example
(xi, yi) in the calibration set, where si measures the degree
of deviation between the given example and the training data.
The 1− α quantile of the non-conformity scores {si}ni=1 is
then determined as a threshold τ . Formally, the value of τ
can be obtained as shown below:

τ = inf{s : |{i∈{1,...,n}:si≤s}|
n ≥ ⌈(n+1)(1−α)⌉

n }. (2)

During testing, we calculate the non-conformity score for
each label given a new instance xn+1. Then, the correspond-
ing prediction set C(xn+1) comprises possible labels whose
non-conformity score S(xn+1, y) falls within τ̂ :

C1−α(xn+1; τ) := {y ∈ Y : S(xn+1, y) ≤ τ}. (3)

The above equation exhibits a nesting property of threshold,
i.e.,

τ1 ≤ τ2 =⇒ C1−α(xn+1; τ1) ⊆ C1−α(xn+1; τ2). (4)

This property shows that with a lower value of τ , the model
tends to produce a smaller prediction set, indicating a higher
level of confidence in the prediction. Conversely, the in-
crease of τ will enlarge the size of the prediction set, sug-
gesting greater uncertainty of the prediction. In this manner,
conformal prediction can be used to estimate the uncertainty
or reliability of the model’s predictions.

Adaptive prediction sets (APS). In the APS method (Ro-
mano et al., 2020), the non-conformity scores are calculated
by accumulating the softmax probabilities in descending or-
der. Formally, given a data pair (x, y), the non-conformity
score can be computed by:

Saps(x, y, u; π̂) :=
o(y,π̂(x))−1∑

i=1

π̂(i)(x) + u · π̂(o(y,π̂(x)))(x),

(5)
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Figure 1. (a) Softmax probabilities for an instance from ImageNet
are arranged in descending order. (b) Set size on various models.
We use “w/ value” and “w/o value” to represent the vanilla APS
and APS without probability values, respectively. The numbers
in brackets represent the accuracy of the model. The sizes of the
prediction sets are decreased after removing the probability value.

where o(y, π̂(x)) denotes the index of π̂y(x) in the sorted
softmax probabilities, i.e., π̂(1)(x), . . . , π̂(K)(x) , and u
is an independent random variable satisfying a uniform
distribution on [0, 1]. Similarly, the prediction set of APS
with the error rate α for a test instance xn+1 is given by

C1−α(xn+1, un+1; τ) := {y ∈ Y : Saps(xn+1, y, un+1; π̂) ≤ τ},
(6)

where un+1 ∼ U [0, 1] and τ is defined by Equation 2. In
particular, a larger value of τ will lead to a larger prediction
set, representing higher uncertainty. Thus, the prediction
set defined by Equation 6 satisfies the nesting property in
Equation 4.

In addition, the prediction set C1−α(xn+1, un+1; τ) with
the τ obtained by Equation 2 has a finite-sample marginal
coverage guarantee, as stated in the following theorem.

Theorem 2.1. (Angelopoulos et al., 2021) Suppose the
calibration data (Xi, Yi, Ui)i=1,...,n and a test instance
(Xn+1, Yn+1, Un+1) are exchangeable. Let the set-valued
function C1−α(x, u; τ) satisfy the nesting property of τ in
Equation 4. For τ defined in Equation 2, we have the fol-
lowing coverage guarantee:

P (Yn+1 ∈ C1−α (Xn+1, Un+1; τ)) ≥ 1− α.

In practice, the assumption of exchangeability in the above
Theorem is promising as it is weaker than the i.i.d. assump-
tion (Teng et al., 2023). However, the softmax probabilities
π̂(x) typically exhibit a long-tailed distribution, where the
tail probabilities with small values can be easily included
in the prediction sets. Consequently, APS tends to produce
large prediction sets for all inputs, regardless of the instance
difficulty. For example, in Figure 1a, the long-tail proba-
bility distribution results in the non-conformity scores of
many classes falling within the threshold τ . This motivates

our analysis to investigate the role of probability values in
conformal prediction.

3. Motivation and method
3.1. Motivation

To analyze the role of probability values, we perform an
ablation study by removing the influence of probability
values in Equation 5. In particular, after arranging softmax
probabilities in descending order, we substitute them with a
positive constant γ (e.g., γ = 1).

Formally, the modified non-conformity score for a data pair
(x, y) with a pre-trained model π̂ can be give by:

Scons(x, y, u; π̂, γ) := γ · [o(y, π̂(x))− 1 + u] . (7)

In what follows, we thoroughly probe the impacts of γ. We
start by giving the following definition.
Lemma 3.1. (Vovk et al., 2005) Let Z be a space of exam-
ples. Given a significance level, two non-conformity score
functions A and B could provide the same prediction sets if
A(z) ≤ A(z′) ⇐⇒ B(z) ≤ B(z′) for all z, z′ ∈ Z .

Lemma 3.1 states that in conformal prediction, different
non-conformity score functions are equivalent if they lead
to the same non-conformity order for any data examples.
Proposition 3.2. For all γ1, γ2 > 0, the score functions
Scons(x, y, u; π̂, γ1) and Scons(x, y, u; π̂, γ2) could pro-
vide the same prediction sets in conformal prediction.

The proof of the above proposition is presented in Ap-
pendix A. According to Proposition 3.2, we can find that
the value of γ in Scons(x, y, u; π̂, γ) is irrelevant with the
prediction sets. Thus, we fix the constant γ to 1 for sim-
plification. We conduct experiments on ImageNet (Deng
et al., 2009) to compare the new non-conformity score to
the vanilla APS. Here, we set the desired error rate as 10%,
i.e., α = 0.1. Following previous works (Romano et al.,
2019; Angelopoulos et al., 2021; Ghosh et al., 2023), we
first randomly split the test dataset of ImageNet into two
subsets: a conformal calibration subset of size 30K and a
test subset of size 20K. For the network architecture, we
use seven models trained on ImageNet, with different levels
of prediction performance (see Figure 1b). All models are
calibrated by the temperature scaling procedure (Guo et al.,
2017) on the calibration dataset. Finally, experiments are
repeated ten times and the median results are reported.

Probability values may not be necessary. Figure 1b
presents the results on various models, using APS
with/without the probability value. The results indicate
that APS solely based on label ranking generates smaller
prediction sets than the vanilla APS, across various mod-
els. For example, on the Inception model, removing the
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probability values reduces the set size from 88.18 to 6.33.
Similarly, when applying a transformer-based ViT model
(Touvron et al., 2021), APS without probability values also
obtains a smaller set size. This comparison suggests that the
probability values might be redundant for non-conformity
scores in conformal prediction. We further explore this by
theoretically analyzing the benefits of discarding softmax
probability values in APS.

A theoretical interpretation. The above empirical results
demonstrate that the probability value is not a critical com-
ponent of the non-conformity score for conformal predic-
tion. Here, we provide a formal analysis of APS without
probability value through the following theorem:

Theorem 3.3. Let Ar denote the accuracy of the top r
predictions for a trained model π̂ on an infinite calibration
set. Given a significance level α, there exists an integer
k satisfying Ak ≥ 1 − α > Ak−1. For any test instance
x ∼ PX and an independent random variable u ∼ U [0, 1],
the size of the prediction set C1−α(x, u) generated by APS
without probability value can be obtained by

|C1−α(x, u)| =

k, if u <
1− α−Ak−1

Ak −Ak−1
,

k − 1, otherwise.

(8)

The expected value of the set size can be given by

Eu∼[0,1][|C1−α(x, u)|] = k − 1 +
1− α−Ak−1

Ak −Ak−1
. (9)

The proof of Theorem 3.3 can be found in Appendix B. This
is consistent with the theoretical results of RAPS, which
indicates that the size of prediction sets generated by RAPS
with heavy regularization will be at most equal to k (An-
gelopoulos et al., 2021). As indicated by Equation 9, the
prediction set size generated by APS without probability
value is consistent with k. In other words, a higher model
accuracy will lead to a smaller value of k, indicating smaller
prediction sets. This argument is clearly supported by ex-
perimental results shown in Figure 1b. In particular, we
observe that using APS without probability value, mod-
els with higher accuracy produce smaller prediction sets,
while the vanilla APS does not exhibit this characteristic.
For example, the vanilla APS yields larger prediction sets
for ResNeXt101 than for ResNet152, despite ResNeXt101
achieving higher predictive accuracy than ResNet152. The
analysis demonstrates the advantage of removing proba-
bility value in APS, via decreasing the sensitivity to tail
probabilities.

3.2. Method

In the above analysis, we demonstrate that removing the
probability values in APS can largely decrease the size

of prediction sets. Yet, the expected value of the set size
(shown in Equation 8) will oscillate between k − 1 and k,
using APS without the probability value. This implies a
shortcoming of the modified non-conformity score in adap-
tation to instance-wise uncertainty, leading to redundant
prediction sets for easy examples.

To alleviate this limitation, we propose a novel conformal
prediction algorithm, named Sorted Adaptive Prediction
Sets (SAPS). The key idea behind SAPS is to minimize
the dependence of the non-conformity score on the proba-
bility values, while retaining the uncertainty information.
In particular, we discard all the probability values except
for the maximum softmax probability (MSP), which is usu-
ally used to measure the model confidence in the prediction
(Hendrycks & Gimpel, 2016).

Formally, the non-conformity score of SAPS for a data pair
(x, y) can be calculated as

Ssaps(x, y, u; π̂) :=

{
u · π̂max(x), if o(y, π̂(x)) = 1,
π̂max(x) + (o(y, π̂(x))− 2 + u) · λ, else,

(10)
where λ is a hyperparameter representing the weight of rank-
ing information, π̂max(x) denotes the maximum softmax
probability and u is a uniform random variable.

During inference, we calculate the non-conformity score for
each label. In particular, the score is equivalent to that of
APS for the label with the maximum softmax probability,
while the scores of the resting labels are composed of the
MSP and the ranking information from 2 to o(y, π̂(x)),
i.e., (o(y, π̂(x)) − 2 + u). In this way, the new score of
SAPS retains instance-wise uncertainty and mitigates the
undesirable influence of tail probabilities.

With the new non-conformity score, the prediction sets of
SAPS can be established according to Equation 6, following
APS and RAPS. Consequently, we can conclude that SAPS
also satisfies the marginal coverage guarantee, as stated in
Theorem 2.1. Moreover, We provide an ablation experiment
to investigate the relation between the prediction sets and
the ranking weight λ in Section 5.

4. Experiments
4.1. Experimental Setup

Datasets. We consider three prominent datasets in our
experiments: ImageNet (Deng et al., 2009), CIFAR-100
and CIFAR-10 (Krizhevsky et al., 2009), which are com-
mon benchmarks for conformal prediction. In particular,
for ImageNet, its test dataset of 50,000 images is divided,
allocating 30,000 images to the calibration set and 20,000
images to the test set. For both CIFAR-100 and CIFAR-10,
the associated test dataset of 10,000 images is uniformly
divided into two subsets: a calibration set and a test set,
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Table 1. Performance comparison of various methods with different error rates α. We conduct experiments on ImageNet and CIFAR-
10/100 datasets. Bold numbers indicate optimal performance.

α = 0.1 α = 0.05

Coverage Size ↓ Coverage Size ↓

Datasets APS RAPS SAPS APS RAPS SAPS APS RAPS SAPS APS RAPS SAPS

ImageNet 0.899 0.900 0.900 20.95 3.29 2.98 0.949 0.950 0.950 44.67 8.57 7.55
CIFAR-100 0.899 0.900 0.899 7.88 2.99 2.67 0.950 0.949 0.949 13.74 6.42 5.53
CIFAR-10 0.899 0.900 0.898 1.97 1.79 1.63 0.950 0.950 0.950 2.54 2.39 2.25

each comprising 5,000 images.

Models. We employ twelve different classifiers, includ-
ing nine standard classifiers, two transformer-based models,
i.e., ViT (Dosovitskiy et al., 2020) and DeiT (Touvron et al.,
2021), and a Vision-Language Model named CLIP (Radford
et al., 2021). Aside from CLIP with zero-shot prediction ca-
pabilities, the remaining models are the models pre-trained
on ImageNet. For CIFAR-10 and CIFAR-100, these models
will be fine-tuned on the pre-trained models. Moreover, all
classifiers are calibrated by the Temperature scaling proce-
dure (Guo et al., 2017) before applying CP methods.

Conformal prediction algorithms. We compare the pro-
posed method against APS (Romano et al., 2020) and RAPS
(Angelopoulos et al., 2021). For methods that has hyper-
parameters, we choose the hyper-parameter that achieves the
smallest set size on a validation set, which is a subset of the
calibration set. Specifically, we tune the regularization hy-
perparameter of RAPS in {0.001, 0.01, 0.1, 0.15, . . . , 0.5}
and hyperparameter λ in {0.02, 0.05, 0.1, 0.15, . . . , 0.6} for
SAPS. All experiments are conducted with ten trials, and
the median results are reported.

Additionally, we provide the details about the calibration
process of conformal prediction algorithms, as shown:

1. Split: we split the full calibration set into a validation
set and a calibration set (20 : 80 in this work);

2. Tuning: we use the validation set to choose proper
hyperparameters of non-conformity score function;

3. Conformal Calibration: we use the calibration set to
calculate the threshold τ .

For CP methods with hyperparameters (i.e., RAPS and
SAPS), we use the ”Split” and ”Tuning” steps to tune the
hyperparameters. For APS, we use the full calibration set.
Therefore, all methods have access to the same dataset for
fair comparison.

Evaluation. The primary metrics used for the evaluation of
prediction sets are set size (average length of prediction sets,

small value means high efficiency) and marginal coverage
rate (fraction of testing examples for which prediction sets
contain the ground-truth labels). These two metrics can be
formally represented as :

Size =
1

Ntest

Ntest∑
i=1

|C(xi)|

Coverage rate =
1

Ntest

Ntest∑
i=1

1(yi ∈ C(xi))

Conditional coverage rate. In this work, we propose an
alternative metric to the Size-stratified Coverage Violation
(Angelopoulos et al., 2021) named Each-Size Coverage
Violation (ESCV), which is given by:

ESCV(C,K) = sup
j

max(0, 1− α− |{i∈Jj :yi∈C(xi)}|
|Jj | )

where Jj = {i : |C (xi) | = j} and j ∈ {1, . . . ,K}.
Specifically, ESCV measures the most significant violation
of prediction sets. This metric is practical because it only
requires the set size, and is suitable for any classification
problem, spanning from binary classes to large classes.

4.2. Results

SAPS generates smaller prediction sets. In Table 1, the
performance of set sizes and coverage rates for various
classification tasks are presented. We can observe that the
coverage rate of all conformal prediction methods is close to
the desired coverage 1− α. At different significance levels
(i.e., 0.1 and 0.05), the prediction set size is consistently
reduced by SAPS for ImageNet, CIFAR-100 and CIFAR-10,
compared to APS and RAPS. For example, when evaluated
on ImageNet, SAPS reduces the average set size from 20.95
of APS to 2.98. Moreover, as the scale of the classifica-
tion task increases, the efficiency improvement achieved
by SAPS becomes increasingly evident. Overall, the ex-
periments show that our method has the desired coverage
rate and a smaller set size than APS and RAPS. Due to
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Figure 2. (a) ESCV with different models on ImageNet with α = 0.1. A good conformal prediction algorithm should keep the y-axis
(e.g., ESCV) small. The results show that SAPS outperforms RAPS on most cases. (b) Set size on ImageNet-V2 at α = 0.1. (c) Set size
of various difficulties for multiple models on ImageNet. Small sets are required for easy examples, while hard ones require large sets.

space constraints, we only report the average results of mul-
tiple models on various classification tasks in Table 1, and
detailed results for each model are available in Appendix C.

Experiments on distribution shifts. We also verify the
effectiveness of our method on the new distribution, which
is different from the training data distribution. Specifically,
we divide the test dataset of ImageNet-V2 (Recht et al.,
2019), which exhibits a distribution shift compared to the
ImageNet, equally into a calibration set containing 5000
images and a test set containing 5000 images. Then, the
test models are only pre-trained on ImageNet and not be
fine-tuned. As shown in Figure 2b, the result shows that
under α = 0.1, our method can also generate the smallest
sets when the conformal calibration set and the test set come
from a new distribution.

SAPS acquires lower conditional coverage violation. In
Figure 2a, we demonstrate that SAPS not only outperforms
in efficiency but also boosts the conditional coverage rate,
i.e., ESCV. Given that our study primarily focuses on im-
proving the efficiency of prediction sets, the comparison of
ESCV is exclusively conducted between SAPS and RAPS.
The results, shown in Figure 2a, demonstrate that on Ima-
geNet, SAPS would get smaller ESCV than RAPS for most
models. For example, on CLIP, SAPS reduces the ESCV
from 0.9 to 0.37. In addition, on ImageNet, we can observe
that the ESCV of SAPS for different models is more stable
than RAPS. Specifically, the ESCV of SAPS can keep a
low value on most models, but in the case of RAPS, the
maximum ESCV even gets 0.9. The detailed results on
CIFAR-10 and CIFAR-100 are provided in Appendix D.

Moreover, to further confirm that SAPS achieves superior
conditional coverage than RAPS, we report the results of
Size-stratified Coverage Violation (SSCV). In this experi-
ment, the coarse partitioning of the set sizes for SSCV is set
as: 0-1, 2-3, 4-10, 11-100, and 101-1000, which follows the
experimental setting of RAPS (Angelopoulos et al., 2021).
The average SSCV of various models on three datasets are

Table 2. The average SSCV and ESCV of various models on three
datasets. Bold numbers indicate optimal performance.

ImageNet ImageNet-V2 CIFAR100

Metrics RAPS/SAPS(ours)

SSCV↓ 0.28/0.23 0.14/0.13 0.21/0.18
ESCV↓ 0.53/0.40 0.43/0.41 0.37/0.30

shown in Table 2, with the experimental setup for ImageNet-
V2 being consistent with the description provided in the
preceding paragraph. We can observe that SAPS outper-
forms RAPS in conditional coverage. For instance, on Ima-
geNet, SAPS records an SSCV of 0.23, which is 0.05 lower
than that of RAPS. Although SAPS has better conditional
coverage than RAPS, note that SSCV calculates the worst
conditional coverage over the human-defined enclosures
of set sizes, where different partitions lead to inconsistent
SSCV results. Consequently, avoiding the human factor
may lead to fair comparison, such as ESCV.

5. Discussion
SAPS exhibits adaptation. In the literature of conformal
prediction, the size of prediction sets is expected to repre-
sent the inherent uncertainty of the classifier’s predictions.
Specifically, prediction sets should be larger for hard ex-
amples than for easy ones (Angelopoulos & Bates, 2021;
Angelopoulos et al., 2021). In this work, we employ the
rank of the ground-truth labels in the sorted softmax proba-
bilities to denote the difficulty. For instance, examples with
serious difficulty are assigned high ranks for their ground-
truth labels. For simplicity, we choose a relatively coarse
partitioning of image difficulty: 1, 2-3, 4-10, 11-100, and
101-1000. Then, we conduct an experiment on ImageNet to
analyze the set size of different difficulties for SAPS.

In Figure 2c, a salient observation is that the set size rises
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Table 3. Set size and ESCV for RAPS (kr = 1) and SAPS. We report the average value across various models with α = 0.1. The detailed
results of each model are provided in the Appendix E. Bold numbers indicate optimal performance.

Coverage Size ↓ ESCV ↓

Datasets RAPS(kr = 1) SAPS RAPS(kr = 1) SAPS RAPS(kr = 1) SAPS

ImageNet 0.900 0.900 3.24 2.98 0.631 0.396
CIFAR-100 0.899 0.899 2.79 2.67 0.390 0.302
CIFAR-10 0.900 0.898 1.62 1.63 0.138 0.089
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Figure 3. (a) The average ground-truth label ranking under different maximum softmax probabilities. Higher π̂max have smaller label
ranking. (b) Effect of the λ on set size across various models. The black markers (⋆,♦,▲, •) represent the results of APS without
probability value. (c) Effect of the calibration dataset size on set size across various models. (d) Relationship between temperature and the
set size of SAPS on ResNet152, where the horizon axis represents the log transformation of temperature T .

Table 4. Set size about retained top-k probability values on the
ImageNet. We report the average set size across various models
with α = 0.1. Bold numbers indicate optimal performance.

k

Model 1 2 3 4 5

ResNeXt101 1.80 1.94 2.03 2.23 2.42
DenseNet161 2.12 2.16 2.27 2.46 2.65
ViT 1.60 1.67 1.76 1.86 1.97
Inception 4.60 4.50 4.55 4.77 4.95

with increasing difficulties for different models. For exam-
ple, on the Inception model, SAPS enlarges the length of
the prediction sets from approximately 3.5 for the simplest
examples to nearly 9 for the hardest examples. Moreover,
we notice that the classifier with a higher accuracy rate can
have a smaller set size under different levels of difficulty
compared to the classifier with a lower accuracy rate. For
example, the ResNeXt101 model has a smaller set size than
DenseNet161 across different difficulties.

Retained probability values. To mitigate the redundancy
of prediction sets for easy examples, we retain MSP in the
softmax probabilities, as shown in Equation 10. In this
manner, the SAPS method can not only produce efficient
prediction sets but also communicate instance-wise uncer-

tainty, i.e., adaptation. To further understand why retaining
MSP in SAPS can decrease the set size of easy examples,
we present the ground-truth label ranking of different MSP
for three different models on ImageNet in Figure 3a. We
can observe that MSP is negatively related to ground-truth
label ranking. Therefore, the ground-truth labels of easy
examples (high MSP values) are generally highly ranked,
which are expected to give compact prediction sets. In other
words, the maximum softmax probability of a sample con-
tains the information of its difficulty, allowing SAPS to
produce adaptive prediction sets.

Here, we further discuss the effect of other softmax probabil-
ity values on set size. Specifically, we retain the first k max-
imum softmax probability values, where k ∈ {1, 2, 3, 4, 5} .
We conduct experiments on the ImageNet with four clas-
sifiers of different architectures. In Figure 3a, we show
that retaining MSP achieves the best performance on most
models. Additionally, more unreliable probability values
involved in the score function will lead to larger predic-
tion sets. Overall, retaining MSP in SAPS is the key to
decreasing set size and preserving uncertainty.

To explore the sufficiency of MSP for conformal prediction,
we provide an ablation study with some variants of SAPS by
maintaining more probability values. Specifically, we com-
pare five variants that preserve the top k ∈ {1, 2, 3, 4, 5}
values of softmax probabilities, respectively. The results of
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ImageNet using the four classifiers are reported in Table 4
of the manuscript. The results show that the vanilla SAPS
with only MSP can achieve the best performance in most
cases. For instance, with the ResNeXt101 model, only keep-
ing the maximum softmax probability boosts the set size
of k = 5 from 2.42 to 1.80, a 0.62 of direct improvement.
In addition, retaining more tail-end probability values in
the score function leads to larger prediction sets. Overall,
retaining MSP is sufficient for SAPS.

Effect of λ and the calibration size. In SAPS, we choose
an optimal λ by performing a search over a sequence to
minimize the set size on a validation set. In this work, the
validation set constitutes 20% of the calibration set. Here,
we provide an experimental procedure to show whether set
size is sensitive to λ and calibration size. To this end, we
conduct two experiments on ImageNet to analyze the effects
of λ and the size of the calibration set.

We present the results of four models in Figure 3. Indeed,
Figure 3b illustrates that one can efficiently utilize grid
search to find the optimal λ. Furthermore, as depicted in
Figure 3c, nearly all models maintain stable results when
the number of calibration sets increases. Overall, the results
demonstrate that the set size is not sensitive to variations in
λ and the calibration size.

SAPS vs. RAPS (kr = 1). While SAPS has demonstrated
strong promise, it shares a similarity in the definition of non-
conformity scores with RAPS (kr = 1), as shown below:

Sraps(x, y, u, π̂) =

o(y,π̂(x))−1∑
i=1

π̂(i)(x) + u ∗ π̂o(y,π̂(x))(x)

+ ϕ · (o(y, π̂(x))− kr)
+.

Here, ϕ represents the weight of regularization and (z)+

denotes the positive part of z. To this end, we conduct
experiments on CIFAR-10, CIFAR-100, and ImageNet to
compare SAPS and RAPS (kr = 1), with α = 0.1.

As indicated in Table 3, SAPS outperforms RAPS (kr = 1)
in large-scale classification scenarios, achieving smaller
prediction sets and lower conditional coverage violations.
In the small-scale classification task (i.e., CIFAR-10), SAPS
produces a comparable set size with RAPS (kr = 1), and the
ESCV of SAPS was more than 1.5 times as small as those
from RAPS. Overall, employing a constant to substitute
the noisy probabilities is an effective way to alleviate the
negative implications of noisy probabilities further.

Relation to temperature scaling. In the literature, tem-
perature scaling calibrates softmax probabilities output of
models by minimizing Expected Calibration Error (ECE),

leading to a reliable maximum probability (Guo et al.,
2017). Moreover, as defined in Equation 10, the remaining
probability value used in the non-conformity score func-
tion is the maximum probability. Thus, a question arises:
what is a relation between temperature scaling and the
set size of SAPS? Here, we vary the value of temperature
T = {0.1, 0.5, 1, 1.1, 1.3, 1.5, 1.7, 1.9, 2, 5, 10, 20} in tem-
perature scaling. We utilize SAPS to test the ResNet152
model calibrated by different temperatures on the ImageNet
benchmark. The results indicate that there exists a consis-
tency between the temperature value and the set size.

As illustrated in Figure 3d, the optimal temperature on ECE,
i.e., 1.3coincides with the temperature that yields the small-
est set size. Moreover, we can observe that an increase
in ECE results in an expanded set size. Indeed, tempera-
ture scaling can not change the permutation of the softmax
probabilities but improves the confidence level of the maxi-
mum probability, resulting in the non-conformity scores of
SAPS being more reliable. Overall, for SAPS, confidence
calibration is important to generate compact prediction sets.

6. Related work
Conformal prediction (CP) is a statistical framework char-
acterized by a finite-sample coverage guarantee (Vovk et al.,
2005). It has been utilized in various tasks including regres-
sion (Lei & Wasserman, 2014; Romano et al., 2019), classi-
fication (Sadinle et al., 2019), structured prediction (Bates
et al., 2021), Large-Language Model (Kumar et al., 2023;
Ren et al., 2023; Quach et al., 2023; Su et al., 2024), Dif-
fusion Model (Teneggi et al., 2023; Horwitz & Hoshen,
2022), robots control (Wang et al., 2023), graph neural net-
work (Wijegunawardana et al., 2020; Clarkson, 2023; Song
et al., 2024) and so on. Conformal prediction also is de-
ployed in other applications, such as human-in-the-loop
decision making (Straitouri et al., 2023; Cresswell et al.,
2024), automated vehicles (Bang et al., 2024), and scien-
tific machine learning (Moya et al., 2024; Podina et al.,
2024). Besides the inductive conformal prediction (Vovk
et al., 2005), most CP methods follow an inductive con-
formal framework (or split conformal prediction) with a
held-out calibration set to cope with the relative computa-
tional inefficiency of conformal predictors (Papadopoulos
et al., 2002a;b; Vovk, 2002), as in the main paper (Lei et al.,
2015). Additionally, there are various variants of confor-
mal predictors based on cross-validation (Vovk, 2015) or
jackknife (i.e., leave-one-out) (Barber et al., 2021). The
primary focal points of CP are reducing prediction set size
and enhancing coverage rate.

Inefficiency. Strategies to improve the efficiency of pre-
diction sets can be roughly split into the following two
branches. The first avenue of research focuses on develop-
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ing new training algorithms to reduce the average prediction
set size (Bellotti, 2021; Colombo & Vovk, 2020; Chen et al.,
2021; Stutz et al., 2022; Einbinder et al., 2022; Bai et al.,
2022; Fisch et al., 2021; Yang & Kuchibhotla, 2021). Those
training methods are usually computationally expensive due
to the model retraining and the high complexity of optimiza-
tion. Thus, CP has also been studied in the context of Early
Stopping (Liang et al., 2023), allowing model selection
leading to compact prediction sets while keeping coverage
guarantees. The other avenue involves leveraging post-hoc
technologies, such as novel score functions (Romano et al.,
2020; Angelopoulos et al., 2021; Ghosh et al., 2023) and
post-hoc learning method (Xi et al., 2024). There exist oth-
ers concentrating on unique settings such as federated learn-
ing (Lu et al., 2023; Plassier et al., 2023), multi-label prob-
lem (Cauchois et al., 2021; Fisch et al., 2022; Papadopoulos,
2014), outlier detection (Bates et al., 2023; Guan & Tibshi-
rani, 2022), and out-of-distribution detection (Chen et al.,
2023; Novello et al., 2024). Most existing post-hoc meth-
ods calculate the non-conformity score based on unreliable
probability values, leading to sub-optimal performance. In
contrast to previous post-hoc methods, we show that proba-
bility value is not necessary for non-conformity scores and
design an effective method to remove the probability value
while retaining uncertainty information.

Validity of coverage rate. There is an increasing amount
of research focused on improving coverage rates(Shi et al.,
2013; Löfström et al., 2015; Ding et al., 2023), including
efforts to maintain the marginal coverage rate by modi-
fying the assumption of exchangeability to accommodate
factors such as adversaries (Gendler et al., 2021; Kang et al.,
2024), covariate shifts (Tibshirani et al., 2019; Deng et al.,
2023; Xu et al., 2024), label shifts (Podkopaev & Ramdas,
2021; Plassier et al., 2023) and noisy labels (Feldman et al.,
2023; Sesia et al., 2023). Moreover, conformal prediction
algorithms pursue conditional coverage guarantee (Vovk,
2012), including training-conditional validity and object-
conditional validity. Specifically, some methods acquire
the training-conditional coverage guarantee which would
ensure that most draws of the training data set to result
in valid marginal coverage on future test points (Bian &
Barber, 2023; Pournaderi & Xiang, 2024). There are also
group-conditional conformal prediction methods that guar-
antee performance on all groups of individuals in the pop-
ulation (Javanmard et al., 2022; Gibbs et al., 2023; Melki
et al., 2023). Although it is impossible to obtain condi-
tional coverage (Foygel Barber et al., 2021), THR (Sadinle
et al., 2019) shows that efficient class-conditional cover-
age is possible. For example, Clustered CP (Ding et al.,
2023) utilizes the taxonomy of the label space to improve
the class-conditional coverage rate and k-Class-conditional
CP calibrates the class-specific scores threshold depending
on the top-k error. As discussed in Sec.4.2, SAPS broadly

enhances the conditional coverage rate of prediction sets
while maintaining small prediction sets.

7. Conclusion
In this paper, we present SAPS, a simple and effective con-
formal prediction score function that discards almost all
the probability values except for the maximum softmax
probability. By highlighting the information on label rank-
ing, SAPS effectively mitigates the negative effect of tail
probabilities, resulting in small and stable prediction sets.
Additionally, we provide a key insight that the value of
softmax probability might be redundant information for con-
formal prediction. Extensive experiments show that SAPS
can improve the conditional coverage rate while maintain-
ing a small prediction set. Our method is straightforward
to implement with any classifier and can be easily adopted
in various practical settings. We expect that out method
can inspire future research to emphasize the label ranking
information for conformal prediction.

8. Limitations
The limitation of our method is mainly on the hyperparame-
ter representing the weight of label ranking that requires to
be tuned with a validation dataset (same as RAPS). About
future direction, we expect to enhance the conditional cover-
age of these conformal prediction algorithms on large-scale
datasets, where all CP methods achieve worse conditional
coverage rates than those of small-scale datasets.
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A. Proof of Proposition 3.2
Proof. Let π̂ be a classifier. (x1, y1) and (x2, y2) represent two instances sampled from the joint data distribution PXY , and
u1, u2 are sampled from U [0, 1]. It is easy to get that for any different positive numbers γ1 and γ2, γ1 · [o(y1, π̂(x1))− 1 +
u1] ≤ γ1 · [o(y2, π̂(x2))− 1 + u2] if and only if γ2 · [o(y1, π̂(x1))− 1 + u1] ≤ γ2 · [o(y2, π̂(x2))− 1 + u2]. According to
Lemma 3.1, we can get that Scons(x, y; π̂, γ1) and Scons(x, y; π̂, γ2) could provide the same prediction sets.

B. Proof of Theorem 3.3
Proof. For simplicity, let ar = Ar −Ar−1 for r ≥ 1 and A0 = 0. ar represents the rate of examples in the calibration set
whose ground-truth labels’ rank is r. The non-conformity scores of examples whose rank of ground-truth labels are r can be
computed by

Scons(x, y, u; π̂) = r − u,

where u ∼ U [0, 1]. Thus, we can observe that the scores of these examples are uniformly distributed on [r − 1, r]. Scores
of examples whose rank of ground-truth labels are less than or equal to r are no more than r. In other words, the rate of
examples in the calibration set with scores lower than r is Ar. Given that k satisfies Ak ≥ 1−α > Ak−1, the 1−α quantile
of scores for the calibration set, i.e., the calibrated threshold τ , is located in the interval [k − 1, k]. Since the scores in the
interval [k − 1, k] are uniformly distributed and the rate of examples whose scores in [k − 1, k] is ak, τ is equivalent to the
1−α−Ak−1

ak
quantile of [k − 1, k]. Formally, we can get the value of τ by

τ = (k − 1) +
1− α−Ak−1

ak
.

Based on the definition of prediction set in Equation 3, the prediction set of a test instance x is equal to

C1−α(x, u) = {y ∈ Y : o(y, π̂(x))− u ≤ τ}. (11)

Next, we analyze the prediction set C1−α(x, u). When y ∈ Y satisfies the inequation o(y, π̂(x)) ≤ k − 1, Scons(x, y, u; π̂)
must be smaller than τ . Thus, the size of sets is at least k − 1. But for y satisfying o(y, π̂(x)) = k, we can have

o(y, π̂(x))− u ≤ τ

k − u ≤ (k − 1) +
1− α−Ak−1

ak

1− 1− α−Ak−1

ak
≤ u

Thus, there exists a probability of 1−α−Ak−1

ak
such that S(x, y, u; π̂) ≤ τ . Finally, the expected value of the set size for the

test example x is

Eu∼U [|C1−α(x, u)|] = k − 1 +
1− α−Ak−1

ak
= k − 1 +

1− α−Ak−1

Ak −Ak−1
(12)

C. Detailed results for coverage rate and set size
In this section, we report the detailed results of coverage rate and set size on different datasets in Table 5,6, and 7. The
median-of-means for each result is reported over ten different trials. The average results of multiple models have been
reported in the main paper.
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Table 5. Results on ImageNet. The median-of-means for each column is reported over 10 different trials. Bold numbers indicate optimal
performance.

α = 0.1 α = 0.05

Coverage Size ↓ Coverage Size ↓
Datasets APS RAPS SAPS APS RAPS SAPS APS RAPS SAPS APS RAPS SAPS

ResNeXt101 0.899 0.902 0.901 19.49 2.01 1.82 0.950 0.951 0.950 46.58 4.24 3.83
ResNet152 0.900 0.900 0.900 10.51 2.10 1.92 0.950 0.950 0.950 22.65 4.39 4.07
ResNet101 0.898 0.900 0.900 10.83 2.24 2.07 0.948 0.949 0.950 23.20 4.78 4.34
ResNet50 0.899 0.900 0.900 12.29 2.51 2.31 0.948 0.950 0.950 25.99 5.57 5.25
ResNet18 0.899 0.900 0.900 16.10 4.43 4.00 0.949 0.950 0.950 32.89 11.75 10.47
DenseNet161 0.900 0.900 0.900 12.03 2.27 2.08 0.949 0.950 0.951 28.06 5.11 4.61
VGG16 0.897 0.901 0.900 14.00 3.59 3.25 0.948 0.950 0.949 27.55 8.80 7.84
Inception 0.900 0.902 0.902 87.93 5.32 4.58 0.949 0.951 0.950 167.98 18.71 14.43
ShuffleNet 0.900 0.899 0.900 31.77 5.04 4.54 0.949 0.950 0.950 69.39 16.13 14.05
ViT 0.900 0.898 0.900 10.55 1.70 1.61 0.950 0.949 0.950 31.75 3.91 3.21
DeiT 0.901 0.900 0.900 8.51 1.48 1.41 0.950 0.949 0.949 24.88 2.69 2.49
CLIP 0.899 0.900 0.900 17.45 6.81 6.23 0.951 0.949 0.949 35.09 16.79 16.07

average 0.899 0.900 0.900 20.95 3.29 2.98 0.949 0.950 0.950 44.67 8.57 7.55

Table 6. Results on CIFAR-100. The median-of-means for each column is reported over 10 different trials. Bold numbers indicate optimal
performance.

α = 0.1 α = 0.05

Coverage Size ↓ Coverage Size ↓
Datasets APS RAPS SAPS APS RAPS SAPS APS RAPS SAPS APS RAPS SAPS

ResNet18 0.898 0.901 0.898 10.03 2.72 2.41 0.949 0.950 0.951 16.76 5.88 4.96
ResNet50 0.896 0.902 0.899 6.51 2.16 2.04 0.946 0.948 0.946 12.49 4.37 3.69
ResNet101 0.899 0.901 0.898 6.52 2.10 1.99 0.951 0.947 0.948 12.26 4.49 3.85
DenseNet161 0.898 0.898 0.897 8.07 2.02 1.77 0.948 0.949 0.950 14.35 3.61 3.33
VGG16 0.900 0.896 0.895 5.80 4.58 3.64 0.951 0.949 0.948 11.83 11.32 9.27
Inception 0.902 0.902 0.902 12.01 2.01 2.01 0.952 0.953 0.953 18.24 5.21 4.26
ViT 0.897 0.901 0.900 4.29 2.14 1.91 0.949 0.948 0.949 7.92 3.98 3.57
CLIP 0.899 0.900 0.900 9.84 6.18 5.58 0.952 0.948 0.950 16.04 12.50 11.27

average 0.899 0.900 0.899 7.88 2.99 2.67 0.950 0.949 0.949 13.74 6.42 5.53
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Table 7. Results on CIFAR-10. The median-of-means for each column is reported over 10 different trials. Bold numbers indicate optimal
performance.

α = 0.1 α = 0.05

Coverage Size ↓ Coverage Size ↓
Datasets APS RAPS SAPS APS RAPS SAPS APS RAPS SAPS APS RAPS SAPS

ResNet18 0.896 0.896 0.898 2.42 2.29 2.18 0.948 0.947 0.949 3.12 3.12 3.10
ResNet50 0.897 0.900 0.895 2.08 1.95 1.77 0.949 0.950 0.950 2.69 2.62 2.53
ResNet101 0.899 0.901 0.898 2.15 2.00 1.86 0.949 0.948 0.949 2.78 2.68 2.59
DenseNet161 0.898 0.899 0.898 2.06 1.90 1.71 0.949 0.953 0.949 2.67 2.53 2.35
VGG16 0.897 0.900 0.897 1.75 1.52 1.39 0.950 0.949 0.949 2.22 2.02 1.87
Inception 0.904 0.904 0.902 2.28 2.04 1.78 0.952 0.953 0.952 3.04 2.78 2.55
ViT 0.901 0.899 0.900 1.50 1.34 1.21 0.952 0.952 0.950 1.89 1.79 1.58
CLIP 0.897 0.900 0.899 1.51 1.27 1.16 0.949 0.949 0.950 1.89 1.57 1.41

average 0.899 0.900 0.898 1.97 1.79 1.63 0.950 0.950 0.950 2.54 2.39 2.25

D. ESCV on CIAFR-10 and CIFAR-100
In this section, we report the results of ESCV on CIFAR-10 and CIFAR-100 with α = 0.1. From Figure 4a and 4b, we can
observe that the SAPS still can get smaller ESCV than RAPS. Moreover, as the scale of the classification task increases, the
ESCV for RAPS also exhibits a marked increase, whereas SAPS consistently demonstrates a low value. For example, with
the CLIP model, the ESCV for RAPS on ImageNet exceeds that observed for CIFAR-100. But, for both ImageNet and
CIFAR-100, the ESCV of SAPS remains around 0.35.
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Figure 4. ESCV for different models on CIFAR-10 and CIFAR-100 with α = 0.1.

E. SAPS vs. RAPS(kr = 1)
To further understand the influence of excluding the probability value, we conduct an experiment for RAPS(kr = 1), which
is similar to SAPS on ImageNet, CIFAR-100, and CIFAR-10 with α = 0.1. The median results on ten trials are reported in
Table 8, 9 and 10.
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Table 8. Comparsion between RAPS(kr = 1) and SAPS on ImageNet with α = 0.1. The median-of-means for each column is reported
over 10 different trials. Bold numbers indicate optimal performance.

α = 0.1 α = 0.05

Coverage Size ↓ ESCV ↓ Coverage Size ↓ ESCV ↓

Datasets
RAPS

(kr = 1)
SAPS

RAPS
(kr = 1)

SAPS
RAPS

(kr = 1)
SAPS

RAPS
(kr = 1)

SAPS
RAPS

(kr = 1)
SAPS

RAPS
(kr = 1)

SAPS

ResNeXt101 0.902 0.901 1.85 1.82 0.477 0.366 0.950 0.950 4.56 3.83 0.505 0.358
ResNet152 0.901 0.900 1.97 1.92 0.572 0.440 0.950 0.950 4.68 4.07 0.750 0.335
ResNet101 0.900 0.900 2.09 2.07 0.650 0.431 0.950 0.950 4.95 4.34 0.724 0.466
ResNet50 0.900 0.900 2.32 2.31 0.594 0.350 0.950 0.950 5.52 5.25 0.950 0.373
ResNet18 0.899 0.900 4.50 4.00 0.900 0.409 0.950 0.950 10.03 10.47 0.950 0.490
DenseNet161 0.901 0.900 2.12 2.08 0.531 0.393 0.951 0.951 5.15 4.61 0.950 0.405
VGG16 0.899 0.900 3.69 3.25 0.671 0.425 0.949 0.949 7.56 7.84 0.950 0.390
Inception 0.901 0.902 5.13 4.58 0.478 0.418 0.951 0.950 13.20 14.43 0.950 0.532
ShuffleNet 0.900 0.900 5.11 4.54 0.481 0.375 0.951 0.950 12.38 14.05 0.473 0.306
ViT 0.899 0.900 1.58 1.61 0.900 0.393 0.950 0.950 3.32 3.21 0.950 0.950
DeiT 0.899 0.900 1.38 1.41 0.416 0.389 0.950 0.949 2.59 2.49 0.596 0.418
CLIP 0.900 0.900 7.16 6.23 0.900 0.369 0.949 0.949 15.16 16.07 0.950 0.317

average 0.900 0.900 3.24 2.98 0.631 0.396 0.950 0.950 7.43 7.55 0.808 0.445

Table 9. Comparsion between RAPS(kr = 1) and SAPS on CIFAR-100 with α = 0.1. The median-of-means for each column is reported
over 10 different trials. Bold numbers indicate optimal performance.

α = 0.1 α = 0.05

Coverage Size ↓ ESCV ↓ Coverage Size ↓ ESCV ↓

Datasets
RAPS

(kr = 1)
SAPS

RAPS
(kr = 1)

SAPS
RAPS

(kr = 1)
SAPS

RAPS
(kr = 1)

SAPS
RAPS

(kr = 1)
SAPS

RAPS
(kr = 1)

SAPS

ResNet18 0.897 0.898 2.51 2.41 0.321 0.282 0.951 0.951 6.30 4.96 0.209 0.244
ResNet50 0.900 0.899 1.97 2.04 0.383 0.360 0.948 0.946 4.52 3.69 0.396 0.200
ResNet101 0.899 0.898 1.92 1.99 0.344 0.311 0.950 0.948 4.56 3.85 0.210 0.242
DenseNet161 0.899 0.897 1.75 1.77 0.381 0.265 0.949 0.950 3.69 3.33 0.303 0.298
VGG16 0.897 0.895 4.06 3.64 0.567 0.298 0.950 0.948 10.75 9.27 0.450 0.325
Inception 0.901 0.902 1.86 2.01 0.375 0.269 0.953 0.953 4.57 4.26 0.305 0.213
ViT 0.902 0.900 1.89 1.91 0.312 0.268 0.946 0.949 4.01 3.57 0.190 0.170
CLIP 0.900 0.900 6.38 5.58 0.438 0.362 0.949 0.950 10.47 11.27 0.406 0.429

average 0.899 0.899 2.79 2.67 0.390 0.302 0.949 0.949 6.11 5.53 0.309 0.265

Table 10. Comparsion between RAPS(kr = 1) and SAPS on CIFAR-10 with α = 0.1. The median-of-means for each column is reported
over 10 different trials. Bold numbers indicate optimal performance.

α = 0.1 α = 0.05

Coverage Size ↓ ESCV ↓ Coverage Size ↓ ESCV ↓

Datasets
RAPS

(kr = 1)
SAPS

RAPS
(kr = 1)

SAPS
RAPS

(kr = 1)
SAPS

RAPS
(kr = 1)

SAPS
RAPS

(kr = 1)
SAPS

RAPS
(kr = 1)

SAPS

ResNet18 0.897 0.898 2.24 2.18 0.145 0.100 0.946 0.949 2.98 3.10 0.052 0.076
ResNet50 0.899 0.895 1.79 1.77 0.101 0.054 0.949 0.950 2.63 2.53 0.062 0.030
ResNet101 0.899 0.898 1.87 1.86 0.107 0.054 0.946 0.949 2.61 2.59 0.043 0.026
DenseNet161 0.899 0.898 1.69 1.71 0.156 0.055 0.952 0.949 2.52 2.35 0.103 0.021
VGG16 0.900 0.897 1.38 1.39 0.112 0.073 0.949 0.949 1.84 1.87 0.124 0.050
Inception 0.903 0.902 1.77 1.78 0.143 0.083 0.954 0.952 2.68 2.55 0.089 0.040
ViT 0.900 0.900 1.16 1.21 0.127 0.089 0.950 0.950 1.63 1.58 0.101 0.054
CLIP 0.899 0.899 1.06 1.16 0.213 0.203 0.950 0.950 1.36 1.41 0.254 0.123

average 0.900 0.898 1.62 1.63 0.138 0.089 0.949 0.950 2.28 2.25 0.104 0.052

17


