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Abstract
Semi-supervised learning (SSL) seeks to enhance
task performance by training on both labeled and
unlabeled data. Mainstream SSL image classi-
fication methods mostly optimize a loss that ad-
ditively combines a supervised classification ob-
jective with a regularization term derived solely
from unlabeled data. This formulation often ne-
glects the potential for interaction between la-
beled and unlabeled images. In this paper, we
introduce InterLUDE, a new approach to enhance
SSL made of two parts that each benefit from
labeled-unlabeled interaction. The first part, em-
bedding fusion, interpolates between labeled and
unlabeled embeddings to improve representation
learning. The second part is a new loss, grounded
in the principle of consistency regularization, that
aims to minimize discrepancies in the model’s pre-
dictions between labeled versus unlabeled inputs.
Experiments on standard closed-set SSL bench-
marks and a medical SSL task with an uncurated
unlabeled set show clear benefits to our approach.
On the STL-10 dataset with only 40 labels, Inter-
LUDE achieves 3.2% error rate, while the best
previous method obtains 6.3%.

1. Introduction
Deep neural networks have revolutionized various fields
with their strong performance at supervised tasks. How-
ever, their effectiveness often hinges on the availability of
large labeled datasets. This requirement presents a signifi-
cant bottleneck, as in many applications labeled data can be
scarce and expensive to obtain due to the need for manual
annotation by human experts. In contrast, unlabeled data
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(e.g. images without corresponding labels) may be natu-
rally far more abundant and accessible. This disparity has
led to the growing importance of semi-supervised learning
(SSL) (Zhu, 2005; Van Engelen and Hoos, 2020), which
aims to learn from a small labeled set and a much larger
unlabeled set. SSL can be applied to many learning tasks,
such as image classification (Oliver et al., 2018), object
detection (Xu et al., 2021a; Li et al., 2022), and segmenta-
tion (Chen et al., 2021; Yang et al., 2023).

This paper focuses on SSL for image classification. Over
the years, numerous SSL paradigms have been proposed
(Blum and Mitchell, 1998; Min et al., 2020; Kingma et al.,
2014; Kumar et al., 2017; Nalisnick et al., 2019; Liu et al.,
2019; Iscen et al., 2019). The current prevailing paradigm
trains deep neural classifiers to jointly optimize the sum
of two losses: a supervised classification objective like
cross-entropy evaluated only on labeled data and a regu-
larization term computed solely from the unlabeled data.
This paradigm provides a simple yet effective framework
for achieving state-of-the-art results (Laine and Aila, 2016;
Tarvainen and Valpola, 2017; Sohn et al., 2020; Xu et al.,
2021b; Wang et al., 2023; Chen et al., 2023).

Despite these advancements, a key limitation of this deep
SSL paradigm is that labeled and unlabeled data are largely
handled separately, with images from each data type routed
to separate loss functions. We contend that a lack of deeper
interaction fails to fully harness the potential of unlabeled
data. Others have recently pointed out this disconnect be-
tween the two data types in deep SSL training (Huang et al.,
2023a). Earlier efforts have explored some interactions be-
tween data types, such as graph-propagated pseudolabels (Is-
cen et al., 2019) or augmentations derived from interaction
of raw features (Berthelot et al., 2019b;a). However, the
effective design of representations and losses that benefit
from labeled-unlabeled interaction remains underexplored.

In response to this challenge, we introduce InterLUDE, a
novel SSL algorithm that facilitates direct interaction be-
tween labeled and unlabeled data in both representations
and losses to enhance SSL performance. Our contributions
are:

Code: https://github.com/tufts-ml/InterLUDE/
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• First, we introduce embedding fusion (Sec. 3.1), a part of
the InterLUDE training process that interpolates between
labeled and unlabeled embedding vectors to improve rep-
resentation learning. Ablation studies in Fig. 3 suggest
the specific utility of labeled-unlabeled interaction here.

• Second, we introduce cross-instance delta consistency
loss (Sec. 3.2), a new loss that encourages changes (deltas)
to a model’s predictions to be similar across labeled and
unlabeled inputs experiencing the same weak-to-strong
change in augmentation.

• Our final contribution is that our experiments cover both
standard benchmarks (Sec. 4) as well as a more realis-
tic “open-set” medical task (Sec. 5). Typical recent work
in SSL (e.g. Wang et al. (2023)) mostly assumes that
labeled and unlabeled data come from the same distribu-
tion. However, in the intended real-world applications
of SSL, unlabeled data will be collected automatically at
scale for convenience, and thus can differ from the labeled
set (Oliver et al., 2018). When unlabeled images contain
extra classes beyond the labeled set, this is called “open-
set” SSL (Yu et al., 2020; Guo et al., 2020). To improve
SSL evaluation practices, we evaluate on the open-set
Heart2Heart benchmark proposed by Huang et al. (2023b),
as well as standard datasets (CIFAR and STL-10).

Ultimately, our experiments encompass six diverse datasets
and two architecture families, including Convolutional
Neural Networks (CNNs) with residual connections and
Vision Transformers (ViTs). Across scenarios, we find In-
terLUDE is effective at both closed-set natural image tasks
and open-set medical tasks. This latter finding is exciting
because InterLUDE was not deliberately designed to handle
open-set unlabeled data. We hope this work on InterLUDE
opens a new avenue for future SSL research, emphasizing
the extraction of training signals from the interplay between
labeled and unlabeled data, rather than processing each
modality in isolation.

2. Background and Related Work
Semi-supervised learning. In semi-supervised image clas-
sification problems, we are given a labeled dataset DL

of image-label pairs (xl, y) and a much larger unlabeled
dataset DU containing only images xu (i.e., |DU | ≫ |DL|).
Given both data sources, our goal is to train a classifier
that maps each image to a probability vector in the C-
dimensional simplex ∆C representing a distribution over C
class labels. Comprehensive reviews of SSL can be found
in Zhu (2005); Van Engelen and Hoos (2020).

In this paper, we focus on the current dominant paradigm,
which trains the weights θ of a deep neural network f to

minimize a two-task additive loss

minθ
∑

xl,y∈DLℓL(y, fθ(xl)) + λ
∑

xu∈DU ℓU (fθ(xu)) (1)

The loss ℓL, computed solely from the labeled set, is most
often the standard cross-entropy loss used in supervised
classifiers. The loss ℓU is a method-specific loss that is
typically based solely on the unlabeled set.

Popular approaches under this paradigm include Pseudo-
labeling that encourages the classifier to assign high prob-
ability to confidently-predicted labels for unlabeled im-
ages (Lee et al., 2013; Arazo et al., 2020; Cascante-Bonilla
et al., 2021) and Consistency regularization (Sajjadi et al.,
2016; Tarvainen and Valpola, 2017) that enforces consistent
model outputs for the same unlabeled image under different
transformations. Recent hybrid methods (Sohn et al., 2020;
Wang et al., 2023) combines several techniques. While
representative of successful deep SSL thus far, these ap-
proaches all have only indirect or weak interactions between
labeled and unlabeled data, such as due to batch normaliza-
tion (Zhao et al., 2022) or the addition of two separately-
computed losses. They lack direct labeled-unlabeled in-
teraction, especially in embedding representations or loss
computation. We argue this disconnect between data types
prevents fully harnessing the potential of SSL.

Direct labeled-unlabeled interaction in past methods.
Several past works do engineer some direct interactions.
MixMatch (Berthelot et al., 2019b) and follow-up work
ReMixMatch (Berthelot et al., 2019a) both allow labeled-
unlabeled interaction within augmentation procedures.
Their interpolation strategy, inspired by MixUp (Zhang
et al., 2017), can randomly choose to blend any pair of
images (including labeled and unlabeled) and the pair’s cor-
responding labels or pseudo-labels. However, the stated
goal of MixMatch is to “unify dominant approaches” to
SSL; they do not specifically argue for labeled-unlabeled
interaction or design their augmentation to promote that
type of interaction over other pairings.

Interacting labeled and unlabeled data is a natural concept
in another branch of SSL research, namely the graph-based
approach (Subramanya and Talukdar, 2022), which treats
all images (labeled and unlabeled) as nodes on a graph,
connected in some cases by edges that allow interaction.
Graph-based methods are typically transductive, meaning
focused on labeling the provided unlabeled data. In contrast,
this work focuses on inductive methods, whose goal is to de-
velop a classifier that will generalize to new images. Several
recent inductive deep SSL methods have utilized the graph
concept, including DeepLP (Iscen et al., 2019), CoMatch (Li
et al., 2021), and SimMatchV2 (Zheng et al., 2023). Our
experiments comparing InterLUDE to these graph-related
methods show the superiority of our approach.

The concurrent work most similar in spirit to ours is Flat-
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Match (Huang et al., 2023a). To address the disconnect
between labeled and unlabeled data, FlatMatch employs
sharpness-aware minimization (SAM) (Foret et al., 2020;
Kwon et al., 2021; Liu et al., 2022) to ensure that predic-
tions on unlabeled samples are consistent across both the
regular model and a worst-case model, generated by param-
eter perturbations that maximize empirical risk on labeled
data. This approach, however, increase the computation cost
due to the additional back-propagation required, a challenge
partially alleviated by an approximation strategy they call
FlatMatch-e. In contrast, our InterLUDE avoids any addi-
tional back-propagation or lossy approximation, achieves
better performance (see Tables 1 & 3), and runs much faster
(∼8x faster in wall-time comparison, see App. D.1.4).

Data augmentation in SSL. Data augmentation is an inte-
gral part of many modern SSL algorithms (Laine and Aila,
2016; Xie et al., 2020). Common techniques include ran-
dom flip and crop (Krizhevsky et al., 2012), MixUp (Zhang
et al., 2017), CutOut (DeVries and Taylor, 2017), AutoAug-
ment (Cubuk et al., 2018), and RandAugment (Cubuk et al.,
2020). In SSL, augmentation has primarily been confined to
raw image features; perturbations of embeddings remain un-
derexplored. FeatMatch (Kuo et al., 2020) is a rare example
of SSL that perturbs embedding vectors (not images), using
learned class prototypes. In a similar vein, our embedding
fusion directly manipulates the embedding space. Yet, our
approach diverges significantly in procedure (avoiding class
prototypes) and yields better performance (see Table 1).

3. Method
Problem setup. Denote the overall classifier f with weights
θ as a composition of two functions: f = h ◦ g. Neural
network g maps an input image xi to an embedding repre-
sentation zi ∈ RD with D dimensions. Practitioners can set
D via architectural choices. Neural network h then maps the
D-dimensional embedding to a probability vector pi in the
C-dimensional simplex ∆C over the C classes. In practice,
given an overall network f we set g as all layers from input
to the second-to-last layer, following evidence from Yu et al.
(2023a) suggesting that deeper layers generally yield better
performance.

We train f using stochastic gradient descent, where each
minibatch contains B images from the labeled set and µ ·B
images from the unlabeled set. We fix µ = 7 following past
work (Sohn et al., 2020; Wang et al., 2023). Thus, each
batch contains in total R = (1 + µ)B distinct images.

We apply both weak (random flip and crop) and strong
augmentations (RandAugment as in FixMatch (Sohn et al.,
2020)) to each image. Let Ω and Σ denote sets of possible
weak and strong augmentations. We can draw specific re-
alizations ω from Ω or σ from Σ. Each realization defines

a specific transformation (e.g. rotate by 15 degrees). After
augmentation, each batch contains Q = 2R samples.

Overview of InterLUDE. Our proposed InterLUDE algo-
rithm comprises two main components. First, an embedding
fusion strategy that improves representation quality. Sec-
ond, a new loss term called cross-instance delta consistency
that makes changes (deltas) to a model’s predictions simi-
lar across the labeled and unlabeled inputs under the same
augmentation change (ω vs σ). These two components each
promote labeled-unlabeled (LU) interaction and ultimately
work in synergy to improve model performance. Fig. 1
illustrates the InterLUDE framework. Alg. 1 provides pseu-
docode. Details on each component are introduced below.

3.1. Embedding Fusion: Better embedding via interaction

Emerging evidence suggests that proactively perturbing
the embedding space can yield significant performance gains
across various learning tasks, such as supervised image clas-
sification (Verma et al., 2019), domain adaptation (Yu et al.,
2023b;a) and natural language processing (Pereira et al.,
2021; Khan et al., 2023). Our work explores deliberate per-
turbation of embeddings via labeled-unlabeled interaction
to improve semi-supervised learning.

Given the batch of Q augmented labeled and unlabeled sam-
ples, we map via the network g to an array of embeddings
Z ∈ RQ×D. Key to our embedding fusion strategy is a
specific interdigitated layout arrangement of Z (illustrated
in Fig. 2). By construction, each set of 1 + µ adjacent rows
in Z (a labeled embedding followed by µ unlabeled embed-
dings) is created using the same specific augmentation ω or
σ (see Alg. 1).

General Framework for Embedding Fusion. For any Z,
we imagine a deterministic fusion transformation parame-
terized by a matrix A ∈ RQ×Q:

Z ′ ← (I +A)Z (2)

where I is the identity matrix. Each row of Z ′ is a linear
combination of the rows of Z, thus fusing together original
embeddings. Predicted class probabilities for each image
can then be obtained via feeding each row of Z ′ into the clas-
sification head h. This construction is inspired by Yu et al.
(2023a), who pursue embedding fusion for the supervised
(not semi-supervised) case.

We impose three constraints on matrix A (Yu et al., 2023a):

(i) rank(I +A) = Q; (3)
(ii) [I +A]ii > [I +A]ij , for all i ̸= j;

(iii) ∥[I +A]i∥1 = 1, for all i.

The first constraint, the full rank requirement, ensures that
none of the original embeddings are eliminated during the
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Figure 1. InterLUDE Framework. The labeled and unlabeled data are individually subjected to both weak and strong augmentations,
followed by the backbone extracting feature embeddings. Embedding fusion then perturbs the embeddings as shown in Fig 2. The delta
consistency loss is employed to regulate model behavior on labeled and unlabeled samples under the same augmentation changes.

fusion. The second constraint ensures that each new fused
embedding z′i is predominantly informed by the original
zi. Without this requirement, it is hard to ensure accurate
prediction of each true label. The final constraint ensures
that the overall magnitude of each new fused embeddings z′i
matches the magnitude of the original embedding zi. This
helps fix an otherwise unconstrained degree of freedom.

Concrete design of A: Circular Shift. Many possible A
matrices could satisfy the above desiderata. Here, we adopt
a concrete construction of A called circular shift (Yu et al.,
2023a). Under this construction, each z′i is perturbed slightly
by its immediate next neighbor zi+1 at index i+1. Because
our interdigitated batch layout interleaves labeled and unla-
beled samples, this guarantees every labeled embedding is
perturbed by an unlabeled embedding.

Formally, let α ∈ (0, 0.5) be the fusion strength. To create
new embeddings Z ′ via Eq. (2), we set A = α ∗ U −
α ∗ I , where Ui,j = δi+1,j with δi+1,j representing the
Kronecker delta indicator (Frankel, 2011) and using wrap-
around (aka “circular”) indexing. This yields the overall
Q×Q perturbation matrix:

I +A =


1− α α 0 0 0
0 1− α α 0 0

0 0
. . . . . . 0

α 0 0 0 1− α

 (4)

This construction satisfies all three desiderata in Eq. (3).
Each row of the new Z ′ can be written simply as z′i =
(1 − α)zi + αzi+1, an additive perturbation toward one
other image’s embedding. We will show later in Sec. 4 & 5
that this embedding fusion improves accuracy across many
closed-set and open-set SSL tasks.

Figure 2. Illustration of Embedding Fusion. Showing the flattened
embeddings with batch size 2 for clearer visualization. Each em-
bedding is slightly perturbated by its immediate next neighbor.

Comparison with Manifold MixUp. Our embedding fu-
sion shares similarities with Manifold MixUp (Verma et al.,
2019), a regularization method for supervised image classifi-
cation that extends the MixUp idea to the embedding space
by linearly interpolating embedding vectors zi (not images
xi) and corresponding labels yi. However, there are several
key differences from our approach. First, the intended use
case: Manifold MixUp is proposed for supervised learning,
not semi-supervised learning. Second, Manifold MixUp
interpolates both embeddings and their corresponding la-
bels, while we only perturb the embeddings since there
are no labels for the unlabeled set. Additional procedures
could be added to our InterLUDE to guess pseudo-labels
for unlabeled samples. However, this would require more
forward-passes at each batch, adding substantial complexity
and runtime cost. Third and most importantly, our interdig-
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itated batch layout (Fig. 2) deliberately enforces that each
labeled embedding is always blended with an unlabeled
embedding, improving diversity and robustness. Careful
ablations (see Fig 3) show this deliberate labeled-unlabeled
interaction leads to better classifiers than other layouts with
less interaction. Empirically, we find that our embedding
fusion is beneficial for semi-supervised learning. We leave
improving its theoretical understanding for future work.

3.2. Delta Consistency: Consistent deltas across L & U

We now introduce the second key contribution of our In-
terLUDE: a new loss we call delta consistency loss. Delta
consistency loss makes use of the widely-used consistency
regularization principle (Tarvainen and Valpola, 2017; Sohn
et al., 2020). However, as noted in prior work (Huang
et al., 2023a), most consistency-regularization losses only
encourage “instance-wise” consistency, that is, consistency
for each individual instance under different transforma-
tions. In contrast, our delta consistency loss is designed
to make deltas (changes) in class-prediction behavior con-
sistent across labeled (L) and unlabeled (U) instances.

Recall that our approach (see Alg. 1) applies the same weak
and strong augmentation to adjacent sets of 1 + µ images
(1 labeled image and µ unlabeled images). The key idea
is that, given a specific pair of weak and strong augmenta-
tions ω and σ, the change in predicted probabilities due
to swapping weak with strong augmentation should be
similar across labeled and unlabeled cases. Intuitively, if
a specific augmentation swap causes a labeled image (e.g.,
“cat”) to look more like “dog” and less like “cat”, it ought to
produce a similar change for the unlabeled images of similar
class.

Define index i ∈ {1, . . . B} to uniquely identify a distinct
labeled image in the current batch. Let ωi, σi be the specific
weak-strong pair of augmentations to be swapped for index
i. Denote pwi (respectively psi ) as the class probabilities
produced by classifier h given the weak embedding z′,wi
(strong embedding z′,si ). Let index m ∈ {1, 2, . . . µ} denote
an offset from i, so subscript i,m identifies an unlabeled
example that, in our interdigitated layout, received the same
pair of augmentations as labeled image i. Let vector qwi,m
(respectively qsi,m) denote the class probabilities produced
by classifier h given the weak embedding z′,wi,m (strong em-
bedding z′,si,m) of that unlabeled image. Below we present
two versions of the delta-consistency loss.

Average version. Define vectors ∆L
i ,∆

U
i that represent the

differences of predicted probabilities for the labeled and
unlabeled case across weak and strong augmentations:

∆L
i = pwi − psi , ∆U

i =
1

µ

µ∑
m=1

(qwi,m − qsi,m) (5)

The goal of the average version of the delta consistency
loss is to encourage vector ∆U

i , the average change in pre-
dictions across unlabeled instances experiencing the same
augmentations as image i, to mimic the change vector ∆L

i

directly observed on labeled instance i. Concretely, we
minimize the average squared Euclidean distances between
vectors ∆L

i and ∆U
i :

LDC
avg =

1

B

B∑
i=1

∥∥∆L
i −∆U

i

∥∥2
2

(6)

Many possible distance functions could be tried; we picked
this distance because it is simple, symmetric, and bounded.
The bounded property may help prevent fluctuation in train-
ing dynamics (Berthelot et al., 2019b).

Class-dependent version. We also explored a class-
dependent version of our delta-consistency loss. That is,
we only enforce that unlabeled deltas are similar to the la-
beled deltas when the unlabeled image is predicted to belong
to the same class. This reflects the intuition that an augmen-
tation swap is likely to lead to predictions being more ’dog’
and less ’cat’ consistently across two images in a pair, only
if the two images in question share the same class label.

To operationalize this idea, let ŷi,m indicate the most likely
class predicted for unlabeled image at index i,m: ŷi,m =
argmaxc∈{1,...C} q

w
i,m[c]. The class-dependent delta term

for unlabeled images sharing the same augmentation as
labeled image i becomes

∆U
i,cls = mean

(
{qwi,m − qsi,m : m∈{1, . . . , µ}, ŷi,m=yi}

)
If none of the µ unlabeled images related to i share its class
label, we set ∆U

i,cls = NAN. We then obtain the overall DC
loss by averaging over all indices i ∈ {1, . . . , B} where a
valid vector ∆U

i,cls is available:

LDC
cls = mean

(
{
∥∥∆L

i −∆U
i,cls

∥∥2
2
: ∆U

i,cls ̸= NAN}
)

(7)

All results in the main paper use the simpler average ver-
sion. Results for the class-dependent formulation can be
found in App. E. Each version has its own advantages and
disadvantages (more discussion in Sec. 7), yet their overall
classification performance is comparable.

Ultimately, to better leverage unlabeled data for semi-
supervised learning, it is essential to extract information
that is not present in or easily derived from the labeled set
alone (Van Engelen and Hoos, 2020). Our delta-consistency
loss achieves this by enforcing consistency across labeled
and unlabeled predictions under an augmentation change.

3.3. InterLUDE overall training objective

Overall, our proposed InterLUDE algorithm combines the
classic two-term SSL objective from Eq. (1) with our new
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Algorithm 1 InterLUDE and InterLUDE+
Input: Labeled set DL, Unlabeled set DU

Output: Trained weights θ for classifier f
Procedure

1: for iter t ∈ 1, 2, . . . T do
2: {xi, yi}Bi=1 ← DRAWBATCH(DL, B)

3: {x̄j}µBj=1 ← DRAWBATCH(DU , µB)

4: for example i ∈ 1, 2, . . . B do
5: ωi, σi ← DRAWAUGPARAMS(Ω,Σ)

6: xw
i , x

s
i , {x̄w

j }
µ
j=1, {x̄s

i}
µ
j=1 ← GETAUG(ωi, σi)

7: end for
8: X ← INTERDIGITATE({xw

i , x
s
i}Bi=1, {x̄w

j , x̄
s
j}

µB
j=1)

9: Z ← g(X; θ) // calc embeddings
10: Z ′ ← CIRCSHIFTFUSION(Z,α)

11: {pwi , psi}Bi=1, {qwj , qsj}
µB
j=1 ← h(Z ′; θ)

12: LDC
avg ← EQ. (6) // delta-consistency loss

13: LL ← EQ. (9) // supervised cross-ent. loss
14: LU ← EQ. (10) // instance-wise unlabeled loss
15: if InterLUDE then
16: L ← LL + λuLU + λDCLDC

avg

17: else if InterLUDE+ then
18: L ← EQ. (11)
19: end if
20: θ = θ − ϵ∇θL // update weights via SGD
21: end for
22: return θ

delta consistency loss. Our final loss function is:

L = LL + λuLU + λDCLDC
avg (8)

where λu > 0 and λDC > 0 control the relative weight of
different terms. We use the following common choices for
labeled loss LL and unlabeled loss LU

LL = − 1

B

B∑
i=1

log pwi [yi] (9)

LU =
1

µB

µB∑
j=1

I(max(qwj ) > τ)H(q̂wj , q
s
j ) (10)

LL is a standard cross-entropy loss based on labeled samples
only; LU is the instance-wise consistency loss exemplified
by FixMatch (Sohn et al., 2020) that has been a utilized by
many methods (Huang et al., 2023a; Wang et al., 2023; Chen
et al., 2023) and q̂wj = argmax(qwj ). We fix confidence
threshold τ to 0.95, following Sohn et al.

3.4. InterLUDE+

Recently, the Self-Adaptive Threshold (SAT) and Self-
Adaptive Fairness (SAF) ideas were introduced by Wang

et al. (2023), with possible applicability to other SSL algo-
rithms. For instance, FlatMatch (Huang et al., 2023a) has
utilized these techniques. For fair comparison to such past
work, we integrate these techniques into InterLUDE and
name the enhanced version InterLUDE+. We provide a brief
overview of SAT and SAF here; more details in App. C.

SAT is a technique for adjusting the pseudo-labels thresh-
old over iterations based on both dataset-specific and class-
specific criteria. SAF is a regularization technique that
encourages diverse predictions on unlabeled data via an ad-
ditional loss term LSAF. Thus, the complete loss function of
InterLUDE+ (including SAT and SAF) is:

L = LL + λuLU + λDCLDC
avg + λSAFLSAF (11)

with a self-adaptive threshold replacing the fixed τ in LU .

4. Experiments on Classic SSL Benchmarks
We evaluate InterLUDE on common closed-set SSL bench-
marks with both Convolutional Neural Network (CNN) and
Vision Transformer (ViT, Dosovitskiy et al. (2020)). Our
comparisons encompass a comprehensive list of 22 SSL
algorithms, including recent state-of-the-art methods.

Datasets. We use CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009) and STL-10 (Coates
et al., 2011). Detailed descriptions can be found in App. A.
We skip SVHN (Netzer et al., 2011) as recent SSL advances
have pushed performance to near saturation (e.g., <2% error
rate with only 4 labels per class (Wang et al., 2023)).

CNN experiment setting. Using CNNs as backbones, we
conduct experiments across various labeled set sizes: 40,
250, 4000 for CIFAR-10; 400, 2500, 10000 for CIFAR-
100 and 250, 1000 for STL-10. Following standard proto-
col (Wang et al., 2023; Zheng et al., 2023), we use Wide
ResNet-28-2/28-8 (Zagoruyko and Komodakis, 2016) for
CIFAR-10/100 and ResNet-37-2 (He et al., 2016) for STL10.
We use SGD optimizer (Nesterov momentum 0.9) and a co-
sine learning rate schedule (Loshchilov and Hutter, 2016)
η = η0 cos

(
7πk
16K

)
, where η0 = 0.03 is the initial learning

rate, K = 220 is the total training steps and k is the current
training step. Inference is conducted using the exponential
moving average of the model with a momentum of 0.999.
We set the labeled batch size to 64 and the unlabeled batch
size to 448 (i.e., µ = 7). For hyperparameters unique to
InterLUDE, we set λDC to 1.0 and fusion strength α to 0.1.

ViT experiment setting. Using ViTs as backbones, we con-
duct experiments across labeled set sizes of 10, 40, 250 for
CIFAR-10; 200, 400, 2500 for CIFAR-100; and 10, 40, and
100 for STL-10. Following prior works (Wang et al., 2022;
Li et al., 2023), we use pretrained ViT-small for CIFAR-
10/100 and pretrained ViT-base for STL-10. The pretrained
ViT-small and ViT-base are provided by USB (Wang et al.,
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2022). We use AdamW optimizer with learning rate 5e−4

for CIFAR-10/100 and 1e−4 for STL-10. The total training
steps are set to 204,800. The batch size is set to 8 with
µ = 7. For hyperparameters unique to InterLUDE, we set
λDC to 0.1 and fusion strength α to 0.1.

Results. Results are shown in Table 1 for CNNs and Ta-
ble 2 for pretrained ViTs. It is worth noting that previous
observers suggest it is hard for an algorithm to achieve top
performance across all settings (Zheng et al., 2023).

On CNN backbones (Table 1), our methods achieve the best
results in many scenarios and remain competitive in others.
Notably, on CIFAR-10 with 40 labels, InterLUDE records a
low error rate of 4.51%, which InterLUDE+ further pushes
to 4.46%. Among methods using only 40 labeled images
on CIFAR-10, InterLUDE and InterLUDE+ not only out-
perform all SSL alternatives but are the only methods to
surpass the fully-supervised result of training the same
network to minimize cross entropy on all 50000 training
examples in the labeled set (which represents an ideal train-
ing setting for a classifier). Moreover, InterLUDE is con-
sistently more stable than competitors like FlatMatch (see
much smaller standard deviations in Tab. 1 and Tab. 3).

On ViT backbones (Tab 2), InterLUDE+ delivers the best
performance in 5 out of 6 settings on CIFAR-10 and CIFAR-
100, with InterLUDE close behind. On STL-10 with only
40 labels, InterLUDE (InterLUDE+) achieves an impressive
low error rate of 3.14% (4.59%), far better than the
next best method of 6.25% and remarkably better than all
competitors even when they have 2.5x more labeled images
(last column). Across Tables 1-2, ViT backbones exhibit
superior performance, in line with observations in Wang
et al. (2022). InterLUDE and InterLUDE+ perform similarly
on CNNs, but with ViTs InterLUDE+ appears better on
CIFAR data at low train set sizes.

5. Experiments on Heart2Heart Benchmark
Here we evaluate our method on a open-set medical imaging
benchmark proposed in Huang et al. (2023b). We compare
to strong baselines from Table 1 as well as two recent SOTA
open-set SSL algorithms: OpenMatch (Saito et al., 2021)
and Fix-A-Step (Huang et al., 2023b).

The Heart2Heart benchmark looks at three fully-deidentified
medical image datasets of heart ultrasound images, collected
independently by different research groups. It adopts a clin-
ically crucial view classification task: Given an ultrasound
image of the heart, identify the specific anatomical view
depicted. Here we briefly describe the data (Full details
in App. A). The data for training SSL methods is TMED-
2 (Huang et al., 2021; 2022), collected at one site in Boston,
MA, U.S.A., with ∼1700 labeled images in TMED-2’s pre-
defined train and validation set of four view classes: PLAX,

PSAX, A4C and A2C. TMED-2 has a large unlabeled set
of 353,500 images from 5486 routine scans that are truly
uncurated, containing out-of-distribution classes, no known
true labels, and modest feature distribution shift. The bench-
mark assesses classifiers on the TMED-2 test set (∼2100
images) as well as the UK-based Unity dataset by Howard
et al. (2021) (7231 images total of PLAX, A2C, and A4C
classes) and France-based CAMUS dataset by Leclerc et al.
(2019) (2000 images total; A2C and A4C classes only).

Heart2Heart poses two key questions: 1. Can we train a
view classifier from limited labeled data? (train SSL on
TMED-2 then test on TMED-2; Table 3 column 1) 2. Can
classifiers trained on images from one hospital transfer
to hospitals in other countries? (train SSL on TMED-2
then test on Unity and CAMUS; Table 3 columns 2-3).

Experiment setting. Our experiments adhere to the ex-
act settings in Huang et al. (2023b). We train a separate
model for each of the three predefined splits in TMED-2.
We use Wide ResNet-28-2 and inherit all common hyper-
parameters directly from Huang et al. For FreeMatch and
FlatMatch, we additionally search λSAF in [0.01, 0.05, 0.1].
For InterLUDE and InterLUDE+, we search λDC in [0.1,
1.0]. We select hyperparameters based on the validation set
and report test set performance at the maximum validation
checkpoint. Full hyperparameter details are in App. B.2.

Results. Table 3 presents our results, with Columns 2 and
3 essentially assessing the zero-shot cross-hospital gener-
alization capabilities of each method. Across all columns,
InterLUDE and InterLUDE+ consistently show competi-
tive performance. On TMED2, InterLUDE+ emerges as
the top performer, closely followed by InterLUDE. In the
zero-shot generalization to CAMUS and Unity, InterLUDE
continues to lead, followed by FlexMatch and FreeMatch.
All algorithms show a significant performance drop and
increased variance on the CAMUS dataset, a phenomenon
also observed in the original paper (Huang et al., 2023b).
Nevertheless, InterLUDE still outperforms all other base-
lines, demonstrating strong generalization. FlatMatch on
the other hand, substantially underperforms (more than 2x
error rate of InterLUDE, more discussion in App F).

6. Ablations and Sensitivity Analysis
Ablation of components. InterLUDE has two novel com-
ponents: the cross-instance delta consistency loss and the
embedding fusion. Table 4 assesses their individual impacts
using both CNN and ViT backbones. We find that both
components are effective. On CNN, removing embedding
fusion (delta consistency loss) leads to a 0.3% (0.5%) drop
in performance On ViT, removing embedding fusion (delta
consistency loss) leads to performance drops of about 0.5%
(0.6%). Note that in this CIFAR-10 40-label scenario, most
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Table 1. Error rate (%, lower is better) with CNNs. Following Zheng et al. (2023), error rate and standard deviation are reported based on
three runs. All experiments follow the same settings. Rows marked * are implemented by us using the author’s code. Results of other
methods are directly copied from SimMatchV2 (Zheng et al., 2023) and the original papers (“–” means the result is not available). The
best results are highlighted in bold and the second-best underlined. We did not run DeepLP on STL-10 due to computation constraints.

dataset CIFAR10 CIFAR100 STL-10
num. labeled images 40 250 4000 400 2500 10000 250 1000

Supervised 77.18±1.32 56.24±3.41 16.10±0.32 89.60±0.43 58.33±1.41 36.83±0.21 55.07±1.83 35.42±0.48
Manifold MixUp* (Verma et al., 2019) 73.51±1.81 55.44±2.06 17.40 ±1.11 87.98±0.55 59.45±0.85 33.23±0.21 54.99±1.22 29.17±2.00

Pseudo-Labeling (Lee et al., 2013) 75.95±1.86 51.12±2.91 15.32±0.35 88.18±0.89 55.37±0.48 36.58±0.12 51.90±1.87 30.77±0.04
II-Model (Laine and Aila, 2016) 76.35 ± 1.69 48.73±1.07 13.63±0.07 87.67±0.79 56.40±0.69 36.73±0.05 52.20±2.11 31.34±0.64

DeepLP* (Iscen et al., 2019) 72.65 ± 2.04 35.80±1.43 10.58±0.29 86.11±0.61 62.87±0.42 43.03 ±1.36 – –
Mean Teacher (Tarvainen and Valpola, 2017) 72.42±2.10 37.56±4.90 8.29±0.10 79.96±0.53 44.37±0.60 31.39±0.11 49.30±2.09 27.92±1.65

VAT (Miyato et al., 2018) 78.58±2.78 28.87±3.62 10.90±0.16 83.60±4.21 46.20±0.80 32.14±0.31 57.78±1.47 40.98±0.96
MixMatch (Berthelot et al., 2019b) 35.18±3.87 13.00±0.80 6.55±0.05 64.91±3.34 39.29±0.13 27.74±0.27 32.05±1.16 20.17±0.67

ReMixMatch (Berthelot et al., 2019a) 8.13±0.58 6.34±0.22 4.65±0.09 41.60±1.48 25.72±0.07 20.04±0.13 11.14±0.52 6.44±0.15
FeatMatch (Kuo et al., 2020) – 7.50±0.64 4.91±0.18 – – – – –

UDA (Xie et al., 2020) 10.01±3.34 5.23±0.08 4.36±0.09 45.48±0.37 27.51±0.28 23.12±0.45 10.11±1.15 6.23±0.28
FixMatch (Sohn et al., 2020) 12.66±4.49 4.95±0.10 4.26±0.01 45.38±2.07 27.71±0.42 22.06±0.10 8.64±0.84 5.82±0.06

Dash (Xu et al., 2021b) 9.29±3.28 5.16±0.28 4.36±0.10 47.49±1.05 27.47±0.38 21.89±0.16 10.50±1.37 6.30±0.49
MPL (Pham et al., 2021) 6.62±0.91 5.76±0.24 4.55±0.04 46.26±1.84 27.71±0.19 21.74±0.09 – 6.66±0.00
CoMatch (Li et al., 2021) 6.51±1.18 5.35±0.14 4.27±0.12 53.41±2.36 29.78±0.11 22.11±0.22 7.63±0.94 5.71±0.08

FlexMatch (Zhang et al., 2021) 5.29±0.29 4.97±0.07 4.24±0.06 40.73±1.44 26.17±0.18 21.75±0.15 9.85±1.35 6.08±0.34
AdaMatch (Berthelot et al., 2021) 5.09±0.21 5.13±0.05 4.36±0.05 37.08±1.35 26.66±0.33 21.99±0.15 8.59±0.43 6.01±0.02

SimMatch (Zheng et al., 2022) 5.38±0.01 5.36±0.08 4.41±0.07 39.32±0.72 26.21±0.37 21.50±0.11 8.27±0.40 5.74±0.31
FreeMatch (Wang et al., 2023) 4.90±0.04 4.88±0.18 4.10±0.02 37.98±0.42 26.47±0.20 21.68±0.03 – 5.63±0.15
SoftMatch (Chen et al., 2023) 4.91±0.12 4.82±0.09 4.04±0.02 37.10±0.77 26.66±0.25 22.03±0.03 – 5.73±0.24

SimMatchV2 (Zheng et al., 2023) 4.90±0.16 5.04±0.09 4.33±0.16 36.68±0.86 26.66±0.38 21.37±0.20 7.54±0.81 5.65±0.26
FixMatch (w/SAA) (Gui et al., 2023) 5.24±0.99 4.79±0.07 3.91±0.07 45.71±0.73 26.82±0.21 21.29±0.20 – –

InstanT (Li et al., 2023) 5.17±0.10 5.28±0.02 4.43±0.01 46.06±1.80 32.91±0.00 27.70±0.40 – –
FlatMatch (Huang et al., 2023a) 5.58±2.36 4.22±1.14 3.61±0.49 38.76±1.62 25.38±0.85 19.01±0.43 – 4.82±1.21

FlatMatch-e (Huang et al., 2023a) 5.63±1.87 4.53±1.85 3.57±0.50 38.98±1.53 25.62±0.88 19.78±0.89 – 5.03±1.06
InterLUDE (ours) 4.51±0.01 4.63±0.11 3.96±0.07 35.32±1.06 25.20±0.22 20.77±0.19 7.05±0.12 5.01±0.04

InterLUDE+ (ours) 4.46±0.11 4.46±0.09 3.88±0.05 36.99±0.62 25.27±0.17 20.49 ±0.15 6.99 ±0.42 4.92±0.05
Fully-Supervised (all labeled train img.) 4.57±0.06 18.96±0.06 –

algorithms compete for improvements of less than 0.5%
over their predecessors, underscoring the effectiveness of
both components. More ablations in App. Table D.6 further
confirm the effectiveness of the two components.

Ablation of layout: high vs. low L-U interaction. Our
interdigitated layout (Fig. 2) is specifically designed to en-
hance labeled-unlabeled interaction. In Fig. 3, we contrast
this layout with a low-interaction alternative that adjacently
places all 2B labeled samples together then all 2µB unla-
beled samples together, changing line 8 in Alg. 1 to

X ← STACK({{xw
i }Bi=1, {xs

i}Bi=1, {x̄w
j }

µ∗B
j=1 , {x̄

s
j}

µ∗B
j=1 }).

Applying circular-shift fusion, the two layouts have exactly
the same number of within-batch interactions, but our inter-
digitated layout has far more labeled-unlabeled interactions.
Fig. 3 shows that our high-LU-interaction interdigitated lay-
out is crucial in the this low label regime. More results can
be found in App. Fig. D.4.

Sensitivity to Delta Consistency Loss Coefficient. We
examined the impact of varying λDC , a unique hyperpa-
rameter in our method, from 0.1 to 10.0 (see details in App.
Fig. D.1). We see stable performance across a wide spec-
trum of values. However, in extremely low label settings,
very high λDC values result in diminished performance, a
phenomenon similar to that observed with the unlabeled loss

coefficient in other studies (Tarvainen and Valpola, 2017).

Sensitivity to Embedding Fusion strength. Another hy-
perparameter introduced by our method is the embedding
fusion strength α. To evaluate its impact, we vary α from
0.1 to 0.4 (detailed in App. Fig. D.2). We see that α around
0.1 to 0.2 is generally a good value. Excessively high α
values, nearing the 0.5 upper limit for α to satisfy Eq. (3),
result in a significant drop in performance.

Sensitivity to Augmentation Strategies. Our data aug-
mentations follow the weak-strong construction in Fix-
Match (Sohn et al., 2020), with weak including standard
flip and crop, and strong using RandAugment (Cubuk et al.,
2020). RandAugment has two hyperparameters: N (the
number of augmentations applied sequentially to an input
image) and M (the magnitude of these transformations). We
find that when N is too large (applying multiple augmenta-
tions sequentially), performance decreases, while M has a
smaller impact. Overall, our method is not overly sensitive
to these hyperparameters (see details in App. D.1.2).

7. Discussion
We introduced InterLUDE, an SSL method that fosters di-
rect interactions between labeled and unlabeled data via em-
bedding fusion and a new delta-consistency loss term. We
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Table 2. Error rate (%, lower is better) with ViT backbone. The error rate and 95% confidence interval are reported based on three random
seeds (Li et al., 2023). Rows marked * are implemented by us using the author’s code. Other results directly copied from Li et al. (2023).
The best results are highlighted in bold and the second-best underlined.

dataset CIFAR10 CIFAR100 STL10
num. labeled images 10 40 250 200 400 2500 10 40 100

PL (Lee et al., 2013) 62.35±3.1 11.79±5.3 4.58±0.4 36.66±2.0 26.87±0.9 15.72±0.1 69.26±6.7 42.84±4.2 26.56±1.5
MT (Tarvainen and Valpola, 2017) 35.43±4.9 12.85±2.5 4.75±0.5 40.50± 0.8 30.58±0.9 17.09±0.4 57.28±7.8 33.20±3.4 22.29±1.8
MixMatch (Berthelot et al., 2019b) 34.96±2.6 2.84±0.9 2.05±0.1 39.64± 1.3 27.74±0.1 16.16±0.3 89.32±1.1 72.42±16.2 38.15±11.3

VAT (Miyato et al., 2018) 39.93±6.3 6.67±6.6 2.33±0.2 34.11±1.8 24.67±0.4 16.58±0.4 79.43±4.4 34.82±7.0 19.06±1.0
UDA (Xie et al., 2020) 21.24±3.6 2.08±0.2 2.04±0.1 34.51±1.6 24.15±0.6 16.19±0.2 51.63±4.3 20.33±4.9 10.60±1.0

FixMatch (Sohn et al., 2020) 33.50±15.1 2.56±0.9 2.05±0.1 34.71±1.4 24.48±0.1 16.02±0.1 59.87±3.4 22.28±4.4 11.59±1.6
FlexMatch (Zhang et al., 2021) 29.46±9.6 2.22±0.3 2.12±0.2 36.24±0.9 25.99±0.5 16.28±0.2 39.37±12.9 21.83±3.7 10.46±1.3

Dash (Xu et al., 2021b) 25.65±4.5 3.37±2.0 2.10±0.3 36.67±0.4 25.46±0.2 15.99±0.2 58.94±4.4 21.97±3.9 10.44±2.0
AdaMatch (Berthelot et al., 2021) 14.85±20.4 2.06±0.1 2.08±0.1 26.39±0.1 21.41±0.4 15.51±0.1 31.83±7.7 16.50±4.2 10.75±1.5
FlatMatch* (Huang et al., 2023a) 11.95±7.3 3.17±0.3 2.33±0.1 26.56±1.0 21.80±1.0 13.83±0.3 23.90±8.9 6.25±0.3 4.74±0.2

InstanT (Li et al., 2023) 12.68±10.2 2.07±0.1 1.92±0.1 25.83±0.3 21.20±0.4 15.72±0.5 30.61±7.4 14.91±2.8 10.65±1.9
InterLUDE (ours) 31.90±4.1 1.78±0.1 1.55±0.1 35.66±1.9 21.19±0.2 13.39±0.1 27.49±6.6 3.14±0.2 2.66±0.1

InterLUDE+ (ours) 12.29±7.3 1.55±0.1 1.49±0.1 23.60±1.2 16.32±0.3 12.93±0.2 25.83±9.9 4.56±0.9 3.23±0.3

Table 3. Heart2Heart Benchmark. Error rate and standard devi-
ation are reported based on three pre-defined data splits. We
re-implemented FlexMatch, FreeMatch and FlatMatch using the
author’s codes. Other results are copied from Huang et al. (2023b).
Best results highlighted in bold and the second-best underlined.

TMED2 CAMUS UNITY
Supervised 7.35±0.79 30.23±7.77 9.55±1.68
Pi-model 7.41±0.63 38.52±0.96 9.90±1.31
VAT 6.43±0.11 32.40±8.11 9.21±2.16
FixMatch 5.66±0.68 22.12±9.08 7.63±1.42
FlexMatch 3.56±0.32 17.58±6.53 5.20±0.52
FreeMatch 3.52±0.25 16.67±6.04 5.45±0.18
FlatMatch 7.84±0.48 28.93±10.38 10.05±1.15
FixAStep 4.79±0.49 18.78±10.20 6.04±1.07
OpenMatch 5.88±0.63 22.07±5.89 7.17±1.89
InterLUDE (ours) 3.45±0.39 13.75±6.22 4.86±0.48
InterLUDE+ (ours) 3.25±0.17 18.12±8.37 5.53±0.85

Table 4. Ablations to isolate the effect of InterLUDE’s two key
components. Showing error rate (%) on CIFAR-10 with 40 labels.

CNN ViT
InterLUDE 4.51±0.01 1.78±0.06
w/o Embedding Fusion 4.82±0.12 2.31±0.92
w/o LDC

avg 5.00±0.35 2.37±0.86

show these changes lead to superior performance across mul-
tiple SSL benchmarks. Of particular note is InterLUDE’s
success with the open-set Heart2Heart benchmark and re-
cent ViT architectures.

Limitations. Improved understanding of precisely why
embedding fusion works well is needed. Although we have
many experimental results suggesting the practical value
of embedding fusion, more theoretical work is needed to
understand the underlying mechanisms in a more principled
manner. Li (2022) analyse the impact of injecting noise to
a learning system from an information theory perspective.
They show that certain perturbations in image space help
reduce task complexity. Extending such analysis to the
embedding space might be an interesting future work.
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Figure 3. Ablation on Different Batch Layout

Improved understanding of delta-consistency loss would
also be beneficial. While we primarily present the aver-
age version of the delta-consistency loss in the main paper
for its simplicity, this formulation lacks fine-grained class
dependencies. Conversely, the class-dependent version con-
siders class labels when deciding how changes in predictions
should be consistent across labeled and unlabeled examples.
However, this approach relies on the quality of pseudo-
labels, which can be error-prone during early training.

Furthermore, in the extreme case where the regular instance-
wise consistency loss leads the model to make exactly the
same predictions on the weak and strong augmentations for
both the unlabeled and labeled data, our proposed delta-
consistency loss would approach zero. If this occurs early in
training, the impact of the delta-consistency loss would be
limited. However, our empirical evaluations across several
datasets have not yet observed such an extremity.

Outlook. We hope this work suggests the untapped po-
tential of using labeled-unlabeled interactions to improve
SSL classifiers. We also encourage future SSL evaluation
to consider medically-inspired benchmarks like Huang et al.
(2023b)’s Heart2Heart alongside traditional datasets.
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Impact Statement
This paper presents work whose goal is to advance the field
of semi-supervised learning. We hope our work improves
practitioners’ ability to train accurate classifiers from lim-
ited labeled data, especially in medical applications where
acquiring labeled data is prohibitively costly. Even though
the Heart2Heart cross-hospital generalization task we exam-
ine is fully deidentified and open-access by the respective
dataset creators, we implore future work pursuing it to re-
member the real human patients the data represents and
take proper care. A key concern in translating SSL-trained
classifiers to practice is fairness to different subpopulations,
which cannot yet be assessed with the available data in that
benchmark.
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Supplementary Material

In this supplement, we provide:

• Sec. A: Dataset Details

• Sec. B: Hyperparameter Details

• Sec. C: InterLUDE+ Details

• Sec. D: Additional Albation and Sensitivity Analysis

• Sec. E: Additional Results on Class-dependent Delta Consistency Loss

• Sec. F: Additional Discussion

A. Additional Dataset Details
Here, we provide more details on the datasets used in the paper. For the medical image datasets used in the Heart2Heart
Benchmark (Huang et al., 2023b), we emphasize that all three medical image datasets are deidentified and accessible to
academic researchers.

A.1. Classic Benchmarks

• The CIFAR-10 dataset is a collection of images commonly used to train machine learning and computer vision
algorithms, and has been a classic benchmark to use for SSL. It contains 60,000 32x32 color images in 10 different
classes, with 6,000 images per class. The dataset is divided into 50,000 training images and 10,000 testing images. The
classes include various objects and animals like cars, birds, dogs, and ships..

• Similar to CIFAR-10, the CIFAR-100 dataset is another common SSL benchmark. CIFAR-100 has same total number
of images as CIFAR-10, i.e., 60,000 32x32 color images, but they are spread over 100 classes, each containing 600
images, with 500 training images and 100 testing images per class. The dataset features a more diverse set of classes
compared to CIFAR-10

• The STL-10 dataset is also popular in benchmarking SSL algorithms. The dataset contains 5,000 labeled training
images and 8,000 test images, with each image being a higher resolution of 96x96 pixels. It contains 10 classes:
airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck. Additionally, the dataset provides 100,000 unlabeled
images for unsupervised learning, which are drawn from a similar but broader distribution than the labeled images.

A.2. Heart2Heart Benchmark

The Heart2Heart Benchmark contains three medical image datasets of heart ultrasound images, collected independently by
different research groups in the world. Thanks to common device standards, these images are interoperable. All data used in
the benchmark are resized to 112x112 (Huang et al., 2023b).

The benchmark adopts a view classification task: Given an ultrasound image of the heart, identify the specific anatomical
view depicted. Such task is of great clinical importance, as determining the view type is a prerequisite for many clinical
measurements and diagnoses (Madani et al., 2018).

• The TMED-2 dataset provides set of labeled images of four specific view types: Parasternal Long Axis (PLAX),
Parasternal Short Axis (PSAX), Apical Four Chamber (A4C) and Apical Two Chamber (A2C), gathered from certified
annotators, and a truly uncurated unlabeled set of 353,500 images from routine scans of 5486 patient-studies. With
routine Transthoracic Echocardiograms (TTEs) commonly presenting at least nine canonical view types (Mitchell et al.,
2019), this unlabeled set likely contains classes not found in the labeled set. Moreover, the unlabeled dataset consists
of a wide variety of patient scans, in contrast to the labeled dataset, which specifically contains a higher percentage of
patients with a heart disease called aortic stenosis (AS), particularly severe AS. About 50% of patients in the labeled
set have severe AS, a significant increase compared to its less than 10% occurrence in the general population. This
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discrepancy in sampling results in noticeable feature differences. For instance, PLAX and PSAX images from patients
with severe AS typically exhibit more pronounced calcification (thickening) of the aortic valve.

Note that the TMED-2 data used in Heart2Heart Benchmark is only a subset of the full TMED-2 dataset, more details
should be referred to the original papers (Huang et al., 2022; 2021)

• The UNITY dataset contains ultrasound images of the heart collected from 17 hospitals in the UK. The original dataset
contains other view such as A3C and A5C, but only PLAX, A2C and A4C are used in the Heart2Heart Benchmark.
More details should be referred to the original paper (Howard et al., 2021).

• The CAMUS dataset contains ultrasound images of the heart collected from a hospital in France. The dataset contains
A2C and A4C. Beside the view label, the original dataset also provide labels for the cardiac cycle when the image is
acquired (e.g., end diastolic or end systolic). More details should be referred to the original paper (Leclerc et al., 2019).

B. Additional Hyperparameter Details
Here we provide complete list of the hyperparameters used in the paper:

B.1. Classic SSL Benchmarks

CNN Backbones. Here we list the hyperparameters used for CNN backbone experiments in Sec 4. We closely follow the
established setting from prior studies (Wang et al., 2023).

Table B.1. Algorithm-independent hyperparameters on CNNs

Dataset CIFAR-10 CIFAR-100 STL-10

Model WRN-28-2 WRN-28-8 WRN-37-2
Weight decay 5e-4 1e-3 5e-4
Batch size 64 64 64
Learning rate 0.03 0.03 0.03
SGD momentum 0.9 0.9 0.9
EMA decay 0.999 0.999 0.999

For algorithm dependent hyperparameters, we set λDC to 1.0, embedding fusion strength α to 0.1. We set the unlabeled
batch ratio µ to 7 following convention (Sohn et al., 2020; Zheng et al., 2023; Wang et al., 2023). Note that µ is a common
hyperparameter to many SSL algorithms, not unique to ours.

ViT Backbones. Here we list the hyperparameters used for the ViT backbone experiments in Sec 4. We closely follow the
established setting from prior studies (Li et al., 2023). For the ViT-small experiments, we utilized the pretrained weights
from ViT-small as provided by (Wang et al., 2022). In the case of ViT-base experiments, we employed the pretrained weights
from PyTorch image models, as documented in (Imambi et al., 2021).

Table B.2. Algorithm-independent hyperparameters on ViTs

Dataset CIFAR-10 CIFAR-100 STL-10

Model ViT-small ViT-small ViT-base
Weight decay 5e-4 5e-4 5e-4
Batch size 8 8 8
Learning rate 5e-4 5e-4 1e-4
Optimizer AdamW AdamW AdamW
EMA decay 0.999 0.999 0.999

For algorithm dependent hyperparameters, we set λDC to 0.1, embedding fusion strength α to 0.1. We set the unlabeled
batch ratio µ to 7 following convention (Sohn et al., 2020; Zheng et al., 2023; Wang et al., 2023). Note that µ is a common
hyperparameter to many SSL algorithms, not unique to ours.
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B.2. Heart2Heart Benchmark

Our experiments closely follow the protocol from (Huang et al., 2023b). We directly inherit all the common hyperparameters
from (Huang et al., 2023b) without tunning. For FreeMatch and FlatMatch, we additionally search λSAF in [0.01, 0.05, 0.1].
For InterLUDE and InterLUDE+ we search λDC in [0.1, 1.0].

Table B.3. Heart2Heart Benchmark Hyperparameters

Data Split 1 Data Split 2 Data Split 3
Weight decay 5e-4 5e-4 5e-4
Learning rate 0.1 0.1 0.1
Batch size 64 64 64
Optimizer SGD SGD SGD

FreeMatch
λSAF 0.05 0.01 0.05

FlatMatch
λSAF 0.05 0.1 0.01

InterLUDE
λDC 1.0 0.1 0.1

InterLUDE+
λDC 1.0 0.1 0.1

C. InterLUDE+ Details
Recently, Self-Adaptive Threshold (SAT) and Self-Adaptive Fairness (SAF) were introduced by Wang et al. (2023), with
potential applicability to other SSL algorithms. Here, we integrate SAT and SAF into our InterLUDE framework, and named
the enhanced version InterLUDE+.

SAT aim to adjust the pseudo-label threshold by considering both the global (dataset-specific) threshold and local (class-
specific) threshold at different time step, each estimated via the model’s current learning status. Similar techniques such as
Distribution Alignment (DA) (Berthelot et al., 2019a) and its variant (Berthelot et al., 2021) has been proposed and used by
various SSL algorithms (Li et al., 2021; Zheng et al., 2022).

τt(c) =
p̃t(c)

max{p̃t(c) : c ∈ [C]}
· τt, (12)

where τt is the gloabl threshold at time t and p̃t(c) is the local threshold for class c at time t.

τt =

{
1
C , if t = 0,

λτt−1 + (1− λ) 1
µB

∑µB
j=1 max(qwj ), otherwise,

(13)

p̃t(c) =

{
1
C , if t = 0,

λp̃t−1(c) + (1− λ) 1
µB

∑µB
j=1 q

w
j (c), otherwise,

(14)

SAF is a regularization term that encourages diverse model predictions on unlabeled data.

LSAF = −H
[

SumNorm
(
p̃t

h̃t

)
,SumNorm

( p̄

h̄

)]
(15)
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where

p̄ =
1

µB

µB∑
j=1

1(max(qwj ) ≥ τt(argmax(qwj ))q
s
j , (16)

h̄ = HistµB
(
1(max(qwj ) ≥ τt(argmax(qwj ))q̂

s
j

)
, (17)

h̃t = λh̃t−1 + (1− λ)HistµB(q̂wj ) (18)

SumNorm = (·)/
∑

(·). Hist means the histogram distribution. q̂wj and q̂sj are the one-hot encoding of qwj and qsj . More
details of the SAT and SAF should be referred to in the original paper (Wang et al., 2023).

Incorporating SAT and SAF with InterLUDE, the loss function of InterLUDE+ can be written as:

L = LL + λuLU + λDCLDC
avg + λSAFLSAF (19)

where τt(c) is used to replaced the fixed threshold τ in Eq. (10).

D. Additional Experiments
D.1. CNN backbones

D.1.1. SENSITIVITY ANALYSIS

The sensitivity analysis of hyperparameters unique to our method: delta consistnecy loss λDC and embedding fusion
strength α with CNN backbone on the CIFAR10 dataset are presented in Fig. D.1 and D.2, respectively. We can observe that
the error remains stable over a wide range of λDC , leading us to conclude that InterLUDE is not overly sensitive to λDC .
When considering the embedding fusion strength, we see that α around 0.1 to 0.2 is generally a good value. Excessively
high α values, nearing the 0.5 upper limit defined in Eq. (3) result in a significant drop in performance. More sensitivity
analysis on the ViT backbones can be found in sec. D.2.2.
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Figure D.1. Sensitivity of Delta Consistency Loss Coefficient.
Showing CNN performance on CIFAR-10.
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Figure D.2. Sensitivity of Embedding Fusion Strength. Showing
CNN performance on CIFAR-10.

D.1.2. AUGMENTATION STRATEGIES

RandAugment involves two hyperparameter: N and M. N represents the number of augmentation transformations applied
sequentially to an input image, and M denotes the magnitude of these transformations. Higher values for N and M result in
stronger distortion to the input.

Below, we evaluate InterLUDE on CIFAR-10 with 40 labels (CNN) using various N and M. The default setting from prior
SSL literature is N=2 and M=10. Experiments in our paper use this default choice. Here, due to computation constraints, we
only run the experiment with 1 run.
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Table D.3. Sensitivity to Augmentation Strength
n 2* 2 2 3 3 3 5 5 5
m 10* 8 5 10 8 5 10 8 5

Results 4.51 5.03 5.66 4.76 5.65 5.22 6.37 6.55 7.24

The results show that the value of N (number of transformations sequentially applied to the input image) has a larger
impact on the performance than M. When N=5, the performance notably decreases, which is reasonable, as composing 5
sequential transformations to the input severely destroys the semantic meaning of the original input. Please note that this
decrease in performance due to augmentation being too strong is not unique to our method, other works have obtained
similar conclusions (Gui et al., 2023). On the other hand, given the same N, larger M seems to work slightly better.

We also explored the impact of deviating from the standard weak-strong augmentation structure with either a weak-weak
augmentation or strong-strong augmentation approach. We find that deviation from such established weak-strong format
notably decreases performance. These observations are in line with those reported in FixMatch, which highlighted the
effectiveness of adopting the weak-strong structure. This is discussed in section 5.2 of their paper.

D.1.3. ADDITIONAL ABLATION OF LAYOUT: HIGH VS. LOW L-U INTERACTION.

Our interdigitated batch layout (Fig 2) is specifically designed to enhance labeled-unlabeled interaction. Here we conduct
more ablations to analysis the effect of high vs. low L-U interaction under the same circular shift embedding fusion operation.
We contrast the low L-U interaction batch layout with 3 high L-U interaction layouts (including the one we used as default
in the paper: Fig 2)

The different layouts are defined as follows:

Low-I =: STACK({{xw
i }Bi=1, {xs

i}Bi=1, {x̄w
j }

µ∗B
j=1 , {x̄

s
j}

µ∗B
j=1 }) (20)

High-I1 =: STACK({{xw
i }

B/2(µ+1)
i=1 , {xs

i}
B/2(µ+1)
i=1 , {x̄w

j }
(µ∗B)/2(µ+1)
j=1 , {x̄s

j}
(µ∗B)/2(µ+1)
j=1 }2(µ+1)) (21)

High-I2 =: STACK({{xw
i }, {xs

i}, {x̄w
j }

µ
j=1, {x̄

s
j}

µ
j=1}

B) (22)

High-I3 (default) =: STACK({{xw
i }, {x̄w

j }
µ
j=1, {x

s
i}, {x̄s

j}
µ
j=1}

B) (23)

(24)

Note that applying the same circular-shift fusion, these different layout have exactly the same number of within-batch
interactions, the high-L-U-interaction design has more labeled-unlabeled interactions.

We can see from Fig D.4 that having more L-U interactions is especially important in the low label regime. However, as
the labeled examples becoming more available (e.g., CIFAR-10 with 4000 labels scenario), the advantage of having L-U
interactions over L-L interactions diminishes, which is intuitive: if we have enough labeled data, we might not need the
unlabeled data.

Low-I High-I1 High-I2 High-I3(Default)
2

3

4

5

6

7

Er
ro

r R
at

e 
(%

)

CIFAR-10, 40 labels

Low-I High-I1 High-I2 High-I3(Default)
2.0

2.5

3.0

3.5

4.0

4.5

5.0

Er
ro

r R
at

e 
(%

)

CIFAR-10, 250 labels

Low-I High-I1 High-I2 High-I3(Default)
2.0

2.5

3.0

3.5

4.0

4.5

5.0

Er
ro

r R
at

e 
(%

)

CIFAR-10, 4000 labels

Figure D.4. Effect of Different Batch Layout. From left to right are CIFAR-10 with 40 labels, 250 labels and 4000 labels.
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D.1.4. WALL TIME COMPARISON

Here we compare the wall time of InterLUDE, FreeMatch (Wang et al., 2023), FlexMatch (Zhang et al., 2021) and
FlatMatch (Huang et al., 2023a) on the TMED2 dataset using the exact same hardware (NVIDIA A100 with 80G Memory).
We can see that InterLUDE has a substantially lower run time cost per iteration. For each of our two key innovations, here is
a brief efficiency analysis: Embedding fusion is a linear transformation of the feature representations in the embedding
space and can be implemented efficiently with 2 lines of code in Pytorch. Delta-consistency loss calculation can be done
using existing logits already computed for the supervised loss term and the instance-wise consistency loss term.
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Figure D.5. Wall Time Comparison

D.2. ViT backbones

D.2.1. ABLATION

The ablation of InterLUDE and InterLUDE+ with ViT backbone are presented in Table D.6. We can observe that the delta
consistency loss and embedding fusion both contribute to the performance improvement of the proposed method.

Table D.6. Ablation study on ViT backbone. Error rates (%) are averaged with three random seeds and reported with a 95% confidence
interval.

Dataset CIFAR10 CIFAR100 STL10
#Label 40 250 400 2500 40 100

InterLUDE 1.78±0.1 1.55±0.1 21.19±0.2 13.39±0.1 3.14±0.2 2.66±0.1
InterLUDE (w/o Embedding Fusion) 2.31±0.9 1.64±0.1 23.70±1.9 13.88±0.3 5.23±3.7 3.23±0.4

InterLUDE (w/o LDC
avg) 2.37±0.9 1.75±0.2 23.20±1.7 14.07±0.6 3.75±0.4 3.36±0.3

InterLUDE+ 1.55±0.1 1.49±0.1 16.32±0.3 12.93±0.2 4.56±0.9 3.23±0.3
InterLUDE+ (w/o Embedding Fusion) 1.78±0.1 1.61±0.1 16.63±1.6 14.00±0.6 4.25±1.0 4.37±0.1

InterLUDE+ (w/o LDC
avg) 1.57±0.1 1.60±0.1 16.33±0.8 13.15±0.1 4.71±1.0 4.55±0.3
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D.2.2. SENSITIVITY ANALYSIS

Due to limited computational resources, we conduct a single experiment for sensitivity analysis on the ViT backbone. The
sensitivity analysis of the hyperparameters of the delta consistency loss λDC and embedding fusion strength α with ViT
backbone on the CIFAR10 dataset are presented in Fig. D.7, and D.8 respectively.
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Figure D.7. Sensitivity of Delta Consistency Loss Coefficient.
Showing ViT performance on CIFAR-10.
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Figure D.8. Sensitivity of Embedding Fusion Strength. Showing
ViT performance on CIFAR-10.
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E. Additional Results on class-dependent delta-consistency loss
In this section, we present the result with the class-dependent formulation of the delta consistency loss on the classic SSL
benchmarks. All the experiment setting here are the same as in the main paper, except the delta consistency loss term is
from Eq. 7 instead of Eq. 6.

Table E.1 show results with CNN backbones. Table E.2 show results with ViT backbones. Overall, the two delta consistency
loss formulation perform similarly, but the class-dependent version is more complex in implementation.

Table E.1. Error rate (%) with CNNs. Following (Zheng et al., 2023), error rate and standard deviation are reported based on three runs.
All experiments follow the same settings. Rows marked * are implemented by us using the author’s code. Results of other methods are
directly copied from SimMatchV2 (Zheng et al., 2023) and the original papers (“–” means the result is not available). The best results are
highlighted in bold and the second-best underlined. We did not run DeepLP on STL-10 due to computation constraints.

Dataset CIFAR10 CIFAR100 STL-10
#Label 40 250 4000 400 2500 10000 250 1000

Fully-Supervised 4.57±0.06 18.96±0.06 –
Supervised 77.18±1.32 56.24±3.41 16.10±0.32 89.60±0.43 58.33±1.41 36.83±0.21 55.07±1.83 35.42±0.48

Manifold MixUp* (Verma et al., 2019) 73.51±1.81 55.44±2.06 17.40 ±1.11 87.98±0.55 59.45±0.85 33.23±0.21 54.99±1.22 29.17±2.00
Pseudo-Labeling (Lee et al., 2013) 75.95±1.86 51.12±2.91 15.32±0.35 88.18±0.89 55.37±0.48 36.58±0.12 51.90±1.87 30.77±0.04
II-Model (Laine and Aila, 2016) 76.35 ± 1.69 48.73±1.07 13.63±0.07 87.67±0.79 56.40±0.69 36.73±0.05 52.20±2.11 31.34±0.64

DeepLP* (Iscen et al., 2019) 72.65 ± 2.04 35.80±1.43 10.58±0.29 86.11±0.61 62.87±0.42 43.03 ±1.36 – –
Mean Teacher (Tarvainen and Valpola, 2017) 72.42±2.10 37.56±4.90 8.29±0.10 79.96±0.53 44.37±0.60 31.39±0.11 49.30±2.09 27.92±1.65

VAT (Miyato et al., 2018) 78.58±2.78 28.87±3.62 10.90±0.16 83.60±4.21 46.20±0.80 32.14±0.31 57.78±1.47 40.98±0.96
MixMatch (Berthelot et al., 2019b) 35.18±3.87 13.00±0.80 6.55±0.05 64.91±3.34 39.29±0.13 27.74±0.27 32.05±1.16 20.17±0.67

ReMixMatch (Berthelot et al., 2019a) 8.13±0.58 6.34±0.22 4.65±0.09 41.60±1.48 25.72±0.07 20.04±0.13 11.14±0.52 6.44±0.15
FeatMatch (Kuo et al., 2020) – 7.50±0.64 4.91±0.18 – – – – –

UDA (Xie et al., 2020) 10.01±3.34 5.23±0.08 4.36±0.09 45.48±0.37 27.51±0.28 23.12±0.45 10.11±1.15 6.23±0.28
FixMatch (Sohn et al., 2020) 12.66±4.49 4.95±0.10 4.26±0.01 45.38±2.07 27.71±0.42 22.06±0.10 8.64±0.84 5.82±0.06

Dash (Xu et al., 2021b) 9.29±3.28 5.16±0.28 4.36±0.10 47.49±1.05 27.47±0.38 21.89±0.16 10.50±1.37 6.30±0.49
MPL (Pham et al., 2021) 6.62±0.91 5.76±0.24 4.55±0.04 46.26±1.84 27.71±0.19 21.74±0.09 – 6.66±0.00
CoMatch (Li et al., 2021) 6.51±1.18 5.35±0.14 4.27±0.12 53.41±2.36 29.78±0.11 22.11±0.22 7.63±0.94 5.71±0.08

FlexMatch (Zhang et al., 2021) 5.29±0.29 4.97±0.07 4.24±0.06 40.73±1.44 26.17±0.18 21.75±0.15 9.85±1.35 6.08±0.34
AdaMatch (Berthelot et al., 2021) 5.09±0.21 5.13±0.05 4.36±0.05 37.08±1.35 26.66±0.33 21.99±0.15 8.59±0.43 6.01±0.02

SimMatch (Zheng et al., 2022) 5.38±0.01 5.36±0.08 4.41±0.07 39.32±0.72 26.21±0.37 21.50±0.11 8.27±0.40 5.74±0.31
FreeMatch (Wang et al., 2023) 4.90±0.04 4.88±0.18 4.10±0.02 37.98±0.42 26.47±0.20 21.68±0.03 – 5.63±0.15
SoftMatch (Chen et al., 2023) 4.91±0.12 4.82±0.09 4.04±0.02 37.10±0.77 26.66±0.25 22.03±0.03 – 5.73±0.24

SimMatchV2 (Zheng et al., 2023) 4.90±0.16 5.04±0.09 4.33±0.16 36.68±0.86 26.66±0.38 21.37±0.20 7.54±0.81 5.65±0.26
FixMatch (w/SAA) (Gui et al., 2023) 5.24±0.99 4.79±0.07 3.91±0.07 45.71±0.73 26.82±0.21 21.29±0.20 – –

InstanT (Li et al., 2023) 5.17±0.10 5.28±0.02 4.43±0.01 46.06±1.80 32.91±0.00 27.70±0.40 – –
FlatMatch (Huang et al., 2023a) 5.58±2.36 4.22±1.14 3.61±0.49 38.76±1.62 25.38±0.85 19.01±0.43 – 4.82±1.21

FlatMatch-e (Huang et al., 2023a) 5.63±1.87 4.53±1.85 3.57±0.50 38.98±1.53 25.62±0.88 19.78±0.89 – 5.03±1.06
InterLUDE (avg) 4.51±0.01 4.63±0.11 3.96±0.07 35.32±1.06 25.20±0.22 20.77±0.19 7.05±0.12 5.01±0.04

InterLUDE+ (avg) 4.46±0.11 4.46±0.09 3.88±0.05 36.99±0.62 25.27±0.17 20.49 ±0.15 6.99 ±0.42 4.92±0.05
InterLUDE (cls) 4.68±0.18 4.57±0.09 3.82±0.02 35.61±1.63 25.50±0.18 20.63±0.09 7.14±0.36 5.08±0.06

InterLUDE+ (cls) 4.58±0.23 4.45±0.09 3.76±0.07 35.13±0.48 25.43±0.09 20.30 ±0.19 6.98 ±0.51 4.98±0.05
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Table E.2. Error rate (%) with ViT backbone. The error rate and 95% confidence interval are reported based on three random seeds (Li
et al., 2023). Rows marked * are implemented by us using the author’s code. Other results directly copied from Li et al. (2023). The best
results are highlighted in bold and the second-best underlined.

Dataset CIFAR10 CIFAR100 STL10
#Label 10 40 250 200 400 2500 10 40 100

PL (Lee et al., 2013) 62.35±3.1 11.79±5.3 4.58±0.4 36.66±2.0 26.87±0.9 15.72±0.1 69.26±6.7 42.84±4.2 26.56±1.5
MT (Tarvainen and Valpola, 2017) 35.43±4.9 12.85±2.5 4.75±0.5 40.50± 0.8 30.58±0.9 17.09±0.4 57.28±7.8 33.20±3.4 22.29±1.8
MixMatch (Berthelot et al., 2019b) 34.96±2.6 2.84±0.9 2.05±0.1 39.64± 1.3 27.74±0.1 16.16±0.3 89.32±1.1 72.42±16.2 38.15±11.3

VAT (Miyato et al., 2018) 39.93±6.3 6.67±6.6 2.33±0.2 34.11±1.8 24.67±0.4 16.58±0.4 79.43±4.4 34.82±7.0 19.06±1.0
UDA (Xie et al., 2020) 21.24±3.6 2.08±0.2 2.04±0.1 34.51±1.6 24.15±0.6 16.19±0.2 51.63±4.3 20.33±4.9 10.60±1.0

FixMatch (Sohn et al., 2020) 33.50±15.1 2.56±0.9 2.05±0.1 34.71±1.4 24.48±0.1 16.02±0.1 59.87±3.4 22.28±4.4 11.59±1.6
FlexMatch (Zhang et al., 2021) 29.46±9.6 2.22±0.3 2.12±0.2 36.24±0.9 25.99±0.5 16.28±0.2 39.37±12.9 21.83±3.7 10.46±1.3

Dash (Xu et al., 2021b) 25.65±4.5 3.37±2.0 2.10±0.3 36.67±0.4 25.46±0.2 15.99±0.2 58.94±4.4 21.97±3.9 10.44±2.0
AdaMatch (Berthelot et al., 2021) 14.85±20.4 2.06±0.1 2.08±0.1 26.39±0.1 21.41±0.4 15.51±0.1 31.83±7.7 16.50±4.2 10.75±1.5
FlatMatch* (Huang et al., 2023a) 11.95±7.3 3.17±0.3 2.33±0.1 26.56±1.0 21.80±1.0 13.83±0.3 23.90±8.9 6.25±0.3 4.74±0.2

InstanT (Li et al., 2023) 12.68±10.2 2.07±0.1 1.92±0.1 25.83±0.3 21.20±0.4 15.72±0.5 30.61±7.4 14.91±2.8 10.65±1.9
InterLUDE (avg) 31.90±4.1 1.78±0.1 1.55±0.1 35.66±1.9 21.19±0.2 13.39±0.1 27.49±6.6 3.14±0.2 2.66±0.1

InterLUDE+ (avg) 12.29±7.3 1.55±0.1 1.49±0.1 23.60±1.2 16.32±0.3 12.93±0.2 25.83±9.9 4.56±0.9 3.23±0.3
InterLUDE (cls) 31.66±10.7 1.67±0.1 1.48±0.1 34.96±1.6 21.38±0.2 13.21±0.3 40.83±22.5 3.80±0.9 3.78±0.8

InterLUDE+ (cls) 17.31±10.2 1.45±0.1 1.31±0.1 20.45±1.7 15.78±0.6 12.36±0.2 14.4±1.8 3.56±0.5 3.48±0.3

F. Additional Discussion
F.1. Additional Discussion on Heart2Heart Benchmark Results

While our InterLUDE and InterLUDE+ are not specifically designed for open-set SSL, the performance on the Heart2Heart
Benchmark is supprisingly strong. On the other hand, FlatMatch that is competitive on the classic benchmarks substantially
underperform in this open-set medical imaging benchmark, we hypothesize that this due to FlatMatch’s cross-sharpness
objective’s goal of pulling model toward direction that is “beneficial to generalization on unlabeled data”. The unlabeled
set of TMED-2 is uncurated, containing both out-of-distribution classes as well as feature distribution shift. More study is
needed to understands the challenges in this uncurated unlabeled set and the limitation of current SSL algorithms under this
challenging real-world scenario.

22


