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Abstract

Stochastic gradients have been widely integrated
into Langevin-based methods to improve their
scalability and efficiency in solving large-scale
sampling problems. However, the proximal sam-
pler, which exhibits much faster convergence
than Langevin-based algorithms in the determin-
istic setting (Lee et al., 2021), has yet to be
explored in its stochastic variants. In this pa-
per, we study the Stochastic Proximal Samplers
(SPS) for sampling from non-log-concave dis-
tributions. We first establish a general frame-
work for implementing stochastic proximal sam-
plers and establish the convergence theory ac-
cordingly. We show that the convergence to the
target distribution can be guaranteed as long as
the second moment of the algorithm trajectory
is bounded and restricted Gaussian oracles can
be well approximated. We then provide two im-
plementable variants based on Stochastic gradi-
ent Langevin dynamics (SGLD) and Metropolis-
adjusted Langevin algorithm (MALA), giving rise
to SPS-SGLD and SPS-MALA. We further show
that SPS-SGLD and SPS-MALA can achieve ϵ-
sampling error in total variation (TV) distance
within Õ(dϵ−2) and Õ(d1/2ϵ−2) gradient com-
plexities, which outperform the best-known result
by at least an Õ(d1/3) factor. This enhancement
in performance is corroborated by our empirical
studies on synthetic data with various dimensions,
demonstrating the efficiency of our proposed al-
gorithm.
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1. Introduction
Sampling from a target distribution p∗ ∝ exp(−f) is a
fundamental problem in many research fields such as statis-
tics (Neal, 1993), scientific computing (Robert et al., 1999),
and machine learning (Bishop & Nasrabadi, 2006). Here,
f : Rd → R is referred to as the negative log-density func-
tion or energy function of p∗. To solve this problem, the
Langevin-based sampling algorithms, based on discretizing
the continuous-time Langevin dynamics, are the most pop-
ular choices, including Unadjusted Langevin Algorithm
(ULA) (Neal, 1992; Roberts & Tweedie, 1996), Under-
damped Langevin Dynamic (ULD) (Cheng et al., 2018; Ma
et al., 2021; Mou et al., 2021). These algorithms have been
extensively investigated both theoretically and empirically.
Notably, Langevin-based algorithms are usually biased, i.e.,
the stationary distribution of ULA and ULD (which are also
Markov processes), will be different from the target distri-
bution p∗, and the error is governed by the discretization
step size. Thus, Metropolis-adjusted Langevin Algorithm
(MALA) (Roberts & Stramer, 2002; Xifara et al., 2014) was
designed to resolve this issue.

To achieve the unbiasedness for sampling, Proximal sampler,
similar to proximal point methods in convex optimization,
has been recently developed in Lee et al. (2021). In particu-
lar, the core idea of the proximal sampler is to first construct
a joint distribution

p∗(x,y) ∝ exp
(
− f(x)− ∥x− y∥2

/(2η)
)

(1)

whose x-marginal distribution is the same as p∗. Then, the
iterations follow from the two stages:

• From a given x, sample y|x ∼ p∗(y|x) = N (x, I).
• From a given y, sample x|y ∼ p∗(x|y) satisfying

p∗(x|y) ∝ exp
(
− f(x)− ∥x− y∥2

/(2η)
)
.

It can be noted that the second stage can be easily imple-
mented even in the non-log-concave setting (i.e., f(x) is
nonconvex), since the target distribution, i.e., p∗(x|y), is
strongly log-concave when η is properly small. Under this
condition, the proximal sampler achieves a linear conver-
gence rate for different criteria (Chen et al., 2022) when the
proximal oracle can be accessed.

Despite the impressive performance of proximal samplers
in the deterministic setting, where full access to the function
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f(x) and its gradient ∇f(x) is available, their behavior
remains largely unexplored in the stochastic setting. In this
context, we can only access a stochastic version of f and
∇f(x) at each step. This is particularly relevant in scenarios
where the target distribution p∗ is formulated as the posterior
of a stochastic process based on multiple observations or
training data points. In such cases, the negative log-density
function takes the finite-sum form: f(x) = 1

n

∑n
i=1 fi(x),

where n denotes the number of observations and fi(x) de-
notes the corresponding negative log-density function1. To
reduce the high per-step computational complexity for cal-
culating the full gradient, the mini-batch stochastic gradient
has become a standard choice. In the realm of Langevin-
based algorithms, extensive research has been conducted
on their stochastic counterparts. Various stochastic gra-
dient Langevin algorithms, including stochastic gradient
Langevin dynamics (SGLD) (Welling & Teh, 2011) and
stochastic gradient ULD (SG-ULD) (Cheng et al., 2018),
have been developed. Moreover, the convergence guaran-
tees of these algorithms have been well-established for both
log-concave and non-log-concave target distributions.

However, to the best of our knowledge, no prior attempts
have been made to study the stochastic gradient proximal
sampler, encompassing both algorithm design and theoreti-
cal analysis. Consequently, there exists a considerable gap
in understanding how the proximal sampler can be effec-
tively adapted to the stochastic setting and what convergence
rates can be achieved. This unexplored research question
impedes the broader application of the proximal sampler in
various tasks, hindering its full potential utilization.

In this paper, we aim to systematically answer this ques-
tion by providing a comprehensive study of the stochastic
gradient proximal sampler. First, we provide a framework
for implementing stochastic proximal samplers, the idea
is to replace the original joint target distributions with a
randomized one:

p∗(x,y|b) ∝ exp
(
−fb(x)− ∥x− y∥2

/(2η)
)
,

where b is the stochastic mini-batch that is randomly sam-
pled in different iterations. The two-stage alternating sam-
pling process for p∗(y|x,b) (a Gaussian-type distribution)
and x from p∗(x|y,b) (sampling a log-concave distribu-
tion) will be performed accordingly. By applying different
numerical samplers for p∗(x|y,b), we are able to design
various stochastic proximal samplers. Then, we develop
the theory to characterize the convergence of the stochastic
proximal samplers. The core of our analysis is to sharply
quantify the error propagation across multiple iterations. In
particular, the sampling error within one step stems from (1)
inexact target p∗(x|y,b) caused by stochastic mini-batch;

1We consider the average for consistency with Raginsky et al.
(2017); Zou et al. (2021).

(2) inexact sampling for p∗(x|y,b) caused by numerical
samplers. Then, by designing proper initialization when
sampling from p∗(x|y,b), the error propagation can be
controlled by the second moment of particles’ underlying
distributions rather than requiring the stationary points of
f as previous analysis (Altschuler & Chewi, 2023). When
p∗ only satisfies LSI, its negative log-density f will even
be nonconvex, which means finding an ϵ-approximate sta-
tionary points requires O(ϵ−4) oracles with stochastic gra-
dient descent, which is unacceptable in sampling tasks. Be-
sides, by controlling the second moment bound, we provide
the gradient complexity expectation for the convergence,
which is stronger than a high probability convergence shown
in Altschuler & Chewi (2023). Based on our theory, we
can develop the convergence guarantees for a variety of
stochastic proximal samplers, when the target distribution is
log-smooth and satisfies Log-Sobolev Inequality (LSI). We
summarize the main contributions of this paper as follows:

• We propose a framework for implementing stochastic
proximal samplers. We then provide a general theory to
characterize the convergence of stochastic proximal sam-
plers for a general class of target distributions (that can be
non-log-concave). We show that with feasible choices of
the mini-batch size and learning rate, the stochastic proxi-
mal samplers provably converge to the target distributions
with a small total variation (TV) distance. Notably, com-
pared with Altschuler & Chewi (2023), our framework
is more practical since it does not require the stationary
point information of f and replaces the high probability
convergence results with expectation ones.

• Based on the developed framework, we consider two
implementations of stochastic proximal samplers using
SGLD and warm-started MALA for sampling p∗(x|y,b),
giving rise to SPS-SGLD and SPS-MALA algorithms.
We prove that in order to achieve ϵ sampling error in
TV distance, the gradient complexities of SPS-SGLD
and SPS-MALA are Õ(dϵ−2) and Õ(d1/2ϵ−2) respec-
tively. Compared with the state-of-the-art Õ(d4/3ϵ−2)
results achieved by CC-SGLD (Das et al., 2023), the de-
veloped stochastic proximal samplers are faster by at least
an Õ(d1/3) factor.

• We conduct experiments to compare SGLD with SPS-
SGLD, where the latter one is implemented by using
SGLD to sample p∗(x|y, b) in the stochastic proximal
sampler framework. Empirical results show that SPS-
SGLD consistently achieves better sampling performance
than vanilla SGLD for various problem dimensions.

2. Related Work
This section primarily introduces related work by dividing
current gradient-based MCMCs into two categories. The
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first one is based on discretizing the continuous Langevin
dynamics. For the second type, including proximal samplers,
the SDE of particles varies a lot. Beyond the sampling
algorithms, we will also introduce the usage of the proximal
operator in optimization and how it relates to the sampling.

Stochastic Gradient Langevin-based Algorithms. To im-
plement Langevin-based MCMCs with stochastic gradient
oracles, the first work is stochastic gradient Langevin dy-
namic (SGLD) Welling & Teh (2011). Dalalyan & Karag-
ulyan (2019) further establishes the convergence guarantee
of SGLD in Wasserstein-2 distance for strongly log-concave
targets. Besides, Durmus et al. (2019) analyzes SGLD from
a composite optimization perspective and obtains the con-
vergence of the KL divergence. To adapt SGLD to a broader
class of target distributions beyond log-concavity, Ragin-
sky et al. (2017); Xu et al. (2018) extend the theoretical
analysis of SGLD to distributions satisfying dissipative con-
ditions and proves the convergence when using large mini-
batch size. This result has been further improved by Zou
et al. (2021), which establishes the convergence guarantee
of SGLD for sampling non-log-concave distributions for
arbitrary mini-batch size. More recently, Das et al. (2023)
develops non-asymptotic Center Limit Theorems to quan-
tify the approximate Gaussianity of the noise introduced
by the random batch-based stochastic approximations used
in SGLD and its variants, which leads to the best known
convergence rate, i.e., Õ(d1.5ϵ−2) and Õ(d4/3ϵ−2), for dis-
tributions satisfying isoperimetric conditions.

Non-Langevin-based Algorithms. There are a number of
sampling algorithms are designed based on other Markov
processes beyond Langevin. To name a few, Hamiltonian
Markov Carlo (HMC) (Neal, 2010) is designed by simu-
lating the particles’ trajectory in the Hamiltonian’s system;
diffusion-based MCMCs (Huang et al., 2023; 2024) dis-
cretize the reverse process of an Ornstein–Uhlenbeck pro-
cess that initializes at p∗; proximal samplers alternatively
sample the marginal distributions of a joint distribution.
Dong et al. (2022) focus on ODE-based sampling.

In theory, the convergence rate of HMC has been established
in Bou-Rabee et al. (2020); Mangoubi & Smith (2017);
Mangoubi & Vishnoi (2018); Lee et al. (2018); Chen &
Vempala (2022); Durmus et al. (2017); Chen et al. (2020);
which achieves smaller sampling error than ULA for sam-
pling both strongly log-concave and non-log-concave tar-
gets. Chen et al. (2014); Zou & Gu (2021) further develops
a class of stochastic gradient HMC methods and proves the
convergence rates in the strongly log-concave setting. The
convergence rates of diffusion-based MCMCs are studied
in (Huang et al., 2023; 2024), which are demonstrated to be
faster than ULA and can be applied to more general settings
(e.g., beyond isoperimetric). For the proximal sampler, Lee
et al. (2021); Chen et al. (2022) provide its linear conver-

gence rate for different criteria under strongly log-concave
or isoperimetric conditions when the exact proximal oracle
exists. Liang & Chen (2022); Altschuler & Chewi (2023);
Fan et al. (2023) further extend the convergence results to
some inexact proximal oracles.

Notably, existing theory for non- Langevin-based algorithms
are mostly developed in the deterministic setting, while the
algorithmic implementation and theoretical analysis in the
stochastic setting remain largely understudied, especially
when the target distribution is non-log-concave. Our paper
provides the first attempts to study the proximal sampler’s
theoretical and empirical behaviors with only stochastic
gradient oracles, which paves the way for exploring other
non-Langevin-based algorithms in the stochastic setting.

Applications of the Proximal Operator. Before apply-
ing the proximal operator to the sampling algorithms,
it is introduced in optimization by the proximal point
method (Lemarechal, 2009; 1978; Liang & Monteiro, 2021;
2023; Mifflin, 1982; Rockafellar, 1976; Wolfe, 2009). The
proximal point method for minimizing the objective func-
tion f is the iteration of the proximal mapping

proxηf (y) := arg min
x∈Rd

{
f(x) + ∥x− y∥2/(2η)

}
with proper choice of η. Using the correspondence f and
exp(−f) between optimization and sampling, the proximal
sampler can be viewed as a sampling counterpart of the
proximal point method in optimization (Rockafellar, 1976).

3. Proposed Framework
This section will first introduce the notations commonly
used in the following sections. Then, we will specify the
assumptions that the target distribution p∗ is required in our
algorithms and analysis. After that, the proposed framework
and some fundamental properties, such as the error propa-
gation control when sampling from an inexact conditional
density p′

∗(x|y), will be shown.

3.1. Notations and Assumptions

We suppose the target distribution, i.e., p∗ ∝ exp(−f) with
a finite sum negative log-density, which means

f(x) := 1
n

n∑
i=1

fi(x) where ∀i, fi : Rd → R. (2)

We use letters, e.g., x and x, to denote vectors and random
vectors in Rd except for letters b and b, which denote sets
and randomized sets. The function fb denotes the energy
function deduced by mini-batch b, i.e.,

fb(x) := 1
|b|
∑
i∈b

fi(x) where b ⊆ {1, 2, . . . n}, (3)
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Results Algorithm Assumptions Metric Complexity

Raginsky et al. (2017) SGLD Dissipative, Component Smooth W2 Õ(poly(d)ϵ−4)

Zou et al. (2021) SGLD Dissipative, Warm Start, Component Smooth TV Õ(d4ϵ−2)

Das et al. (2023) AB-SGLD LSI, Finite-Sum, Smooth TV Õ(d3/2ϵ−2)

Das et al. (2023) CC-SGLD LSI, 6th moment, Smooth TV Õ(d4/3ϵ−2)

Theorem 4.1 SPS-SGLD LSI, Finite-Sum, Component Smooth TV Õ(dϵ−2)

Theorem 4.2 SPS-MALA LSI, Finite-Sum, Component Smooth TV Õ(d1/2ϵ−2)

Table 1. Comparison with prior works for SGLD. d and ϵ mean the dimension and error tolerance. Note that we do not list the assumptions
about the stochastic gradient since they vary greatly in different references, which will be discussed in our detailed theorems. The results
of our theorem based on [A3] and σ2 = Θ(1). Compared with the state-of-the-art result, the sampling methods with the stochastic
proximal sampler have a better convergence rate with an Õ(d1/3) factor at least.

and ∇fb is the corresponding mini-batch gradient. The
notation | · | denotes the L1 norm or the number of elements
when the inner notation is a vector or a set, respectively.
The Euclidean norm (vector) and its induced norm (matrix)
are denoted by ∥ · ∥. For distributions p and q, we use
TV (p, q) and KL

(
p
∥∥q) to denote their TV distance and

KL divergence, respectively.

Then, we show the assumptions required for p∗:

[A1] (Component Smooth) For any i ∈ {1, 2, . . . , n}, the
gradient of fi is L-smooth, which means

∥∇fi(x)−∇fi(y)∥ ≤ L ∥x− y∥ .

[A2] (Log-Sobolev Inequality) The target distribution p∗
satisfies the following inequality

Ep∗

[
g2 log g2]− Ep∗ [g2] logEp∗ [g2] ≤ 2

α∗
Ep∗ ∥∇g∥

2

with a constant α∗ for all smooth function g : Rd → R
satisfying Ep∗ [g2] <∞.

[A3] (Bounded Variance) For any x ∈ Rd, the variance of
stochastic gradients is bounded, i.e.,

1
n

n∑
i=1
∥∇fi(x)−∇f(x)∥2 ≤ σ2.

The component smoothness of the finite sum loss, i.e., [A1],
is also required in Raginsky et al. (2017); Zou et al. (2021).
[A2] is a kind of isoperimetric condition (Vempala &
Wibisono, 2019) which is strictly weaker than the strongly
log-concave assumption and even the dissipative assump-
tion (Raginsky et al., 2017). Besides, it implies the target
distribution p∗ to have a finite second moment M satisfy-
ing M = O(d), which is demonstrated in Appendix A.
[A3] recovers the standard uniformly bounded variance as-
sumption, i.e., σ = Θ(1), following from Nemirovski et al.
(2009); Ghadimi & Lan (2012; 2013), and sampling refer-
ences sometimes allow σ2 = Θ(d), e.g., Raginsky et al.
(2017); Dalalyan & Karagulyan (2019); Das et al. (2023).
Both of these cases will be considered in our analysis.

Algorithm 1 Stochastic Proximal Sampler
1: Input: The negative log density f of the target distribu-

tion, the initial particle x0 drawn from p0;
2: for k = 0 to K − 1 do
3: Sample x̂k+1/2 from p̂k+1/2|k(·|xk);
4: Draw the mini-batch bk from {1, 2, . . . , n};
5: Sample x̂k+1 from p̂k+1|k+1/2,b(·|x̂k+1/2,bk);
6: end for
7: Return: x̂K .

3.2. Stochastic Proximal Sampler

The stochastic proximal sampler (SPS) framework is
shown in Alg. 1. With the common notations intro-
duced in Section 3.1, we will explain p̂k+1/2|k(·|xk) and
p̂k+1|k+1/2,b(·|xk+1/2,bk), that are similar to standard
proximal samplers. Considering a joint target distribution

p∗(x,y) ∝ exp
(
− fb(x)− ∥x− y∥2

2η

)
(4)

that is defined by the randomized mini-batch b and the
outer loop step size η, then Alg. 1 samples from p′

∗(y|x)
and p′

∗(x|y) alternatively. Specifically, at iteration k, sup-
pose x = xk, y = xk+1/2 and η = ηk, the conditional
probability density p′

∗(xk+1/2|xk) is equivalent to

pk+ 1
2 |k(x′|x) ∝ exp

(
−∥x′ − x∥2

2ηk

)
, (5)

which can be exactly implemented by Line 3 of Alg. 1
due to its Gaussianity. Besides, suppose x = xk+1 and
y = xk+1/2, the transition kernel p′

∗(xk+1|xk+1/2) can be
reformulated as

pk+1|k+ 1
2 ,b(x′|x, b) ∝ exp

(
−fb(x′) − ∥x′ − x∥2

2ηk

)
, (6)

which is desired to be implemented with Line 5 of Alg. 1.
Rather than exactly sampling from a target distribution,
e.g., pk+1|k+ 1

2 ,b
(x′|x, b), most samplers can only gener-

ate approximate samples that are close to the target ones
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in real practice. Therefore, we consider a Markov pro-
cess {x̂k} whose underlying distribution is defined as p̂k.
Given the same initialization p̂0 = p0, we denote the
two empirical transition kernels as p̂k+ 1

2 |k := pk+ 1
2 |k and

p̂k+1|k+ 1
2 ,b

(·|x, b) that satisfies

KL
(
p̂k+1|k+ 1

2 ,b
(·|x, b)

∥∥pk+1|k+ 1
2 ,b

(·|x, b)
)
≤ δk. (7)

Here we assume that the conditional distribution of x̂k+1
given x̂k+1/2 is close to the ideal conditional distribu-
tion pk+1|k+1/2,b(x′|x, b) with up to δk approximation
error in KL divergence. In fact, as the distribution
pk+1|k+1/2,b(x′|x, b) is strongly log-concave when ηk is
properly chosen, the condition Eq. 7 can be achieved by
applying standard numerical samplers such as SGLD and
MALA with provable guarantees (detailed implementations
will be discussed in the next section).

Then, the following theorem characterizes the error propa-
gation across multiple steps and provides general results on
the sampling error achieved by Alg. 1.

Theorem 3.1. Suppose Assumption [A1]-[A3] hold, and
Alg. 1 satisfies:

• We have ηk ≤ 1
2L for all k ∈ {0, 1, . . . ,K − 1}.

• The initial particle x̂0 is drawn from the standard Gaus-
sian distribution on Rd.

• Line 5 is implemented by some specific inner sampler,
achieving

KL
(
p̂k+1|k+ 1

2 ,b
(·|x, b)

∥∥pk+1|k+ 1
2 ,b

(·|x, b)
)
≤ δk

for all k ∈ {0, 1, . . . ,K − 1}.

Then, we have

TV (p̂K , p∗) ≤

√√√√1
2

K−1∑
i=0

δi + σ

√√√√K−1∑
i=0

ηi

2|bi|

+
√

(1 + L2)d
4α∗

·
K−1∏
i=0

(1 + α∗ηi)−1 .

(8)

Theorem 3.1 provides the general upper bound of the TV
distance between the underlying distribution of particles
returned by Alg. 1 and the target distribution p∗. The first
term in Eq 8 represents the accumulated error of the inexact
sampling from pk+1|k+ 1

2 ,b
(·|x, b), i.e., Line 5 of Alg 1.

The second term represents the approximation error using
stochastic gradients, and the last term represents the error
from deterministic proximal samplers. To achieve an ϵ-TV
distance to the target distribution p∗, one may have to choose
a small error tolerance of inexact sampling, i.e., δk = ϵ2,

to control the first term of Eq 8. Besides, it still requires a
large enough mini-batch size, i.e., |bi| = Θ(1/(σϵ)2) and
the mixing time, i.e.,

∑K−1
i=0 ηi = Θ(log(1/ϵ)), to make the

last two terms of Eq 8 small, respectively.

Notably, the implementation of the proximal sampler
in Altschuler & Chewi (2023) also allows inexact sam-
pling from pk+1|k+ 1

2 ,b
(·|x, b) in the second stage update,

and requires the underlying distribution of returned parti-
cles, i.e., p̂k+1|k+ 1

2 ,b
(·|x, b) to satisfy Eq. 7 with a small

δk. However, they only consider the deterministic setting,
i.e., b = {1, 2, . . . , n}, and requires initializing Line 5 of
Alg. 1 with certain stationary points x∗ of f . Hence, directly
applying their analysis may require finding stationary points
in each iteration, as the function fb changes, which may
take substantially more time. This is because, when p∗ only
satisfies LSI, the function fb may not be convex. Finding
an ϵ-approximate stationary point of a general non-convex
function requires O(ϵ−4) (Nesterov, 2013) for stochastic
gradient descent, which is unacceptable in sampling al-
gorithms. Therefore, the implementation of Altschuler &
Chewi (2023) still remains a concern without exact infor-
mation, or even only with inexact information, about the
stationary points of f .

In our analysis, combining proper Langevin-based MCMC
with a x̂k+1/2 mean Gaussian-type initialization, the gra-
dient complexity for achieving Eq. 7 will only depend
on log ∥x̂k+1/2∥2 rather than stationary points x∗, which
will be explicitly shown in the next section. Considering
the expected gradient complexity, it requires to character-
ize Ep̂k+1/2 [log ∥x̂k+1/2∥2], which can be readily upper
bounded by log[Ep̂k+1/2 [∥x̂k+1/2∥2]]. This implies that we
further need to control the second moment of the particles.
This is conducted in the following lemma.

Lemma 3.2. Suppose Assumption [A1]-[A3] hold, and the
second moment of the underlying distribution of x̂k is Mk,
then we have

Mk+1 ≤ 24Mk + 4ηkδk + 24η2
kσ

2/|b|+ 28M + 24ηkd.

This bound may seem to be large as Mk exhibit an exponen-
tial increasing rate. However, we remark that only log(Mk)
will appear in our calculation of the gradient complexity
rather than Mk itself. Then, let K be the number of total
steps, which can be chose to be Õ(L/α∗), then MK will
be controlled by exp(K) and so that log(Mk) can be con-
trolled by K = Õ(L/α∗), which will not heavily affect the
total gradient complexity.

4. Implementations of SPS
This section mainly focuses on the detailed implementation
of the SPS. Specifically, since the target p̂k+1/2|k of Line
3 of Alg. 1 is a Gaussian-type distribution shown as Eq. 5,
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Algorithm 2 Inner Stochastic Gradient Langevin Dynamics:
InnerSGLD(x0, b, η, δ)

1: Input: The output particle x0 of Alg. 1 Line 3, the
selected mini-batch b, the step size of outer loop η, the
required accuracy of the inner loop δ;

2: Initialized the returned particle z = 0;
3: Draw the initial particle z0 from N (x0, η · I)
4: for s = 0 to S − 1 do
5: Draw the mini-batch bs from b;
6: Update the particle

z′
s ← zs +

√
2τs ·

(
1− τs

4η

)−1
ξ

where ξ ∼ N (0, I);
7: Update the particle

zs+1 ← z′
s − τs ·

(
∇fbs (z′

s) + η−1 · (z′
s − x0)

)
;

8: if s > S′ then
9: Update the returned particle:

z← z + z′
s/(S − S′ + 1);

10: end if
11: end for
12: Return: z.

we can obtain the sample exactly. Then, the key step is
to numerically sample from the distribution pk+1|k+1/2,b
to ensure that the distribution of the approximate samples,
i.e., p̂k+1|k+1/2,b satisfies Eq. 7. In particular, we will im-
plement this step, i.e., Line 5 of Alg. 1 using two inner
samplers: stochastic gradient Langevin dynamics (SGLD)
and warm-started Metropolis-adjusted Langevin Algorithm
(MALA), which give rise to two stochastic proximal sam-
pling algorithms. In what follows, we will introduce the im-
plementation details of these two algorithms and prove their
gradient complexities, i.e., the desired number of stochastic
gradient calculations to guarantee ϵ sampling error.

4.1. SGLD Inner Sampler

We consider implementing Line 5 of Alg. 1 with SGLD
inner sampler shown in Alg. 2, and name it SPS-SGLD.
We point out that the particle update of Alg. 2 is slightly
different from the standard SGLD update. In particular, our
update is performed with two steps and returns a trajectory
average, computed using the last S − S′ iterations, rather
than a single particle. The first step of the update, i.e., Line
6 of Alg. 2 performs the diffusion via the Gaussian process,
and the second step, i.e., Line 7 of Alg. 2 updates the particle
via drift term∇ log p̂k+1|k+1/2,b. With this implementation,
we show the gradient complexity for approaching the target

p∗ in the following theorem.
Theorem 4.1. Suppose [A1]-[A3] hold. With proper param-
eter settings at the following levels

ηk = Θ(L−1), K = Θ̃(κ), δk = Θ̃(κ−1ϵ2),
and bo = min

{
Θ̃(α−1

∗ σ2ϵ−2), n
}
,

where κ = L/α∗ for Alg. 1, if we choose Alg. 2 as the inner
sampler shown in Line 5 Alg. 1, set

τ = min
{

Θ̃(κ−1ϵ2(d + σ2)−1), 1
36

}
,

τ ′ = min
{

Θ̃(L−1τ), 1
36

}
,

S′ = Θ̃(L−1τ−1), τs = τ when s ∈ [0, S′],
S = Θ̃(S′ + (τ ′)−1), τs = τ ′ when s ∈ [S′ + 1, S − 1],

and inner minibatch sizes satisfy |bs| = 1, for all s ∈
{0, 1, . . . S − 1}, the distribution of returned particles p̂K
in Alg. 1 satisfies TV (p̂K , p∗) < 3ϵ. In this condition, the
expected gradient complexity will be Θ̃(κ3(d+ σ2)ϵ−2).

Due to the space limitation, we only show an informal result
in this section, and the formal version will be deferred to
Theorem C.4 in Appendix C.1. Theorem 4.1 provides an
Õ(dϵ2) gradient complexity regardless of σ2 = Θ(d) or
σ2 = Θ(1). When σ2 = Θ(d), the state-of-the-art results
are Õ(d3/2ϵ−2) and Õ(d4/3ϵ−2) under stronger variance
assumptions (Das et al., 2023). Compared with those results
provided in Das et al. (2023), our SPS-SGLD is faster by
at least an Õ(d1/3) factor with strictly weaker assumptions.
When σ2 = Θ(1), the gradient complexity provided in Das
et al. (2023) will become Õ(dϵ2) which is the same as our
results.

Notably, in the proof of Theorem C.4, we demonstrate
that, with the Gaussian type initialization shown in Line
3 of Alg. 2, the relative Fisher information gap between
the underlying distribution of z0 and the target distribu-
tion p̂k+1|k+1/2,b can be upper bounded with a factor
log(∥x0∥2+∥∇fb(0)∥2) which is independent of stationary
points of f and can be controlled by second moment with
Lemma 3.2 and variance of stochastic gradients from an
expectation perspective. This means the SPS-SGLD can be
easily implemented without initialization issues in previous
work, e.g., Altschuler & Chewi (2023).

4.2. Warm-started MALA Inner Sampler

We consider implementing Line 5 of Alg. 1 with warm-
started MALA inner sampler shown in Alg. 3, and name it
SPS-MALA where the functions g(z) and ψ(z′; z, τ) are
defined as follows:

g(z) := − log pk+1|k+ 1
2 ,b(z|x0, b) = fb(z) + ∥z − x0∥2

2η
,

φ(z′; z, τ) := ∥z′ − (z − τ∇g(z))∥2

4τ
.
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Algorithm 3 Inner Metropolis-adjusted Langevin algorithm:
InnerMALA(x0, b, η, δ)

1: Input: The output particle x0 of Alg. 1 Line 3, the
selected mini-batch b, the step size of outer loop η, the
required accuracy of the inner loop δ;

2: Draw the initial sampler z0 from InnerULD(x0, b, η)
by Alg. 4

3: for s = 0 to S − 1 do
4: Draw z′

s from N (zs − τs · ∇g(zs), 2τsI);
5: Define the threshold p to be

p := min
{

1, exp (g(zs) + φ(z′
s; zs, τs))

exp (g(z′
s) + φ(zs; z′

s, τs))

}
;

6: Draw the sample p′ uniformly from [0, 1];
7: if p′ ≤ p then
8: Update the particle zs+1 ← z′

s

9: else
10: Update the particle zs+1 ← zs
11: end if
12: end for
13: Return: zS .

Inspired by Altschuler & Chewi (2023), SPS-MALA re-
quires InnerULD to provide warm starts, i.e., Line 2 of
Alg 3, where we defer the implementation of InnerULD
to Appendix A. Compared with general initialization, the
gradient complexity MALA can be improved from Õ(d)
to Õ(d1/2) with warm starts, and ULD can provide warm
starts within Õ(d1/2) gradient complexity. It means In-
nerMALA will be faster than InnerSGLD by an Õ(d1/2)
factor to achieve the KL convergence, i.e., Eq. 7. Hence,
SPS-MALA can be expected to improve the dimensional
dependence of SPS-SGLD. With this implementation, i.e.,
Alg. 3, the TV distance convergence of Alg. 1 can be pre-
sented in the following:

Theorem 4.2. Suppose [A1]-[A3] hold. With proper param-
eter settings at the following levels

ηk = Θ(L−1), K = Θ̃(κ), δk = Θ̃(κ−1ϵ2),
and bo = min

{
Θ̃(α−1

∗ σ2ϵ−2), n
}
,

where κ = L/α∗ for Alg. 1, if we choose Alg. 3 as the inner
sampler shown in Line 5 of Alg. 1, set

γ = Θ(L1/2), τ = Θ̃(L−1/2d−1/2), and S = Θ̃(d1/2).

for Alg. 4, and

τ = Θ̃(L−1d−1/2), and S = Θ̃(d1/2)

for Alg. 3, then the underlying distribution of returned
particles p̂K in Alg. 1 satisfies TV (p̂K , p∗) < 3ϵ. In
this condition, the expected gradient complexity will be
Θ̃
(
κ3d1/2σ2ϵ−2).

Due to the space limitation, we only show an informal result
in this section, and the formal version will be deferred to
Theorem C.8 in Appendix C.2. Theorem 4.2 provides gra-
dient complexities of Õ(d1/2ϵ2) and Õ(d3/2ϵ2) for cases
when σ2 = Θ(1) and σ2 = Θ(d), respectively. When
σ2 = Θ(1), the state-of-the-art result is Õ(dϵ−2) under the
lin-growth assumption (Das et al., 2023). Compared with
the result provided in Das et al. (2023), our SPS-MALA
is faster by an Õ(d1/2) factor with strictly weaker assump-
tions. However, the efficiency of SPS-MALA will be greatly
affected by the variance, i.e., σ2 in [A3], through the mini-
batch size of Alg 1. Even when σ2 = Θ(d), the complexity
of SPS-MALA will become Õ(d3/2ϵ2), which is the same
as AB-SGLD shown in Table. 1 with weaker assumptions.

Besides, it should be noted that Altschuler & Chewi (2023)
and Fan et al. (2023) provide high probability convergence
of the TV distance with an Õ(nκd1/2) gradient complexity,
while requiring the stationary points of f . Compared with
this result, we have an additional Õ(κ) factor besides re-
placing the number of training data n to the Θ̃(α−1

∗ σ2ϵ−2)
batch size. This factor comes from our proof techniques
of removing the dependency of stationary points for SPS
framework by upper bounding second moments during the
entire Alg. 1, which is demonstrated in Section 4.1.

5. Experiments
In this section, we will first provide our experimental set-
tings. Then, for a fair comparison with SGLD, we imple-
ment the proximal sampler with SPS-SGLD and show their
sampling performance with different dimensions. More
experimental results are deferred to Appendix F.

Experimental Settings. Here, we consider the compo-
nent e−fi shares a similar definition in Zou et al. (2019),
i.e., e−fi(x) := e−∥x−b−µi∥2/2 + e−∥x−b+µi∥2/2, where
the number of input data n = 100, the dimension d ∈
{10, 20, 30, 40, 50}, the bias vector b = (3, 3, . . . , 3)·, and
the data input

√
d/10 · µi ∼ N (µ, Id×d) with µ =

(2, 2, . . . , 2). Here, we require the input data to shrink with
the growth of d, which keeps the distances between different
modes for each e−fi . Since Zou et al. (2019) had proven the
function fi is dissipative, which implies the LSI property of
e−fi and e−f , we omit the discussion about the property of
fi in this section.

For the common hyper-parameter settings of SGLD and
SPS-SGLD, we fix the number of stochastic gradient ora-
cles as 12000 and the mini-batch size for each iteration as 1.
We enumerate the step size of SGLD and the inner step size
of SPS-SGLD from 0.2 to 1.4. Besides, the inner loops’ iter-
ations and the outer loops’ step sizes are grid-searched with
[20, 40, 80] and [1.0, 4.0, 10.0]. Besides, we use the formu-
lation TV(p̂K , p∗) := 1

2d
∑d
i=1 TV(p̂K,i, p∗,i) to estimate
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Figure 1. The background of all graphs is the projection of the negative log density on a 2d plane, and nodes are the projection of particles
returned by different algorithms on the same plane. The first two rows show the distribution of particles’ projection after different
iterations of SGLD and SPS-SGLD with their optimal step sizes when d = 10.

5040302010
Dimension Numbers

0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

TV
 D

ist
an

ce
 E

st
im

at
io

n SGLD
SPS-SGLD

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Step Sizes

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

TV
 D

ist
an

ce
 E

st
im

at
io

n SGLD
SPS-SGLD

Figure 2. The graph in the left column shows the TV distance
estimation, i.e., TV(p̂K , p∗) when SGLD and SPS-SGLD chose
their optimal hyper-parameters under different dimensions. The
graph in the right column denotes the TV distance estimation when
SGLD and SPS-SGLD chose different step sizes and d = 10.

total variation distances between the target distribution and
the underlying distribution of returned particles, where p̂K,i
and p∗,i are the marginal distributions of the i-th coordinate.
For 1d distributions, their densities can be approximated by
the histogram of particles.

Experimental Results. We first show the optimal TV dis-
tance to the target distribution p∗ obtained by SGLD and
SPS-SGLD under different dimensions in the left column
of Fig. 2. Since we consider different problems when using
different dimensions, the sampling error does not necessar-
ily increase when d increases. It can be clearly observed
that the optimal TV distance of SPS-SGLD is at least 0.5
smaller than that of SGLD in all our dimension settings,
which means SPS-SGLD presents a significantly better per-
formance in this synthetic task. Specifically, we investigate
the changes in the TV distance with the growth of step sizes
for both SPS-SGLD and SGLD, and show the results in the

right column Fig. 2. Although the absolute values of these
two algorithms vary a lot, their changing trends are very
similar. When the step size is small, both SPS-SGLD and
SGLD describe the local landscape of a single mode well.
With the growth of step sizes, they can gradually cover all
modes, whereas SPS-SGLD achieves a lower TV distance
since it can cover modes and keep the local landscape well
with a smaller step size. Besides, we provide show distri-
butions of particles’ projections under different stochastic
gradient oracles when d = 10 and the optimal step sizes are
chosen in Fig. 1. According to the contour of the projected
negative log density of p∗, we note that SPS-SGLD can
cover all modes with a more accurate variance estimation
compared with SGLD. It demonstrates that SPS-SGLD gen-
erates more reasonable samples with different stochastic
gradient oracles from another perspective.

6. Conclusion
This paper is the first study about adapting stochastic gra-
dient oracles to unbiased samplers to draw samples from
unnormalized non-log-concave target distributions, i.e.,
p∗ ∝ e−f . Specifically, we provide a framework named
stochastic proximal samplers (SPS) to remove the unreal-
istic requirement about stationary points of f in previous
implementations (Altschuler & Chewi, 2023). Furthermore,
compared with biased samplers SGLD and its variants, two
implementations of the SPS framework can converge to the
target distribution p∗ with a lower gradient complexity with
an Õ(d1/3) factor at least, and this improvement is validated
by our experiments conducted on synthetic data.
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A. Additional Notations and Assumptions in Appendix
For the convenience of analysis, we define three Markov processes, i.e., {xk}, {x̃k} and {x̂k}, as follows. For the process
{xk}, we suppose its initialization x0 is drawn from the standard Gaussian of Rd. There are two transition kernels in this
process. The first provides the conditional probability of xk+1/2 when xk is given and can be presented as the same as Eq 5,
i.e.,

pk+ 1
2 |k(x′|x) ∝ exp

(
−∥x

′ − x∥2

2ηk

)
.

The second transition kernel denotes the conditional probability of xk+1 when xk+1/2 and a stochastic mini-batch b is
given and can be presented as the same as Eq 6, i.e.,

pk+1|k+ 1
2 ,b

(x′|x, b) ∝ exp
(
−fb(x′)− ∥x

′ − x∥2

2ηk

)
.

For the process {x̃k}, we suppose the initialization x̃0 shares the same distribution as x0, and the transition kernel is defined
as

p̃k+ 1
2 |k := pk+ 1

2 |k and p̃k+1|k+ 1
2 ,b

(x′|x, b) = pk+1|k+ 1
2 ,b

(·|x, {1, 2, . . . , N}). (9)

For the third process {x̂k}, it presents the actual Markov process obtained by implementing Alg 1. That is to say, the
initialization x̂0 shares the same distribution as x0. The transition kernel satisfies p̂k+ 1

2 |k := pk+ 1
2 |k and

KL
(
p̂k+1|k+ 1

2 ,b
(·|x, b)

∥∥pk+1|k+ 1
2 ,b

(·|x, b)
)
≤ δk.

It should be noted that the transition kernel p̂k+1|k+ 1
2 ,b

(·|x, b) does not have a explicit form. Instead, it depends on the
sampling process at Line 5 of Alg 1. Although no explicit form is required, it still should be a good approximation of
pk+1|k+ 1

2 ,b
(x′|x, b). At last, to simplify the notation, we denote φσ2 as the density function of the Gaussian distribution

N (0, σ2I).

Assumption [A2] implies a bounded second moment:
Lemma A.1. Assume that density p∗ satisfies assumption [A2] that for any smooth function g(x) satisfying Ep∗ [g2] <∞:

Ep∗

[
g2 log g2]− Ep∗ [g2] logEp∗ [g2] ≤ 2

α∗
Ep∗ ∥∇g∥

2
.

Then density p∗ has the following variance bound:

Ex∼p∗ [∥x− E[x]∥2] ≤ 2d/α∗.

Proof. Consider a target distribution p∗ that follows [A2] and for the simplicity of notation denote a constant C = 1/(2α∗).
We then follow the Herbst argument and take the test function in [A2] to be g(x) = etf(x)/2, for an arbitrary t > 0 and a
function f so that ∥∇f(x)∥ ≤ 1. We obtain from the substitution that

Ep∗

[
tf(x)etf(x)

]
− Ep∗ [etf(x)] logEp∗ [etf(x)] ≤ CEp∗

[
t2etf(x) ∥∇f(x)∥2

]
≤ CEp∗

[
t2etf(x)

]
.

Denote F (t) = Ep∗

[
etf(x)]. We rewrite the above inequality as a differential inequality:

tF ′(t) ≤ F (t) logF (t) + Ct2F (t),

or equivalently:
d
dt

(
1
t

logF (t)
)
≤ C.

Taking t→ 0, we know that the initial condition is 1
t logF (t)→ Ep∗ [f(x)]. Therefore, along the entire trajectory

1
t

logF (t) ≤ Ep∗ [f(x)] + C · t.

12
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Algorithm 4 Inner underdamped Langevin algorithm: InnerULD(x0, b, η, δ)
1: Input: The output particle x0 of Alg. 1 Line 3, the selected mini-batch b, the step size of outer loop η, the required

accuracy of the inner loop δ;
2: Initialize the particle with z0 ← x0 and the velocity v0 is sampled from N (0, I);
3: for s = 0 to S − 1 do
4: Draw sample (zs+1,vs+1) from the following Gaussian distribution N (g′(zs,vs),Σ) .
5: end for
6: Return: zS .

Plugging in the definition of F (t), that is

Ep∗

[
etf(x)

]
≤ exp

(
tEp∗ [f(x)] + C · t2

)
.

By Markov’s inequality, we obtain that for x ∼ p∗ and for any t > 0:

P (f(x)− E[f(x)] > λ) ≤ exp(Ct2 − λt).

Optimizing over t gives

P (f(x)− E[f(x)] > λ) ≤ exp
(
− λ

2

4C

)
.

Taking f(x) = ⟨x,θ⟩, for any ∥θ∥ = 1, gives the standard subGaussian tail bound:

P (|⟨x− E[x],θ⟩| > λ) ≤ 2 exp
(
− λ

2

4C

)
,∀∥θ∥ = 1,

which means that random vector x ∼ p∗ is
√

2C-subGaussian. This also implies that x ∼ p∗ is
√

2C · d-norm-subGaussian,
leading to the following moment bound:

(E[∥x− E[x]∥p])1/p ≤
√

2pC · d.

We read off the second moment bound from the above inequality: Ex∼p∗ [∥x− E[x]∥2] ≤ 4C · d = 2d/α∗.

Implementation of InnerULD: Specifically, The closed form of the update of ULD shown in Line 4 of Alg. 4 satisfies
g′ : Rd × Rd → Rd × Rd defined as

g′(z,v) :=
(
z + γ−1(1− a)v − γ−1 (τ − γ−1(1− a)

)
∇g(z), av − γ−1(1− a)∇g(z)

)
,

where a := exp(−γτ), and

Σ :=
[

2
γ

(
τ − 2

γ (1− a) + 1
2γ (1− a2)

)
· Id 2

γ

( 1
2 − a+ a2) · Id

2
γ

( 1
2 − a+ a2) · Id (1− a2) · Id

]
.

Such an iteration corresponds to the discretization of the following SDE

dzt =vtdt,
dvt =−∇g(zs; x0, b, η)dt− γvtdt+

√
2γdBt,

where Bt is a standard d-dimensional Brownian motion. This update is introduced in several references, including Cheng
et al. (2018); Altschuler & Chewi (2023).

13
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B. Lemmas for SPS Framework
Lemma B.1 (variant of data-processing inequality). Consider four random variables, x, z, x̃, z̃, whose underlying distribu-
tions are denoted as px, pz, qx, qz . Suppose px,z and qx,z denotes the densities of joint distributions of (x, z) and (x̃, z̃),
which we write in terms of the conditionals and marginals as

px,z(x, z) = px|z(x|z) · pz(z) = pz|x(z|x) · px(x)
qx,z(x, z) = qx|z(x|z) · qz(z) = qz|x(z|x) · qx(x).

then we have
KL
(
px,z

∥∥qx,z) =KL
(
pz
∥∥qz)+ Ez∼pz

[
KL
(
px|z(·|z)

∥∥qx|z(·|z)
)]

=KL
(
px
∥∥qx)+ Ex∼px

[
KL
(
pz|x(·|x)

∥∥qz|x(·|x)
)]

where the latter equation implies
KL
(
px
∥∥qx) ≤ KL

(
px,z

∥∥qx,z) .
Proof. According to the formulation of KL divergence, we have

KL
(
px,z

∥∥qx,z) =
∫
px,z(x, z) log px,z(x, z)

qx,z(x, z) d(x, z)

=
∫
px,z(x, z)

(
log px(x)

qx(x) + log
pz|x(z|x)
qz|x(z|x)

)
d(x, z)

=
∫
px,z(x, z) log px(x)

qx(x) d(x, z) +
∫
px(x)

∫
pz|x(z|x) log

pz|x(z|x)
qz|x(z|x) dzdx

=KL
(
px
∥∥qx)+ Ex∼px

[
KL
(
pz|x(·|x)

∥∥qz|x(·|x)
)]
≥ KL

(
px
∥∥qx) ,

where the last inequality follows from the fact

KL
(
pz|x(·|x)

∥∥p̃z|x(·|x)
)
≥ 0 ∀ x.

With a similar technique, it can be obtained that

KL
(
px,z

∥∥qx,z) =
∫
px,z(x, z) log px,z(x, z)

qx,z(x, z) d(x, z)

=
∫
px,z(x, z)

(
log pz(z)

qz(z) + log
px|z(x|z)
qx|z(x|z)

)
d(x, z)

=
∫
px,z(x, z) log pz(z)

qz(z) d(x, z) +
∫
pz(z)

∫
px|z(x|z) log

px|z(x|z)
qx|z(x|z) dzdx

=KL
(
pz
∥∥qz)+ Ez∼pz

[
KL
(
px|z(·|z)

∥∥p̃x|z(·|z)
)]
.

Hence, the proof is completed.

Lemma B.2 (strong log-concavity and smoothness of inner target functions). Using the notations presented in Section A,
for any k ∈ {0, 1, . . . ,K − 1}, x ∈ Rd, and b ⊆ {1, 2, . . . , n}, suppose ηk < 1/L, then the target distributions of inner
loops, i.e., pk+1|k+1/2,b(·|x, b), satisfy

(−L+ η−1
k ) · I ⪯ −∇2

x′ log pk+1|k+1/2,b(x′|x, b) ⪯ (L+ η−1
k ) · I

Proof. For any k ∈ {0, 1, . . . ,K − 1}, x ∈ Rd, and b ⊆ {1, 2, . . . , n}, we have

pk+1|k+ 1
2 ,b

(x′|x, b) = C(b, ηk,x)−1 · exp
(
−fb(x′)− ∥x

′ − x∥2

2ηk

)
,

which implies
−∇2

x′ log pk+1|k+1/2,b(x′|x, b) = ∇2fb(x′) + η−1
k · I.

14
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Since we have [A1], it has
(−L+ η−1

k ) · I ⪯ ∇2fb(x′) + η−1
k · I ⪯ (L+ η−1

k ) · I.
Hence, the proof is completed.

Lemma B.3. Using the notations presented in Section A, for any k ∈ {0, 1, . . . ,K − 1}, x ∈ Rd and b ⊆ {1, 2, . . . , n},
suppose it has η < 1/L, then we have

KL
(
p̃k+1|k+ 1

2 ,b
(·|x, b)

∥∥pk+1|k+ 1
2 ,b

(·|x, b)
)
≤ 1

2(η−1 − L) · Ex′∼p̃
k+1|k+ 1

2 ,b

[
∥∇f(x′)−∇fb(x′)∥2

]
Proof. We abbreviate pk+1|k+1/2,b(·|x, b) and p̃k+1|k+1/2,b(·|x, b) as p and p̃ for convenience. According to the definition
of p, i.e., Eq 6, and p̃, i.e., Eq 9, we have

p(x′) = C(b, η,x)−1 · exp
(
−fb(x′)− ∥x

′ − x∥2

2η

)

p̃(x′) = C(η,x)−1 · exp
(
−f(x′)− ∥x

′ − x∥2

2η

)
.

According to Lemma B.2, we have
−∇2 log p(x′) ⪰

(
−L+ η−1) I,

which means the density function p is strongly log-concave when η < 1/L. According to Lemma E.2, the density function
p satisfies LSI with a constant (η−1 − L). Then, with the definition of LSI, we have

KL
(
p̃
∥∥p) ≤ 1

2(η−1 − L) · Ex′∼p̃

[∥∥∥∥∇ log p̃(x
′)

p(x′)

∥∥∥∥2
]

= 1
2(η−1 − L) · Ex′∼p̃

[
∥∇f(x′)−∇fb(x′)∥2

]
Hence, the proof is completed.

Lemma B.4. Using the notations presented in Section A and considering Alg 1, if ηi ≤ 1/(2L) for all i ∈ {0, 1, . . . ,K−1},
then we have

TV (p̃K , pK) ≤ σ

√√√√K−1∑
i=0

ηi
2|bi|

where | · | denotes the sample size in each mini-batch loss.

Proof. According to Pinsker’s inequality, we have

TV (pK , p̃K) ≤
√

1
2KL

(
p̃K
∥∥pK).

Let pk+1,k+1/2,b and p̃k+1,k+1/2,b denote the density of joint distribution of (xk+1,xk+1/2,bk) and (x̃k+1, x̃k+1/2, b̃k)
respectively, which we write in term of the conditionals and marginals as

pk+1,k+ 1
2 ,b

(x′,x, b) =pk+1|k+ 1
2 ,b

(x′|x, b) · pk+ 1
2 ,b

(x, b) = pk+ 1
2 ,b|k+1(x, b|x′) · pk+1(x′)

p̃k+1,k+ 1
2 ,b

(x′,x, b) =p̃k+1|k+ 1
2 ,b

(x′|x, b) · p̃k+ 1
2 ,b

(x, b) = p̃k+ 1
2 ,b|k+1(x, b|x′) · p̃k+1(x′).

In this condition, we have

KL
(
p̃k+1

∥∥pk+1
)
≤ KL

(
p̃k+1,k+ 1

2 ,b

∥∥pk+1,k+ 1
2 ,b

)
= KL

(
p̃k+ 1

2 ,b

∥∥pk+ 1
2 ,b

)
+ E(x̃,b̃)∼p̃

k+ 1
2 ,b

[
KL
(
p̃k+1|k+ 1

2 ,b
(·|x̃, b̃)

∥∥pk+1|k+ 1
2 ,b

(·|x̃, b̃)
)]

= KL
(
p̃k+ 1

2

∥∥pk+ 1
2

)
+ Ex̃∼p̃

k+ 1
2

[
KL
(
p̃b|k+ 1

2
(·|x̃)

∥∥pb|k+ 1
2
(·|x̃)

)]
+ E(x̃,b̃)∼p̃

k+ 1
2 ,b

[
KL
(
p̃k+1|k+ 1

2 ,b
(·|x̃, b̃)

∥∥pk+1|k+ 1
2 ,b

(·|x̃, b̃)
)]
,
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which follows from Lemma B.1. Respectively, for the first and the second equation, we plug

x := x̃k+1, z :=
(
x̃k+ 1

2
, b̃k
)
, x̃ := xk+1 and z̃ :=

(
xk+ 1

2
,bk
)

and
x = x̃k+ 1

2
, z := b̃k, x̃ := xk+ 1

2
and z̃ := bk,

to Lemma B.1. Here, we should note the choice of b̃k is introduced as an auxiliary random variable, which is independent
with the update of x̃k for all k ∈ {0, 1, . . . ,K − 1}. Then, by requiring

p̃b|k+ 1
2
(·|x) = pb|k+ 1

2
(·|x) = pb ∀x ∈ Rd and ηk ≤ 1/(2L). (10)

we have

KL
(
p̃k+1

∥∥pk+1
)
≤ KL

(
p̃k+ 1

2

∥∥pk+ 1
2

)
+ E(x̃,b̃)∼p̃

k+ 1
2 ,b

[
KL
(
p̃k+1|k+ 1

2 ,b
(·|x̃, b̃)

∥∥pk+1|k+ 1
2 ,b

(·|x̃, b̃)
)]

≤ KL
(
p̃k+ 1

2

∥∥pk+ 1
2

)
+ 1

2 · (η−1
k − L)

· E(x̃,b̃)∼p̃
k+ 1

2 ,b

[
Ex′∼p̃

k+1|k+ 1
2 ,b

(·|x̃,b̃) ∥∇f(x′)−∇fb̃(x′)∥2
]

≤ KL
(
p̃k+ 1

2

∥∥pk+ 1
2

)
+ ηk · E(x̃,b̃)∼p̃

k+ 1
2 ,b

[
Ex′∼p̃

k+1|k+ 1
2 ,b

(·|x̃,b̃) ∥∇f(x′)−∇fb̃(x′)∥2
] (11)

where the second inequality follows from Lemma B.3 and the last inequality follows from the choice of step size satisfies ηk.

Then, we consider the upper bound for the second term of RHS of Eq 11 and have

E(x̃,b̃)∼p̃
k+ 1

2 ,b

[
Ex′∼p̃

k+1|k+ 1
2 ,b

(·|x̃,b̃) ∥∇f(x′)−∇fb̃(x′)∥2
]

=
∫
p̃k+1,k+ 1

2 ,b
(x′, x̃, b̃) · ∥∇f(x′)−∇fb̃(x′)∥2 d(x′, x̃, b̃).

(12)

The density p̃k+1,k+ 1
2 ,b

(x′, x̃, b̃) of the joint distribution satisfies

p̃k+1,k+ 1
2 ,b

(x′,x, b) =p̃k+1|k+ 1
2 ,b

(x′|x, b) · p̃k+ 1
2 ,b

(x, b)
=p̃k+1|k+ 1

2
(x′|x) · p̃k+ 1

2
(x) · p̃b|k+ 1

2
(b|x)

=p̃k+1|k+ 1
2
(x′|x) · p̃k+ 1

2
(x) · pb(b),

(13)

where the second equation establishes since the choice of b̃k will not affect the update of x̃k shown in Eq 9. Besides, the
last inequality follows from Eq 10 and the fact that the choice of bk is independent with the choice of xk shown in Line 4 of
Alg 1. Combining Eq 12 and Eq 13, we have

E(x̃,b̃)∼p̃
k+ 1

2 ,b

[
Ex′∼p̃

k+1|k+ 1
2 ,b

(·|x̃,b̃) ∥∇f(x′)−∇fb̃(x′)∥2
]

=
∑

b⊆1,2,...,n

∫
p̃k+1|b(x′)pb(b) ∥∇f(x′)−∇fb̃(x′)∥2 dx′

=
∫
p̃k+1(x′)Ebk

[∥∇f(x′)−∇fbk
(x′)∥] dx′ ≤ σ2

|bk|
,

(14)

where the last inequality follows from [A3] and Lemma E.1. Hence, Eq 11 satisfies

KL
(
p̃k+1

∥∥pk+1
)
≤KL

(
p̃k+ 1

2

∥∥pk+ 1
2

)
+ σ2 · ηk

|bk|
. (15)

Then, consider the first stage of the update, we have

KL
(
p̃k+ 1

2

∥∥pk+ 1
2

)
≤KL

(
p̃k
∥∥pk)+ Ex̃∼p̃k

[
KL
(
p̃k+ 1

2 |k(·|x̃)
∥∥pk+ 1

2 |k(·|x̃)
)]

= KL
(
p̃k
∥∥pk) , (16)
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where the first inequality follows from Lemma B.1 by setting

x = x̃k+ 1
2
, z := x̃k, x̃ := xk+ 1

2
and z̃ := xk,

and the second equation establishes since {xk} and x̃k share the same update in the first stage shown in Eq 5 and Eq 9.

Combining Eq 15 and Eq 16, we have

KL
(
p̃k+1

∥∥pk+1
)
≤ KL

(
p̃k
∥∥pk)+ σ2 · ηk

|bk|
,

which implies

KL
(
p̃K
∥∥pK) ≤ σ2 ·

K−1∑
i=0

ηi
|bi|

with the telescoping sum. Hence, the proof is completed.

Lemma B.5. Using the notations presented in Section A, we have

TV (p̂K , pK) ≤

√√√√1
2

K−1∑
i=0

δi

where δ denotes the error tolerance of approximate conditional densities shown in Eq 7.

Proof. According to Pinsker’s inequality, we have

TV (p̂k+1, pk+1) ≤
√

1
2KL

(
p̂k+1

∥∥pk+1
)
.

Let pk+1,k+1/2,b and p̂k+1,k+1/2,b denote the density of joint distribution of (xk+1,xk+1/2,bk) and (x̂k+1, x̂k+1/2, b̂k)
respectively, which we write in term of the conditionals and marginals as

pk+1,k+ 1
2 ,b

(x′,x, b) =pk+1|k+ 1
2 ,b

(x′|x, b) · pk+ 1
2 ,b

(x, b) = pk+ 1
2 ,b|k+1(x, b|x′) · pk+1(x′)

p̂k+1,k+ 1
2 ,b

(x′,x, b) =p̂k+1|k+ 1
2 ,b

(x′|x, b) · p̂k+ 1
2 ,b

(x, b) = p̂k+ 1
2 ,b|K+1(x, b|x′) · p̂k+1(x′).

In this condition, we have

KL
(
p̂k+1

∥∥pk+1
)
≤ KL

(
p̂k+1,k+ 1

2 ,b

∥∥pk+1,k+ 1
2 ,b

)
= KL

(
p̂k+ 1

2 ,b

∥∥pk+ 1
2 ,b

)
+ E(x̂,b̂)∼p̂

k+ 1
2 ,b

[
KL
(
p̂k+1|k+ 1

2 ,b
(·|x̂, b̂)

∥∥pk+1|k+ 1
2 ,b

(·|x̂, b̂)
)]

= KL
(
p̂k+ 1

2

∥∥pk+ 1
2

)
+ Ex̂∼p̂

k+ 1
2

[
KL
(
p̂b|k+ 1

2
(·|x̂)

∥∥pb|k+ 1
2
(·|x̂)

)]
+ E(x̂,b̂)∼p̂

k+ 1
2 ,b

[
KL
(
p̂k+1|k+ 1

2 ,b
(·|x̂, b̂)

∥∥pk+1|k+ 1
2 ,b

(·|x̂, b̂)
)]

where the first and the second equations are established by plugging

x := x̂k+1, z :=
(
x̂k+ 1

2
, b̂k
)
, x̃ := xk+1 and z̃ :=

(
xk+ 1

2
,bk
)

and
x = x̂k+ 1

2
, z := b̂k, x̃ := xk+ 1

2
and z̃ := bk,

to Lemma B.1, respectively. Then, by requiring

p̂b|k+ 1
2
(·|x) = pb|k+ 1

2
(·|x) = pb ∀x ∈ Rd, (17)
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we have

KL
(
p̂k+1

∥∥pk+1
)
≤ KL

(
p̂k+ 1

2

∥∥pk+ 1
2

)
+ E(x̂,b̂)∼p̂

k+ 1
2 ,b

[
KL
(
p̂k+1|k+ 1

2 ,b
(·|x̂, b̂)

∥∥pk+1|k+ 1
2 ,b

(·|x̂, b̂)
)]

≤ KL
(
p̂k+ 1

2

∥∥pk+ 1
2

)
+ δk

(18)

where the last inequality follows from Eq 7. Besides, considering the first stage of the update, we have

KL
(
p̂k+ 1

2

∥∥pk+ 1
2

)
≤KL

(
p̂k
∥∥pk)+ Ex̂∼p̂k

[
KL
(
p̂k+ 1

2 |k(·|x̂)
∥∥pk+ 1

2 |k(·|x̂)
)]

= KL
(
p̂k
∥∥pk) , (19)

where the first inequality follows from Lemma B.1 by setting

x = x̂k+ 1
2
, z := x̂k, x̃ := xk+ 1

2
and z̃ := xk,

and the second equation establishes since xk and x̂k share the same update in the first stage shown in Eq 5 and Eq 7.
Combining Eq 18 and Eq 19, we have

KL
(
p̂k+1

∥∥pk+1
)
≤ KL

(
p̂k
∥∥pk)+ δk,

which implies

KL
(
p̃K
∥∥pK) ≤ K−1∑

i=0
δi

with the telescoping sum. Hence, the proof is completed.

Lemma B.6. Suppose Assumption [A1]-[A3] hold, and Alg. 1 satisfy:

• The step sizes have ηi ≤ 1/(2L) for all i ∈ {0, 1, . . . ,K − 1}.

• The initial particle x̂0 is drawn from the standard Gaussian distribution on Rd.

• The transition kernel at Line 5 of Alg. 1, i.e., p̂k+1|k+ 1
2 ,b

(·|x, b), satisfies Eq 7 and δk = 0.

Then, we have

TV (p̂K , p∗) ≤ σ

√√√√K−1∑
i=0

ηi

2|bi|
+
√

(1 + L2)d
4α∗

·
K−1∏
i=0

(1 + α∗ηi)−1 .

Proof. When δk = 0, the Markov process {x̂k} shares the same underlying distribution as the Markov process {xk} . We
consider to upper bound the total variation distance between pK and p∗ which satisfies

TV (pK , p∗) ≤ TV (pK , p̃K) + TV (p̃K , p∗) . (20)

According to Lemma B.4, by requiring ηi ≤ 1/(2L) for all i ∈ {0, 1, . . . ,K − 1}, we have

TV (pK , p̃K) ≤ σ

√√√√K−1∑
i=0

ηi
2|bi|

. (21)

Besides, for TV (p̃K , p∗) in Eq 20, we have

TV (p̃K , p∗) ≤
√

1
2KL

(
p̃K
∥∥p∗
)

≤
√

1
2KL

(
p̃0
∥∥p∗
)
·
K−1∏
i=0

(1 + α∗ηi)−1 ≤

√
(1 + L2)d

4α∗
·
K−1∏
i=0

(1 + α∗ηi)−1
(22)

where the first inequality follows from Pinsker’s inequality, the second follows from Lemma E.3, and the last inequality
follows from Lemma E.4 when we set p0 as the standard Gaussian in Rd. Finally, plugging Eq 21 and Eq 22 to Eq 20, the
proof is completed.
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Proof of Theorem 3.1. Using the notations presented in Section A, we consider to upper bound the total variation distance
between p̂K+1 and p∗ which satisfies

TV (p̂K , p∗) ≤ TV (p̂K , pK) + TV (pK , p∗) .
According to Lemma B.5, we have

TV (p̂K , pK) ≤

√√√√1
2

K−1∑
i=0

δi. (23)

Besides, we have

TV (pK , p∗) ≤ σ

√√√√K−1∑
i=0

ηi
2|bi|

+

√
(1 + L2)d

4α∗
·
K−1∏
i=0

(1 + α∗ηi)−1 (24)

with Lemma B.6. Here, we should note the gradient complexity of Alg 1 will be dominated by Line 5, i.e., the inner sampler
which requires GC(|bk|, δk) at the k-th iteration. Therefore, the total gradient complexity will be

O

(
K−1∑
i=0

GC(|bi|, δi)
)

and the proof is completed.

C. Theorems for Different Implementations
C.1. Stochastic Gradient Langevin Dynamics Inner Samplers

Lemma C.1. Using the notations presented in Alg 2, asume [A1]-[A3], for any τs ∈ (0, 1
36 ], we have

2τs ·KL
(
q′
s

∥∥pk+1|k+ 1
2 ,b

(·|x0, b)
)
≤
(

1− τs
4η

)
·W 2

2 (qs, pk+1|k+ 1
2 ,b

(·|x0, b))

−W 2
2 (qs+1, pk+1|k+ 1

2 ,b
(·|x0, b)) + 4τ2

s σ
2

|bs|
+ 6τ2

s d

η

where qs, q′
s and q∗ denotes underlying distribution of zs, z′

s and the ideal output particles.

Proof. This proof only considers the KL divergence behavior for the k-th inner sampling subproblem, i.e., Line 5 of Alg 1.
The target distribution of the inner loop, i.e., pk+1|k+1/2,b(·|x0, b) will be abbreviated as

q∗(z) := C−1
q · exp(−g(z)) = C−1

q · exp
(
−fb(z)− ∥z − x0∥2

2η

)
.

Since InnerSGLD sample mini-batch bs from b for all s ∈ {1, 2, . . . , S}, we define

gbs(z) := − 1
|bs|

∑
i∈bs

fi(z)− ∥z − x0∥2

2η .

Combining Lemma B.2 and the choice of the step size, i.e., η ≤ 1/2L, we have

(2η)−1 · I ⪯ ∇2g(z) = ∇2q∗(z) ⪯ (3/2η) · I.
Suppose the underlying distribution of zs and z′

s are qs and q′
s respectively. Besides, the KL divergence between qs and q∗ is

KL
(
qs
∥∥q∗
)

=
∫
qs(z) log qs(z)

q∗(z)dz =
∫
qs(z) log qs(z)dz︸ ︷︷ ︸

H(qs)

+
∫
qs(z) (g(z) + logCq) dz︸ ︷︷ ︸

E(qs)

.

Then we consider the dynamics of entropyH and energy E functionals with the iteration presented as

z′
s = zs +

√
2τs ·

(
1− τs

4η

)−1
ξ where ξ ∼ N (0, I),

zs+1 = z′
s − τs∇gbs

(z′
s) .
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Energy functional dynamics We start with the following inequality

W 2
2 (qs+1, q∗) ≤ E(z′

s,z∗)∼γ′
s

[
Ezs+1∼q′

s+1|s
(·|z′

s) ∥zs+1 − z∥2
]
,

where γ′
s denotes the optimal coupling between the densities q′

s and q∗, and q′
s+1|s(·|z′

s) denotes the density function for
zs+1 when z′

s = z′
s. According to the change of variables, the inner expectation on the RHS satisfies

Ezs+1∼q′
s+1|s

(·|z′
s) ∥zs+1 − z∥2 =

∑
bs⊆b

pb(bs) · ∥z′
s − τs∇gbs

(z′
s)− z∥2

= ∥z′
s − z∥2 − 2τs ⟨∇g(z′

s), z′
s − z⟩+ τ2

sEbs ∥∇gbs(z′
s)∥

2

≤
(

1− τs
2η

)
· ∥z′

s − z∥2 − 2τs · (g(z′
s)− g(z)) + τ2

sEbs
∥∇gbs

(z′
s)∥

2
,

(25)

where the last inequality follows from the strong convexity of g, i.e.,

g(z)− g(z′
s) ≥ ⟨∇g(z′

s), z − z′
s⟩+ 1

4η · ∥z − z′
s∥

2
.

Taking the expectation for both sides of Eq 25, we have

E(z′
s,z)∼γ′

s

[
Eq′

s+1|s
(·|z′

s) ∥zs+1 − z∥2
]
≤
(

1− τs
2η

)
W 2

2 (q′
s, q∗)− 2τs · (E(q′

s)− E(q∗))

+ τ2
s · E(z′

s,z)∼γ′
s

[
Ebs ∥∇gbs(z′

s)∥
2
]
.

(26)

Then, we start to upper bound the last term of Eq 26, and have

E(z′
s,z)∼γ′

s

[
Ebs ∥∇gbs(z′

s)∥
2
]

= E(z′
s,z)∼γ′

s

[
Ebs ∥∇gbs(z′

s)−∇gbs(z) +∇gbs(z)∥2
]

≤ 2E(z′
s,z)∼γ′

s

[
Ebs ∥∇gbs(z′

s)−∇gbs(z)∥2
]

+ 2E(z′
s,z)∼γ′

s

[
Ebs ∥∇gbs(z)−∇g(z) +∇g(z)∥2

]
≤ 2 ·

(
3
2η

)2
· E(z′

s,z)∼γ′
s
∥z′
s − z∥2 + 4E(z′

s,z)∼γ′
s

[
Ebs ∥∇gbs(z)−∇g(z)∥2

]
+ 4Ez∼q∗

[
∥∇g(z)∥2

]
.

(27)

For the first term, with the definition of γ′
s, we have

E(z′
s,z)∼γ′

s
∥z′
s − z∥2 = W 2

2 (q′
s, q∗).

For the second one, suppose we sample bs uniformly from b sharing the same sampler number for all s ∈ {1, 2, . . . , S},
i.e., bin. Then, for any z ∈ Rd, we have

Ebs ∥∇gbs(z)−∇g(z)∥2 = Ebs

[
∥∇fbs(z)−∇f(z)∥2

]
≤ σ2

bin

which follows from Lemma E.1. It then implies

E(z′
s,z)∼γ′

s

[
Ebs
∥∇gbs

(z)−∇g(z)∥2
]
≤ σ2

bin
.

For the last term, we have

Ez∼q∗

[
∥∇g(z)∥2

]
≤ 3d

2η
which follows from Lemma E.6. In these conditions, Eq 27 can be represented as

E(z′
s,z)∼γ′

s

[
Ebs
∥∇gbs

(z′
s)∥

2
]
≤ 9

2η ·W
2
2 (q′

s, q∗) + 4σ2

bin
+ 6d

η
.
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Plugging this inequality into Eq 26, we have

W 2
2 (qs+1, q∗) ≤

(
1− τs

2η + 9τ2
s

η

)
·W 2

2 (q′
s, q∗)− 2τs · (E(q′

s)− E(q∗)) + 4τ2
s σ

2

bin
+ 6τ2

s d

η
,

which is equivalent to

2τs · (E(q′
s)− E(q∗)) ≤

(
1− τs

2η + 9τ2
s

η

)
·W 2

2 (q′
s, q∗)−W 2

2 (qs+1, q∗) + 4τ2
s σ

2

bin
+ 6τ2

s d

η
.

By requiring
9τ2
s

η
≤ τs

4η ⇔ τs ≤
1
36 ,

we have

2τs · (E(q′
s)− E(q∗)) ≤

(
1− τs

4η

)
·W 2

2 (q′
s, q∗)−W 2

2 (qs+1, q∗) + 4τ2
s σ

2

bin
+ 6τ2

s d

η
. (28)

Entropy functional bound According to Lemma E.7, we have

2 ·
((

1− τs
4η

)−1
· τs

)
· (H(q′

s)−H(q∗)) ≤W 2
2 (qs, q∗)−W 2

2 (q′
s, q∗),

which is equivalent to

2τs · (H(q′
s)−H(q∗)) ≤

(
1− τs

4η

)
·W 2

2 (qs, q∗)−
(

1− τs
4η

)
·W 2

2 (q′
s, q∗). (29)

Therefore, combining Eq 28 and Eq 29, we have

2τs ·KL
(
q′
s

∥∥q∗
)
≤
(

1− τs
4η

)
·W 2

2 (qs, q∗)−W 2
2 (qs+1, q∗) + 4τ2

s σ
2

bin
+ 6τ2

s d

η
. (30)

Hence, the proof is completed.

Corollary C.2. Using the notations presented in Alg 2, asume [A1]-[A3]. Define:

τs := τ ≤ min
{
δ

16 ·
(

2σ2η

bin
+ 3d

)−1

,
1
36

}
, S ≥ log

2W 2
2 (q1, pk+1|k+ 1

2 ,b
(·|x0, b))

δ
· 4ητ−1,

where bin denotes the uniformed minibatch size of sampled in Line 5 of Alg 2. Then, the underlying distribution of particles
at S-th iteration, i.e., qS , satisfies W 2

2 (qS , pk+1|k+ 1
2 ,b

(·|x0, b)) ≤ δ.

Proof. Similar to Lemma C.1, the target distribution of the inner loop, i.e., pk+1|k+1/2,b(·|x0, b) will be abbreviated as

q∗(z) := C−1
q · exp(−g(z)) = C−1

q · exp
(
−fb(z)− ∥z − x0∥2

2η

)
.

and we define the minibatch loss as follows

gbs(z) := − 1
|bs|

∑
i∈bs

fi(z)− ∥z − x0∥2

2η .

Then, using Lemma C.1 and since the KL divergence is non-negative, for all s ∈ {0, 2, . . . , S − 1}, we have

W 2
2 (qs+1, q∗) ≤

(
1− τs

4η

)
·W 2

2 (qs, q∗) + 4τ2
s σ

2

|bs|
+ 6τ2

s d

η
.
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Following from a direct induction, we have

W 2
2 (qS , q∗) ≤

[
S−1∏
s=0

(
1− τs

4η

)]
W 2

2 (q0, q∗) +
S−1∑
i=0

(
4τ2
i σ

2

|bi|
+ 6τ2

i d

η

) S−1∏
j=i+1

(
1− τj

4η

)

In this condition, we choose uniformed step and mini-batch sizes, i.e., τs = τ , |bs| = bin, and have

W 2
2 (qS , q∗) ≤

(
1− τ

4η

)S
·W 2

2 (q0, q∗) +
(

4σ2

bin
+ 6d

η

) S−1∑
i=0

τ2
(

1− τ

4η

)i
≤
(

1− τ

4η

)S
·W 2

2 (q0, q∗) +
(

2σ2η

bin
+ 3d

)
· 8τ.

(31)

Using that for all u ∈ R+, 1− u ≤ exp(−u), then it has(
1− τ

4η

)S
W 2

2 (q1, q∗) ≤ exp
(
−τS4η

)
W 2

2 (q0, q∗) ≤ δ

2 . (32)

Without loss of generality, the iteration number of inner loop will be large, which implies the last inequality of Eq 32 will
establish by requiring

τS ≥ log
2W 2

2 (q1, pk+1|k+ 1
2 ,b

(·|x0, b))
δ

· 4η.

In the following, we choose the value of τS to be the lower bound. Besides, we require the last term of Eq 31 to satisfy(
2σ2η

bin
+ 3d

)
· 8τ ≤ δ

2 ⇔ τ ≤ δ

16 ·
(

2σ2η

bin
+ 3d

)−1

. (33)

Combining Eq 32 and Eq 33, the proof is completed.

Lemma C.3. Using the notations presented in Alg 2, asume [A1]-[A3]. Define

S′ ≥ log
2W 2

2 (q1, pk+1|k+ 1
2 ,b

(·|x0, b))
δ

· 4ητ−1 and S′ ∈ N+,

for all s ∈ [0, S′], the step sizes and sample sizes satisfy

|bs| = bin and τs := τ ≤ min
{
δ

16 ·
(

2σ2η

bin
+ 3d

)−1

,
1
36

}

in Alg 2. Besides, for s ∈ [S′ + 1, S], the step sizes and sampler sizes are

|bs| = b′
in and τs := τ ′ ≤ min

{
δ

2 ·
(

2σ2

b′
in

+ 3d
η

)−1

,
1
36

}
.

In this condition, if the total iteration number S satisfies

S ≥ S′ + (τ ′)−1 and S ∈ N+,

then the underlying distribution qS of output particles satisfies KL
(
qS
∥∥pk+1|k+ 1

2 ,b
(·|x0, b)

)
≤ δ.

Proof. We first introduce 0 < S′ < S satisfying S′ ∈ N+, and denote the underlying distribution of output particles as

qS =
∑S
i=S′+1 q

′
i

S − S′ where i ∈ N+
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and q′
i denotes the underlying distribution of z′

i in Alg 2. Similar to Lemma C.1, the target distribution of the inner loop, i.e.,
pk+1|k+1/2,b(·|x0, b) will be abbreviated as q∗(·). Then, we set all step and sample sizes between S′-th to S-th iteration are
uniformed τ ′ and b′

in. In this condition, we have

KL
(
qS
∥∥q∗
)
≤ 1
S − S′ ·

S∑
i=S′+1

KL
(
q′
i

∥∥q∗
)

≤ 1
2τ ′(S − S′) ·

[(
1− τ ′

4η

)
W 2

2 (qS′+1, q∗)−
S∑

i=S′+2

τ ′

4η ·W
2
2 (qi, q∗)−W 2

2 (qS+1, q∗)

+(S − S′) ·
(

4(τ ′)2σ2

b′
in

+ 6(τ ′)2d

η

)]
≤ W 2

2 (qS′+1, q∗)
2τ ′(S − S′) + 2τ ′σ2

b′
in

+ 3τ ′d

η

(34)

where the first inequality follows from Lemma E.5 and the second inequality follows from Lemma C.1. According to
Corollary C.2, in Alg 2, if we set

τs := τ ≤ min
{
δ

16 ·
(

2σ2η

bin
+ 3d

)−1

,
1
36

}
, S′ ≥ log 2W 2

2 (q1, q∗)
δ

· 4ητ−1.

for all s ∈ [0, S′], then we have W 2
2 (qS′+1, q∗) ≤ δ. In this condition, by requiring

τ ′(S − S′) ≥ 1, and τ ′ ≤ δ

2 ·
(

2σ2

b′
in

+ 3d
η

)−1

,

the first and the second term of Eq 34 will satisfies

W 2
2 (qS′+1, q∗)

2τ ′(S − S′) ≤
δ

2 , and 2τ ′σ2

b′
in

+ 3τ ′d

η
≤ δ

2 .

Hence, the proof is completed.

Theorem C.4 (Formal version of Theorem 4.1). Suppose [A1]-[A3] hold. With the following parameter settings

ηk = 1
2L, K = L

α∗
· log (1 + L2)d

4α∗ϵ2
, δk = 2ϵ2α∗

L
·
(

log (1 + L2)d
4α∗ϵ2

)−1

bo = min
{

σ2

4α∗ϵ2
· log (1 + L2)d

4α∗ϵ2
, n

}
,

for Alg 1, if we choose Alg 2 as the inner sampler shown in Line 5 Alg 1, set

τ = min
{
α∗ϵ

2

16 ·
((
σ2 + 3Ld

)
· log (1 + L2)d

4α∗ϵ2

)−1

,
1
36

}
,

τ ′ = min
{
α∗ϵ

2

4L ·
((
σ2 + 3Ld

)
· log (1 + L2)d

4α∗ϵ2

)−1

,
1
36

}
,

S′(x0, b) =
(

log
(
∥∇fb(0)∥2 + L+ L ∥x0∥2

Lα∗ϵ2

)
+ log log (1 + L2)d

4α∗ϵ2

)
· 4
Lτ

S(x0, b) =
(

log
(
∥∇fb(0)∥2 + L+ L ∥x0∥2

Lα∗ϵ2

)
+ log log (1 + L2)d

4α∗ϵ2

)
· 4
Lτ

+ (τ ′)−1,

τs = τ when s ∈ [0, S′(x0, b)]
τs = τ ′ when s ∈ [S′(x0, b) + 1, S(x0, b)− 1]
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and 1 inner minibatch size, i.e., bin = 1, then the underlying distribution of returned particles p̂K in Alg 1 satisfies
TV (p̂K+1, p∗) < 3ϵ. In this condition, the expected gradient complexity will be

34L3(σ2 + 3d)
α3

∗ϵ
2 · log(24L2) · log2 (1 + L2)d

4α∗ϵ2
· log

30L2
(
M + σ2 + d+ 1 + ∥∇f(0)∥2

)
α∗ϵ2

,

which can be abbreviated as Θ̃(κ3ϵ−2 · (d+ σ2)).

Proof. For the detailed implementation of Alg 1 with Alg 2, we consider the following settings.

• For all k ∈ {0, 1, . . . ,K − 1}, the mini-batch bk in Alg 1 Line 2 has a uniformed norm which is denoted as |bk| = bo.

• For all k ∈ {0, 1, . . . ,K − 1}, the conditional probability densities pk+1|k+1/2,b(·|xk+1/2, bk) in Alg 1 Line 4
formulated as Eq 6 share the same L-2 regularized coefficients, i.e., η−1

k .

• For all k ∈ {0, 1, . . . ,K − 1}, the inner sampler shown in Alg 1 Line 5 is chosen as Alg 2.

Errors control of outer loops. With these conditions, we have

TV (p̂K , p∗) ≤

√√√√1
2

K−1∑
i=0

δi + σ

√
Kη

2bo
+

√
(1 + L2)d

4α∗
· (1 + α∗η)−K

which follows from Theorem 3.1. For achieving TV (pK+1, p∗) ≤ Õ(ϵ), we start with choosing the step size η and the
iteration number K in Alg 1. By requiring

η ≤ 1
2L and K ≥ (α∗η)−1 · log (1 + L2)d

4α∗ϵ2
= 2L
α∗
· log (1 + L2)d

4α∗ϵ2
, (35)

we have

(1 + α∗η)2K ≥ exp(α∗ηK) ≥ (1 + L2)d
4α∗ϵ2

⇒ exp(−α∗Kη) ≤ ϵ,

where the first inequality follows from 1 + u ≥ exp(u/2) when u ≤ 1. The last equation of Eq 35 establishes when η is
chosen as its upper bound. Besides by requiring

bo ≥ min
{
Kησ2

2ϵ2 , n

}
= min

{
σ2

α∗ϵ2
· log (1 + L2)d

4α∗ϵ2
, n

}
, (36)

we have σ
√
Kη/(2bo) ≤ ϵ. The last equation of Eq 36 requires the choice of η and K in Eq 35 to be their upper and lower

bound respectively. For simplicity, we consider inner samplers for all iterations share the same error tolerance, i.e., δk = δ
for all k ∈ {1, 2, . . . ,K}. By requiring,

δ ≤ 2ϵ2

K
= ϵ2α∗

L
·
(

log (1 + L2)d
4α∗ϵ2

)−1

(37)

we have
√

1
2
∑K−1
i=0 δi ≤ ϵ. The last inequality of Eq 37 holds when K is chosen as its lower bound in Eq 35.

Errors control of inner loops. Then, we start to consider the hyper-parameter settings of the inner loop and the total
gradient complexity. According to Theorem 3.1, we require the underlying distribution of output particles of the inner loop,
i.e., p̂k+1|k+ 1

2 ,b
(·|x0, b), satisfies

KL
(
p̂k+1|k+ 1

2 ,b
(·|x0, b)

∥∥pk+1|k+ 1
2 ,b

(·|x0, b)
)
≤ δ ≤ ϵ2α∗

L
·
(

log (1 + L2)d
4α∗ϵ2

)−1

(38)
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for all x0 ∈ Rd and b ⊆ {1, 2, . . . , n}. Then, to achieve Eq 38, Lemma C.3 will decompose the total inner iterations of
Alg 2, i.e., s ∈ [0, S(x0, b)] into two stages.

For the first stage, we consider

τs := τ ≤ min
{
δ

16 ·
(

2σ2η

bin
+ 3d

)−1

,
1
36

}
= min

{
α∗ϵ

2

16 ·
((
σ2 + 3Ld

)
· log (1 + L2)d

4α∗ϵ2

)−1

,
1
36

}
(39)

for s ∈ [0, S′(x0, b)] where

S′(x0, b) ≥
(

log
2L ·W 2

2 (q0, pk+1|k+ 1
2 ,b

(·|x0, b))
α∗ϵ2

+ log log (1 + L2)d
4α∗ϵ2

)
· 2
Lτ

and S′(x0, b) ∈ N+. (40)

It should be noted that the last equation of Eq 39 only establishes when δ and η are chosen as their upper bounds, and
bin = 1.

For the second stage, we consider

τs := τ ′ ≤ min
{
δ

2 ·
(

2σ2

b′
in

+ 3d
η

)−1

,
1
36

}
= min

{
α∗ϵ

2

4L ·
((
σ2 + 3Ld

)
log (1 + L2)d

4α∗ϵ2

)−1

,
1
36

}
. (41)

for s ∈ [S′(x0, b) + 1, S(x0, b)− 1] where

S(x0, b) ≥S′(x0, b) + (τ ′)−1

=
(

log
2L ·W 2

2 (q0, pk+1|k+ 1
2 ,b

(·|x0, b))
α∗ϵ2

+ log log (1 + L2)d
4α∗ϵ2

)
· 32σ2 + 96Ld

Lα∗ϵ2
· log (1 + L2)d

4α∗ϵ2

+ 4Lσ2 + 12L2d

α∗ϵ2
· log (1 + L2)d

4α∗ϵ2
.

(42)

It should be noted that the last equation of Eq 42 only establishes when δ and η are chosen as their upper bounds, and
b′

in = 1.

Since the choice of S(x0, b) depend on the upper bound of W 2
2 (q1, pk+1|k+ 1

2 ,b
(·|x0, b)), we start to bound it. Line 3 of

Alg 2 has presented that q0 is a Gaussian-type distribution with η−1-strong convexity, then we have q0 also satisfies η−1-LSI
due to Lemma E.2, which implies

W 2
2 (q0, pk+1|k+ 1

2 ,b
(·|x0, b)) ≤ 2ηKL

(
q0
∥∥pk+1|k+ 1

2 ,b
(·|x0, b)

)
≤ η2FI

(
q0∥pk+1|k+ 1

2 ,b
(·|x0, b)

)
.

Noted that the relative Fisher information satisfies

FI
(
q0∥pk+1|k+ 1

2 ,b
(·|x0, b)

)
=
∫
q0(z)

∥∥∥∥∥∇ log q0(z)
pk+1|k+ 1

2 ,b
(z|x0, b)

∥∥∥∥∥
2

dz

=
∫
q0(z) ∥∇fb(z)−∇fb(0) +∇fb(0)−∇f(0) +∇f(0)∥2 dz

≤ 3L2Ez∼q0 [∥z∥2] + 3 ∥∇fb(0)−∇f(0)∥2 + 3 ∥∇f(0)∥2

= 3L2(η + ∥x0∥2) + 3 ∥∇fb(0)−∇f(0)∥2 + 3 ∥∇f(0)∥2
.

where the first inequality follows from [A1] with respect to fb, and the last equation follows from the explicit form of the
mean and variance of Gaussian-type q0. Taking the expectation for both sides, we have

Ex0,b

[
W 2

2 (q0, pk+1|k+ 1
2 ,b

(·|x0,b))
]
≤ 3η2 ·

(
L2η + L2Ex0

[
∥x0∥2

]
+ Eb

[
∥∇fb(0)−∇f(0)∥2

]
+ ∥∇f(0)∥2

)
≤ Ex0

[
∥x0∥2

]
+ 1

2L +
Eb

[
∥∇fb(0)−∇f(0)∥2

]
L2 + ∥∇f(0)∥2

L2

≤ Ex0

[
∥x0∥2

]
+ (2L2)−1 ·

(
2 ∥∇f(0)∥2 + L+ 2σ2/|b|

)
≤ Ex0

[
∥x0∥2

]
+ 2 ∥∇f(0)∥2 + L+ 2σ2

2L2
(43)
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where the second inequality follows from the choice of η, the third inequality follows from Lemma E.1, and the last
inequality establishes since |b| ≥ 1. To solve this problem, we start with upper bounding the second moment, i.e., Mk of pk
for any k ∈ [1,K]. For calculation convenience, we suppose L ≥ 1, δ < 1 without loss of generality and set

Cm := 4ηδ + 6σ2

bo
+
(

6
η2 + 4

)
M + 6d

η
≤ 2 + 6σ2 + (24L2 + 4)M + 12Ld.

In this condition, following from Lemma 3.2, we have

Mk+1 ≤
6
η2
k

·Mk + 4ηkδk + 6σ2

|bk|
+
(

6
η2
k

+ 4
)
M + 6d

ηk
= 24L2Mk + Cm,

which implies

Mk ≤
(
24L2)kM + Cm ·

(
1 + 24L2 + . . .+

(
24L2)k−1

)
≤
(
24L2)k · (M + Cm

24L2 − 1

)
≤
(
24L2)K · (M + 2 + 6σ2 + (24L2 + 4)M + 12Ld

)
.

(44)

Additionally, Lemma 3.2 also demonstrates that

Mk+ 1
2
≤Mk + ηkd ≤

(
24L2)K · (M + 2d+ 6σ2 + (24L2 + 4)M + 12Ld

)
for all k ∈ [0,K − 1]. Plugging Eq 44 into Eq 43, we have

Ex0,b

[
W 2

2 (q0, pk+1|k+ 1
2 ,b

(·|x0,b))
]

≤
(
24L2)K−1 ·

(
M + Cm + 2 ∥∇f(0)∥2 + L+ 2σ2

)
≤
(
24L2)K−1 · 30L2 ·

(
M + σ2 + d+ 1 + ∥∇f(0)∥2

)
,

which implies

Ex0,b

[
log(2L ·W 2

2 (q0, pk+1|k+ 1
2 ,b

(·|x0, b)))
]
≤ log

(
E
[
2L ·W 2

2 (q0, pk+1|k+ 1
2 ,b

(·|x0, b)
])

≤ log
[(

24L2)K · (M + σ2 + d+ 1 + ∥∇f(0)∥2
)]

= K · log(24L2) + log
(

30L2 ·
(
M + σ2 + d+ 1 + ∥∇f(0)∥2

))
≤ L

α∗
log (1 + L2)d

4α∗ϵ2
· log(24L2) + log

(
30L2 ·

(
M + σ2 + d+ 1 + ∥∇f(0)∥2

))
,

(45)

where the first inequality follows from Jensen’s inequality and the last inequality follows from the parameters’ choice shown
in Eq 35. By choosing S(x0, b) to its lower bound and taking the expectation for both sides of Eq 42, we have

Ex0,b [S(x0, b)] ≤ 32σ2 + 96Ld

Lα∗ϵ2 · log (1 + L2)d
4α∗ϵ2 · log log (1 + L2)d

4α∗ϵ2 + 4Lσ2 + 12L2d

α∗ϵ2 · log (1 + L2)d
4α∗ϵ2

+ 32σ2 + 96Ld

Lα∗ϵ2 · log (1 + L2)d
4α∗ϵ2 · E

[
log

(
2L · W 2

2 (q1, pk+1|k+ 1
2 ,b(·|x0, b))

α∗ϵ2

)]

≤ 32σ2 + 96Ld

Lα∗ϵ2 · log (1 + L2)d
4α∗ϵ2 · log log (1 + L2)d

4α∗ϵ2 + 4Lσ2 + 12L2d

α∗ϵ2 · log (1 + L2)d
4α∗ϵ2

+ 32σ2 + 96Ld

Lα∗ϵ2 · log (1 + L2)d
4α∗ϵ2 ·

(
log

30L2 (M + σ2 + d + 1 + ∥∇f(0)∥2)
α∗ϵ2 + L

α∗
log (1 + L2)d

4α∗ϵ2 · log(24L2)

)

≤ 4Lσ2 + 12L2d

α∗ϵ2 · log (1 + L2)d
4α∗ϵ2 + 32σ2 + 96Ld

Lα∗ϵ2 · log (1 + L2)d
4α∗ϵ2

· 2 · L

α∗
· log

30L2 (M + σ2 + d + 1 + ∥∇f(0)∥2)
α∗ϵ2 · log(24L2)

≤ 34L2(σ2 + 3Ld)
α2

∗ϵ2 · log(24L2) · log (1 + L2)d
4α∗ϵ2 · log

30L2 (M + σ2 + d + 1 + ∥∇f(0)∥2)
α∗ϵ2 ,
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for all x0 ∼ pk+1/2. Hence, the total gradient complexity will be

K · Ex0,b [S(x0, b)] = Õ(κ3ϵ−2 ·max{σ2, Ld}),

and the proof is completed.

C.2. Warm-started MALA Inner Samplers

We define the Reńyi divergence between two distributions as

Rr(p∥q) = 1
r − 1 log

∫ (
p(x)
q(x)

)r
· q(x)dx,

since it will be widely used in the following section. Then, we provide a detailed theoretical analysis.

Lemma C.5. Suppose [A1] holds and Alg 4 is implemented with following hyper-parameters’ settings:

γ =
√

3/η, τ = Θ̃
(

δη1/2

d1/2r1/2

)
, and S = Θ̃

(
d1/2r1/2

δ
log
(
∥x0∥2 + (η∥∇fb(0)∥)2)) ,

the underlying distribution qS of the output particle i.e., zS will satisfy

Rr(qS∥q∗) ≤ δ2,

whereRr denotes Reńyi divergence with order r.

Proof. We suppose the InnerULD is implemented as Alg 4. We denote the underlying distribution of (zs,vs) as q′
s and

its marginal distribution w.r.t. zs is denoted as qs. Since, we only consider Alg 4 rather than its outer loops, the target
distribution of Alg 4 can be abbreviated as

q∗(z) ∝ exp(−g(z)), q′
∗(z,v) ∝ exp

(
−g(z)− ∥v∥

2

2

)
, where g(z) := − log pk+1|k+ 1

2 ,b
(z|x0, b).

Combining Lemma B.2 and the choice of the step size, i.e., η ≤ 1/2L, we have

(2η)−1 · I ⪯ ∇2g(z) = ∇2q∗(z) ⪯ (3/2η) · I.

By data-processing inequality, we have
Rr(qS∥q∗) ≤ Rr(q′

S∥q′
∗).

By the weak triangle inequality of Reńyi divergence, i.e., Lemma 7 in (Vempala & Wibisono, 2019), we have

Rr(q′
S∥q′

∗) ≤ r − 1/2
r − 1 · R2r(q′

S∥q̃′
∗) +R2r−1(q̃′

∗∥q∗).

It can be noted that r−1/2
r−1 will be bounded by 2 when q ≥ 3/2 and q̃′

∗ denotes the underlying distribution of output particles
if we initialize q′

0 with q′
∗. Then, by combining Lemma E.9, Lemma E.10 and Lemma E.11, we conclude that

Rr(q′
S∥q′

∗) ≤ δ2

if ULD is run with friction parameter γ, step size τ , and iteration complexity N that satisfy:

γ =
√

3/η, τ ≲
δη3/4

d1/2r1/2T 1/2 , and S ≳
√
η

τ
log
((
dη + ∥x0 − z∗∥2) · rη1/2

δ2τ3

)
.

By recalling that T = Nτ , solving for these choices of parameters, and omitting logarithmic factors, we conclude that it
suffices to run ULD with the following choices of parameters:

γ =
√

3/η, τ = Θ̃
(

δη1/2

d1/2r1/2

)
, and S = Θ̃

(
d1/2r1/2

δ
log ∥x0 − z∗∥2

)
(46)
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where z∗ is the minimizer of g. Besides, the minimizer of g satisfies

∇g(z∗) = ∇fb(z∗) + η−1 · (z∗ − x0) = 0 ⇔ x0 = η∇fb(z∗) + z∗,

which implies

∥x0∥ = ∥η∇fb(z∗) + z∗∥ ≥ ∥z∗∥ − η∥∇fb(z∗)∥ ⇔ ∥x0∥+ η∥∇fb(z∗)∥ ≥ ∥z∗∥.

In this condition, it has

∥z∗∥ ≤ ∥x0∥+ η∥∇fb(z∗)−∇fb(0) +∇fb(0)∥ ≤ ∥x0∥+ Lη∥z∗∥+ η∥∇fb(0)∥

where the second inequality follows from [A1]. Since, we require Lη ≤ 1/2, then the previous inequality is equivalent to

∥z∗∥ ≤ 2∥x0∥+ 2η∥∇fb(0)∥.

Plugging this results into Eq 46, the hyper-parameter choice of Alg 4 can be concluded as

γ =
√

3/η, τ = Θ̃
(

δη1/2

d1/2r1/2

)
, and S = Θ̃

(
d1/2r1/2

δ
log
(
∥x0∥2 + (η∥∇fb(0)∥)2)) .

Lemma C.6 (Variant of Theorem 1 of (Wu et al., 2022)). Using the notations presented in Alg 3, suppose [A1] holds and
Alg 3 is implemented when

τ = Θ
(
ηd−1/2 log−2

(
max

{
d,
χ2(q0∥q∗)

δ2

}))
, and S = Θ

(
d1/2 log3

(
χ2(q0∥q∗)

δ2

))
.

Then, underlying distribution qS of the output particle i.e., zS will satisfy

TV (qS , q∗) ≤ δ.

Proof. We suppose the InnerMALA is implemented as Alg 3. We denote the underlying distribution of (zs,vs) as q′
s and

its marginal distribution w.r.t. zs is denoted as qs. Since, we only consider Alg 3 rather than its outer loops, the target
distribution of Alg 3 can be abbreviated as

q∗(z) ∝ exp(−g(z)), q′
∗(z,v) ∝ exp

(
−g(z)− ∥v∥

2

2

)
, where g(z) := − log pk+1|k+ 1

2 ,b
(z|x0, b).

Theorem 1 of (Wu et al., 2022) upper bound the total variation distance between the underlying distribution of output
particles and the target distribution as

TV (qS , q∗) ≤ Hs + Hs

s
· exp

(
−SΦs

2

)
where Hs is defined as

Hs := sup {|q0(A)− q∗(A)| : q∗(A) ≤ s}

and Φs denotes the s-conductance. The final step size and gradient complexity will depend on the warm-start M defining as
Hs ≤Ms. Since, we use χ2 distance to define the warm-start in our analysis. We have additionally the following inequality.

|q0(A)− q∗(A)| =
∣∣∣∣∫ 1A

(
dq0

dq∗
− 1
)

dq∗

∣∣∣∣ ≤
√∫

1Adπ ·
∫ (dq0

dq∗
− 1
)2

dq∗ ≤
√
q∗(A)χ2(q0∥q∗),

which means Hs ≤
√
sχ2(q0∥q∗). In this condition, we have

TV (qS , q∗) ≤
√
sχ2(q0∥q∗) +

√
χ2(q0∥q∗)

s
· exp

(
−SΦs

2

)
28



Faster Sampling via Stochastic Gradient Proximal Sampler

By requiring

s = δ2

4χ2(q0∥p∗) and S = 2
Φs

log
(

8χ2(q0∥p∗)
δ2

)
,

we can achieve TV (qS , p∗) ≤ ϵ. Besides, we can obtain the M by

M ≥ Hs

s
⇐ M ≥

√
χ2(q0∥q∗)

s
= 2χ2(q0∥q∗)

δ
. (47)

Since the target distribution q∗ is (1/2η)-strongly convex and (3/2η)-smooth when η ≤ 1/(2L) due to Lemma B.2, plugging
the choice of M shown in Eq 47 into Theorem 1 of (Wu et al., 2022), we know the step size should be

τ = Θ
(
ηd−1/2 log−2

(
max

{
d,
χ2(q0∥q∗)

δ2

}))
and the gradient complexity will be

S = Θ
(
d1/2 log3

(
χ2(q0∥q∗)

δ2

))
.

Hence, the proof is completed.

Corollary C.7. Suppose [A1] holds, we implement Alg 4 with

γ =
√

3/η, τ = Θ̃
(
η1/2

d1/2

)
, and S = Θ̃

(
d1/2 log

(
∥x0∥2 + (η∥∇fb(0)∥)2)) ,

and implement Alg 3 with

τ = Θ
(
ηd−1/2 log−2 (max

{
d, δ−1})) , and S = Θ

(
d1/2 log3 (1/δ)

)
.

The underlying distribution qS of the output particle of Alg 3 will have

KL
(
qS
∥∥q∗
)
≤ δ,

and the total gradient complexity will be

Θ̃
(
|b|d1/2 (log

(
∥x0∥2 + (η∥∇fb(0)∥)2)+ log3(1/δ)

))
.

Proof. Using the notations in Alg 3, by Lemma C.5, Alg 4 can outputs a distribution q0 satisfying

R3(q0∥q∗) ≤ log 2,

which implies
χ2(q0∥q∗) ≤ exp (R2(q0∥q∗))− 1 ≤ exp (R3(q0∥q∗))− 1 ≤ 1.

It should be noted that the second inequality follows from the monotonicity of Reńyi divergence. In this condition, the
gradient complexity of Alg 4 should be

|b| × S′ = Θ̃
(
|b|d1/2 log

(
∥x0∥2 + (η∥∇fb(0)∥)2)) ,

where S′ denotes the iteration number of Alg 4, i.e., Line 2 of Alg 3. With the warm start in χ2 divergence, we invoke
Lemma C.6 and achieve

TV (qS , q∗) ≤ δ2/5.

with the following gradient complexity

|b| × S = Θ
(
|b|d1/2 log3 (1/δ)

)
.
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Then, we start upper bound the KL divergence between qS and q∗ and have

KL
(
qS
∥∥q∗
)
≤χ2(qS∥q∗) =

∫ (
qS(z)
q∗(z) − 1

)2
q∗(z)dz ≤

√∫ ∣∣∣∣qS(z)
q∗(z) − 1

∣∣∣∣ q∗(z)dz ·
∫ ∣∣∣∣qS(z)

q∗(z) − 1
∣∣∣∣3 q∗(z)dz

≤

√√√√TV (qS , q∗) ·
(∫ ∣∣∣∣qS(z)

q∗(z)

∣∣∣∣3 dz + 1
)

=
√

TV (qS , q∗) · (exp (2R3(qS∥q∗)) + 1)

≤
√

TV (qS , q∗) · (exp (2R3(q0∥q∗)) + 1) ≤ δ,

where the second inequality follows from Cauchy–Schwarz inequality, the second equation follows from the definition of
Reńyi divergence, and the last inequality follows from data-processing inequality. Therefore, to ensure the convergence of
KL divergence, i.e.,

KL
(
qS
∥∥q∗
)
≤ δ,

the total complexity of this warm start MALA will be

Θ̃
(
|b|d1/2 (log

(
∥x0∥2 + (η∥∇fb(0)∥)2)+ log3(1/δ)

))
.

Hence, the proof is completed.

Theorem C.8. Suppose [A1]-[A3] hold. With the following parameter settings

ηk = 1
2L, K = L

α∗
· log (1 + L2)d

4α∗ϵ2
, δk = 2ϵ2α∗

L
·
(

log (1 + L2)d
4α∗ϵ2

)−1

bo = min
{

σ2

4α∗ϵ2
· log (1 + L2)d

4α∗ϵ2
, n

}
,

for Alg 1, if we choose Alg 3 as the inner sampler shown in Line 5 of Alg 1, set

γ =
√

6L, τ = Θ̃
(

1√
2Ld

)
, and S = Θ̃

(
d1/2 log

(
∥x0∥2 + ∥∇fb(0)∥2

2L2

))
.

for Alg 4, and

τ = Θ
(

1
2L
√
d
· log−2

(
max

{
d,

L

2α∗ϵ2
log (1 + L2)d

4αϵ2

}))
,

and S = Θ
(
d1/2 log3

(
L

2α∗ϵ2
log (1 + L2)d

4αϵ2

))
.

for Alg 3, then the underlying distribution of returned particles pK in Alg 1 satisfies TV (pK+1, p∗) < 3ϵ. In this condition,
the expected gradient complexity will be Θ̃

(
κ3d1/2σ2ϵ−2).

Proof. We provide this proof with a similar proof roadmap shown in Theorem C.4. Specifically, we show the detailed
implementation of Alg 1 with Alg 2 in the following.

• For all k ∈ {0, 1, . . . ,K − 1}, the mini-batch bk in Alg 1 Line 2 has a uniformed norm which is denoted as |bk| = bo.

• For all k ∈ {0, 1, . . . ,K−1}, the conditional probability densities pk+1|k+1/2,b(·|xk+1/2bk) in Alg 1 Line 4 formulated
as Eq 6 share the same L-2 regularized coefficients, i.e., η−1.

• For all k ∈ {0, 1, . . . ,K − 1}, the inner sampler shown in Alg 1 Line 5 is chosen as Alg 3.

By requiring

η ≤ 1
2L and K ≥ (2α∗η)−1 · log (1 + L2)d

4α∗ϵ2
= L

α∗
· log (1 + L2)d

4α∗ϵ2
,
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we have √
(1 + L2)d

4α∗
· (1 + α∗η)−K ≤

√
(1 + L2)d

4α∗
· exp(−α∗Kη) ≤ ϵ.

Besides by requiring

bo ≥ min
{
Kησ2

2ϵ2 , n

}
= min

{
σ2

4α∗ϵ2
· log (1 + L2)d

4α∗ϵ2
, n

}
,

we have σ
√
Kη/(2bo) ≤ ϵ. Additionally, by requiring,

δ ≤ 2ϵ2

K
= 2ϵ2α∗

L
·
(

log (1 + L2)d
4α∗ϵ2

)−1

.

With these conditions, we have

TV (pK , p∗) ≤

√√√√1
2

K−1∑
i=0

δi + σ

√
Kη

2bo
+

√
(1 + L2)d

4α∗
· (1 + α∗η)−K ≤ 3ϵ

which follows from Theorem 3.1.

Errors control of inner loops. To determine the hyper-parameter settings of Alg 4 and Alg 3, we can plug the choice of
outer loops step size η and inner loops error tolerance δ, i.e.,

η = 1
2L and δ = 2ϵ2α∗

L
·
(

log (1 + L2)d
4α∗ϵ2

)−1

into Corollary C.7. In this condition, for Alg 4, we set

γ =
√

6L, τ = Θ̃
(

1√
2Ld

)
, and S = Θ̃

(
d1/2 log

(
∥x0∥2 + ∥∇fb(0)∥2

2L2

))
.

For Alg 3, we set

τ = Θ
(

1
2L
√
d
· log−2

(
max

{
d,

L

2α∗ϵ2
log (1 + L2)d

4αϵ2

}))
,

and S = Θ
(
d1/2 log3

(
L

2α∗ϵ2
log (1 + L2)d

4αϵ2

))
.

Then, the underlying distribution qS of the output particle of Alg 3 will satisfy

KL
(
qS
∥∥q∗
)
≤ 2ϵ2α∗

L
·
(

log (1 + L2)d
4α∗ϵ2

)−1

= δ,

and the total gradient complexity will be

Θ̃
(
bod

1/2 (log
(
∥x0∥2 + (η∥∇fb(0)∥)2)+ log3(1/δ)

))
.

Since log(1/δ) will only provide additional log terms which will be omitted in Θ̃, we only consider the following inequality,
i.e.,

Ex0,b

[
bod

1/2 log
(
∥x0∥2 + (η∥∇fb(0)∥)2)] ≤ bod1/2 log

(
E
[
∥x0∥2

]
+ η2E

[
∥∇fb(0)∥2

])
≤ bod1/2 log

(
E
[
∥x0∥2

]
+ 2η2 ∥∇f(0)∥2 + 2η2E

[
∥∇fb(0)−∇f(0)∥2

])
≤ σ2d1/2

4α∗ϵ2
· log (1 + L2)d

4α∗ϵ2
· log

(
E
[
∥x0∥2

]
+ ∥∇f(0)∥2

2L2 + σ2

2L2

) (48)
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the first inequality follows from Jensen’s inequality, the second follows from triangle inequality, and the last follows
from [A3]. Here, we should note that the underlying distribution of random variable x0 is pk+1/2. Hence, the second
moment bound, i.e., Mk+1/2 of pk+1/2 for any k ∈ [0,K − 1] is required.

To solve this problem, we start with upper bounding the second moment, i.e., Mk of pk for any k ∈ [1,K]. For calculation
convenience, we suppose L ≥ 1, δ < 1 without loss of generality and set

Cm := 4ηδ + 6σ2

bo
+
(

6
η2 + 4

)
M + 6d

η
≤ 2 + 6σ2 + (24L2 + 4)M + 12Ld.

In this condition, following from Lemma 3.2, we have

Mk+1 ≤
6
η2
k

·Mk + 4ηkδk + 6σ2

|bk|
+
(

6
η2
k

+ 4
)
M + 6d

ηk
= 24L2Mk + Cm,

which implies

Mk ≤
(
24L2)kM + Cm ·

(
1 + 24L2 + . . .+

(
24L2)k−1

)
≤
(
24L2)k · (M + Cm

24L2 − 1

)
≤
(
24L2)K · (M + 2 + 6σ2 + (24L2 + 4)M + 12Ld

)
.

Additionally, Lemma 3.2 also demonstrates that

Mk+ 1
2
≤Mk + ηkd ≤

(
24L2)K · (M + 2d+ 6σ2 + (24L2 + 4)M + 12Ld

)
for all k ∈ [0,K − 1]. Plugging the following inequality, i.e.,

σ2d1/2

4α∗ϵ2
· logE

[
∥x0∥2

]
≤ Ld1/2σ2

4α2
∗ϵ

2 log (1 + L2)d
4α∗ϵ2

log 24L2 log
(
M + 2d+ 6σ2 + (24L2 + 4)M + 12Ld

)
into the RHS of Eq 48 and omitting trivial log terms, we know the gradient complexity for each k will be Θ̃

(
κ2d1/2σ2ϵ−2).

After multiplying the total iteration number of Alg 1, i.e., K, the final gradient complexity will be Θ̃
(
κ3d1/2σ2ϵ−2). Hence,

the proof is completed.

D. Lemmas for Errors from Initialization of Inner Samplers
Proof of Lemma 3.2. We first suppose the second moment of p̂k is upper bounded and satisfies Ep̂k

[∥x∥2] ≤ mk.

According to Alg 1 Line 3, we have the closed form of the random variable x̂k+1/2 is

x̂k+ 1
2

= x̂k +√ηkξ, where ξ ∼ N (0, I).

Noted that ξ is independent with x̂k, hence, we have

Mk+ 1
2

:= E
[∥∥∥x̂k+ 1

2

∥∥∥2
]

= E
[
∥x̂k∥2

]
+ ηk · d ≤Mk + ηk · d. (49)

Then, considering the second moment of xk+1, we have

E
[
∥x̂k+1∥2

]
=
∫
p̂k+1(x) · ∥x∥2 dx

=
∫ ∫ p̂k+ 1

2
(y) ·

∑
b∈{1,2,...,n}

p̂k+1|k+ 1
2 ,b

(x|y, b) · pb(b)

 · ∥x∥2 dx

=
∑

b∈{1,2,...,n}

(
pb(b) ·

∫
p̂k+ 1

2
(y) ·

(∫
p̂k+1|k+ 1

2 ,b
(x|y, b) · ∥x∥2 dx

)
dy

) (50)
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Then, we focus on the innermost integration, suppose γ̂y(·, ·) as the optimal coupling between p̂k+1|k+ 1
2 ,b

(·|y) and
pk+1|k+ 1

2 ,b
(·|y). Then, we have∫

p̂k+1|k+ 1
2 ,b

(x|y) ∥x∥2 dx− 2
∫
pk+1|k+ 1

2 ,b
(x|y) ∥x∥2 dx

≤
∫
γ̂y(x̂,x)

(
∥x̂∥2 − 2 ∥x∥2

)
d(x̂,x) ≤

∫
γ̂y(x̂,x) ∥x̂− x∥2 d(x̂,x) = W 2

2

(
p̂k+1|k+ 1

2 ,b
, pk+1|k+ 1

2 ,b

)
.

(51)

Since pk+1|k+ 1
2 ,b

is strongly log-concave, i.e.,

−∇2
x′pk+1|k+ 1

2 ,b
(x′|x, b) = ∇2fb(x′) + η−1I ⪰

(
−L+ η−1

k

)
I ⪰ (2ηk)−1 · I,

the distribution pk+1|k+ 1
2 ,b

also satisfies (2ηk)−1 log-Sobolev inequality due to Lemma E.2. By Talagrand’s inequality, we
have

W 2
2

(
p̂k+1|k+ 1

2 ,b
, pk+1|k+ 1

2 ,b

)
≤ 4ηkKL

(
p̂k+1|k+ 1

2 ,b

∥∥pk+1|k+ 1
2 ,b

)
≤ 4ηkδk. (52)

Plugging Eq 51 and Eq 52 into Eq 50, we have

E
[
∥x̂k+1∥2

]
≤

∑
b∈{1,2,...,n}

(
pb(b) ·

∫
p̂k+ 1

2
(y) ·

(
4ηkδk + 2

∫
pk+1|k+ 1

2 ,b
(x|y) ∥x∥2 dx

)
dy

)
. (53)

To upper bound the innermost integration, we suppose the optimal coupling between p∗ and pk+1|k+ 1
2 ,b

(·|y) is γy(·, ·).
Then it has∫

pk+1|k+ 1
2 ,b

(x|y) ∥x∥2 dx− 2
∫
p∗(x) ∥x∥2 dx

≤
∫
γy(x′,x)

(
∥x′∥2 − 2 ∥x∥2

)
d(x′,x) ≤

∫
γy(x′,x) ∥x′ − x∥2 d(x′,x) = W 2

2 (p∗, pk+1|k+ 1
2 ,b

)
(54)

Since pk+1|k+ 1
2 ,b

satisfies LSI with constant (2ηk)−1. By Talagrand’s inequality and LSI, we have

W 2
2 (p∗, pk+1|k+ 1

2 ,b
) ≤ 4ηkKL

(
p∗
∥∥pk+1|k+ 1

2 ,b

)
≤ 4η2

k

∫
p∗(x) ·

∥∥∥∥∥∇ log p∗(x)
pk+1|k+ 1

2 ,b
(x|y, b)

∥∥∥∥∥
2

dx = 4η2
k

∫
p∗(x) ·

∥∥∥∥∇fb(x)−∇f(x) + x− y

ηk

∥∥∥∥2
dx

≤ 12η2
k ·
[∫

p∗(x) ∥∇fb(x)−∇f(x)∥2 dx + η−2
k

∫
p∗(x) ∥x∥2 dx + η−2

k ∥y∥
2
]
.

Combining this inequality with Eq 54, we have∫
pk+1|k+ 1

2 ,b
(x|y) ∥x∥2 dx ≤ 12η2

k

∫
p∗(x) ∥∇fb(x)−∇f(x)∥2 dx + 12M + 12 ∥y∥2 + 2M.

Plugging this inequality into Eq 53, we have

E
[
∥x̂k+1∥2

]
≤ 4ηkδk +

∑
b⊆{1,2,...,n}

24η2
k · pb(b)

∫
p̂k+ 1

2
(y) ·

(∫
p∗(x) ∥∇fb(x)−∇f(x)∥2 dx

)
dy

+ 28M +
∑

b⊆{1,2,...,n}

24 · pb(b)
∫
p̂k+ 1

2
(y) ∥y∥2 dy.

(55)

According to [A3], suppose we sample b uniformly from {1, 2, . . . , n}, then for any x ∈ Rd we have

Eb


∥∥∥∥∥∥ 1
|b|

|b|∑
i=1

(∇f(x)−∇fbi
(x))

∥∥∥∥∥∥
2
 = 1
|b|2

|b|∑
i=1

|b|∑
j=1

E
[
(∇fbi

(x)−∇f(x))⊤(∇fbj
(x)−∇f(x))

]

= 1
|b|2

|b|∑
i=1

E
[
∥∇fbi

(x)−∇f(x)∥2
]

= σ2

|b| .
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Plugging this equation into the second term of RHS of Eq 53, we have∑
b⊆{1,2,...,n}

pb(b)
∫
p̂k+ 1

2
(y) ·

(∫
p∗(x) ∥∇fb(x)−∇f(x)∥2 dx

)
dy

=
∫
p̂k+ 1

2
(y)
∫
p∗(x)Eb

[
∥∇fb(x)−∇f(x)∥2

]
dxdy = σ2

|b| .

Besides, for the last term of RHS of Eq 53, we have∑
b⊆{1,2,...,n}

pb(b)
∫
p̂k+ 1

2
(y) ∥y∥2 dy = Mk+ 1

2
.

With these conditions, Eq 55 can be reformulated as

Mk+1 := E
[
∥x̂k+1∥2

]
≤ 4ηkδk + 24η2

kσ
2

|b| + 28M + 24Mk+ 1
2

≤ 24 ·Mk + 4ηkδk + 24η2
kσ

2

|b| + 28M + 24ηkd.
(56)

where the last inequality follows from Eq 49. Hence, the proof is completed.

Remark D.1. According to Lemma 3.2, when L ≤ 1/5, We plug the following hyper-parameters settings, i.e.,

ηk = 1
2L, δk ≤

Ld

2 , and |bk| ≥
6σ2

d
,

into Eq 56, then we have

Mk+1 ≤Mk + 5(d+M) ⇒ MK ≤M +K · 5(d+M) ≤ 6K(d+M),

which is the second moment bound along the update of Alg 1.

E. Auxiliary Lemmas
Lemma E.1. Suppose a function f can be decomposed as a finite sum, i.e., f(x) = 1/n

∑n
i=1 fi(x) where [A3] is satisfied.

If we uniformly sample a minibatch b from {1, 2, . . . , n} which constructs a minibatch loss shown in Eq 3, then for any
x ∈ Rd, we have

Eb

[
∥∇fb(x)−∇f(x)∥2

]
≤ σ2

|b|

Proof. For minibatch variance, we have

Eb

∥∥∥∥∥ 1
|b|
∑
i∈b

(∇f(x)−∇fi(x))

∥∥∥∥∥
2
 = 1
|b|2E

∑
i∈b

∑
j∈b

(∇fi(x)−∇f(x))⊤(∇fj(x)−∇f(x))


= 1
|b|2E

[∑
i∈b

∥∇fi(x)−∇f(x)∥2

]
= σ2

|b| .

Hence, the proof is completed.

Lemma E.2 (Variant of Lemma 10 in (Cheng & Bartlett, 2018)). Suppose − log p∗ is m-strongly convex function, for any
distribution with density function p, we have

KL
(
p
∥∥p∗
)
≤ 1

2m

∫
p(x)

∥∥∥∥∇ log p(x)
p∗(x)

∥∥∥∥2
dx.
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By choosing p(x) = g2(x)p∗(x)/Ep∗

[
g2(x)

]
for the test function g : Rd → R and Ep∗

[
g2(x)

]
<∞, we have

Ep∗

[
g2 log g2]− Ep∗

[
g2] logEp∗

[
g2] ≤ 2

m
Ep∗

[
∥∇g∥2

]
,

which implies p∗ satisfies m-log-Sobolev inequality.

Lemma E.3 (Theorem 3 in (Chen et al., 2022)). Assume that p∗ ∝ exp(−f∗) satisfies [A2]. For any η > 0, and any initial
distribution p1 the k-th iterate pk of the proximal sampler with step size ηk satisfies

KL
(
pk+1

∥∥p∗
)
≤ KL

(
pk
∥∥p∗
)
· (1 + α∗ηk)−2

,

which means it has

KL
(
pk+1

∥∥p∗
)
≤ KL

(
p0
∥∥p∗
)
·
k∏
i=1

(1 + α∗ηk)−2
.

Lemma E.4. Suppose p∗ ∝ exp(−f∗) defined on Rd satisfies α∗-log-Sobolev inequality where f∗ satisfies [A1], p0 is the
standard Gaussian distribution defined on Rd, then we have

KL
(
p0
∥∥p∗
)
≤ (1 + L2)d

2α∗
.

Proof. According to the definition of LSI, we have

KL
(
p0
∥∥p∗
)
≤ 1

2α∗

∫
p1(x)

∥∥∥∥∇ log p1(x)
p∗(x)

∥∥∥∥2
dx = 1

2α∗

∫
p1(x) ∥−x +∇f∗(x)∥2 dx

≤ 1
2α∗

∫
p1(x)

(
∥x∥2 + L2∥x∥2) dx = (1 + L2)d

2α∗

where the second inequality follows from the L-smoothness of f∗ and the last equation establishes since Ep0 [∥x∥2] = d is
for the standard Gaussian distribution p0 in Rd.

Lemma E.5 (Convexity of KL divergence). Suppose {qi}i∈{1,2,...,n} and p are probability densities defined on Rd and
{wi}i∈{1,2,...,n} are real numbers satisfying

∀i ∈ {1, 2, . . . , n} wi ∈ [0, 1] and
n∑
i=1

wi = 1.

It has

KL
(

n∑
i=1

wiqi
∥∥p) ≤ n∑

i=1
wiKL

(
qi
∥∥p) .

Proof. We first consider the case when n = 2, which means it is only required to prove

KL
(
λq1 + (1− λ)q2

∥∥p) ≤ λKL
(
q1
∥∥p)+ (1− λ)KL

(
q2
∥∥p) (57)

for any λ ∈ [0, 1]. In this condition, we have

KL
(
λq1 + (1− λ)q2

∥∥p) =
∫

(λq1(x) + (1− λ)q2(x)) log(λq1(x) + (1− λ)q2(x))dx

−
∫

(λq1(x) + (1− λ)q2(x)) log p(x)dx.

(58)

Since φ(u) := u log u satisfies convexity, i.e.,

∇2φ(u) = u−1 > 0 ∀u > 0,
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which implies

λq1(x) + (1− λ)q2(x) log (λq1(x) + (1− λ)q2(x)) ≤ λq1(x) log q1(x) + (1− λ)q2(x) log q2(x),

then RHS of Eq 58 satisfies

RHS ≤
∫
λq1(x) log q1(x)dx−

∫
λq1(x) log p(x)dx

+
∫

(1− λ)q2(x) log q2(x)dx−
∫

(1− λ)q2(x) log p(x)dx = λKL
(
q1
∥∥p)+ (1− λ)KL

(
q2
∥∥p) .

Then, for n > 2 case, we suppose

KL
(
n−1∑
i=1

wiqi
∥∥p) ≤ n−1∑

i=1
wiKL

(
qi
∥∥p) . (59)

Then, by setting

q :=
∑n−1
i=1 wiqi
1− wn

=
∑n−1
i=1 wiqi∑n−1
i=1 wi

,

then we have

KL
(
n−1∑
i=1

wiqi
∥∥p) =KL

(
(1− wn)q + wnqn

∥∥p) ≤ (1− wn)KL
(
q
∥∥p)+ wnKL

(
qn
∥∥p)

≤(1− wn)
n−1∑
i=1

wi
1− wn

KL
(
qi
∥∥p)+ wnKL

(
qn
∥∥p) =

n∑
i=1

wiKL
(
qi
∥∥p) ,

where the first inequality follows from Eq 57 and the last inequality follows from Eq 59. Hence, the proof is completed.

Lemma E.6 (Lemma 11 in (Vempala & Wibisono, 2019)). Suppose the density function satisfies p ∝ exp(−f) where f is
L-smooth, i.e., [A1]. Then, it has

Ex∼p

[
∥∇f(x)∥2

]
≤ Ld.

Lemma E.7 (Lemma 5 in (Durmus et al., 2019)). Suppose the underlying distributions of random variables x and x+
√

2τξ
are p and p′ respectively, where ξ ∼ N (0, I). If p, p∗P2(Rd) and Ep∗ [log p∗] <∞, then it has

2τ · (Ex∼p′ [log p′(x)]− Ex∼p∗ [log p∗(x)]) ≤W 2
2 (p, p∗)−W 2

2 (p′, p∗).

Definition E.8 (Definition of Orlicz–Wasserstein metric). The Orlicz–Wasserstein metric between distributions p and q is

Wψ(p, q) := inf
(x,y)∼Γ(p,q)

∥x− y∥ψ

where

∥x∥ψ := inf
{
λ > 0 : E

[
ψ

(
∥x∥
λ

)
≤ 1
]}

.

Lemma E.9 (Theorem 4.4 in (Altschuler & Chewi, 2023)). Suppose q∗ ∝ exp(−g) where g is µ-strongly-convex and
L-smooth. Let P denote the Markov transition kernel for underdamped Langevin dynamics (ULD) when run with friction
paramter γ =

√
2L and step size τ ≲ 1/(κ

√
L). Then, for any target accuracy 0 < ϵ ≤

√
log 2/(i− 1), any Reńyi

divergence order i ≥ 1 and any two initial distributions q′
0, q

′
1 ∈ P(R2d),

Ri(PNq′
0∥PNq′

1) ≤ ϵ2,

if the number of ULD iteration is

N ≳

√
L

µτ
log
(

2Wψ(q0, q∗)
L1/2ϵ2τ3

)
,

where q0 is the marginal distribution of q′
0 w.r.t. the first d dimensions and Wψ is defined as Definition E.8.
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Lemma E.10 (Remark 4.2 in (Altschuler & Chewi, 2023)). Suppose q∗ ∝ exp(−g) where g is µ-strongly-convex and
L-smooth. We run underdamped Langevin dynamics (ULD) when with friction paramter γ =

√
2L, step size τ ≲ 1/(κ

√
L)

and initialize the distribution with
q′

0 = δx ⊗N (0, I),
then it has

Wψ(q0, q∗) ≲
√
d/µ+ ∥x− x∗∥

where x∗ denotes the minimizer of g.

Lemma E.11 (Lemma 4.8 in (Altschuler & Chewi, 2023)). Suppose q∗(z) ∝ exp(−g(z)) where g is µ-strongly-convex and
L-smooth. Let q′

∗(z,v) ∝ exp(−g(z)− ∥v∥2/2). Let P denote the Markov transition kernel for underdamped Langevin
dynamics (ULD) when run with friction paramter γ ≍

√
L and step size

τ ≲ L−3/4d−1/2i−1(T logN)−1/2,

where N is the total number of iterations and T = Nτ is the total elapsed time. Then,

Ri(PNq′
∗∥q′

∗) ≤ L3/2dτ2iT.

F. Additional Experiments
Due to space limitations, we defer some experimental details in Section 5 to this part.

In our experiments, we fix the number of stochastic gradient usage at 12000. As the primary goal of our experiments is
to verify our theory, we set the inner batch size, i.e., bs = 1. Additionally, to be more comparable with SGLD, we set
S′ = S − 1. Under these conditions, we primarily focus on tuning three other hyper-parameters. Among them, the inner
step size τ is chosen from the set {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4}, which somewhat corresponds to the step size in SGLD.
The inner iteration S is chosen from {20, 40, 80}, which also determines K = 12000/S. The outer step size η is a special
hyper-parameter in SPS-SGLD, which corresponds to the coefficient of quadratic regularizer in RGO. As our theory requires
it to be larger than τ in our theory, we choose it from {1.0, 4.0, 10.0} in our experiments. The optimal hyper-parameters
obtained through grid search are presented in Table 2.

Hyper-Params
Dimensions

d = 10 d = 20 d = 30 d = 40 d = 50

Inner step size τ 0.4 0.4 0.4 0.4 0.4
Inner iteration number S 40 20 20 80 80
Outer step size η 4.0 4.0 10.0 10.0 10.0

Table 2. Hyper-parameter settings for different dimension tasks based on the grid search.

For the choice of these hyper-parameters, the inner step size somewhat corresponds to the step size in SGLD and can be
set in the same order of magnitude. The outer step size η is a special hyper-parameter in SPS-SGLD, it requires to be
larger than τ in our theory and experiments. Furthermore, our theory indicates that the inner iteration number, i.e., S, is in
the same order of magnitude as η/τ . This principle of the hyper-parameter choice can be roughly verified by the optimal
hyper-parameter settings shown in Table 2. Moreover, we conduct a grid search for bs under our experimental settings. It is

Inner batch size
Dimensions

d = 10 d = 20 d = 30 d = 40 d = 50

bs = 1 0.105 0.063 0.064 0.060 0.055
bs = 5 0.143 0.078 0.081 0.074 0.082
bs = 10 0.138 0.092 0.086 0.122 0.110
bs = 20 0.175 0.107 0.090 0.142 0.117

Table 3. The marginal accuracy results under different bs settings.

worth noting that since we fix the gradient usage, increasing the inner batch size will cause the iteration number to decrease
sharply. Consequently, the overall performance in our experiments is worse than that observed with the bs = 1 setting.
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Although we only provide gradient complexity in our theory, both SGLD and SPS-SGLD are first-order samplers, with the
primary computational cost stemming from the number of gradient calculations referred to as gradient complexity in our
paper. Consequently, we can assert that SGLD and SPS-SGLD have nearly the same computational cost when the number
of gradient calls is fixed, which is set at 12k in our experiments. To substantiate this claim, we present the wall clock time
under 12k gradient calls (normalizing SPS-SGLD wall clock time to 1) in the table below.

Algorithms
Dimensions

d = 10 d = 20 d = 30 d = 40 d = 50

SPS-SGLD 1 1 1 1 1
SGLD 0.971 0.968 0.981 0.970 0.969

Table 4. The wall clock time comparison between SPS-SGLD and SGLD.

Moreover, we add some other baselines, e.g., such as AB-SGLD and CC-SGLD proposed by Das et al. (2023). We
selected these variants because they achieved the best theoretical results, apart from our own. With target distributions set
as shown in Section 5, the total variation distance performance for different algorithms is presented below. The results

Algorithms
Dimensions

d = 10 d = 20 d = 30 d = 40 d = 50

SPS-SGLD 0.105 0.063 0.064 0.060 0.055
CC-SGLD 0.143 0.125 0.105 0.121 0.114
AB-SGLD 0.154 0.129 0.121 0.120 0.119
vanila-SGLD 0.176 0.144 0.122 0.131 0.134

Table 5. The marginal accuracy results comparison among SPS-SGLD and other SGLD variants.

demonstrate that SPS-SGLD significantly outperforms CC-SGLD and AB-SGLD. Furthermore, such SGLD variants can
also be incorporated as inner samplers within our framework, potentially enhancing the performance of SPS-type methods
even further. Additionally, we would be happy to modify the name to distinguish it from SGLD variants, such as CC-SGLD
and AB-SGLD.

38


