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Abstract
The neural implicit surface reconstruction from
unorganized points is still challenging, especially
when the point clouds are incomplete and/or noisy
with complex topology structure. Unlike previ-
ous approaches performing neural implicit surface
learning relying on local shape priors, this paper
proposes to utilize global shape priors to regular-
ize the neural implicit function learning for more
reliable surface reconstruction. To this end, we
first introduce a differentiable module to gener-
ate a smooth indicator function, which globally
encodes both the indicative prior and local SDFs
of the entire input point cloud. Benefit from this,
we propose a new framework, called NeuralIndi-
cator, to jointly learn both the smooth indicator
function and neural implicit function simultane-
ously, using the global shape prior encoded by
smooth indicator function to effectively regular-
ize the neural implicit function learning, towards
reliable and high-fidelity surface reconstruction
from unorganized points without any normal in-
formation. Extensive evaluations on synthetic and
real-scan datasets show that our approach con-
sistently outperforms previous approaches, espe-
cially when point clouds are incomplete and/or
noisy with complex topology structure.

1. Introduction
Surface reconstruction from unordered 3D point clouds con-
tinues to be a critical research topic in the computer graphics
and vision communities, with many impressive approaches
achieving huge progress in the past few decades (Carr
et al., 2001; Kazhdan et al., 2006; Kazhdan & Hoppe, 2013;
Huang et al., 2019; Lu et al., 2019). The recent works that
formulate the latent geometry as a neural implicit function
(i.e. signed distance function, SDF) (Park et al., 2019), have

*Equal contribution 1School of Artificial Intelligence, Bei-
jing Normal University, Beijing, China. Correspondence to: Hua
Huang <huahuang@bnu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

demonstrated the benefits to represent shapes in arbitrary
topology and at any resolution, and inspired subsequent
works for point cloud surface reconstruction in an either
supervised (Dai & Nießner, 2019; Erler et al., 2020; Jiang
et al., 2020; Duan et al., 2020; Peng et al., 2020; Chen &
Zhang, 2021; Chen et al., 2022; Xiao et al., 2022; Huang
et al., 2023) or unsupervised (Williams et al., 2019; Atzmon
& Lipman, 2020; Gropp et al., 2020; Hanocka et al., 2020;
Atzmon & Lipman, 2021; Wang et al., 2021; Peng et al.,
2021; Zhao et al., 2021; Ma et al., 2022a; Chen et al., 2023a;
Wang et al., 2023) manner.

Compared with the supervised approaches, the unsupervised
learning doesn’t need any extra supervised label and gets
rid of generalization problem, which has receiving more
and more research attention these years. SAL(Atzmon &
Lipman, 2020) and its variants (Gropp et al., 2020; Atzmon
& Lipman, 2021; Lipman, 2021) are probably one of first
few attempts to perform such unsupervised learning. Re-
cently, some works introduce geometry priors to regularize
neural implicit function learning, such as deep geometric pri-
ors (Williams et al., 2019), self-similarity pattern (Hanocka
et al., 2020; Zhao et al., 2021), Iso-Points (Wang et al.,
2021), predictive context prior (PCP (Ma et al., 2022a)), On-
Surface prior (Ma et al., 2022b), Thin Plate function (Chen
et al., 2023a) or MLS function (Wang et al., 2023) etc, thus
achieving much better surface reconstruction quality. How-
ever, such approaches still couldn’t achieve reliable surface
reconstruction when input point cloud is incomplete and/or
noisy with complex topology.

In this paper, we introduce a new framework to learn the
neural implicit function, which aims at more reliable and
accurate surface reconstruction even for incomplete and/or
noisy points with complex topology structure. Different
from previous approaches that use local shape priors, our
motivation is to explore more effective global shape priors
from the entire shape itself, to regularize the neural implicit
function learning. Our key observation is that indicator
function encodes the global geometry and topology priors
of the entire shape, which can be used to guide the neu-
ral implicit function learning. However, a naive indicator
function (Peng et al., 2021) is discontinues without exact
gradient definition, which would easily introduce discontin-
ues surface reconstruction for the neural implicit function
learning.
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Figure 1. We present a new neural implicit function learning strategy, called NeuralIndicator, for surface reconstruction directly from
unordered point cloud in an unsupervised manner. Starting from a given incomplete point cloud (a), our NeuralIndicator learns the global
shape priors from the entire point cloud via a smooth indicator function, and simultaneously use such effective priors (top colored) to
regularize the neural implicit function learning in an iterative way (b)-(d) for the final complete surface reconstruction (e), with fine
geometric details preserved as show in two different views (f). The joint learning of both smooth indicator function and neural implicit
function enables reliable surface reconstruction, even for incomplete and/or noisy scanned point clouds with complex topology structure.

To overcome such drawback, we introduce a more reliable
smooth indicator function, which is obtained by applying
smooth constraints on the gradient domain. The smooth
indicator function approximates the local SDFs, and inherits
the global indicative priors at the same time, which serves a
suitable basis to encode the global shape priors for the entire
point cloud. What’s more, we also propose a differentiable
generation module, which enables differentiable smooth in-
dicator function generation (SIFG) from a set of oriented
points (Fig. 1), with the oriented points served as learning
parameters. Based on the SIFG, we further introduce a new
joint learning framework, called NeuralIndicator, which
leverages effective neural indicator priors to learn both the
smooth indicator function and neural implicit function. With
such regularization, our NeuralIndicator can reliably fit the
input point cloud for high-fidelity surface reconstruction,
even for incomplete and/or noisy input with complex topol-
ogy structure. Note that both the smooth indicator function
and neural implicit function are learnt directly from the in-
put point cloud (Fig. 2) , in an unsupervised fashion without
any point normals input or supervision.

To show the effectiveness, we have extensively evaluated
our approach on both the public synthetic (ABC (Koch et al.,
2019), FAMOUS (Erler et al., 2020), Reconbench (Berger
et al., 2013), Thingi10K (Zhou & Jacobson, 2016)) and
challenging real-scan (DPoint (Wu et al., 2015)) point cloud
datasets, by comparing with previous neural implicit surface
reconstruction approaches such as Point2Mesh (Hanocka
et al., 2020), Iso-Points (Wang et al., 2021), SAP (Peng
et al., 2021), PCP (Ma et al., 2022a), NeuralTPS (Chen
et al., 2023a) and Neural-IMLS (Wang et al., 2023), and

also the traditional surface reconstruction approach such
as PSR (Kazhdan et al., 2006) and iPSR (Hou et al., 2022)
respectively. Our approach consistently outperforms those
previous approaches for surface reconstruction from point
cloud in both quantitatively and qualitatively, even when
input point clouds are incomplete and/or noisy with complex
topology structure.

2. Related Work
Implicit Surface Reconstruction. The traditional implicit
surface representation can generate smooth and water-tight
shape surfaces, and has been the mainstream method since
the pinoor work of PSR (Kazhdan et al., 2006; Kazhdan &
Hoppe, 2013). Subsequent works RBF (Dinh et al., 2002;
Carr et al., 2001), MLS (Merry et al., 2014; Lu et al., 2019),
SDF (Curless & Levoy, 1996; Huang et al., 2021) and vari-
ational implicit surface (Zagorchev & Goshtasby, 2011;
Evrard et al., 2018) etc., have also achieved impressive sur-
face reconstruction. Very recently, iPSR (Hou et al., 2022)
provides an iterative learning framework for accurate point
normal estimation. Different from those traditional implicit
surface reconstruction approaches, our work adopts neural
implicit function (Wang et al., 2021; Hanocka et al., 2020)
to represent shape geometry, and aims at more accurate sur-
face reconstruction using neural implicit surface learning
than traditional implicit surface reconstruction approaches.

Supervised Neural Implicit Surface Reconstruction.
DeepSDF (Park et al., 2019) and its subsequent works (Jiang
et al., 2020) have shown impressive effectiveness to recon-
struct surface using neural implicit representation (Chen
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Figure 2. The system overview of our approach. For an input point cloud, our NeuralIndicator efficiently learns the effective neural
indicator priors, which are used to regularize the neural implicit function optimization. Note that our system is an end-to-end unsupervised
learning framework, with oriented points and MLP parameters θ of the neural implicit function f(x, θ) serving as trainable network
parameters.

et al., 2021; Landgraf et al., 2022; Chen et al., 2023b).
This inspired many works such as Convolutional Occu-
pancy Networks (Peng et al., 2020), SA-ConvONet (Tang
et al., 2021), Points2Surf (Erler et al., 2020), NMC (Chen
& Zhang, 2021), CurriculumDeepSDF (Duan et al., 2020)
and NDC (Chen et al., 2022) to perform neural implicit
surface reconstruction in a supervised manner. Recently,
NKSR (Huang et al., 2023) adopts an adaptive and hierachi-
cal neural kernel field for surface reconstruction from point
cloud. Our work is inspired by the success of those data-
driven approaches but focuses on surface reconstruction in
an unsupervised learning manner.

Unsupervised Neural Implicit Surface Reconstruction.
SAL (Atzmon & Lipman, 2020) and its variants (Gropp
et al., 2020; Atzmon & Lipman, 2021) provide a sign agnos-
tic learning to learn the signed distance function in a unsu-
pervised way, achieving impressive surface reconstruction
results. The subsequent works adopt to use more extra pri-
ors, such as Wasserstein Distance function (Williams et al.,
2019), smoothness (Poursaeed et al., 2020), self-similarity
shape prior (Hanocka et al., 2020; Zhao et al., 2021), neural
tangent kernel (NTK) (Chu et al., 2021), iso-points (Wang
et al., 2021), predictive context priors (Ma et al., 2022a),
for better surface reconstruction. OnSurf (Ma et al., 2022b)
introduced an on-surface decision function (ODF) as shape
prior for surface reconstruction from point cloud, while the
ODF module still need ground truth signed distance super-
vision to train, which is limited to cover the geometric vari-

ations when generalizing to unseen point clouds. Recently,
NeuralTPS (Chen et al., 2023a) adopted Thin Plate Surface
(TPS) function and Neural-IMLS (Wang et al., 2023) used
MLS function as priors for surface reconstruction. But they
often lead to oversmooth surface reconstruction results with-
out too-much fine-grained details. Besides, Peng et al. (Peng
et al., 2021) introduce Shape-As-Point neural solver for sur-
face reconstruction, but only on naive indicator function,
which would easily introduce unsatisfied surface reconstruc-
tion results. Different from those previous approaches, our
method proposes to leverage a smooth indicator function
as global shape priors to regularize neural implicit func-
tion learning, which can achieve more reliable and accurate
surface reconstruction results.

3. NeuralIndicator
Given unordered point cloud set X = {xi}, our goal is to
learn a neural implicit function f(x, θ) for surface recon-
struction from X. Our key solution is to introduce a smooth
indicator function χP , and leverage the global shape priors
from χP to regularize f(x, θ) learning. Fig. 2 demonstrates
the overview of our full system.

Smooth Indicator Function. Inspired by previous
works (Kazhdan, 2005; Kazhdan et al., 2006; Kazhdan &
Hoppe, 2013), for an oriented point set P = {(pi, ni)},
we seek to generate a smooth version of indicator function
χP , where its gradient field ▽χP approximates P’ normal

3



NeuralIndicator: Implicit Surface Reconstruction from Neural Indicator Priors

Figure 3. A tiny example of the smooth indicator field generated
from oriented points, which are sampled from the bunny model
(top left). We show one slice view in x-,y-,z-plane of the indicator
field. Note that the indicator values are smooth especially for the
shape boundary areas.

vector filed V, i.e., V(p) =
∑

i δ(p − pi)ni, δ(·) is Kro-
necker Delta function. We adopt to add smooth constraint to
its gradient domain, by minimizing the volume integration
E(M) = 1

|M |
∫
M

|HχP (x)|2dx to be zero, where HχP is
the Hessian matrix as:

HχP = [
∂ ▽ χP

∂x1

∂ ▽ χP

∂x2

∂ ▽ χP

∂x3
].

So specifically, we generate an smooth indicator function
χP (see the property of SIF in Appendix A) from oriented
points set P by optimizing the energy function as:

E =
1

|M |

∫
M

| ▽ χP (x)−V(x)|2dx+

λ

|M |

∫
M

|HχP (x)|2dx. (1)

About Point Normals Computation. During the learning
of f(x, θ), we don’t explicitly compute point normals for
the input point cloud, but learn to optimize the oriented point
set P = {(pi, ni)} to generate smooth indicator function,
by regularizing the input point cloud locating on-surface of
the smooth indicator function. So basically, we optimize
normal information for the oriented point set P, and let the
smooth indicator function generated by the oriented point
set P to fit the input point cloud, and we don’t need any
point normal input for the point cloud.

3.1. Smooth Indicator Function Generation

Since directly optimizing Eq. (1) to obtain χP is challeng-
ing, we proposed to estimate it in a differentiable way with
two steps: (1) we first solve a Partial Differential Equa-
tion from E to obtain a smooth indicator filed, and then (2)
recover the smooth indicator function by trilinearly interpo-
lating the indicator filed.

Smooth Indicator Field. According to the Euler-Lagrange
formulation, optimizing the energy function E can be ob-
tained by solving a Partial Differential Equation as:

∆χP + λ▽ ·
∑
i

∂ ▽ χP

∂xi
= ▽ · V

⇒ ∆χP + λ▽ ·(∆χP ,∆χP ,∆χP ) = ▽ · V (2)

For an efficient solution, we adopt the spectrum
method (Canuto et al., 2007) i.e. Fast Fourier Transform
(FFT) to solve the above PDE over a uniform voxel grid,
which have already been optimized to support GPUs, TPU
and mainstream deep learning framework. For brevity, we
denote χ̂P = FFT (χP ) as the Fast Fourier Transform
(FFT) of the indicator function χP , and obtain χP follow-
ing:

χP = IFFT (χ̂P )

χ̂P (ω) = G(ω)⊙ iω · V̂
−2π|ω|2(1 + 2λπi

∑
j ωj)

G(ω) = exp(−2
σ2|ω|2

r2
) (3)

with ω = (ω1, ω2, ω3) ∈ R3 is the spectral frequencies,
IFFT (·) represent the inverse Fast Fourier Transform
(IFFT) operation, V̂ = FFT (V), ⊙ denote element-wise
product and G(·) represents a Gaussian smoothing kernel of
bandwidth σ at grid resolution r. Please refer to Appendix B
for more details.

Trilinear Interpolation. After estimating the indicator filed,
we propose to recover the continues indicator function by
linearly interpolating the indicator filed. Specifically, for
any position x = (x1, x2, x3) ∈ R3 we search the voxel
v that x locates with the eight corner points coordinates
are {⌊x1⌋ ± 1, ⌊x2⌋ ± 1, ⌊x3⌋ ± 1}. Then we compute the
indicator value of position x as χp(x) = 1

|v|
∑

i w(vi −
x)χP (vi), where w(·) is a trilinear interpolation weight
function. In this way, we obtain the final continues indicator
function χP that is generated from an oriented point set P .
An tiny example for the smooth indicator function generated
from an oriented point set sampled from a bunny model, is
illustrated in Fig. 3.

3.2. Neural Indicator Prior

For an pair of implicit functions, i.e. the indicator function
χP and signed distance function f(x, θ), we can formulate
f(x, θ) = (−1)χP ∗fu with fu represents the absolute part
of f(x, θ). Thus we propose to regularize both the signed
part fs = (−1)χP and absolute part fu with effective loss
measurements from the indicator function χP respectively.

Indicator Loss Lind. Since the signed part fs of f(x, θ)
is directly related with the indicator function χP as fs =
(−1)χP , we introduce the binary cross entropy H as indica-
tor loss to regularize the signed part fs as:

Lind =
1

|G|

G∑
i

H(σ(χP (xi), [f
s(xi) > 0]),
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with G is point sampling set, σ(·) is the logistic function to
convert the sign logits to probabilities, [fs(xi) > 0] is 1 if
xi is outside the surface and 0 otherwise.

Absolute Distance Loss Ludf . For the regularization of
the absolute part fu(x) = miny∈∂f(x,θ)|y − x|2, we first
introduce a differential projection Γ : Ps → P ′

s, and then
define an absolute distance loss Ludf as:

Ludf =
1

|Ω|

Ω∑
i

|dist(pi,P
′

s)− dist(pi,X)|2,

with dist(pi,X) = minx∈X|pi − x|2 is distance function
from pi to point cloud set X and Ω is point sampling set. We
adopt the back-propagation mechanism for the on-surface
points Ps following (Remelli et al., 2020), by approximat-
ing the gradient between on-surface points Ps to any point
p using the inverse surface normal (Remelli et al., 2020)
∂Ps

∂p = −np, where np is the normal of the on-surface point
Ps. In this way, we enable the differential back-propagation
of the absolute distance loss Ludf . Please see more details
in Appendix C.

SDF Loss Lsdf and Eikonal Loss Lek. Since the projected
on-surface point set P ′

s locate the on-surface of the signed
distance function, we introduce a regularization for P ′

s as
SDF loss Lsdf = 1

|P′
s|
∑

pi∈P′
s
|f(pi, θ)|2. Beside, we also

regularize P ′

s according to the Eikonal equation (Atzmon &
Lipman, 2020) as Lek = 1

|P′
s|
∑

pi∈P′
s
|1−|JM (pi)||2 with

JM (·) is the Jacobin vector for each point.

CD Loss LCD. For a reliable indicator function regulariza-
tion, we use a extra data term loss, i.e., a Chamfer Distance
loss LCD between the on-surface point set Ps and input
point cloud X, to encourage input point cloud locating to
the latent surface of the indicator function. Specifically,
we define it as LCD = 1

|Ps|
∑Ps

i |dist(pi,X)|2. Note that
this LCD is mainly used to regularize the smooth indicator
function χP learning, but not to regularize the neural im-
plicit function f(x, θ). As we shown in the ablation study
in Sec. 4.4, LCD takes effects for more reliable smooth in-
dicator function χP learning, which subsequently helps for
more accurate neural implicit function f(x, θ) learning.

3.3. Training

We formulate a unified framework to learn the neural im-
plicit function f(x, θ) together with the smooth indicator
function χP in a unsupervised fashion.

Losses. We use regularization losses mainly from our Neu-
ralIndicator during the optimization. Specifically, we for-
mulate the loss used in the optimization as :

L = Lind + λ1Ludf + λ2Lsdf + λ3LCD + λ4Lek (4)

Figure 4. Visual comparisons of surface reconstruction results eval-
uated on the eg-dragon, serapis, flower and horse models from the
FAMOUS dataset using the five compared approaches.

including the Indicator loss Lind, absolute distance loss
Ludf , SDF loss Lsdf , Eikonal loss Lek and CD loss LCD

defined above. λi (i = 1, .., 4) are weight parameters to
balance different loss items. Please see more details in the
supplementary materials.

4. Evaluation and Analysis
Dataset. We use five public point cloud datasets, includ-
ing both synthetic datasets (ABC (Koch et al., 2019), FA-
MOUS (Erler et al., 2020), Reconbench (Berger et al., 2013),
Thingi10K (Zhou & Jacobson, 2016)) and real-scan dataset
(DPoint (Wu et al., 2015) dataset), to evaluate our approach.
As like Point2Surf (Erler et al., 2020)) and SAP (Peng
et al., 2021), we use the test subset (with 100 meshes)
in ABC, 22 diverse meshes in FAMOUS and test subset
(with 100 meshes) in Thingi10K to perform the evaluation.
Since ABD, FAMOUS, Reconbench and Thingi10K have
the ground truth data, we mainly use these four datasets
to perform the quantitatively evaluation. For the DPoint
dataset (Wu et al., 2015) consisting 20 real-scan challeng-
ing incomplete and noisy point cloud data, we choose to
perform the qualitative evaluation.

Comparing Approaches. We choose five representative ap-
proaches, including PSR (version 13.8), iPSR, Point2Mesh,
Iso-Points, SAP, OnSurf, PCP, NeuralTPS and Neural-
IMLS. Although Point2Mesh (Hanocka et al., 2020) didn’t
perform neural implicit function learning, we also choose
Point2Mesh for comparison since it’s a state-of-the-art un-
supervised learning surface reconstruction approach.

4.1. Quantitative Evaluation

We first made a qualitative evaluation by measuring the
surface reconstruction quality on the four synthetic dataset.

Accuracy Metrics. To evaluate the surface reconstruction
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Table 1. The quantitative surface reconstruction accuracy in terms of CD1, CD2(×100) and F-Score, evaluated on ABC, FAMOUS,
Thingi10K and Reconbench dataset, using six different surface reconstruction approaches, with P(%), R(%) , F(%) represents Presion,
Recall and F-score for short respectively.

Method ABC FAMOUS THINGI10K RECONBENCH
CD1↓ CD2↓ P↑ R↑ F↑ CD1↓ CD2↓ P↑ R↑ F↑ CD1↓ CD2↓ P↑ R↑ F↑ CD1↓ CD2↓ P↑ R↑ F↑

PSR (Kazhdan & Hoppe, 2013) 2.6 0.39 71 67 69 2.3 0.44 68 70 69 1.8 1.95 55 64 59 1.05 1.09 74 73 73
iPSR (Hou et al., 2022) 1.7 0.19 77 78 77 1.1 0.03 78 76 77 1.0 0.16 81 82 82 0.71 0.48 87 84 85
ISO (Wang et al., 2021) 3.3 0.95 62 64 63 3.1 0.79 70 74 72 1.3 0.88 69 75 72 1.08 1.12 69 74 71

P2M (Hanocka et al., 2020) 3.1 0.84 64 66 65 3.5 0.91 67 69 68 1.4 1.06 66 64 65 1.20 1.79 63 67 65
SAP (Peng et al., 2021) 2.5 0.55 65 69 67 2.4 0.68 66 67 66 1.9 0.25 80 78 79 0.77 0.52 82 83 83
PCP (Ma et al., 2022a) 1.9 0.23 74 72 73 1.2 0.04 74 78 76 1.1 0.29 76 80 78 0.85 0.65 80 79 79

OnSurf (Ma et al., 2022b) 2.0 0.31 71 72 72 1.4 0.07 73 75 74 1.2 0.33 74 72 73 1.01 1.23 70 78 74
NTPS (Chen et al., 2023a) 1.8 0.25 75 70 73 1.1 0.05 75 79 77 1.1 0.27 74 78 76 0.94 1.18 72 80 76

N-ILMS (Wang et al., 2023) 1.6 0.18 77 79 78 1.2 0.04 78 75 76 1.2 0.36 75 81 79 0.79 0.54 83 86 84
Ours 1.5 0.11 78 80 79 1.0 0.03 79 78 78 0.9 0.15 84 82 83 0.65 0.49 88 84 86

accuracy, we adopt three public accuracy metrics, includ-
ing L1-Chamfer Distance (CD1), L2-Chamfer Distance
(CD2) (Aanæs et al., 2016) and F-Score (F, with both Pre-
cision and Recall), to evaluate the surface reconstruction
quality between the reconstructed surface and ground-truth
surface. For the F-score accuracy, we set the distance thresh-
old as µ = 1.5% of the maximum length of objects’ bound-
ing box to compute the Precision and Recall numerical
values. We uniformly sample 1× 105 points from both the
reconstructed surface and ground truth to calculate all of
those three accuracy metrics as like Point2Surf (Erler et al.,
2020) and PCP (Ma et al., 2022a).

Comparison Results. Table 1 summarizes the average
Chamfer Distance (CD1 and CD2) and F-Score for the
different surface reconstruction approaches evaluated on
the four synthetic datasets respectively. Specifically, our
approach achieves the lowest CD1, CD2 error and highest F-
score in all of the four synthetic datasets evaluation, which
is better than other approaches including Point2Mesh, Iso-
Points, OnSurf, PCP, SAP, NeuralTPS and Neural-IMLS,
and even slightly better than PSR (and iPSR) given ground
truth point normal. Note that our approaches doesn’t suffer
from the point normal problem as PSR.

4.2. Qualitative Evaluation

We also made qualitative evaluations on the surface recon-
struction results to see how their results are visually dif-
ferent. Fig. 4 shows several visual comparing results from
FAMOUS dataset (with ground truth point normal). Since
the point cloud in FAMOUS often contain a high level of
noise, the surface reconstruction could be difficult. We can
see that PCP’s results contain many tiny holes (eg-dragon,
flower and horse models), Iso-Points and SAP’s results are
a bit noisy. The results of NeuralTPS and Neural-IMLS
are often too smooth without fine-grained details. In con-
trast, ours is not influenced by the noise sampling points too
much and consistently leads to complete, fine-grained, and
regularized surface reconstruction results.

Fig. 5 shows several visual comparing results from DPoint
dataset. This dataset consists of real-scan point clouds,
and most models in this dataset are noisy, incomplete and
with complex topology structure, which is challenging for
most surface reconstruction approaches. Our approach can
reliably recover accurate topology structures in all of the
four models with fine geometric details, which are much
better than the other four approaches.

From the above qualitative evaluation, we can see that our
approach can achieve consistently better visual surface re-
construction results than the other four approaches, for in-
complete or noisy point clouds in complex topology struc-
ture. Please refer to our supplementary materials to see
more visual comparison results using different comparing
approaches, including synthetic dataset (with both ground
truth and estimated point normal) and real-scan dataset (with
estimated point normal) respectively.

Table 2. The CD2↓(×105) accuracy on ABC, FAMOUS,
Thingi10k and Reconbench datasets using different approaches.

Method P2S LIG NDC NKSR Ours
ABC 1803.3 45.7 12.8 9.2 121.7

FAMOUS 1321.5 51.2 20.1 38.9 30.2
Thingi10k 1285.1 62.6 15.4 94.5 151.6

Reconbench 120.5 5.1 1.3 5.2 4.9
mean 1132.6 41.1 12.4 36.9 77.0

4.3. Comparison with Supervised Approaches

We also compare our approach with some latest supervised
learning based approaches, including Point2Surf (P2S) (Er-
ler et al., 2020), LIG (Jiang et al., 2020), NDC (Chen et al.,
2022), and NKSR (Huang et al., 2023). Table 2 shows the
average CD2 accuracy of surface reconstruction results us-
ing the four comparing approaches. The state-of-the-art su-
pervised approaches like LIG, NDC and NKSR can achieve
better surface reconstruction accuracy than our approach.
This is reasonable since supervised learning approaches
would obtain data-driven information from dataset to en-
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Figure 5. Representative visual comparison results of surface reconstruction evaluated on the ant, clock, vase, and yoga models (from top
to bottom rows respectively) of the DPoint dataset (Wu et al., 2015).

hance the individual surface reconstruction quality, which
is missing for unsupervised learning approaches like ours.
But for dataset that didn’t pre-trained by those supervised
approaches, their surface reconstruction results will signifi-
cantly decrease. For example, Ours achieves better surface
reconstruction accuracy than LIG and NKSR in FAMOUSE
and Reconbench dataset, when they are not pre-trained on
these two dataset. Fig. 7 also shows some visual surface
reconstruction results from DPoint dataset using these four
approaches. Our approach can achieve better surface recon-
struction with complete and fine-grained results than other
three supervised learning approaches. Please refer to the
supplementary materials1 to see more results.

4.4. Ablation Study and Analysis

SIFG Resolution. We first conduct study on different voxel
resolution in the SIFG module. Specifically, we set voxel
resolution as 32×, 64×, 128× and 256× voxels in the unit

1https://shishenghuang.github.io/index/nid-supp.pdf

Table 3. The surface reconstruction accuracy (CD1 and CD2
(×103)) for our approach under different module variants.

Method CD1↓ CD2↓ Method CD1↓ CD2↓

SIFG-32 1.47 1.05 w/o Ludf 1.67 2.13
SIFG-64 1.40 0.85 w/o Lsdf 1.41 0.90
SIFG-128 1.30 0.56 w/o LCD 1.52 1.21
SIFG-256 1.28 0.51 w/o Lek 1.32 0.67
w/o Lind 1.38 0.72 FULL 1.31 0.59

box, and perform the surface reconstruction with such four
system variants (called SIFG-32, SIFG-64, SIFG-128 and
SIFG-256 respectively) on the Test dataset. As shown in
Table 3, we can see that both the CD1 and CD2 numeri-
cal values decrease from sparse to dense voxel resolutions,
which means that the more dense SIFG resolution will lead
to the better surface reconstruction quality for our approach.
But the accuracy in both CD1 and CD2 only get slight im-
provement from 128× to 256×. Considering that SIFG-256
will takes much time cost than SIFG-128 but doesn’t achieve
significant surface reconstruction quality improvement, we
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Figure 6. Visual surface reconstruction results from model 11827 in ABC dataset using our approaches getting rid of one specific neural
indicator priors including Ludf (a), LCD (b), Lsdf (c), Lek (d) and Lind(e) respectively, comparing with the result of our full system (f).

Figure 7. Two visual surface reconstruction results from DPoint
dataset using four different surface reconstruction approaches,
including P2S, LIG, NDC and Ours (from left to right).

Figure 8. A tiny example of surface reconstruction for model
10218 in ABC dataset using different SIFG resolutions by our
approach, including 32× (a), 64× (b), 128× (c) and 256× (d).

adopt to set the SIFG resolution to 128 for a better balance
of both surface reconstruction quality and efficiency in our
full system. Fig. 8 shows a tiny visual surface reconstruc-
tion results of model 10218 from ABC dataset, using our
approach with different SIFG resolutions.

Neural Indicator Priors. To evaluate the influence of the
neural indicator priors (including Lind, Ludf , Lsdf , LCD

and Lek) on our full system, we conduct experiments on
the Test dataset by getting rid of one specific prior loss.
Table 3 also shows the average CD1 and CD2 accuracy
metrics for system variant without Lind, Ludf , Lsdf , LCD

and Lek respectively. We can see that Ludf , Lsdf , LCD will
make major influence on the final surface reconstruction
quality, while Lind and Lek make minor influence. Fig. 6
show a visual surface reconstruction result of model 11827
from ABC dataset, using our approach by getting rid of one
specific neural indicator prior.

Noises. We also study how the ambiguous level of point

Figure 9. A visual surface reconstruction results using our ap-
proach from Thingi10k dataset under different noisy variants, in-
cluding strong noise version (column a), varying noise version
(column b) and original models (column c).

Table 4. The quantitative surface reconstruction accuracy
CD2(×100) on dataset variants using different surface reconstruc-
tion approaches.

Method PSR ISO SAP PCP Ours
ABC-var-noise 3.31 0.62 0.51 0.48 0.40
ABC-max-noise 4.01 1.05 0.63 0.59 0.52

F-var-noise 1.78 0.19 0.67 0.08 0.06
F-max-noise 3.52 0.59 0.29 0.31 0.25

T10k-var-noise 2.75 0.51 0.30 0.39 0.28
T10k-max-noise 3.54 0.83 0.48 0.52 0.46

mean 3.15 0.58 0.38 0.39 0.33

noisy influences the performance of our approach. Here
we conduct experiments on the six dataset variants before-
mentioned using our approach, and include previous ap-
proaches (PSR, Iso-Points, SAP and PCP) as baseline for
comparison. Table 4 shows the CD2 accuracy metrics of
the surface reconstruction results for different approaches.
It can be seen that different level of point noisy influence
all methods. But generally, our approach achieves consis-
tently lowest CD2 accuracy metrics, demonstrating that our
approach performs consistently better for reliable surface
reconstruction than previous approaches. Fig. 9 shows a
tiny visual results from Thingi10k dataset under different
noisy variant using our approach.

4.5. Large Scale Scenes

To evaluate the ability to reconstruct large scale scenes,
we adopt the grid-based learning strategy like LIG (Jiang
et al., 2020) to perform geometry learning grid-by-grid us-
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Table 5. The CD1 and CD2 (×104) accuracy of surface reconstruction results using PSR (Kazhdan & Hoppe, 2013), PCP (Ma et al.,
2022a) and our approach, on the 3D Scene dataset.

Method Burghers Lounge Copyroom Stonewall Totempole
CD1 CD2 CD1 CD2 CD1 CD2 CD1 CD2 CD1 CD2

PSR 2.31 6.21 0.87 7.64 0.29 9.15 0.25 10.9 0.25 13.76
PCP 0.91 2.73 0.06 0.61 0.07 0.78 0.07 0.61 0.08 1.12
Ours 0.85 2.05 0.07 0.71 0.07 0.67 0.06 0.55 0.07 1.01

Figure 10. Some visual comparison results for large scale point
cloud reconstruction from 3D Scene dataset.

ing our approach, and choose PSR (Kazhdan & Hoppe,
2013) and PCP (Ma et al., 2022a) for comparison on the 3D
Scene (Zhou & Koltun, 2013) dataset. Table 5 shows the
surface reconstruction accuracy values (CD1 and CD2) for
PSR, PCP and our approach on the 3D Scene dataset. On
average, with the aid of grid-based learning of LIG (Jiang
et al., 2020), our approach achieves the similar level of
surface reconstruction accuracy as PCP (Ma et al., 2022a),
but is much better than PSR (Kazhdan & Hoppe, 2013).
One possible reason that our approach doesn’t significantly
outperform PCP, would due to the independent geometry
learning for each grid voxel as LIG (Jiang et al., 2020) did,
which often leads to in-consistent geometry reconstruction
across grid neighbors thus decreasing the total surface recon-
struction accuracy. Fig. 10 shows some visual comparing
results for point cloud scenes from 3D Scene using PSR,
PCP and our approach respectively.

4.6. Time Analysis

On average, our approach consumes about 6G GPU mem-
ory to train the neural implicit function for a point cloud
with 10,000 points. It takes about one hour for our system to
finish 10, 000 training epochs on a desktop computer with
an NVIDIA GeForce RTX 3060 12G GPU. This is slower
than SAP (average 30min), slightly slower than Iso-Points
(average less then one hour), but faster than Point2Mesh
(average 1.5 hours) and PCP (average 2.5 hours). Note that
we did not use GPU-based parallel acceleration techniques
in our current implementation, so our system can be further
accelerated by making the on-surface points extraction (such
as marching cubes) be paralleled for GPU computation if
seriously required. Besides, it is also straightforward to per-

Figure 11. Two failure cases of surface reconstruction for point
clouds with large holes (right) or incomplete scans (left) by our
approach.

form the point projection in parallel, which would further
accelerate our whole system. Please refer to the supplemen-
tary materials for a further study on the computational cost
of our system.

4.7. Limitation

One main limitation of our approach is that our current
solution only incorporate geometry priors. If a point cloud
is highly incomplete due to occlusions, our approach could
not successfully reconstruct a complete surface (Fig. 11
left). Besides, large holes located near the boundary areas
(Fig. 11 right) would not be filled by our approach, since we
did not employ any priors indicating whether this kind of
hole belongs to the empty space or the underlying surface.
So it is an interesting direction to incorporate more structure
priors, such as symmetry, structure pattern priors, etc., to
further improve the surface reconstruction quality.

5. Conclusion
In this paper, we have presented a new neural implicit sur-
face optimization approach, by introducing global shape
priors regularization from a neural indicator function gen-
eration (NeuralIndicator) in a unsupervised fashion. With
effective neural indicator priors, we show that our approach
is reliable to reconstruct complete, fine-detailed shape sur-
faces, even from incomplete and/or noisy point clouds with
complex topology structure, which is better than previous
surface reconstruction approaches.

We hope that our approach could inspire the subsequent
works to extract 3D geometry priors in a unsupervised man-
ner, which could benefit applications such as 3D shape
generation, manipulation or even online 3D reconstruction.
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Impact Statement
This paper proposes a new unsupervised learning approach
for point cloud reconstruction, which utilizes global shape
prior encoded by a smooth indicator function to regularize
the neural implicit surface learning, and achieves complete,
fine-detailed point cloud reconstruction results even from in-
complete and/or noisy point clouds with complex topology
structure. With extensive evaluation, the proposed approach
can achieve better surface reconstruction results than previ-
ous approaches, which becomes a new state-of-the-art point
cloud reconstruction approach in a unsupervised manner.
The key contribution of this paper is to introduce an way to
encode global shape priors, and demonstrate the effective-
ness for robust and high-fidelity point cloud reconstruction.
This can inspire subsequent works to extract effective 3D ge-
ometry priors in an unsupervised manner, and would benefit
many applications such as shape generation, manipulation
or even online 3D reconstruction.
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A. Property of Smooth Indicator Function
Our smooth indicator function χP has two major properties:
(1) it inherits the global indicative information to discrimi-
nate the inside/outside region of the entire shape, and (2) it
approximates the local SDFs everywhere near the zero level
set geometry (see Lemma I below for details). In this way,
our smooth indicator function χP encodes both the global
indicative prior and local SDFs simultaneously, which can
be served as global shape priors of entire point cloud to
regularize the neural implicit function learning. Note the
oriented point set P is different from the input point cloud
X, where oriented point set P is parameter set to generate
smooth indicator function χP , and in the final optimization
the zero level set of χP also fits X. We have added a new
paragraph ”Property of Smooth Indicator Function” in Sec.
3 of the main paper to clarify this, please see them in the
hightlight version.

Lemma I. The smooth indicator function χP approxi-
mates the signed distance function fM (θ) near the on-
surface point every where.

Proof. First of all, according to the definition of Kronecker
Delta function δ(·), we can approximate the Kronecker
Delta function δ(·) using a Gaussian function with a small
parameter σ (|σ| < ϵ):

δ(x) = lim
σ→∞

1

σ
√
π
exp(−x2

σ2
) ≈ 1

σ
√
π
exp(−x2

σ2
).

Then for a given oriented point set P = {(pi, ni)}, the
normal vector filed V (x) =

∑
i δ(x − pi)ni can also be

approximated as :

V (x) ≈

{
0, ∀x /∈ Sσ(x),

1
σ
√
π

∑
i exp(−

(x−pi)
2

σ2 )ni,∀x ∈ Sσ(x),

(5)

where Sσ(x) = {x|∃i, |x− pi| ≤ 3σ} is a point set where
every point locates within the 3σ distance from oriented
point set P = {(pi, ni)}. Since the learnt signed distance
function fM (θ) fits the oriented point set P = {(pi, ni)},
we can see Sσ(x) as a point set locating near the on-surface
of fM (θ).

According to the definition of smooth indicator function χP ,
we have:

χP = argmin
χP

1

M

∫
M

|∇χP (x)− V (x)|2dx

+
λ

|M |

∫
M

|HχP (x)|2dx.

Let’s re-formulate the above objective energy function in a
discrete form using a 3D volumetric grid G with gird length
as 1

2σ, we have:

χP = argmin
χP

1

M

∑
xi∈G

|∇χP (xi)− V (xi)|2

+
λ

|M |
∑
xi∈G

|HχP (xi)|2

≈ argmin
χP

1

M

∑
xi∈G

|∇χP (xi)− V (xi)|2+

λ

|M |
∑

xj∈Ni

|∇χP (xi)−∇χP (xj)|2, (6)

with Ni is the neighborhood grid point of xi. When solving
the objective energy function (6) using least square optimiza-
tion, according to the approximation of normal vector field
V (x) in Eq. (5), we can obtain the approximated solution
of ∇χP as:

∇χP (xi) ≈

{
0, ∀xi /∈ Sσ(x),

1
(1+λ)|S̄σ(xi)|

∑
xj∈S̄σ(xi)

V (xj),∀xi ∈ Sσ(x).

with S̄σ(xi) = {x|∀x ∈ G, |x− xi| ≤ 3σ}. Let’s consider
∀xi ∈ Sσ(x) where Sσ(x) represents the point set near the
on-surface of f(θ), since |V (xj)| ≈ 1, ∀xj ∈ S̄σ(xi), we
have:

|∇χP (xi)| ≈ 1, ∀xi ∈ S(x), (7)

which means the smooth indicator function χP satisfies the
Eikonal equation2, and can be seen as a signed distance
function. In this way, we can approximate the learnt signed
distance function fM (θ) using the smooth indicator function
χP near the on-surface point set S(x) as:

fM (θ, x) ≈ χP (x), ∀x ∈ Sσ(x). □

B. Derivation of PDE Solver
We adopt to solve the PDE using the spectral
method (Canuto et al., 2007; Peng et al., 2021). For a
function f(x) defined in the three dimensions R3, i.e.,
x := (x1, x2, x3) ∈ R3, the multidimensional Fourier
Transform (FFT) and Inverse Fourier Transform (IFFT) for
f(x) are defined as:

f̂(ω) := FFT (f(x)) =

∫
f(x)e−2πix·ωdx,

f(x) := IFFT (f̂(ω)) =

∫
f̂(ω)e2πix·ωdω,

2https://en.wikipedia.org/wiki/Signed distance function
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where ω := (ω1, ω2, ω3) represents the spectral frequen-
cies corresponding to x. The partial derivatives of f(x) to
xj , j = 1, 2, 3 can be calculated as:

∂

∂xj
f(x) =

∫
2πiωj f̂(ω)e

2πix·ωdω = IFFT (2πiωj f̂(ω)).

The second order partial derivative of ∂2

∂2xj
f(x) can be cal-

culated as:
∂2

∂2xj
f(x) =

∫
−4π2ω2

j f̂(ω)e
2πix·ωdω

= IFFT (−4π2ω2
j f̂(ω)).

And similarly, the third order partial derivative of
∂3

∂2xj∂xk
f(x) can be calculated as:

∂3

∂2xj∂xk
f(x) =

∫
−8π3iω2

jωkf̂(ω)e
2πix·ωdω

= IFFT (−8π3iω2
jωkf̂(ω)).

Based on the above derivatives, we calculate ∆χP as:

∆χP =
3∑
j

∂2

∂2xj
χP = IFFT (−4π2|ω|2χ̂P ),

and calculate ▽ · (∆χP ,∆χP ,∆χP ) as:

▽ · (∆χP ,∆χP ,∆χP ) =
3∑
j

3∑
k

∂3

∂2xj∂xk
f(x)

= IFFT (−8π3i|ω|2(ω1 + ω2 + ω3)χ̂P ).

Hence the PDE can be formulated as:

∆χP + λ▽ ·(∆χP ,∆χP ,∆χP ) = ▽ · V
⇒ IFFT (−4π2|ω|2χ̂P )+

λIFFT (−8π3i|ω|2(ω1 + ω2 + ω3)χ̂P )

= ▽ · V

By applying the Fourier Transform (FFT) on both sides of
the above PDE, we have:

−4π2|ω|2(1 + 2λπi(ω1 + ω2 + ω3))χ̂P

= FFT (▽ · V )

Considering that FFT (▽ · V ) = 2πi(ω · V ), the spectral
frequency function χ̂P can be calculated as:

χ̂P = G(ω)⊙ iω · V̂
−2π|ω|2(1 + 2λπi

∑
j ωj)

(8)

χP = IFFT (χ̂P ) (9)

with G(ω) = exp(−2σ2|ω|2
r2 ) a Gaussian smoothing kernel

of bandwidth σ for grid resolution of r in the spectral do-
main to mitigate the ringing effects as a result of the Gibbs
phenomenon from rasterizing the point normals V .

C. Absolute Distance Loss Ludf

For the regularization of the absolute part fu(x) =
miny∈∂f(x,θ)|y−x|2, the key challenge is how to determine
the on-surface boundary ∂f(x, θ) of neural implicit function
f(x, θ), which is often unknown during the neural implicit
function learning. Instead of sampling the iso-points (Wang
et al., 2021) using local analysis, we proposed to extract the
on-surface points from the indicator function χP and then
project them onto the zero level set of the signed distance
function with a differential projection.

Specifically, for an efficient on-surface point extraction, we
leverage Flying Edges method (Schroeder et al., 2015) to
generate the on-surface points Ps from the indicator func-
tion χP , which is a state-of-the-art zero level set extraction
approach with about 10× time efficiency than Marching
Cubes (Curless & Levoy, 1996). But one issue for lever-
aging the on-surface points Ps is that Ps may not exactly
locate on zero level set of the signed distance function. We
thus adopt to project every point pi ∈ Ps to the zero level
set of f(x, θ) using (Atzmon & Lipman, 2020):

p
′

i = pi −
∂f(x, θ)

∂p
f(pi, θ).

Since the gradient ∂f(x,θ)
∂p can be achieved by the network

backward propagation during the neural implicit function
learning, such projection Γ : Ps → P ′

s is a differential pro-
jection that can be further used in the end-to-end neural im-
plicit function learning. Based on the projected on-surface
point set P ′

s, we introduce the absolute distance loss Ludf

as:

Ludf =
1

|Ω|

Ω∑
i

|dist(pi,P
′

s)− dist(pi,X)|2,

with dist(pi,X) = minx∈X|pi − x|2 is distance function
from pi to point cloud set X and Ω is point sampling set. We
adopt the back-propagation mechanism for the on-surface
points Ps following (Remelli et al., 2020), by approximat-
ing the gradient between on-surface points Ps to any point
p using the inverse surface normal (Remelli et al., 2020)
∂Ps

∂p = −np, where np is the normal of the on-surface point
Ps. In this way, we enable the differential back-propagation
of the absolute distance loss Ludf .
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