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Abstract

The k-means with outliers problem is one of the
most extensively studied clustering problems in
the field of machine learning, where the goal is
to discard up to z outliers and identify a mini-
mum k-means clustering on the remaining data
points. Most previous results for this problem
have running time dependent on the aspect ra-
tio ∆ (the ratio between the maximum and the
minimum pairwise distances) to achieve fast ap-
proximations. To address the issue of aspect ra-
tio dependency on the running time, we propose
sampling-based algorithms with almost linear run-
ning time in the data size, where a crucial com-
ponent of our approach is an algorithm called
Fast-Sampling. Fast-Sampling algorithm can find
inliers that well approximate the optimal cluster-
ing centers without relying on a guess for the opti-
mal clustering costs, where a 4-approximate solu-
tion can be obtained in time O(ndk log logn

ε2 ) with
O(kε ) centers opened and (1 + ε)z outliers dis-
carded. To reduce the number of centers opened,
we propose a center reduction algorithm, where
an O( 1

ε )-approximate solution can be obtained in
timeO(ndk log logn

ε2 +dpoly(k, 1
ε ) log(n∆)) with

(1 + ε)z outliers discarded and exactly k centers
opened. Empirical experiments suggest that our
proposed sampling-based algorithms outperform
state-of-the-art algorithms for the k-means with
outliers problem.
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1. Introduction
Clustering is a fundamental unsupervised learning problem
that has been extensively studied over the past decades.
Among various mathematical characterizations, the k-means
clustering is one of the most popular formulations, with
numerous applications in decision-making and data analysis.
However, a recurring problem for the k-means clustering is
how to handle the data noise. This issue arises because the
performance of the k-means clustering is well known to be
highly sensitive to outliers, as pointed out in the literature
(Deshpande et al., 2020; Gupta et al., 2017; Im et al., 2020).
Charikar et al. (Charikar et al., 2001) formulated the k-
means with outliers problem, in which a number z of data
points can be discarded as outliers when minimizing the
clustering cost of the given instances.

The k-means with outliers. Given a dataset X ⊂ Rd of
size n, a number of clusters k, and a number of outliers z, the
goal of the problem is to find a set C ⊂ Rd of k centers and
partitionX intoXin andXout such that |Xin| ≥ n−z, and
the clustering cost of Xin with respect to C is minimized.

The k-means with outliers problem is much more challeng-
ing than the standard k-means problem due to the additional
task of identifying z outliers. The only two constant approx-
imation schemes are based on complex linear programming
rounding techniques with high-order polynomial running
time (Chen, 2008; Krishnaswamy et al., 2018), which are
difficult to implement in practice. Furthermore, as pointed
out in the literature (Grunau & Rozhoň, 2022), any constant
approximate solution with exactly z outliers discarded re-
quires a running time of Ω(z2). In the case when there is
heavy noise in the datasets, i.e., z = Ω(n), the running time
becomes quadratic, which may limit the scalability of the
algorithms for handling large-scale datasets.

On the practical side, developing simple and fast approxima-
tion schemes for the k-means with outliers problem has at-
tracted much attention in recent years. By relaxing the num-
ber of outliers discarded or the number of centers opened,
there is a line of research aiming at designing fast and prac-
tical algorithms with good theoretical guarantees. Charikar
et al. (Charikar et al., 2001) presented a polynomial-time
O(1/ε)-approximation algorithm using a reduction-based
method, where (1 + ε)z outliers are discarded to guarantee
the approximation loss. Gupta et al. (Gupta et al., 2017)
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proposed a local search algorithm that gives a (274 + ε)-
approximate solution with O(zk log(n∆)) outliers dis-
carded in time O(dε k

2n2 log(n∆)), where ∆ is the aspect
ratio of the given instance (the ratio between the maximum
and the minimum pairwise distances). By using k-means++
(Arthur & Vassilvitskii, 2007) to construct a weighted
O(1)-approximation coreset, the running time of their algo-
rithm can be improved to O(dε k

2(k + z)2 log(n∆) + nz).
Zhang et al. (Zhang et al., 2021) showed that a combi-
nation of Lagrange relaxation and local search methods
gives an O(1)-approximate solution with O(z) outliers dis-
carded in time O(n(k + z)(d + 1

εk
2 log(n∆))). Grunau

and Rozhoň (Grunau & Rozhoň, 2022) proposed an im-
proved reduction-based local search method, which gives
an O(1/ε)-approximation by discarding (1 + ε)z outliers in
time O(dεnk log k(log log k+ 1

ε log 1
ε ) log(n∆)). By using

Metropolis-Hastings technique, the running time of (Grunau
& Rozhoň, 2022) can be further improved to Õ(ndk

2

z ) 1

with the assumption that ∆ = poly(n), where an O(1)-
approximate solution can be obtained with O(z) outliers
discarded. Bhaskara et al. (Bhaskara et al., 2019) presented
a modified k-means++ sampling method which yields an
O(log k)-approximation with O(z log k) outliers discarded.
The algorithm requires a guess for the optimal clustering
cost to trim the distances of data points to the centers opened,
ensuring that outliers are sampled with smaller probabilities.
With this technique, approximation results can be obtained
in time O(ndk log(n∆)). Under the assumption that each
optimal cluster has size Ω(z), Im et al. (Im et al., 2020)
proposed a density-based method that can filter most data
points far away from the optimal clustering centers. Then,
by calling a standard k-means approximation algorithm on
the remaining data points, an O(1)-approximate solution
with 2z outliers discarded can be obtained. However, the
filtering process also requires a guess for the optimal cluster-
ing cost, which results in a running time of O(n2 log(n∆)).

As pointed out in the literature (Grunau & Rozhoň, 2022),
for the k-means with outliers problem, Ω(nk2/z) is the
lower bound of running time for achieving a constant approx-
imation with O(z) outliers discarded in the general metric
space query model. Thus, near-linear time approximation
can only be achieved when O(z) outliers are allowed to be
discarded. To obtain linear/sub-linear time approximation,
certain data distribution assumptions must be introduced.
In (Deshpande et al., 2020), the number of outliers z is
assumed to be Θ(δn), such that a solution with O(k/δ) cen-
ters opened and (1 + δ)z outliers discarded can be obtained
in time O(ndk/δ). In (Ding & Huang, 2021), to design a
sub-linear time framework, it was assumed that both the
number of outliers z and the size of each optimal cluster
should be Ω(n/k), where a solution with k +O(log k) cen-
ters opened can be obtained, though with a non-constant

1Õ(.) hides polylogarithmic factors in n

approximation on clustering quality. Consequently, it is
challenging to design fast approximation schemes without
any data distribution assumptions.

In this paper, we aim to present fast sampling-based algo-
rithms without any data distribution assumptions. Previ-
ously, a number of sampling-based methods have been pro-
posed. For non-uniform sampling methods, most algorithms
(Bhaskara et al., 2019; Grunau & Rozhoň, 2022) have run-
ning time dependent on the aspect ratio ∆, since a guess for
the optimal clustering cost is required to trim the distances
between data points and their centers. In (Bhaskara et al.,
2019; Charikar et al., 2001; Grunau & Rozhoň, 2022; Zhang
et al., 2021), ∆ is assumed to be polynomially bounded. In
(Cohen-Addad, 2020), a more general case was considered,
where ∆ can be as large as 2n

o(1)

. However, in the worst
case, ∆ can be arbitrarily large as pointed out in (Nguyen
et al., 2022), which may constrain the scalability of the algo-
rithms with running time dependent on ∆. In (Deshpande
et al., 2020), a 5-approximate solution can be obtained by
opening O(k/δ) centers and discarding O(1 + δ)z outliers
using a sampling-based method, where δ = Θ(z/n). For
the case when outliers take a very tiny fraction of the dataset,
the algorithm may openO(n2/z) centers with quadratic run-
ning time. For uniform sampling methods, although approx-
imation schemes with sub-linear running time have been
presented in (Ding & Huang, 2021), the theoretical bounds
are guaranteed under strict assumptions. Other aforemen-
tioned practical approximation algorithms, such as those
based on local search or radius query techniques (Charikar
et al., 2001; Im et al., 2020; Zhang et al., 2021), also depend
on a guess for the optimal clustering cost, making them less
competitive compared to sampling-based algorithms.

To further improve the running time and approximation guar-
antee, our main objective is to design fast algorithms with
(1 + ε)z outliers discarded. From a theoretical perspective,
an algorithm that discards an additional εz outliers is the
best we can hope when designing approximation algorithms
with near-linear running time in the data size, according to
the lower bounds given in (Grunau & Rozhoň, 2022). On
the other hand, the number of additional outliers discarded
can be arbitrarily small by adjusting the value of ε, which
is acceptable from a practical perspective. To obtain fast
approximation results with (1 + ε)z outliers discarded and
near-linear running time in the data size, we first propose
a sampling-based algorithm called Fast-Sampling. Fast-
Sampling can avoid guessing the optimal clustering cost
during the sampling process and achieve a good approxima-
tion with almost linear running time in the data size.

To address the aspect ratio dependency issue on the run-
ning time, a two-stage sampling strategy is proposed, which
mainly consists of probability boosting and probability nor-
malization stages. In probability boosting stage, an oversam-
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Table 1. Comparison results for the k-means with outliers problem.
Results without Assumptions Approximation Centers Opened Outliers Discarded Assumption Running Time

(Chen, 2008) O(1) k z - d · poly(n, k)

(Krishnaswamy et al., 2018) 53.002 + ε k z - nO( 1
ε3

)d
(Friggstad et al., 2019) 1 + ε k(1 + ε) z doubling metrics poly(n, d, k)
(Charikar et al., 2001) O( 1

ε ) k (1 + ε)z - d · poly(n, k)
(Gupta et al., 2017) 274 + ε k O(zk log(n∆)) - O(dε k

2n2 log(n∆))
(Zhang et al., 2021) O(1) k O(z) - O(n(k + z)(d+ 1

εk
2 log(n∆)))

(Grunau & Rozhoň, 2022) O( 1
ε ) k (1 + ε)z - O(dεnk log k(log log k + 1

ε log 1
ε ) log(n∆))

(Bhaskara et al., 2019) O(log k) k O(zlogk) - O(ndk log(n∆))

64 + ε (1 + c)k (1+c)(1+ε)z
c(1−µ) O(ndk log(n∆)

ε )

This Paper
4 O(kε ) (1 + ε)z

-
O(ndk log logn

ε2 )

O( 1
ε ) k (1 + ε)z O(ndk log logn

ε2 + dpoly(k, 1
ε ) log(n∆))

Results with Assumptions Approximation Centers Opened Outliers Discarded Assumption Running Time

(Deshpande et al., 2020) 5 O(knz ) O(z) z = Θ(n) O(ndk)
(Im et al., 2020) O(1) k 2z |P ∗j | ≥ 3z O((n2d+ T (n)) log(n∆))

(Ding & Huang, 2021)
O(1) +O(L2) k +O(log k) z

|P ∗j | = Ω(nk ), z = Ω(nk )
d · poly(k)

O(1) +O(L2) k z d · poly(k)

This Paper 4 O(k) z |P ∗j | ≥ 3z O(ndk log log n)

pling factor is found to boost the distance-based sampling
probabilities, enabling independent sampling of Θ((1+ε)z)
points in expectation. This guarantees that inliers can take
a certain fraction (i.e., ε

1+ε ) of the sampled data points.
Then, in the second stage, a probability normalization step
is used to guarantee that exactly one inlier that is close
enough to some optimal clustering center can be picked
with certain probability. By repeating the sampling process
O(k/ε) rounds, a 4-approximate solution with O(k/ε) cen-
ters opened and (1 + ε)z outliers discarded can be obtained.
To further reduce the number of centers opened, we propose
an algorithm called Center-Reduction, which can find most
mistakenly discarded inliers back during the sampling pro-
cess. With this technique, an O(1/ε)-approximate solution
can be obtained by opening exactly k centers and discarding
(1 + ε)z outliers. The experimental results demonstrate that
our proposed sampling-based algorithms can achieve signif-
icant improvements on both the running time and clustering
quality compared with other algorithms for the k-means
with outliers problem. Putting all these together, we have
the following results.
Theorem 1.1. For the k-means with outliers problem, there
exists an algorithm that runs in time O(ndk log logn

ε2 ) and
outputs a 4-approximate solution with constant probability
by opening O(kε ) centers and discarding (1 + ε)z outliers.
Theorem 1.2. For the k-means with outliers problem,
there exists an algorithm that runs in time O(ndk log logn

ε2 +
dpoly(k, 1

ε ) log(n∆)) and outputs an O( 1
ε )-approximate

solution with constant probability by opening exactly k cen-
ters and discarding (1 + ε)z outliers.

Following the assumption in (Im et al., 2020) that each
optimal cluster has size at least 3z, a 4-approximate solution
with O(k) centers opened and exactly z outliers discarded
can be obtained using our proposed Fast-Sampling method
in almost linear running time in the data size.

Theorem 1.3. For the k-means with outliers problem, under
the assumption that each optimal cluster has size at least 3z,
there exists an algorithm that runs in time O(ndk log log n)
and outputs a 4-approximate solution with constant proba-
bility by opening O(k) centers and discarding z outliers.

Table 1 shows a detailed comparison of the results for the
k-means with outliers problem, where n is the data size,
d is the dimension, k is the number of clusters, ∆ is the
aspect ratio, T (n) is the running time of any constant ap-
proximation algorithm for the standard k-means problem,
L is the maximum diameter of all optimal clusters, and ε
is the parameter to control the approximation guarantee. It
can be seen that linear/sub-linear time approximation with
running time independent of ∆ can only be obtained un-
der certain data distribution assumptions (Ding & Huang,
2021; Deshpande et al., 2020). It is worth mentioning that
although the result of (Deshpande et al., 2020) has linear
running time if z = Θ(n), the running time will deteriorate
to O(n2dk) when z is a constant. For approximation with-
out any assumptions, several near-linear time results can be
obtained with running time independent of z when ∆ can
be bounded by poly(n) (Bhaskara et al., 2019; Grunau &
Rozhoň, 2022). Compared with these results, our sampling-
based method is the first one that can achieve a running
time independent of ∆. The current best result (Grunau &
Rozhoň, 2022) is an O(1/ε)-approximation with exactly k
centers opened and (1 + ε)z outliers discarded. Compared
with the results given in (Grunau & Rozhoň, 2022), our pro-
posed method can achieve the same theoretical guarantee
on clustering quality and the number of outliers discarded,
i.e., an O(1/ε)-approximation with k centers opened and
(1 + ε)z outliers discarded . Moreover, even under the case
(Cohen-Addad et al., 2022) when ∆ = 2n

o(1)

, the running
time of our method is better than that in (Grunau & Rozhoň,
2022). In general, when ∆ is larger than Ω(log n), our
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method is better than that in (Grunau & Rozhoň, 2022). In
real-world applications, ∆ is usually assumed to be bounded
by poly(n), where our method is still much better than that
in (Grunau & Rozhoň, 2022). By relaxing the number of
centers opened, our proposed algorithm can achieve the
best constant approximation on clustering quality with only
(1 + ε)z outliers discarded in almost linear time in the data
size, compared with other algorithms with running time
dependent on ∆ (Bhaskara et al., 2019).

Due to space limit, we leave the discussions on the running
time lower bounds in Appendix A.

2. Preliminaries
We use X ⊂ Rd and k to denote the given dataset
and the number of clusters, respectively. Let z be the
number of outliers. We use C∗ = {c∗1, c∗2, ..., c∗k} and
P(C∗) = {P ∗1 , P ∗2 , ..., P ∗k } to denote an optimal solu-
tion and its clustering partition, respectively. For any two
points p, q ∈ Rd, let d(p, q) denote their squared distance.
Given a point p ∈ Rd and a set C ⊂ Rd of centers, let
d(p, C) = minci∈C d(p, ci) be the squared distance from p
to its closest center in C. We define the clustering cost of X
with respect to C as d(X,C) =

∑
x∈X d(x,C). Let OPT

be the optimal clustering cost. For each P ∗j ∈ P(C∗), let
OPTj = d(P ∗j , {c∗j}) be the cost of data points in P ∗j to c∗j .
We use Z∗ to denote the set of true outliers, which is the set
of the farthest z data points from X to C∗. Let N = X\Z∗
be the set of true inliers. For any optimal cluster P ∗j , define
Tα(P ∗j ) = {p ∈ P ∗j : d(p, c∗j ) < αd

(
P ∗j ,

{
c∗j
})
/|P ∗j |}

as the set of data points in P ∗j close to c∗j , where α is a
constant with α > 1. Given a set C of centers and a non-
negative real number l, for each x ∈ X , let t(l, x, C) =
min{ld(x,C)/d(X,C), 1} be the trimmed distance-based
sampling probability by l and C. The following lemma is a
folklore result for the k-means problem.

Lemma 2.1. (Aggarwal et al., 2009) Let P ∗j ∈ P(C∗) be
an optimal cluster, and c∗j be its center. For any data point
s ∈ Rd, we have d(P ∗j , {s}) = d(P ∗j , {c∗j}) + |P ∗j |d(s, c∗j ).

3. Almost Linear Time Algorithms for
k-means with Outliers

The general idea of our proposed sampling-based algorithms
is to find inliers that can well approximate the optimal clus-
tering centers. Since outliers are usually far away from the
optimal clustering centers, distance-based sampling strate-
gies (such as the D2-Sampling strategy (Arthur & Vassil-
vitskii, 2007)) are prone to directly pick outliers as centers,
which may deteriorate the theoretical guarantees on cluster-
ing quality if the number of centers to be opened is required
to be roughly bounded by O(k). To address this issue, our
approach aims to increase the distance-based sampling prob-

abilities for inliers while decreasing those for outliers. By
enhancing the summation of distance-based sampling prob-
abilities to at least (1 + ε)z, we ensure that outliers only
contribute a tiny fraction of the overall probability summa-
tion. Thus, with a normalization step, a linear relationship
of distance-based sampling distribution can be maintained,
while exactly one inlier close enough to the optimal cluster-
ing centers can be picked with certain probability in each
sampling iteration. Finally, the sampled inliers can be used
for constructing a weighted instance for final clustering.

3.1. The Fast-Sampling Algorithm

In this section, we present a 4-approximation algorithm
with O(k/ε) centers opened and (1 + ε)z outliers discarded,
which can avoid guessing the optimal clustering cost while
choosing good inliers as clustering centers during the sam-
pling process. The Fast-Sampling algorithm is described in
Algorithm 1, where an intuitive idea is to use a two-stage
sampling strategy to sample inliers that are close to the
optimal clustering centers. In the first stage (steps 3-7 of
Algorithm 1), an oversampling factor is used to boost the
distance-based sampling probabilities, enabling an indepen-
dent sampling of Θ((1 + ε)z) data points in expectation.
This guarantees that inliers account for a significant propor-
tion (at least ε

1+ε ) of the sampled data points. Then, in the
second stage (step 8 of Algorithm 1), a probability normal-
ization step is used to guarantee that exactly one inlier well
approximating an optimal clustering center can be picked
with certain probability. Due to space limit, all the proofs
are given in Appendix B.

In Algorithm 1, a key stage is to find an oversampling factor
to boost the distance-based sampling probabilities, which
is given in steps 3-7 of Algorithm 1. Let R = (1 + ε)z
be the probability summation threshold. Denote Ci as the
set of centers obtained before executing the i-th iteration
of step 8 in Algorithm 1. The true oversampling factor
litrue is defined as the non-negative real number such that∑
x∈X t(l

i
true, x, Ci) = R. We first show that an accurate

estimation for litrue can be obtained in time O(nd log logn
ε ).

For each data point x ∈ X , we use t(litrue, x, Ci) =
min{litrued(x,Ci)/d(X,Ci), 1} to denote the trimmed
probability of x by litrue and Ci. The exact value for litrue
can be obtained trivially by sorting the distances between
data points in X to Ci in non-increasing order, and then
iteratively guessing the points in X whose boosted prob-
abilities by litrue and Ci exceed 1. However, the distance
calculation and sorting process take time O(nd log n) in
each iteration. To further accelerate the oversampling factor
finding process, a fast estimation method is proposed (Al-
gorithm 2). In the i-th iteration of Algorithm 1, we denote
Ti = {x ∈ X : t(litrue, x, Ci) = 1} as the set of data points
in X whose boosted probabilities by litrue and Ci are larger
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than 1. In the j-th iteration of Algorithm 2, starting from
step 3 in Algorithm 2, it iteratively tries to guess the furthest
εz data points from X to Ci as the set of data points in X
whose boosted probabilities by litrue and Ci are larger than
1. Then, an estimation factor ljf can be obtained in each step
5 of Algorithm 2.

Algorithm 1 Fast-Sampling(X, k, z, d, η, ε)
Input: An instance (X, k, z, d) of the k-means with outliers,
parameters η and ε.
Output: A set C ⊂ Rd.

1: Randomly and uniformly sample a point x0 from X ,
and initialize C = {x0}.

2: for i = 1 to O(kε log 1
η ) do

3: lf = OSE(X, k, z, d, ε, (1 + ε)z, C).
4: lmin = lf , lmax = max{2lf , εzlf}.
5: S = {(1 + ε)j : j ∈ Z, lmin ≤ (1 + ε)j ≤ lmax}.
6: S = S ∪ {lmin} ∪ {lmax}.
7: Use binary search to find a l′ ∈ S s.t. (1 + ε)z ≤∑

x∈X t(l
′, x, C) ≤ (1 + ε)2z.

8: Sample a data point x ∈ X with probability
t(l′,x,C)∑
x∈X t(l′,x,C) , and add it to C.

9: end for
10: return C.

Algorithm 2 OSE(X, k, z, d, ε, R,C)
Input: An instance (X, k, z, d) of the k-means with outliers,
a parameter ε, a probability summation threshold R, and a
set C of centers opened.
Output: An estimation of the oversampling factor.

1: lf = −1, Q = ∅.
2: Let F be the set of the furthest (1+ε)z data points from
X to C.

3: for j = 1 to b 1+ε
ε c do

4: Let F ′ ⊆ F be the furthest εz points from F to C.
5: Q = Q ∪ {F ′}, F = F\F ′, ljf = R−|Q|

1− d(Q,C)
d(X,C)

.

6: lf = max{lf , ljf}.
7: end for
8: Let x be the nearest data point from F to C, and set
Q′ = Q ∪ (F\{x}).

9: l′f = 1

1− d(Q
′,C)

d(X,C)

, lf = max{lf , l′f}.

10: return lf .

We argue that such estimation can be used to obtain a lower
bound and an upper bound for litrue. In the j-th iteration of
Algorithm 2, denote Qj as the set of the guessed data points
obtained in step 5 of Algorithm 2. Let Q′ be the set of the
guessed data points obtained in step 8 of Algorithm 2, which
contains the furthest (1 + ε)z − 1 data points from X to Ci.
We use ljf and l′f to denote the estimations obtained in step 5
and step 9 of Algorithm 2, respectively. There are two cases

that may happen: (1) underestimation of the number of data
points whose probabilities boosted by litrue andCi are larger
than 1, i.e., Qj ⊆ Ti or Q′ ⊆ Ti; (2) overestimation of the
number of data points whose boosted probabilities are larger
than 1, i.e., Ti ⊂ Qj or Ti ⊂ Q′. In the i-th iteration of
Algorithm 1, let λ(i) = {ljf : j = 1, 2, ..., b 1+ε

ε c} ∪ {l
′
f}

be the set of the estimations for the true oversampling factor
litrue. The following lemma shows that, for both cases, a
lower bound for litrue can be obtained.

Lemma 3.1. For each lγ ∈ λ(i), it holds that lγ ≤ litrue.

By Lemma 3.1, for both cases, any lγ ∈ λ(i) can serve as
a lower bound for the true oversampling factor litrue. Next,
we will show that litrue can be upper bounded by litrue ≤
max{εzlf , 2lf}, where lf is the output of Algorithm 2.

Lemma 3.2. Let lf be the estimation of the oversam-
pling factor returned by Algorithm 2. Then, litrue ≤
max{εzlf , 2lf}.

By Lemma 3.1 and Lemma 3.2, we can obtain the bounds
for the true oversampling factor litrue such that lf ≤
litrue ≤ max{εzlf , 2lf}. Then, in steps 5-7 of Algo-
rithm 1, to obtain an estimation for litrue, we only need
to consider those values that are integer powers of (1 + ε)
within [lf ,max{εzlf , 2lf}]. The number of such values is
O( log z

ε ). Using binary search on those values, we can ob-
tain an estimation l′i (step 7 of Algorithm 1) of litrue such
that

∑
x∈X t(l

′
i, x, Ci) ≥ (1+ε)z and

∑
x∈X t(l

′
i, x, Ci) ≤

(1 + ε)2z with O(ε−1 log log z) binary searching steps.

To analyze the approximation guarantee, we start by di-
viding the optimal clusters into several groups based on
the following definitions of good and bad clusters. We
define Gi =

{
P ∗j : d(P ∗j , Ci) ≤ 3.5OPTj

}
and Bi =

{P ∗1 , P ∗2 , ..., P ∗k } \Gi as the set of good and bad clusters,
respectively. Intuitively speaking, bad clusters are those
optimal clusters whose centers are not well approximated
by the data points in Ci. Our objective is to make most
bad clusters good within O(k/ε) rounds. For any optimal
cluster P ∗j , recall that Tα(P ∗j ) = {p ∈ P ∗j : d(p, c∗j ) <

αd
(
P ∗j ,

{
c∗j
})
/|P ∗j |} is the set of data points in P ∗j close

to the optimal clustering center c∗j , where α is a constant
larger than 1. The following lemmas argue that data points
in Tα(P ∗j ) take a large fraction of the whole data points in
P ∗j , and data points in Tα(P ∗j ) can well approximate the
clustering cost of P ∗j .

Lemma 3.3. For any P ∗j ∈ P(C∗), it holds that
|Tα(P ∗j )| ≥ (1− 1/α)|P ∗j |.
Lemma 3.4. Let P ∗j be an optimal cluster with d(P ∗j , Ci) =

βd(P ∗j ,
{
c∗j
}

) for some β ≥ 3.5. Then, d(Tα(P ∗j ), Ci) ≥
1

200 (β − 1)d(P ∗j ,
{
c∗j
}

) with α = 2.

If the sampled data point x in step 8 of Algorithm 1 is close
enough to the center of some bad optimal cluster P ∗j ∈ Bi
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(i.e., x ∈ T2(P ∗j )), then a good approximation for P ∗j can
be obtained by adding x to Ci. By Lemma 2.1, it holds that
d(P ∗j , {x}) = d(P ∗j , {c∗j}) + |P ∗j |d(x, c∗j ) ≤ 3d(P ∗j , {c∗j})
if x ∈ T2(P ∗j ). Hence, at least one bad cluster becomes
good in that iteration. To analyze the success probability of
sampling, we first show that an inlier x ∈ N can be sampled
in each step 8 of Algorithm 1 with probability Ω(ε).

Let P ∗j ∈ Bi be an arbitrary bad optimal cluster. We use
χ(j) = {x ∈ T2(P ∗j ) : t(l′i, x, Ci) = 1} to denote the set
of data points in T2(P ∗j ) whose probabilities boosted by l′i
and Ci are larger than 1, where l′i is the estimation for true
oversampling factor litrue obtained in step 7 of Algorithm 1.
Then, we further divide the bad optimal clusters into two
categories: Li = {P ∗j : P ∗j ∈ Bi, |χ(j)| ≥ 0.5|T2(P ∗j )|}
and Si = {P ∗j : P ∗j ∈ Bi, |χ(j)| < 0.5|T2(P ∗j )|}. In the i-
th iteration of Algorithm 1, define Lni =

∑
P∗j ∈Li

|P ∗j |
and Sni =

∑
P∗j ∈Si

|P ∗j | as the total number of data
points in bad optimal clusters that belong to Li and Si,
respectively. Then, there are two cases that may hap-
pen: (1) Lni ≥ 0.5εz; (2) Lni < 0.5εz. If case (1) hap-
pens, by the definition of Li, we can get that |χ(j)| ≥
0.5|T2(P ∗j )| ≥ 0.25|P ∗j | holds for each P ∗j ∈ Li using
Lemma 3.3. Then, by taking a summation over all the data
points in χ(j) for each P ∗j ∈ Li, we have

∑
P∗j ∈Li

|χ(j)| ≥∑
P∗j ∈Li

0.5|T2(P ∗j )| ≥
∑
P∗j ∈Li

0.25|P ∗j | = 0.25Lni ≥
εz
8 . Since

∑
x∈X t(l

′
i, x, Ci) ≤ (1 + ε)2z, the probability

of sampling a data point x ∈ χ(j) for some bad cluster

P ∗j ∈ Li is at least
∑
x∈χ(j):P∗

j
∈Li

t(l′i,x,Ci)∑
x∈X t(l′i,x,Ci)

≥ εz
8(1+ε)2z =

ε
8(1+ε)2 ≥

ε
32 , where the first inequality follows from the

definition of χ(j), and the last inequality follows from the
fact that 0 < ε ≤ 1. Then, by adding the sampled data point
x to Ci, a bad optimal cluster P ∗j becomes a good cluster.

Then, we consider a more complicated case when Lni <
0.5εz. Let N ′ = N\(∪P∗j ∈LiP

∗
j ) be the set of inliers ob-

tained by removing data points in bad optimal clusters of
Li. We will show that, with probability Ω(ε), the sampled
data point x in step 8 of Algorithm 1 belongs to N ′. Let E1

and E2 be the events that the sampled data point x belongs
to N ′ and X\N ′, respectively. We use Pr(E1) and Pr(E2)
to denote the probabilities that events E1 and E2 happen,
respectively. It holds that Pr(E1) = 1 − Pr(E2) = 1 −∑

x∈Z∗ t(l
′
i,x,Ci)∑

x∈X t(l′i,x,Ci)
−

∑
x∈(X\N′)\Z∗ t(l

′
i,x,Ci)∑

x∈X t(l′i,x,Ci)
≥ 1− z

(1+ε)z −
Lni

(1+ε)z ≥ 1− 1
1+ε −

ε
2(1+ε) ≥

ε
2(1+ε) , where the third step

follows from the fact thatX\N ′ = (
⋃
P∗j ∈Li

P ∗j )∪Z∗, and
the fourth step follows from the assumption thatLni < 0.5εz
holds in case (2). Hence, with probability Ω(ε), an inlier
from N ′ can be sampled in step 8 of Algorithm 1.

Let U(Li) =
⋃
P∗j ∈Li

P ∗j be the collection of data points
that belong to the bad optimal clusters in Li. It holds

trivially that if d(N ′, Ci) ≤ 4OPT , Ci induces a 4-
approximation by discarding (1 + ε

2 )z data points in X as
outliers. Let Zi be the set of the furthest (1+ ε

2 )z data points
from X to Ci. We can get that d(X\Zi, Ci) ≤ d(X\(Z∗ ∪
U(Li)), Ci) = d(N ′, Ci) ≤ 4OPT , where the first inequal-
ity follows from the fact that |Z∗∪U(Li)| ≤ (1+ ε

2 )z. Thus,
we can always assume that d(N ′, Ci) > 4OPT holds dur-
ing the sampling process of Algorithm 1 (steps 2-8 of Algo-
rithm 1). Let Hi =

⋃
P∗j ∈Si

T2(P ∗j )\χ(j) be the collection
of data points that are close to the bad optimal clusters in
Si with boosted probabilities by l′i and Ci smaller than 1.
Let U(Si) =

⋃
P∗j ∈Si

P ∗j be the collection of data points
in all bad optimal clusters that belong to Si. Denote E3 as
the event that the sampled point x in step 8 of Algorithm 1
belongs to Hi. Define Pr(E3) as the probability that event
E3 happens. The following lemma shows that event E3

happens with probability Ω(ε).

Lemma 3.5. Let E3 be the event that the sampled data
point x in step 8 of Algorithm 1 belongs to Hi. Then, we
have Pr(E3) ≥ ε

35840 .

By Lemma 3.5, if case (2) happens, with probability Ω(ε),
at least one bad cluster in Si becomes good in each iteration.
Let Cq+1 be the set of centers opened after repeating the
sampling process in Algorithm 1 for q = O(kε ) rounds. The
following lemma shows that Cq+1 yields a 4-approximate
solution with (1 + ε

2 )z data points discarded as outliers.

Lemma 3.6. By repeating the sampling process of Algo-
rithm 1 for q = O(kε ) rounds, with constant probability, we
have |Sq+1| = 0 and Lnq+1 ≤ εz

2 .

Lemma 3.6 shows that, if Algorithm 1 samples O(k/ε)
points using q = O(k/ε) rounds, a set Cq+1 of cen-
ters with |Sq+1| = 0 and Lnq+1 ≤ εz

2 can be obtained.
Then, by discarding the furthest (1 + ε

2 )z data points from
X to Cq+1, a 3.5-approximate solution can be obtained
with O(k/ε) centers opened and (1 + ε

2 )z outliers dis-
carded. More specifically, let Zq+1 be the set of the fur-
thest (1 + ε

2 )z data points from X to Cq+1. We can get
that d(X\Zq+1, Cq+1) ≤ d(X\(U(Lq+1) ∪ Z∗), Cq+1) ≤
3.5OPT , where the last inequality follows from Lemma 3.6
that Lnq+1 ≤ εz

2 . However, the analysis is based on the as-
sumption that d(N ′, Ci) > 4OPT holds for the whole sam-
pling process. Once d(N ′, Ci) ≤ 4OPT happens in the i-th
iteration of Algorithm 1 for some i ≤ q, a 4-approximate so-
lution with (1 + ε

2 )z outliers discarded and O(k/ε) centers
opened can be obtained. Thus, the final approximation ratio
should be 4 by the standard worst case analysis. Putting all
these together, Theorem 1.1 can be proved (detailed proofs
in Appendix B).

Under the assumption that each optimal cluster has size at
least 3z (Im et al., 2020), in the i-th iteration of Algorithm
1, |χ(j)| ≥ 0.5|T2(P ∗j )| ≥ 0.25|P ∗j | ≥ 3

4z holds for each

6



Near-Linear Time Approximation Algorithms for k-means with Outliers

optimal cluster P ∗j ∈ Li. In this case, data points from
χ(j) for each optimal cluster P ∗j ∈ Li can be picked with
constant probability in each sampling iteration. Moreover,
there is no need to obtain a very accurate estimation for
litrue, and we can let ε be any fixed constant smaller than 1.
Hence, after repeating Algorithm 1 for q = O(k) rounds,
with constant probability, we can get that |Lq+1| = 0. In
this case, we have N ′ = N\(∪P∗j ∈Lq+1P

∗
j ) = N , and the

probability of picking an inlier from N ′ becomes a constant.
By Lemma 3.5, the probability of picking a data point x ∈
Hi becomes a constant if Lnq+1 = 0. Thus, an improved
4-approximation can be obtained with O(k) centers opened
and exactly z outliers discarded, which proves Theorem 1.3
(detailed proofs in Appendix B).

3.2. The Center Reduction Algorithm

In section 3.1, a 4-approximate solution with O(k/ε) cen-
ters opened and at most (1 + ε

6 )z outliers discarded can be
obtained by replacing ε with ε1 = ε

6 as the input for Algo-
rithm 1. To reduce the number of centers opened, a direct
way is to apply a weighted k-means with outliers algorithm
(such as the algorithm in (Grunau & Rozhoň, 2022)) on
the weighted instance constructed using the O(k/ε) cen-
ters opened, where an O(1)-approximate solution can be
obtained with O(z) outliers discarded. To further reduce
the number of outliers discarded, we propose a center re-
duction algorithm as described in Algorithm 3, where a
(O( 1

ε ), 1 + ε)-approximate solution can be obtained. Algo-
rithm 3 uses the Fast-Sampling method to find an initial solu-
tionC1 with sizeO(kε ) and (1+ ε

3 )z outliers discarded (step
2 of Algorithm 3). Let Z be the set of the furthest (1 + ε

3 )z
data points in X to C1. Define L′1 = {P ∗j : d(P ∗j , C1) >
3.5OPTj , |χ(j)| ≥ 0.5|T2(P ∗j )|}. Let N ′1 = N\U(L′1)
be the set of inliers obtained by removing the data points
in bad optimal clusters of L′1. By Lemma 3.6, we have
d(N ′1, C1) ≤ 4OPT . The goal of Algorithm 3 is to recover
most of the discarded inliers in N ′1 ∩ Z.

Observe that there are at most εz12 inliers inN ′1 with distances
larger than 48OPT

εz to C1. Otherwise d(N ′1, C1) > 4OPT ,
which contradicts the fact that d(N ′1, C1) ≤ 4OPT . Hence,
it holds trivially that all the data points in X\Z are within
distances 48OPT

εz to C1. In each round of the for loop in step
7 of Algorithm 3, the algorithm guesses the nearest εz12 data
points from Z to C1 as the points in N ′1 ∩ Z with distances
smaller than 48OPT

εz toC1, and removes them fromZ. Since
each time we recall a number of εz12 data points in Z, at most
εz
12 inliers in N ′1 with distances smaller than 48OPT

εz may not
be recalled among O(1/ε) guesses. Note that there are also
at most εz12 inliers in N ′1 with distances larger than 48OPT

εz
to C1. Then, there exists at least one guess such that at
most εz6 inliers in N ′1 are discarded as outliers (with at most
εz
12 data points in N ′1 ∩ Z that are not recalled and εz

12 data

Algorithm 3 Center-Reduction(X, k, z, d, ε, η,F)
Input: An instance (X, k, z, d) of the k-means with outliers,
parameters ε and η, a weighted approximation algorithm F
with k centers opened and (1 + ε)z outliers discarded.
Output: A set C ⊂ Rd.

1: ε1 = ε
6 , ε2 = ε

3 .
2: Initialize C1 = Fast-Sampling(X, k, z, d, η, ε1).
3: C ′1 = C1.
4: Let Z be the set of the furthest (1 + ε

3 )z data points in
X to C1, and assign each data point x ∈ X\Z to its
closest center in C ′1.

5: For each c ∈ C ′1, let w(c) be the number of points
assigned to c, and assign a weight w(c) to c.

6: Call Algorithm F on C ′1 to obtain a solution Cf using
ε = ε2 and z = (1 + ε

3 )z − |Z| as inputs, and set
best = d(X\Z ′, Cf ), where Z ′ is the set of the furthest
(1 + ε)z data points from X to Cf .

7: for j = 1 to d 2(1+ε2)
ε1
e do

8: Let Tj ⊆ Z be the set of the nearest ε1z2 data points
from Z to C1, and set Z = Z\Tj , C ′1 = C1.

9: Assign each x ∈ X\Z to its closest center in C ′1.
10: For each c ∈ C ′1, let w(c) be the number of points

assigned to c, and assign a weight w(c) to c.
11: Call AlgorithmF onC ′1 to obtain a solutionC2 using

ε = ε2 and z = (1 + ε
3 )z − |Z| as inputs.

12: Let Z2 be the set of the furthest (1 + ε)z data points
from X to C2.

13: if d(X\Z2, C2) < best then
14: best = d(X\Z2, C2), Cf = C2.
15: end if
16: end for
17: return Cf .

points in N ′1 with distances larger than 48OPT
εz to C1) while

the remaining data points in X\Z are all within distances
48OPT
εz to C1. Then, in this guess, a weighted instance can

be constructed by assigning the data points in X\Z to their
closest centers such that the remaining number of outliers to
be discarded can be bounded by (1 + ε

3 )z − |Z|. Then, by
calling a (O( 1

ε ), 1 + ε)-approximation algorithm F (such
as the algorithm proposed in (Grunau & Rozhoň, 2022))
on the weighted instance and setting (1 + ε

3 )z − |Z| as the
number of outliers to be discarded with ε = ε

3 as input, an
O(1/ε)-approximate solution can be obtained with (1 + ε)z
outliers discarded. Putting all these together, Theorem 1.2
can be proved (detailed proof of Theorem 1.2 is given in
Appendix B).

4. Experiments
In this section, we demonstrate the performance of our algo-
rithms by comparing with state-of-the-art algorithms for the
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Table 2. Comparison results of k-means with outliers approximation algorithms. “NA” indicates the algorithm timed out.
Dataset Method Cost Recall Time(s) Dataset Method Cost Recall Time(s)

Skin-5 (k = 10)

TIKmeans 68049.49 0.7249 1.40

Skin-10 (k = 10)

TIKmeans 72448.37 0.9313 1.34
IKmeans 72714.88 0.7657 0.59 IKmeans 79923.51 0.9366 0.57

RobustKmeans++ 71209.78 0.7645 0.66 RobustKmeans++ 75818.17 0.9233 0.63
NKmeans 74097.74 0.7326 10.99 NKmeans 76784.33 0.9305 10.87

LS++ 70614.17 0.7415 2374.42 LS++ 75520.31 0.9329 2396.30

SUSY-5 (k = 10)

TIKmeans 62009744.02 0.7610 52.37

SUSY-10 (k = 10)

TIKmeans 63745990.97 0.9657 51.28
IKmeans 64567215.89 0.6432 31.02 IKmeans 65767311.47 0.9806 31.87

RobustKmeans++ 64039304.52 0.7585 49.85 RobustKmeans++ 65524845.52 0.9761 49.24
NKmeans 65176198.19 0.7090 256.40 NKmeans 66202766.40 0.9581 382.34

LS++ NA NA >24h LS++ NA NA >24h

SIFT-5 (k = 100)

TIKmeans 12033800256 1 10906.2

SIFT-10 (k = 100)

TIKmeans 12081741573 1 10733.8
IKmeans 12275654391 1 9635.4 IKmeans 12107041166 1 9374.2

RobustKmeans++ 12077778481 0.9998 92840.3 RobustKmeans++ 11983478657 1 92223.8
NKmeans NA NA >72h NKmeans NA NA >72h

LS++ NA NA >72h LS++ NA NA >72h

Shuttle (k = 10)

TIKmeans 65588.61 0 0.80

KDDFULL (k = 3)

TIKmeans 32912080.32 0.6138 13.59
IKmeans 71585.51 0.2353 0.11 IKmeans 32672394.99 0.6109 6.35

RobustKmeans++ 87238.76 0 0.23 RobustKmeans++ 32907569.93 0.6109 10.49
NKmeans 83192.53 0.1765 0.56 NKmeans 32218082.93 0.6135 34.79

LS++ 76149.82 0.1765 532.77 LS++ NA NA >4h

k-means with outliers problem.

Datasets: We test the performance of different algorithms
on real-world datasets including 4 datasets used in (Im et al.,
2020; Deshpande et al., 2020) and one large-scale dataset
used in (Matsui et al., 2017). The datasets are Skin (245,057
× 3, k = 10), SUSY (5,000,000 × 18, k = 10), Shuttle
(43,500 × 9, k = 10), KDDFULL (4,898,431 × 37, k = 3)
and SIFT (100,000,000 × 128, k = 100). The outliers are
generated by the rules in (Im et al., 2020; Ding & Huang,
2021; Deshpande et al., 2020) as follows. First, we nor-
malize the given dataset such that the mean and standard
deviations are 0 and 1 on each dimension, respectively. For
the datasets SKIN, SUSY, and SIFT, we randomly add 1%

outliers that lie in the range [−ξ, ξ]d for ξ = 5 and 10, and
denote the resulting datasets as SKIN-5, SKIN-10, SUSY-
5, SUSY-10, SIFT-5, and SIFT-10, respectively. For the
dataset Shuttle, it contains 43,500 data points, and 99.6%
of them are in the four largest classes. We take the two
smallest classes containing 17 data points as outliers. For
the dataset KDDFULL, it contains 4,898,431 data points,
and 98.3% of them are in the three largest classes. We take
23 smaller classes containing 45,747 data points as outliers.

Algorithms and Parameters: In our experiments, for com-
parison between approximation algorithms, we consider
5 fast approximation algorithms: our algorithms in Algo-
rithm 3 and Algorithm 1, LS++ in (Grunau & Rozhoň,
2022), NKmeans in (Im et al., 2020), and Robust k-means++
in (Deshpande et al., 2020). In the experiments, we use pa-
rameter ε to control the number of outliers discarded. We
also use parameter δ to control the accuracy of oversam-
pling factor estimation by setting the probability summation
threshold in Algorithm 2 as R = (1+ε)z

1−δ . We give evalua-
tions of the performances of our algorithms under different

parameter settings in Appendix C.1. In experiments, we
fix ε, η and δ to be 0.5. The number of sampling iterations
is multiplied by a factor of β for β = 1.5. The number
of centers opened and outliers discarded for each dataset
follows the same settings in (Im et al., 2020; Deshpande
et al., 2020). In Appendix C.2, we also test the performance
with varying k ranging from 5 to 50 and varying z ranging
from 1% to 10%, respectively. For the SIFT dataset, since
the data size is much larger than other datasets, moderate
changes in k do not significantly influence the clustering
cost. Thus, we test the values of k ranging from 50 to 200
on SIFT. In Appendix C.3, we conduct experiments on the
performance of our proposed algorithms with varying β.

In our experiments, we also give comparison between our
algorithms and outlier detection methods (details in Ap-
pendix C.4). The outlier detection methods adapt two-stage
strategies, where a filtering process is used to discard the
suspect outliers followed by a clustering process on the re-
maining data points to obtain the final results. We choose
the following algorithms for identifying outliers, which are
summarized as follows: (1) The probabilistic method in (Li
et al., 2022) (ECO); (2) Two fast outlier detection methods
in (Liu et al., 2008) (IFOREST) and (Sugiyama & Borg-
wardt, 2013) (Sampling). For the clustering step, we use
the following methods: k-means++ (Arthur & Vassilvitskii,
2007) (the popular linear-time algorithm) and LSDS++ (Fan
et al., 2023) (the fastest constant-approximation algorithm).

In Appendix C.5, we present experiments on specific syn-
thetic datasets to demonstrate the scenarios where our al-
gorithm is particularly effective compared to the RobustK-
means++ algorithm (the current fastest approximation al-
gorithm in practice). The synthetic datasets are generated
by Gaussian distributions, where the k clustering centers
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{c1, c2, ..., ck} are randomly selected, with each cluster Pi
formed as Pi = {x ∈ Pi : x ∼ N (ci, σ)} using Gaussian
generators, where σ is to control the deviation. We test dif-
ferent parameter settings with varying k and σ, where n, ξ,
d are fixed to be n = 10, 000, ξ = 0.5, d = 20 (ξ represents
that the generated outliers are in range [−ξ, ξ]d).

Description of Algorithms. The approximation algorithms
used in our experiments for comparison are summarized as
follows. (1) NKmeans. This is the density-based algorithm
proposed in (Im et al., 2020), where we run a sampling-
based version of the NKmeans algorithm (as given in (Im
et al., 2020)) on a coreset for fast implementation; (2) Ro-
bustKmeans++. This is the sampling-based method in
(Deshpande et al., 2020), which picks O(knz ) centers and
applies the weighted k-means++ method to obtain the final
results; (3) IKmeans. This is the algorithm which uses
Algorithm 1 to execute O(kε ) iterations with 5 data points
independently sampled in each iteration, followed by the
weighted k-means++ method (as used in (Deshpande et al.,
2020)) to obtain the final results; (4) TIKmeans. This is
the algorithm which uses Algorithm 1 to execute O(kε ) it-
erations with 5 data points independently sampled in each
iteration, followed by Algorithm 3 to obtain the final results,
where the algorithm in (Bhaskara et al., 2019) is used as
the weighted algorithm; (5) LS++. This is the local search
algorithm given in (Grunau & Rozhoň, 2022).

Experimental Setup. We perform our experiments on a
machine with 100 Intel Xeon Gold 6230 CPUs and 1TB
Memory. Following the settings in (Deshpande et al., 2020;
Im et al., 2020; Zhang et al., 2021), we fix the number of cen-
ters opened as k by running a weighted k-means algorithm
to obtain the final clustering centers (see the description
of algorithms). Also, following the settings in (Deshpande
et al., 2020; Im et al., 2020; Zhang et al., 2021), we fix
the outliers discarded as the furthest z data points to the
set of centers obtained for fair comparison. We test the
clustering cost, recall, and running time for each algorithm,
where recall is defined as the number of ground truth out-
liers found by the algorithms divided by the number of true
outliers. Following the settings in (Im et al., 2020), we run
all the algorithms on each dataset 10 times and report the
best clustering cost and corresponding recall.

Results. Table 2 shows the comparison results of the cluster-
ing cost, recall, and running time when k and z are fixed. On
dataset Skin-5 and Shuttle, compared with RobustKmeans++
and NKmeans algorithms, our TIKmeans algorithm reduces
the clustering cost by at least 4.43% and 21.16%, respec-
tively. For a total of 8 datasets, the clustering cost is reduced
by at least 5% on average compared with other algorithms.
For running time, our IKmeans algorithm runs faster than
other algorithms. On dataset SIFT-5 and SIFT-10, compared
with RobustKmeans++ and NKmeans algorithms, our pro-

posed IKmeans algorithm reduces the running time by at
least 50%. The results highlight the increasing advantages
of our algorithms as the data size grows. For a total of 8
datasets, on average, our IKmeans algorithm is at least 20%
faster than the state-of-the-art algorithms.

The experimental results with different parameter settings
(Appendix C.1) show that larger ε and η or smaller δ will
lead to faster running time of our algorithms. Smaller ε and
η achieve better clustering quality, while δ does not influ-
ence the clustering quality significantly. The experimental
results on the performance with a varying number of centers
opened and outliers discarded (Appendix C.2) show that
our proposed TIKmeans algorithm can still achieve the best
clustering quality and recall for most datasets, while our
proposed IKmeans algorithm is the fastest among different
algorithms. The experimental results with a varying size of
centers opened during the sampling process (Appendix C.3)
show that the number of centers opened does not influence
the recall index much, which indicates that the outliers dis-
carded are not significantly influenced by a relaxed number
of centers opened during the sampling process.

5. Conclusion
In this work, we present fast sampling-based methods for the
k-means with outliers problem, which have running time
independent of the aspect ratio ∆. We show experimen-
tally that our algorithms achieve competitive performance
on different datasets compared with other state-of-the-art
algorithms for the k-means with outliers problem.
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Grunau, C. and Rozhoň, V. Adapting k-means algorithms
for outliers. In Proceedings of the 36th International
Conference on Machine Learning, pp. 7845–7886, 2022.

Gupta, S., Kumar, R., Lu, K., Moseley, B., and Vassilvit-
skii, S. Local search methods for k-means with outliers.
Proceedings of the VLDB Endowment, 10:757–768, 2017.

Im, S., Qaem, M. M., Moseley, B., Sun, X., and Zhou, R.
Fast noise removal for k-means clustering. In Proceed-
ings of the 23rd International Conference on Artificial
Intelligence and Statistics, pp. 456–466, 2020.

Krishnaswamy, R., Li, S., and Sandeep, S. Constant ap-
proximation for k-median and k-means with outliers via
iterative rounding. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
646–659, 2018.

Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., and Chen,
G. H. Ecod: Unsupervised outlier detection using em-
pirical cumulative distribution functions. IEEE Trans-
actions on Knowledge and Data Engineering, 35(12):
12181–12193, 2022.

Liu, F. T., Ting, K. M., and Zhou, Z. H. Isolation forest. In
Proceedings of the 8th IEEE International Conference on
Data Mining, pp. 413–422, 2008.

Matsui, Y., Ogaki, K., Yamasaki, T., and Aizawa, K. Pqk-
means: Billion-scale clustering for product-quantized
codes. In Proceedings of the 25th ACM International
Conference on Multimedia, pp. 1725–1733, 2017.

Nguyen, H. L., Nguyen, T., and Jones, M. Fair range k-
center. arXiv preprint arXiv:2207.11337, 2022.

Sugiyama, M. and Borgwardt, K. M. Rapid distance-based
outlier detection via sampling. In Proceedings of the
26th International Conference on Neural Information
Processing Systems, pp. 467–475, 2013.

Zhang, Z., Feng, Q., Huang, J., Guo, Y., Xu, J., and Wang,
J. A local search algorithm for k-means with outliers.
Neurocomputing, 450:230–241, 2021.

10



Near-Linear Time Approximation Algorithms for k-means with Outliers

A. Discussions on the Running Time Lower Bounds
In the following, we give a brief discussion on the tradeoff between the number of centers opened, the number of outliers
discarded, and the running time given that the approximation guarantee on clustering quality is fixed as a constant. Table 3
summarizes the existing lower bounds on the running time.

When k and z are not relaxed. In this setting, a k-means with outliers instance was constructed in (Grunau & Rozhoň,
2022) such that finding an O(1)-approximate solution on this instance requires Ω(n2) running time. The example shows
that there is a fundamental limit for the runtime for achieving an O(1)-approximation with exactly k centers opened and
exactly z outliers discarded.

When z is relaxed. In this setting, Grunau and Rozhoň (Grunau & Rozhoň, 2022) provided a lower bound on the running
time in the general metric space query model, where a running time of Ω(nk

2

z ) is required to obtain a constant approximation
with O(z) outliers discarded if 10000k log k ≤ z ≤ n

10000 . However, as far as we know, there is no established lower bound
for achieving O(1)-approximation with (1 + ε)z outliers discarded. The current best result with exactly k centers opened
and (1 + ε)z outliers discarded is an O( 1

ε )-approximation (called LS++) proposed in (Grunau & Rozhoň, 2022) and has a
running time of O(dεnk log k(log log k + 1

ε log 1
ε ) log(n∆)).

When k is relaxed or k and z are both relaxed. In both settings, as far as we know, there is no known lower bound on the
running time. The only result with O(k) centers opened and exactly z outliers discarded is a (1 + ε)-approximation scheme
proposed in (Friggstad et al., 2019) with running time O(nd

O(d)

poly(k)). If both k and z are relaxed, no known results can
guarantee a constant approximate solution with (1 + ε)z outliers discarded and running time that matches our results.

Table 3. Existing running time lower bounds for constant approximation.
No Relaxation O(z) (1 + ε)z O(k) O(k),(1 + ε)z O(k/ε),(1 + ε)z

Lower Bound Ω(n2) Ω(nk2/z) Unknown Unknown Unknown Unknown
Current Best nO(1/ε3) [(Krishnaswamy et al., 2018)] ndk log log n+ poly(k)d log(n∆) (ours) Unknown nd

O(d)

poly(k) [(Friggstad et al., 2019)] Unknown ndk log log n/ε2 (ours)

B. Missing Proofs in Section 3
Lemma 3.1. For each lγ ∈ λ(i), it holds that lγ ≤ litrue.

Proof. We first assume that case (1) happens, where Qj ⊆ Ti or Q′ ⊆ Ti. For a data point x ∈ X , let px = d(x,Ci)∑
y∈X d(y,Ci)

be the distance-based sampling probability. Given a non-negative integer t, we use [t] = {1, 2, ..., t} to denote the set of
integers within range [1, t]. We first consider an arbitrary lγ ∈ λ(i) where lγ = ljf for some j ∈ [b 1+ε

ε c]. In this case, we
have

ljf − l
i
true =

(1 + ε)z − |Qj |
1−

∑
x∈Qj px

− (1 + ε)z − |Ti|
1−

∑
x∈Ti px

=
1

1−
∑
x∈Qj px

(1 + ε)z − |Qj | − litrue(1−
∑
x∈Qj

px)

 .

Let Ψ(j) = ((1 + ε)z − |Qj | − litrue(1−
∑
x∈Qj px)). Observe that litrue(1−

∑
x∈Qj px) ≥ (1 + ε)z − |Qj |, where the

inequality follows from the fact that the distance-based sampling probabilities of data points in Qj boosted by litrue and Ci
are larger than 1. Hence, we have Ψ(j) ≤ 0, which means ljf ≤ litrue. Since the case for l′f ∈ λ(i) is similar to the case for
ljf , we also have l′f ≤ litrue.

Now we assume that case (2) happens, where Ti ⊂ Qj or Ti ⊂ Q′. Similar to case (1), let Ψ′(j) = ((1 + ε)z − |Qj | −
litrue(1−

∑
x∈Qj px)). Observe that since Ti ⊂ Qj , we have litrue(1−

∑
x∈Qj px) = litrue(1−

∑
x∈Ti px−

∑
x∈Qj\Ti px) ≥

(1 + ε)z− |Ti| − (|Qj | − |Ti|) = (1 + ε)z− |Qj |, where the first inequality follows from the fact that data points in Qj ∩Ti
contribute exactly 1 to the probability summation and data points in Qj\Ti contribute smaller than 1 to the probability
summation. Hence, in this case, we have ljf ≤ litrue. Since the case for l′f is similar to the case for ljf , we also have l′f ≤ litrue
in case (2).

Lemma 3.2. Let lf be the estimation of the oversampling factor returned by Algorithm 2. Then, litrue ≤ max{εzlf , 2lf}.

11



Near-Linear Time Approximation Algorithms for k-means with Outliers

Proof. Recall that litrue is the true oversampling factor such that
∑
x∈X t(l

i
true, x, Ci) = (1 + ε)z, and Ti ={

x ∈ X : litrued(x,Ci)/d(X,Ci) ≥ 1
}

is the set of data points in X whose probabilities boosted by litrue and Ci are
larger than 1. We use ν(Ti) = d(Ti, Ci)/d(X,Ci) to denote the summation of distance-based sampling probabilities of
data points in Ti. Note that data points in Ti can only contribute 1 to the probability summation. In the j-th iteration of
the for loop in step 3 of Algorithm 2, let Qj be the set of the guessed data points obtained in step 5, where the boosted
probabilities of data points in Qj are regarded to be larger than 1. Let Q′ be the set of the guessed data points obtained in
step 8 of Algorithm 2. Define ν(j) = d(Qj , Ci)/d(X,Ci) as the distance-based probability summation of data points in
Qj . Let Q0 = ∅. There are two cases that may happen: (1) Ti ⊆ Qj and Ti 6⊆ Qj−1 for some j ∈

[
b 1+ε

ε c
]
; (2) Ti ⊆ Q′. If

case (1) happens, we have

ljf =
R− |Qj |
1− ν(j)

=
R− |Tj | − |Qj\Ti|

1− ν(j)

≥ R− |Ti| − |Qj\Ti|
1− ν(Ti)

≥ 0.5(R− |Ti|)
1− ν(Ti)

= 0.5litrue,

where the first inequality follows from the fact that Ti ⊆ Qj and ν(Ti) ≤ ν(j), and the second inequality follows from the
fact that |Qj\Ti| ≤ εz and R− |Ti| ≥ εz + |Qj\Ti|. Hence, in this case, we have litrue ≤ 2ljf .

If case (2) happens, let ν′ = d(Q′, Ci)/d(X,Ci). Then, it holds that

l′f =
1

1− ν′
≥ 1

1− ν(Ti)
≥

1
εz (R− |Ti|)
1− ν(Ti)

≥ litrue
εz

,

where the first inequality follows from the fact that ν(Ti) ≤ ν′, and the second inequality follows from the fact that
R− |Ti| ≤ εz. Since lf is taken as the maximum value among all ljf and l′f , we can get that litrue ≤ max{2lf , εzlf}.

Lemma 3.3 For any P ∗j ∈ P(C∗), it holds that |Tα(P ∗j )| ≥ (1− 1/α)|P ∗j |.

Proof.
d(P ∗j ,

{
c∗j
}

) ≥ d(P ∗j \Tα(P ∗j ), {c∗j})

≥ |P ∗j |

(
1−
|Tα(P ∗j )|
|P ∗j |

)
αd(P ∗j ,

{
c∗j
}

)

|P ∗j |
,

which implies that |Tα(P ∗j )| ≥
(
1− 1

α

)
|P ∗j |.

Lemma 3.4 Let P ∗j be an optimal cluster with d(P ∗j , Ci) = βd(P ∗j ,
{
c∗j
}

) for some β ≥ 3.5. Then, d(Tα(P ∗j ), Ci) ≥
1

200 (β − 1)d(P ∗j ,
{
c∗j
}

) with α = 2.

Proof. Let sj be the closest center in Ci to c∗j . It holds that d(c∗j , sj) ≥
(β−1)d(P∗j ,{c∗j})

|P∗j |
. Otherwise d(P ∗j , {sj}) <

βd(P ∗j ,
{
c∗j
}

) holds by using Lemma 2.1, which contradicts with the assumption that d(P ∗j , Ci) = βd(P ∗j ,
{
c∗j
}

). Hence,
for any data point x ∈ Tα(P ∗j ), we have

√
d(x,Ci) ≥

√
d(c∗j , Ci)−

√
d(x, c∗j )

≥

√
d(P ∗j ,

{
c∗j
}

)

|P ∗j |

(√
β − 1−

√
α
)
.

12



Near-Linear Time Approximation Algorithms for k-means with Outliers

Since
√
β − 1 ≥

√
2.5 and α = 2, we have

√
α ≤

√
4(β−1)

5 . Thus,

d(T2(P ∗j ), Ci) ≥ |T2(P ∗j )|
d(P ∗j ,

{
c∗j
}

)

|P ∗j |

(√
β − 1−

√
α
)2

≥ 1

200
(β − 1)d(P ∗j ,

{
c∗j
}

),

where the last step follows from Lemma 3.3.

Lemma 3.5. Let E3 be the event that the sampled data point x in step 8 of Algorithm 1 belongs to Hi. Then, we have
Pr(E3) ≥ ε

35840 .

Proof. Consider an arbitrary bad optimal cluster P ∗j ∈ Si. By Lemma 3.4, if d(P ∗j , Ci) = βd(P ∗j , {c∗j}) for β ≥ 3.5, then

d(p, Ci) ≥ 1
200 (β − 1)

d(P∗j ,{c
∗
j })

|P∗j |
holds for each p ∈ T2(P ∗j )\χ(j). By the definition of the optimal clusters in Si, we have

|χ(j)| < 0.5|T2(P ∗j )|, which implies that |T2(P ∗j )\χ(j)| ≥ 0.5|T2(P ∗j )| ≥ 0.25|P ∗j |. Then, we have

d(T2(P ∗j )\χ(j), Ci) ≥
|P ∗j |
800

(β − 1)
d(P ∗j , {c∗j})
|P ∗j |

≥ β − 1

800
d(P ∗j , {c∗j})

=
β − 1

800β
d(P ∗j , Ci)

≥ 1

1120
d(P ∗j , Ci),

where the last inequality follows from β ≥ 3.5. Then,

Pr(E3) = Pr(E1)Pr(E3|E1)

≥ ε

2(1 + ε)

∑
x∈Hi t(l

′
i, x, Ci)∑

x∈N ′ t(l
′
i, x, Ci)

≥ ε

2(1 + ε)

∑
x∈Hi l

′
id(x,Ci)∑

x∈N ′ l
′
id(x,Ci)

≥ ε

2(1 + ε)

∑
P∗j ∈Si

d(T2(P ∗j )\χ(j), Ci)

d(N ′, Ci)

≥ ε

1 + ε

d(U(Si), Ci)
2240d(N ′, Ci)

,

where the second inequality follows from the fact that t(l′i, x, Ci) = l′id(x,Ci) holds for each x ∈ Hi, and the last inequality
follows from d(T2(P ∗j )\χ(j), Ci) ≥ 1

1120d(P ∗j , Ci) for each P ∗j ∈ Bi. By the definition of good and bad clusters, we have
that each good optimal cluster P ∗h ∈ Gi has clustering cost d(P ∗h , Ci) ≤ 3.5OPTj , and each bad optimal cluster P ∗h ∈ Bi
has clustering cost d(P ∗h , Ci) > 3.5OPTj . Moreover, according to the case assumption we have d(N ′, Ci) ≥ 4OPT . Then,

it holds that d(U(Si),Ci)
d(N ′,Ci)

≥ 1−
∑
P∗
h
∈Gi

d(P∗h ,Ci)

d(N ′,Ci)
≥ 1− 3.5

4 = 1
8 , which indicates that Pr(E3) ≥ ε

35840 if ε ≤ 1.

Lemma 3.6. By repeating the sampling process of Algorithm 1 for q = O(kε ) rounds, with constant probability, we have
|Sq+1| = 0 and Lnq+1 ≤ εz

2 .

Proof. In the i-th iteration of our Algorithm 1, we first consider the case that |Li+1| < |Li| happens. Define a variable
ai = 1 if |Li+1| < |Li|. Otherwise ai = 0. It holds that ai has value 1 with probability at least ε

32 if Lni ≥ εz
2 . Let p = ε

32 .
Denote q1 as the total number of sampling iterations required to make all the optimal clusters in L1 good when Lni ≥ εz

2
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always holds during the sampling process. Let q1 = 64tk
ε , where t ≥ 1 is a large constant. Assume that Lni ≥ εz

2 holds for
q1 iterations. In the worst case, there are k bad optimal clusters in the beginning. Then, by Chernoff Bound, we have

Pr

 q1∑
j=1

aj < k

 < Pr

 q1∑
j=1

aj <
pq1

2


< e−

pq1
8

< e−
k
4

≤ e− 1
4 .

This implies that Pr(
∑q1
j=1 aj ≥ k) ≥ 1− e− 1

4 . Thus, by repeating the sampling process q1 = O(kε ) rounds, with constant
probability, either all the bad optimal clusters in L1 become good or Lnj+1 <

εz
2 happens after the j-th iteration of the

sampling process for some j < q1. For both cases, we have Lnq1+1 <
εz
2 .

After executing q1 = O(kε ) iterations of the sampling process for Algorithm 1, we can get that Lnq1+1 <
εz
2 . Now we

consider the case that |Si+1| < |Si| happens. By Lemma 3.5, this case happens with probability at least ε
35840 if Lni ≤ εz

2 .
Similar to the case that |Li+1| < |Li|, by repeating the sampling process for another q2 = 71680kt

ε iterations for some
constant t ≥ 1, with constant probability, all the bad optimal clusters in S1 become good. Putting all these together,
by repeating the sampling process for q = O(kε ) rounds, we can obtain a set Cq+1 of centers such that |Sq+1| = 0 and
Lnq+1 ≤ εz

2 hold with constant probability.

Theorem 1.1. For the k-means with outliers problem, there exists an algorithm that runs in time O(ndk log logn
ε2 ) and outputs

a 4-approximate solution with constant probability by opening O(k/ε) centers and discarding (1 + ε)z outliers.

Proof. For approximation guarantees on clustering quality, by Lemma 3.6 and the case assumptions, we can obtain a
4-approximate solution with O(kε ) centers opened and (1 + ε

2 )z outliers discarded using Algorithm 1. For the running time,
in each iteration, the algorithm requires to calculate the distances between data points to the current set of centers opened for
oversampling factor estimation and sampling-based probability distribution construction. In each iteration, the distances
from data points to their nearest centers can be updated in time O(nd) by maintaining the nearest centers (or distances)
from the data points to the current set of centers opened. On the other hand, with nearest distances, the oversampling factor
finding process (steps 3-7 of Algorithm 1) can be executed in time O(nd log logn

ε ) using linear selection methods (Blum et al.,
1973) to find the furthest εz data points to the current set of centers opened. Thus, each sampling iteration can be executed
in time O(nd log logn

ε ). By repeating the sampling process for O(k/ε) rounds, the total running time is O(ndk log logn
ε2 ).

Theorem 1.3. For the k-means with outliers problem, under the assumption that each optimal cluster has size at least 3z,
there exists an algorithm that runs in time O(ndk log log n) and outputs a 4-approximate solution with constant probability
by opening O(k) centers and discarding z outliers.

Proof. If each optimal cluster has size at least 3z, then it holds trivially that each optimal cluster in Li can be sampled with
constant probability. Hence, by Lemma 3.6, after repeating the sampling process in Algorithm 1 for q1 = O(k) rounds, all
bad clusters in L1 become good with constant probability. Then, since Lnq1+1 = 0, the probability of picking an inlier from
N ′ becomes a constant. Hence, according to Lemma 3.5, the probability of picking an inlier close to the center of some bad
optimal cluster in Sq1+1 also becomes a constant. Consequently, according to Lemma 3.6, after repeating the sampling
process in Algorithm 1 for another q2 = O(k) rounds, all bad optimal clusters in S1 become good with constant probability,
which yields a 4-approximate solution with O(k) centers opened and exactly z outliers discarded.

Theorem 1.2. For the k-means with outliers problem, there exists an algorithm that runs in time O(ndk log logn
ε2 +

dpoly(k, 1
ε ) log(n∆)) and outputs an O( 1

ε )-approximate solution with constant probability by opening exactly k centers
and discarding (1 + ε)z outliers.

Proof. Observe that there must exist a weighted instance C ′1, where at most εz6 inliers in N ′1 are discarded by C ′1 (i.e., the set
of data points in N ′1 that are not recalled back by step 8 of Algorithm 3). Denote the set of data points in N ′1 discarded by C ′1
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as O(N ′1). Let Zg be the set of data points discarded by weighted instance C ′1 (i.e., the set Z obtained after executing step 8
of Algorithm 3). Let Cf be the solution obtained by calling a (O( 1

ε ), 1 + ε)-approximation algorithm F on C ′1 with ε = ε
3

and z = (1 + ε
3 )z − |Zg| as inputs. Let Zwf be the set of data points in C ′1 discarded by the weighted algorithm F , where

each data point z ∈ Zwf is associated with a weight w′(z) to denote the weight units of z discarded by algorithm F . Based
on Zwf , we can obtain a set Zf of data points with size

∑
x∈Zwf

w′(x) as the set of outliers in X discarded by F . More
specifically, for each data point c ∈ C ′1, let φ(c) be the set of data points in X\Zg assigned to c. Then, for each c ∈ Zwf ,
we can discard an arbitrary subset φ′(c) ⊆ φ(c) with size w′(c) as the data points discarded by the weighted Algorithm F ,
where Zf = ∪c∈Zwf φ

′(c). According to the definition of Zf , we can get that |Zf | = (1 + ε
3 )((1 + ε

3 )z − |Zg|).

Let H = X\(Zf ∪ Zg). By assigning the data points in H to their closest centers in C1 (C1 is the initial set of centers
obtained in step 2 of Algorithm 1), for each c ∈ C1, we use σ(c) to denote the number of data points inH that are assigned
to c. For each point x ∈ X , let yx denote the closest point in C1 to x. We use C∗w to denote the optimal solution of the
weighted k-center with outliers instance C ′1, where each c ∈ C ′1 is associated with a weight w′′(c) to denote the weight units
of c that are not discarded by the optimal solution C∗w. Define V = (X\Zg)\(Z∗ ∪ U(L′1)). By assigning the data points in
V to their closest center in C ′1, for each c ∈ C ′1, we use σ′(c) to denote the number of data points in V assigned to c. Denote
Z ′f as the set of the furthest (1 + ε)z data points from X to Cf . Then, we have that d(X\Z ′f , Cf ) ≤ d(X\(Zf ∪ Zg), Cf )

according to the definition of Z ′f and the fact that |Zf ∪ Zg| = |Zg|+ (1 + ε
3 )((1 + ε

3 )z − |Zg|) ≤ (1 + ε
3 )2z ≤ (1 + ε)z,

where the last inequality follows from 0 < ε ≤ 1. Next, we show how to bound the cost of d(X\(Zf ∪ Zg), Cf ). Based on
the definitions of Zf and Zg , we can get that

d(X\(Zf ∪ Zg), Cf ) =
∑

x∈X\(Zf∪Zg)

d(x,Cf )

≤
∑

x∈X\(Zf∪Zg)

2d(x, yx) +
∑

x∈X\(Zf∪Zg)

2d(yx, Cf )

≤
∑

x∈X\Zg

2d(x, yx) + 2
∑
c∈C′1

σ(c)d(c, Cf )

≤
∑

x∈(X\Zg)\(Z∗∪U(L′1))

2d(x, yx) +
∑

x∈(X\Zg)∩(Z∗∪U(L′1))

2d(x, yx) +O(
1

ε
)
∑
c∈C′1

w′′(c)d(c, C∗w)

≤
∑

x∈(X\Zg)\(Z∗∪U(L′1))

2d(x, yx) +
∑

x∈(X\Zg)∩(Z∗∪U(L′1))

2d(x, yx) +O(
1

ε
)
∑
c∈C′1

σ′(c)d(c, C∗)

≤ O(1)OPT +O(
OPT

ε
) +O(

1

ε
)

 ∑
x∈(X\Zg)\(Z∗∪U(L′1))

2d(x, yx) + 2d(x,C∗)


≤ O(

1

ε
)OPT +O(

1

ε
)OPT

= O(
1

ε
)OPT,

where the second inequality follows from the definition of σ(x), the third inequality follows from the fact that F is a
(O( 1

ε ), 1 + ε)-approximation weighted algorithm for the k-center with outliers problem, the fourth inequality follows from
the fact that C∗w is the optimal solution for weighted instance C ′1 and |Z∗ ∪ Zg ∪ U(L′1)| ≤ |Z∗|+ |U(L′1)|+ |O(N ′1)| ≤
z + εz

6 + εz
6 = (1 + ε

3 )z, the fifth inequality follows from the fact that d(N ′1, C1) ≤ 4OPT and all the data points in X\Zg
are within distances 48OPT

εz to C1, and the last inequality follows from the fact that d(N ′1, C1) ≤ 4OPT . Moreover, the
number of outliers discarded can be bounded by |Zf ∪Zg| ≤ (1 + ε

3 )(1 + ε
3 )z ≤ (1 + ε)z for 0 < ε ≤ 1. The running time

analysis is similar to that of Algorithm 1 using linear selection methods (Blum et al., 1973) to recall the data points.

C. Complementary Experimental Results
C.1. Experimental Performances with Different Parameter Settings

In this subsection, we test the performances of our algorithms under different parameter settings on datasets Skin-5 and
Skin-10. Figure 1 and Figure 2 show the clustering results for TIKmeans using different parameters on datasets Skin-5 and
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Skin-10, respectively. In each figure, “epsilon” represents the parameter ε, “eta” represents the parameter η, and “delta”
represents the parameter δ.

It can be seen that, in general, larger ε and η or smaller δ lead to a faster implementation of TIKmeans algorithm. Smaller ε
and η achieve better clustering quality while δ does not influence the clustering quality much.
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Figure 1. Clustering results for TIKmeans using different parameters on dataset Skin-5
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Figure 2. Clustering results for TIKmeans using different parameters on dataset Skin-10
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Figure 3. Clustering results for IKmeans using different parameters on dataset Skin-5
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Figure 4. Clustering results for IKmeans using different parameters on dataset Skin-10
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Figure 3 and Figure 4 show the clustering results for IKmeans using different parameters on datasets Skin-5 and Skin-10,
respectively. It can be seen that, in general, larger ε and η or smaller δ lead to a faster implementation of IKmeans. Smaller ε
and η achieve better clustering quality while δ does not influence the clustering quality much.

C.2. Experimental Performances with Varying Number of Centers Opened and Outliers Discarded

In this section, we present complementary experiments on the performance of our proposed sampling-based algorithms with
different choices of k and z to show the parameter robustness of different algorithms. In general, for a particular dataset,
the number of clusters k and the number of outliers z do not influence the performance of our proposed algorithms. In the
following, we present results for more choices of k and z on different datasets, where k ranges from 10 to 50 and z ranges
from 1%n to 10%n, to demonstrate the performance of our proposed methods compared with other algorithms. For the
LS++ algorithm, the running time increases significantly as the data size and the number of centers k grow. Since for most
datasets, LS++ fails to return a solution within 24 hours, we only provide comparison results for other algorithms. For the
SIFT dataset, since the data size is much larger than other datasets, moderate changes in k do not significantly influence the
clustering cost. Thus, we test the values of k ranging from 50 to 200 on SIFT.

It can be seen from the tables that, for all algorithms on a particular dataset, a larger k leads to a lower clustering cost with
higher recall and running time, whereas a larger z leads to a lower clustering cost and higher recall. Different settings of
z do not influence the running time of the proposed algorithms. Experimental results show that our proposed TIKmeans
algorithm achieves the best clustering quality and recall for most cases, while our proposed IKmeans algorithm is the fastest
compared with other algorithms.

Table 4. Clustering performance on dataset Skin-5 with varying k from 5 to 25 and fixed z = 1%n.

Cost k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 133001.69 69166.76 48687.18 37333.04 31424.09
IKmeans 137438.69 69184.39 51028.29 37507.20 31650.40

RobustKmeans++ 135760.39 70574.93 50079.34 38774.81 32833.94
NKmeans 131279.93 72237.72 51885.67 41251.32 33929.32

Recall k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 0.7669 0.7413 0.7310 0.7895 0.7774
IKmeans 0.7645 0.7625 0.7331 0.8291 0.8190

RobustKmeans++ 0.7661 0.7609 0.7613 0.7314 0.7948
NKmeans 0.7689 0.7197 0.7310 0.7633 0.7883

Time k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 1.39 2.37 3.43 5.03 5.78
IKmeans 0.42 0.77 1.13 1.46 1.85

RobustKmeans++ 0.47 0.81 1.38 1.47 1.88
NKmeans 3.29 13.92 31.46 57.48 93.74

20



Near-Linear Time Approximation Algorithms for k-means with Outliers

Table 5. Clustering performance on dataset Skin-5 with varying k from 30 to 50 and fixed z = 1%n.

Cost k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 28214.01 23124.98 20217.43 18980.59 17282.84
IKmeans 26712.49 23594.32 22403.47 19352.91 16983.94

RobustKmeans++ 27460.27 24615.45 22473.25 20754.49 19098.23
NKmeans 28309.55 25418.44 22343.45 21518.82 19582.24

Recall k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 0.7859 0.7920 0.8287 0.8162 0.8376
IKmeans 0.8045 0.7992 0.8323 0.8465 0.8441

RobustKmeans++ 0.7903 0.8307 0.7996 0.8255 0.8194
NKmeans 0.8610 0.8319 0.7843 0.8089 0.7580

Time k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 6.96 7.87 9.70 10.16 11.99
IKmeans 2.13 2.51 2.89 3.32 3.78

RobustKmeans++ 2.31 2.54 2.97 3.52 3.88
NKmeans 140.62 194.56 258.30 328.05 424.09

Table 6. Clustering performance on dataset Skin-10 with varying k from 5 to 25 and fixed z = 1%n.

Cost k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 132588.34 74153.30 49329.10 35996.06 31346.05
IKmeans 138698.15 72951.08 50072.42 37135.89 32602.12

RobustKmeans++ 137933.29 77644.30 50830.38 47606.80 35945.20
NKmeans 137561.83 78409.65 48636.44 40860.58 34571.45

Recall k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 0.9510 0.9347 0.9408 0.9449 0.9702
IKmeans 0.9551 0.9404 0.9408 0.9689 0.9408

RobustKmeans++ 0.9543 0.9640 0.9326 0.9485 0.9624
NKmeans 0.9514 0.9587 0.9400 0.9730 0.9534

Time k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 1.45 2.48 3.87 4.77 6.00
IKmeans 0.43 0.60 0.77 0.95 1.13

RobustKmeans++ 0.51 0.83 1.16 1.46 1.81
NKmeans 3.45 13.3 31.56 57.79 93.77
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Table 7. Clustering performance on dataset Skin-10 with varying k from 30 to 50 and fixed z = 1%n.

Cost k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 28279.90 24872.02 21010.90 20562.72 18187.60
IKmeans 28885.94 26696.04 22985.64 20217.50 18720.93

RobustKmeans++ 36015.10 30775.52 28880.69 28194.32 25787.91
NKmeans 32783.28 35675.38 33097.31 27866.86 28763.89

Recall k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 0.9681 0.9657 0.9685 0.9555 0.9481
IKmeans 0.9685 0.9367 0.9632 0.9538 0.9601

RobustKmeans++ 0.9379 0.9469 0.9469 0.9371 0.9245
NKmeans 0.9571 0.9220 0.9020 0.9404 0.9175

Time k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 6.83 8.13 9.28 10.19 12.21
IKmeans 1.30 1.45 1.62 1.81 2.01

RobustKmeans++ 2.18 2.55 2.94 3.38 3.87
NKmeans 139.88 192.47 258.66 332.46 418.80

Table 8. Clustering performance on dataset SUSY-5 with varying k from 5 to 25 and fixed z = 1%n.

Cost k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 76506571.19 63303490.50 58241195.75 53150916.80 50012984.14
IKmeans 75161216.13 64384761.92 59031750.53 54601183.21 52000973.94

RobustKmeans++ 75363995.40 64744175.91 58799082.14 53998470.07 50930055.07
NKmeans 78044742.48 68129835.21 60729749.41 56443827.61 52409638.62

Recall k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 0.6683 0.6985 0.7254 0.8252 0.7407
IKmeans 0.6334 0.6069 0.7157 0.8001 0.8345

RobustKmeans++ 0.7242 0.6802 0.7155 0.7353 0.7840
NKmeans 0.6932 0.6845 0.7144 0.6959 0.7881

Time k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 47.38 60.12 74.01 87.85 102.24
IKmeans 20.31 29.37 39.05 48.79 58.1

RobustKmeans++ 26.45 50.57 71.14 97.59 117.41
NKmeans 81.93 254.23 675.83 1391.35 2582.76
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Table 9. Clustering performance on dataset SUSY-5 with varying k from 30 to 50 and fixed z = 1%n.

Cost k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 47359631 44867910 43604086 43269023 41477222
IKmeans 49054613 46938023 44634763 44289220 42737899

RobustKmeans++ 48363286 46465226 45437418 43819938 43273159
NKmeans 49116640 47631174 45828267 44637656 43793074

Recall k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 0.8207 0.7990 0.7788 0.7910 0.8016
IKmeans 0.8226 0.8301 0.8237 0.8603 0.8555

RobustKmeans++ 0.8194 0.8106 0.8518 0.8292 0.8651
NKmeans 0.7826 0.8522 0.7880 0.8261 0.8069

Time k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 92.61 105.76 119.01 127.67 141.07
IKmeans 65.67 77.93 88.63 95.03 109.72

RobustKmeans++ 137.39 169.31 188.05 207.05 226.71
NKmeans 4292.79 6514.81 9355.65 12626.07 17441.47

Table 10. Clustering performance on dataset SUSY-10 with varying k from 5 to 25 and fixed z = 1%n.

Cost k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 76931998.91 65170740.90 61115030.52 54374376.30 51543466.66
IKmeans 79990751.06 65825639.96 58880753.99 55494181.80 52662368.24

RobustKmeans++ 80757039.16 65803549.89 59247264.81 55862554.74 51548007.32
NKmeans 78600699.75 67033340.54 60664573.60 55148867.68 53220072.49

Recall k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 0.9717 0.9652 0.9743 0.9808 0.9880
IKmeans 0.9770 0.9694 0.9776 0.9857 0.9809

RobustKmeans++ 0.9725 0.9799 0.9780 0.9880 0.9860
NKmeans 0.9594 0.9640 0.9907 0.9843 0.9832

Time k = 5 k = 10 k = 15 k = 20 k = 25

TIKmeans 47.45 60.72 73.93 88.07 101.84
IKmeans 19.89 28.77 38.17 46.99 56.28

RobustKmeans++ 26.24 49.75 70.42 96.90 116.11
NKmeans 82.46 257.29 684.65 1353.63 2567.51
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Table 11. Clustering performance on SUSY-10 with varying k from 30 to 50 and fixed z = 1%n.

Cost k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 49090571 45972711 44823068 44021010 42376519
IKmeans 48756523 47809234 45925463 44255460 42688771

RobustKmeans++ 49964920 46431096 45739430 44035489 43635342
NKmeans 49586439 47269972 46004081 44936911 43416153

Recall k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 0.9873 0.9880 0.9875 0.9874 0.9826
IKmeans 0.9849 0.9790 0.9837 0.9881 0.9853

RobustKmeans++ 0.9852 0.9894 0.9888 0.9850 0.9847
NKmeans 0.9829 0.9851 0.9840 0.9814 0.9744

Time k = 30 k = 35 k = 40 k = 45 k = 50

TIKmeans 91.85 98.04 112.08 124.92 137.07
IKmeans 66.54 72.09 83.32 97.16 105.72

RobustKmeans++ 136.71 165.12 185.23 204.27 227.32
NKmeans 4329.1 6565.01 9306.71 13138.28 17744.28

Table 12. Clustering performance on dataset SIFT-5 with varying k from 50 to 200 and fixed z = 1%n.

Cost k = 50 k = 100 k = 150 k = 200

TIKmeans 13005055711 12033800256 11446843957 11217336739
IKmeans 13172627781 12275654391 11642167619 11224453041

RobustKmeans++ 13095090316 12077778481 11493088419 NA
NKmeans NA NA NA NA

Recall k = 50 k = 100 k = 150 k = 200

TIKmeans 1 1 1 1
IKmeans 1 1 0.9999 1

RobustKmeans++ 1 0.9998 1 NA
NKmeans NA NA NA NA

Time k = 50 k = 100 k = 150 k = 200

TIKmeans 8020.93 10906.2 17308.9 25570.99
IKmeans 5243.94 9635.4 10122.39 13091.47

RobustKmeans++ 47169.19 92840.3 151129.76 > 72h
NKmeans > 72h > 72h > 72h > 72h
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Table 13. Clustering performance on SIFT-10 with varying k from 50 to 200 and fixed z = 1%n.

Cost k = 50 k = 100 k = 150 k = 200

TIKmeans 13009053091 12081741573 11470728229 11212034557
IKmeans 13192544237 12107041166 11582239578 11395892613

RobustKmeans++ 12924333298 11983478657 11510477529 NA
NKmeans NA NA NA NA

Recall k = 50 k = 100 k = 150 k = 200

TIKmeans 1 1 1 1
IKmeans 1 1 1 1

RobustKmeans++ 1 1 1 NA
NKmeans NA NA NA NA

Time k = 50 k = 100 k = 150 k = 200

TIKmeans 8775.9 10733.8 16845.2 25682.38
IKmeans 5292.4 9374.2 10828.9 13857.4

RobustKmeans++ 48360.4 92223.8 159366.4 > 72h
NKmeans > 72h > 72h > 72h > 72h

Table 14. Clustering performance on Skin-5 with varying z from 1%n to 5%n and fixed k = 10.

Cost z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 64786.31 65100.22 65720.50 68458.42 60736.34
IKmeans 71871.21 68508.17 66279.40 65510.93 65366.71

RobustKmeans++ 72139.69 69895.30 73838.02 66695.92 66386.79
NKmeans 75964.88 70560.98 73342.50 66461.91 74162.59

Recall z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 0.7392 0.7843 0.7830 0.8137 0.8390
IKmeans 0.7613 0.7894 0.7988 0.8173 0.8605

RobustKmeans++ 0.7792 0.7823 0.7797 0.8240 0.8435
NKmeans 0.7078 0.7651 0.8060 0.8292 0.8394

Time z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 2.27 2.32 2.28 2.38 2.31
IKmeans 0.61 0.61 0.61 0.62 0.63

RobustKmeans++ 0.83 0.84 0.84 0.85 0.86
NKmeans 13.46 7.4 5.48 4.49 3.9
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Table 15. Clustering performance on Skin-5 with varying z from 6%n to 10%n and fixed k = 10.

Cost z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 63506.86 62947.58 61230.81 63100.28 59344.19
IKmeans 61824.42 66127.58 62570.48 65745.74 61660.30

RobustKmeans++ 67136.44 69719.64 67068.58 65594.05 68895.94
NKmeans 78933.56 80379.68 73653.64 77361.83 73040.27

Recall z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 0.8584 0.8667 0.8853 0.8905 0.8857
IKmeans 0.8514 0.8647 0.8798 0.8830 0.8915

RobustKmeans++ 0.8590 0.8606 0.8454 0.8810 0.8818
NKmeans 0.8526 0.8541 0.8756 0.8625 0.8888

Time z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 2.39 2.59 2.46 2.57 2.53
IKmeans 0.73 0.82 0.74 0.75 0.76

RobustKmeans++ 0.78 0.84 0.78 0.81 0.81
NKmeans 3.53 3.21 3.02 2.93 2.77

Table 16. Clustering performance on Skin-10 with varying z from 1%n to 5%n and fixed k = 10.

Cost z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 74015.60 74219.05 68796.43 68124.14 75247.27
IKmeans 76897.91 70525.45 76010.99 76636.38 89996.15

RobustKmeans++ 77700.52 79382.63 79933.22 81708.13 84753.06
NKmeans 73716.44 75465.23 75226.64 76592.18 75577.78

Recall z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 0.9498 0.9443 0.9528 0.9563 0.9542
IKmeans 0.9465 0.9502 0.9548 0.9463 0.9462

RobustKmeans++ 0.9526 0.9563 0.9488 0.9446 0.9529
NKmeans 0.9424 0.9620 0.9537 0.9553 0.9533

Time z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 2.60 2.50 2.73 2.60 2.44
IKmeans 0.78 0.76 0.79 0.76 0.75

RobustKmeans++ 0.83 0.83 0.84 0.85 0.86
NKmeans 13.44 7.48 5.52 4.56 4.02
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Table 17. Clustering performance on Skin-10 with varying z from 6%n to 10%n and fixed k = 10.

Cost z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 69275.11 65275.5 70124.64 69053.54 66495.53
IKmeans 77158.66 74924.31 69899.49 76236.49 72217.37

RobustKmeans++ 82217.23 82915.68 79387.25 76790.36 87849.24
NKmeans 80888.75 78856.59 80999.44 76502.57 78045.86

Recall z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 0.961 0.9658 0.9694 0.9637 0.972
IKmeans 0.9617 0.9647 0.9677 0.9689 0.9702

RobustKmeans++ 0.9604 0.958 0.9602 0.962 0.9616
NKmeans 0.9651 0.9665 0.9702 0.9629 0.9751

Time z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 2.37 2.39 2.40 2.32 2.36
IKmeans 0.51 0.59 0.64 0.69 0.67

RobustKmeans++ 0.87 0.88 0.89 0.9 0.9
NKmeans 3.62 3.37 3.14 2.97 2.89

Table 18. Clustering performance on SUSY-5 with varying z from 1%n to 5%n and fixed k = 10.

Cost z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 62758784.43 63910448.61 64388795.91 62495299.04 62697556.27
IKmeans 65783225.59 64912207.36 65246163.32 64642186.03 63671705.04

RobustKmeans++ 64453941.70 65069784.16 65287913.29 61526407.40 64922196.82
NKmeans 64749757.12 64832980.44 65402357.48 64499515.06 64709049.91

Recall z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 0.7363 0.8068 0.8444 0.8830 0.8917
IKmeans 0.7215 0.8015 0.8552 0.8902 0.9008

RobustKmeans++ 0.7690 0.8157 0.8801 0.9167 0.9315
NKmeans 0.6890 0.7925 0.8657 0.8949 0.9172

Time z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 60.84 59.9 60.35 60.88 61.26
IKmeans 29.64 29.3 29.16 29.31 29.73

RobustKmeans++ 50.48 50.63 51.1 51.48 51.95
NKmeans 256.25 171.86 144.82 128.76 121.89
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Table 19. Clustering performance on SUSY-5 with varying z from 6%n to 10%n and fixed k = 10.

Cost z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 62979798.60 64022621.01 63048475.88 63637522.62 65435146.73
IKmeans 64829133.51 65376733.61 66384399.56 66896282.84 65847357.87

RobustKmeans++ 64333574.10 64053981.19 62868433.36 63604037.88 63829121.16
NKmeans 64752980.43 65808864.54 63748304.73 65423397.85 64790008.58

Recall z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 0.9202 0.9219 0.9220 0.9284 0.9411
IKmeans 0.8997 0.9130 0.9364 0.9154 0.9451

RobustKmeans++ 0.9217 0.9388 0.9206 0.9369 0.9483
NKmeans 0.9192 0.9043 0.9482 0.9209 0.9475

Time z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 62.95 63.23 63.55 64.2 64.18
IKmeans 30.42 30.53 30.78 31.16 31.32

RobustKmeans++ 52.97 52.89 53.72 54.03 54.84
NKmeans 116.46 112.68 110.36 108.16 105.3

Table 20. Clustering performance on SUSY-10 with varying z from 1%n to 5%n and fixed k = 10.

Cost z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 65444363.61 66093452.48 68542989.95 66803669.72 63516819.42
IKmeans 66435461.94 66635419.50 64357041.09 67485941.66 68153278.76

RobustKmeans++ 66317811.28 66572096.45 65874645.76 65812489.59 63962275.52
NKmeans 64590541.36 66405391.38 65267405.61 65728455.77 67356351.80

Recall z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 0.9695 0.9811 0.9912 0.9899 0.9921
IKmeans 0.9734 0.9855 0.989 0.9948 0.9915

RobustKmeans++ 0.9746 0.9811 0.9866 0.9898 0.9946
NKmeans 0.9674 0.9907 0.9875 0.9917 0.9891

Time z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 59.78 59.7 60.15 60.43 61.03
IKmeans 29.34 28.66 28.54 28.46 28.69

RobustKmeans++ 50.78 49.99 50.6 50.92 51.54
NKmeans 255.55 173.77 146.58 131.46 123.89
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Table 21. Clustering performance on SUSY-10 with varying z from 6%n to 10%n and fixed k = 10.

Cost z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 64994013.81 64502595.20 64081521.71 66273986.19 65503933.45
IKmeans 67337311.62 67766754.31 69849715.71 68923763.38 67159027.39

RobustKmeans++ 66885305.76 67675644.04 65113556.81 66385763.36 66425920.69
NKmeans 65804048.90 66175936.65 64753806.68 66404345.02 65523697.38

Recall z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 0.9918 0.9922 0.9951 0.9949 0.9936
IKmeans 0.9937 0.9934 0.9950 0.9954 0.9965

RobustKmeans++ 0.9907 0.9926 0.9946 0.9945 0.9947
NKmeans 0.9933 0.9950 0.9936 0.9938 0.9963

Time z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 62.44 63.12 62.92 63.47 63.96
IKmeans 29.25 29.32 29.54 29.61 30.55

RobustKmeans++ 52.1 52.5 52.99 53.6 54.51
NKmeans 116.5 113.34 111.21 107.86 106.51

Table 22. Clustering performance on SIFT-5 with varying z from 1%n to 5%n and fixed k = 100.

Cost z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 12033800256 1222361151 12109199438 11984006794 11979987277
IKmeans 12275654391 1230394902 12125780107 12070117144 12068091628

RobustKmeans++ 12077778481 1223089808 12143632947 12070268466 12059086576
NKmeans NA NA NA NA NA

Recall z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 1 1 1 1 1
IKmeans 1 1 1 1 1

RobustKmeans++ 0.9998 1 1 1 1
NKmeans NA NA NA NA NA

Time z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 10870.6 11055.2 11859.4 11424.1 11965.7
IKmeans 9635.4 9372.0 9837.5 9695.3 9320.7

RobustKmeans++ 92840 95168 93781 94487 96596
NKmeans > 72h > 72h > 72h > 72h > 72h
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Table 23. Clustering performance on SIFT-5 with varying z from 6%n to 10%n and fixed k = 100.

Cost z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 11970682447 11981855317 11984096251 12011016446 11986722152
IKmeans 12049816240 12002497596 12010444072 12039251997 12014269554

RobustKmeans++ 12022383906 12000769418 11990243429 12008302455 11989202199
NKmeans NA NA NA NA NA

Recall z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 1 1 1 1 1
IKmeans 1 1 1 1 1

RobustKmeans++ 1 1 1 1 1
NKmeans NA NA NA NA NA

Time z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 11413.0 10664.8 11637.3 11757.1 11696.7
IKmeans 9705.1 9240.8 9929.6 9772.9 9567.2

RobustKmeans++ 95260 97268 99922 94212 96506
NKmeans > 72h > 72h > 72h > 72h > 72h

Table 24. Clustering performance on SIFT-10 with varying z from 1%n to 5%n and fixed k = 100.

Cost z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 12081741573 12111370981 12145140135 12090385992 12088781032
IKmeans 12107041166 12135208822 12163379429 12198221417 12153404554

RobustKmeans++ 11983478657 12222488921 12131881316 12109811037 12136491955
NKmeans NA NA NA NA NA

Recall z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 1 1 1 1 1
IKmeans 1 1 1 1 1

RobustKmeans++ 1 1 1 1 1
NKmeans NA NA NA NA NA

Time z = 1%n z = 2%n z = 3%n z = 4%n z = 5%n

TIKmeans 10733.8 11656.6 12101.4 12323.1 10959.4
IKmeans 9374.2 9110.8 9817.9 9501.3 9240.4

RobustKmeans++ 92223 93572 94779 95051 93979
NKmeans > 72h > 72h > 72h > 72h > 72h
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Table 25. Clustering performance on SIFT-10 with varying z from 6%n to 10%n and fixed k = 100.

Cost z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 12091294505 12046590461 12070090465 12023308618 12021583648
IKmeans 12107895648 12088364369 12092477387 12042054652 12041631539

RobustKmeans++ 12119472576 12094581099 12095366699 12063952102 12037320094
NKmeans NA NA NA NA NA

Recall z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 1 1 1 1 1
IKmeans 1 1 1 1 1

RobustKmeans++ 1 1 1 1 1
NKmeans NA NA NA NA NA

Time z = 6%n z = 7%n z = 8%n z = 9%n z = 10%n

TIKmeans 10867.1 10805.4 11058.9 10921.1 11770.4
IKmeans 9480.8 9575.4 9135.7 9694.2 9907.9

RobustKmeans++ 97072 94623 100606 95736 99554
NKmeans > 72h > 72h > 72h > 72h > 72h
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C.3. Experimental Performances on the Relaxed Number of Centers Opened

In this section, we provide more results on the relation between different sizes of the centers selected by our sampling
methods and the final recall in the following table. We set the number of centers selected during the sampling process as βk
for β ranging from 1 to 8 to test the performance of our proposed methods. It can be seen that the number of centers opened
does not significantly influence the recall index if the noise added is far away from the inliers (Skin-10 and SUSY-10). In
this case, opening more centers does not significantly change the designation of outliers. However, when the outliers are not
far away from the true clusters, opening more centers leads to misclassification of outliers.

Table 26. Change of recall on different datasets by setting the number of centers sampled as βk.

Skin-5 β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7 β = 8

TIKmeans 0.7654 0.7115 0.7580 0.7201 0.7294 0.7376 0.7299 0.7384
IKmeans 0.7662 0.7005 0.7503 0.7613 0.7588 0.7543 0.7621 0.7658

Skin-10 β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7 β = 8

TIKmeans 0.9575 0.9543 0.9543 0.9375 0.9432 0.9424 0.9408 0.9404
IKmeans 0.9388 0.9506 0.9449 0.9408 0.9404 0.9400 0.9428 0.9375

SUSY-5 β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7 β = 8

TIKmeans 0.7882 0.6764 0.7283 0.6080 0.6445 0.7979 0.7578 0.7407
IKmeans 0.6541 0.6099 0.7237 0.6907 0.5912 0.7184 0.7262 0.8124

SUSY-10 β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7 β = 8

TIKmeans 0.9753 0.9753 0.9743 0.9730 0.9713 0.9690 0.9631 0.9649
IKmeans 0.9743 0.9648 0.9738 0.9687 0.9748 0.9646 0.9701 0.9706

Shuttle β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7 β = 8

TIKmeans 0.1176 0 0.3529 0 0.0588 0 0 0.3529
IKmeans 0.2941 0 0.2941 0.0588 0.1176 0.2941 0.2941 0.3529
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C.4. Comparisons with Outlier Detection Methods

In this subsection, we give comparison results with other outlier detection methods. The outlier detection methods adopt
two-stage strategies, where a filtering process is used to discard the suspect outliers followed by a clustering process on the
remaining data points to obtain the final results. We choose the following algorithms to serve as the procedure to identify
outliers, which are summarized as follows: (1) The probabilistic method in (Li et al., 2022) (ECO); (2) Two fast outlier
detection methods in (Liu et al., 2008) (IFOREST) and (Sugiyama & Borgwardt, 2013) (Sampling). For the clustering
process, we use the following methods: k-means++ (Arthur & Vassilvitskii, 2007) (the popular linear-time algorithm denoted
as KM in the experiments, where we repeat for 10 times in our experiments to enhance the performances on k-means++)
and LSDS++ (Fan et al., 2023) (the fastest constant-approximation algorithm).

We test the performances on 8 datasets, including Skin-5 (245,047 × 3), Skin-10 (245,047 × 3), SUSY-5 (5,000,000 ×
18), SUSY-10 (5,000,000 × 18), HIGGS-5 (11,000,000 × 28), HIGGS-10 (11,000,000 × 28) 2, Shuttle (43,500 × 9) and
KDDFULL (4,898,431 × 37) to demonstrate the scalability of the algorithms.

The results show that our IKmeans algorithm always achieves the best running time compared with other algorithms.
Compared to “IFOREST+KM” and “Sampling+KM” methods, on average, our TIKmeans algorithm achieves at least
8% improvement in clustering cost. Although the clustering costs of our algorithms are not better than those of the
“Sampling+LSDS++” method on some of the datasets, on average, IKmeans algorithm is at least 3 times faster than the
“Sampling+LSDS++” method with better recall. The results reveal that the outlier detection step potentially compromises the
accuracy of outlier identification. Moreover, our sampling-based algorithms achieve better accuracy in outlier identification
with much faster running time compared to other two-step procedures based on local search methods.

Table 27. Comparison results with outlier detection methods.
Dataset Method Cost Recall Time(s) Dataset Method Cost Recall Time(s)

Skin-5(k = 10)

TIKmeans 68049.49 0.7249 1.40

Skin-10(k = 10)

TIKmeans 72448.37 0.9313 1.34
IKmeans 72714.88 0.7657 0.59 IKmeans 79923.51 0.9366 0.57

ECOD+LSDS++ 77295.27 0.7591 4.94 ECOD+LSDS+ 77185.24 0.9410 4.54
ECOD+KM 99187.17 0.7565 1.73 ECOD+KM 110350.79 0.9398 1.68

IFOREST+LSDS++ 71604.48 0.7645 15.95 IFOREST+LSDS++ 77754.72 0.9418 21.37
IFOREST+KM 87163.20 0.7560 14.21 IFOREST+KM 107361.52 0.9434 17.85

Sampling+LSDS++ 64338.60 0.7213 6.69 Sampling+LSDS++ 73986.63 0.9394 8.98
Sampling+KM 103730.83 0.7669 1.45 Sampling+KM 110881.26 0.9466 2.71

SUSY-5(k = 10)

TIKmeans 62009744.02 0.7610 52.37

SUSY-10(k = 10)

TIKmeans 63745990.97 0.9657 51.28
IKmeans 64567215.89 0.6432 31.02 IKmeans 65767311.47 0.9806 31.87

ECOD+LSDS++ 62411224.21 0.6414 411.18 ECOD+LSDS++ 64317119.99 0.9581 382.33
ECOD+KM 69434356.01 0.6220 226.31 ECOD+KM 71406548.44 0.9656 227.24

IFOREST+LSDS++ 62390485.55 0.6069 762.71 IFOREST+LSDS++ 65396216.44 0.9595 762.77
IFOREST+KM 71284866.87 0.5612 645.37 IFOREST+KM 73307321.39 0.9563 655.94

Sampling+LSDS++ 62086548.45 0.5915 234.15 Sampling+LSDS++ 62861629.25 0.9626 231.42
Sampling+KM 70274277.80 0.5799 52.85 Sampling+KM 70336337.93 0.9620 52.45

Shuttle(k = 10)

TIKmeans 65588.61 0 0.80

KDDFULL(k = 3)

TIKmeans 32912080.32 0.6138 13.59
IKmeans 71585.51 0.2353 0.11 IKmeans 32672394.99 0.6109 6.35

ECOD+LSDS++ 108848.04 0.1765 0.95 ECOD+LSDS++ 39850069.04 0.6441 175.44
ECOD+KM 117886.61 0.1765 0.38 ECOD+KM 45734240.61 0.5766 104.78

IFOREST+LSDS++ 93967.88 0.2941 3.22 IFOREST+LSDS++ 40136898.91 0.6353 562.34
IFOREST+KM 123861.95 0.1765 2.72 IFOREST+KM 43900960.86 0.6451 506.38

Sampling+LSDS++ 83140.46 0.1765 0.78 Sampling+LSDS++ 32794029.79 0.6109 88.45
Sampling+KM 117886.32 0.1765 0.22 Sampling+KM 57880009.63 0.6432 18.16

HIGGS-5(k = 10)

TIKmeans 318253744.73 0.7822 110.25

HIGGS-10(k = 10)

TIKmeans 321224528.63 0.9803 124.36
IKmeans 320724229.60 0.7959 59.72 IKmeans 332663391.07 0.9801 69.56

ECOD+LSDS++ 310575469.59 0.7441 1180.81 ECOD+LSDS++ 321175721.32 0.9693 1187.3
ECOD+KM 342806052.39 0.6670 735.05 ECOD+KM 342496070.35 0.9761 757.11

IFOREST+LSDS++ 316878302.36 0.6195 1833.113 IFOREST+LSDS++ 317136850.88 0.9704 1908.44
IFOREST+KM 349755375.93 0.6730 1477.80 IFOREST+KM 342123536.51 0.9731 1514.77

Sampling+LSDS++ 322668394.78 0.6059 541.79 Sampling+LSDS++ 317558363.82 0.9702 506.34
Sampling+KM 341049644.85 0.6071 136.92 Sampling+KM 332381122.44 0.9717 137.19

C.5. Experiments on Synthetic Data with Large Number of Clusters and Significant Deviations

In this subsection, we give specific scenarios where our algorithm demonstrates particular effectiveness over RobustK-
means++ algorithm. The synthetic datasets are generated by Gaussian distributions, where the k clustering centers

2https://archive.ics.uci.edu/dataset/280/higgs
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{c1, c2, ..., ck} are randomly selected, with each cluster Pi formed as Pi = {x ∈ Pi : x ∼ N (ci, σ)} using Gaussian
distribution, and σ is to control the deviation. Moreover, each cluster Pi roughly has n

k data points.

We test different parameter settings with varying k and σ, where n, ξ, d are fixed to be n = 10, 000, ξ = 0.5, d = 20 (ξ
represents that the randomly generated outliers are in range [−ξ, ξ]d). The results show that RobustKmeans++’s accuracy in
identifying outliers is almost zero when k = 50 and σ = 1 while TIKmeans algorithm achieves an accuracy of 0.99 for
outlier identification. Moreover, RobustKmeans++’s accuracy in identifying outliers is 0 when k = 30 and σ = 2 while our
algorithms achieve the results of 0.94 and 0.48, respectively. These results indicate that RobustKmeans++ can hardly handle
the scenarios when the number of clusters is large and the datasets have significant deviations.

Table 28. Comparisons results on synthetic datasets.

Datat Settings Method Cost Recall Time(s)

k = 30, σ = 1.0

TIKmeans 9723.76 0.9901 3.86
IKmeans 10526.04 0.9901 0.37

RobustKmeans++ 10380.49 0.9901 0.67

k = 40, σ = 1.0

TIKmeans 10387.45 0.9901 5.19
IKmeans 11194.94 0.9901 0.59

RobustKmeans++ 13991.13 0.9901 1.12

k = 50, σ = 1.0

TIKmeans 10584.55 0.9901 6.98
IKmeans 12455.90 0.9901 0.88

RobustKmeans++ 13759.12 0 1.76

k = 30, σ = 1.0

TIKmeans 9723.76 0.9901 3.86
IKmeans 10526.04 0.9901 0.37

RobustKmeans++ 10380.49 0.9901 0.67

k = 30, σ = 1.5

TIKmeans 20565.79 0.9901 3.64
IKmeans 22246.86 0.9901 0.39

RobustKmeans++ 23899.62 0.9901 0.71

k = 30, σ = 2.0

TIKmeans 36246.04 0.9405 3.53
IKmeans 45139.84 0.4812 0.38

RobustKmeans++ 45550.98 0 0.73
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