
Residual Quantization with Implicit Neural Codebooks

Iris A. M. Huijben 1 2 * Matthijs Douze 1 Matthew Muckley 1 Ruud J. G. van Sloun 2 Jakob Verbeek 1

Abstract

Vector quantization is a fundamental operation
for data compression and vector search. To obtain
high accuracy, multi-codebook methods represent
each vector using codewords across several code-
books. Residual quantization (RQ) is one such
method, which iteratively quantizes the error of
the previous step. While the error distribution
is dependent on previously-selected codewords,
this dependency is not accounted for in conven-
tional RQ as it uses a fixed codebook per quan-
tization step. In this paper, we propose QINCo,
a neural RQ variant that constructs specialized
codebooks per step that depend on the approxi-
mation of the vector from previous steps. Experi-
ments show that QINCo outperforms state-of-the-
art methods by a large margin on several datasets
and code sizes. For example, QINCo achieves
better nearest-neighbor search accuracy using 12-
byte codes than the state-of-the-art UNQ using 16
bytes on the BigANN1M and Deep1M datasets.

1. Introduction
Vector embedding is a core component of many machine
learning systems for tasks such as analysis, recognition,
search, matching, and others. Part of the utility of vector
embeddings is their adaptivity to different data modalities,
such as text (Schwenk & Douze, 2017; Devlin et al., 2018;
Izacard et al., 2022) and images (Radford et al., 2021; Pizzi
et al., 2022; Ypsilantis et al., 2023). In similarity search and
recommender systems (Paterek, 2007), representing entities
as vectors is efficient as it enables simple vector compari-
son. Many techniques and libraries have, nowadays, been
developed to search through large collections of embed-
ding vectors (Malkov & Yashunin, 2018; Guo et al., 2020;
Morozov & Babenko, 2019; Douze et al., 2024).

*Work done when interning at Meta. 1FAIR at Meta 2Eindhoven
University of Technology. Correspondence to: Matthijs Douze
<matthijs@meta.com>, Jakob Verbeek <jjverbeek@meta.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

code 𝑖𝑖1 code 𝑖𝑖2

�𝑪𝑪2

𝑪𝑪2

𝒓𝒓𝟏𝟏 = 𝒙𝒙 𝒓𝒓

�𝒙𝒙𝟏𝟏 = 𝒐𝒐 �𝒙𝒙

𝒓𝒓2 𝒓𝒓3

�𝒙𝒙2 �𝒙𝒙3

…

code 𝑖𝑖𝑀𝑀

�𝑪𝑪𝑀𝑀

𝑪𝑪𝑀𝑀RQ
codeword

assignment
codeword

assignment
codeword

assignment

�𝑪𝑪1
QINCo

𝑓𝑓𝜃𝜃2 𝑓𝑓𝜃𝜃𝑀𝑀

𝑪𝑪1

Step 1
Step 2

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂

QINCo
MSE: 0.50

RQ
MSE: 0.77

Figure 1. Top: Given a vector x, RQ iteratively quantizes the resid-
uals of previous quantization steps, using a single codebook Cm

for each step m = 1, . . . ,M . QINCO extends RQ by using data-
dependent codebooks that are implicitly parameterized via a neural
network fθm that takes as input a base-codebook C̄m and partial
reconstruction x̂m of the data vector x. Bottom: Toy data example
with M=2 quantization steps, each with K=2 centroids. In RQ,
codebook centroids in the 2nd level are independent of the 1st level
centroids, while QINCO adapts 2nd level centroids to the residuals,
reducing the mean-squared-error (MSE) by 35%.

Vector embeddings can be extracted in different ways, e.g.
by taking the feature representation of a deep learning model.
After extraction, embeddings are typically compressed into
fixed-length codes to improve efficiency for storage, trans-
mission, and search. However, a fundamental trade-off ex-
ists, where shorter codes introduces higher distortion (Cover
& Thomas, 1991), measured as the difference between the
initial vector and its decoded approximation. In our work
we focus on this vector compression process, and consider
the data embedding approach itself as fixed.

A widespread technique to compress embeddings is vector
quantization (VQ) (Gray, 1984), which consists of represent-
ing each vector with a nearby “prototype” vector. Effective
quantizers adapt to the data distribution by learning a code-
book of centroids from a representative set of training vec-
tors. The number of distinct centroids grows exponentially
with the code size. The k-means VQ algorithm represents
all centroids of the codebook explicitly. It tends to be near-
optimal, but it does not scale to codes larger than a few
bytes because of this exponential growth. Multi-codebook

1

Residual Quantization with Implicit Neural Codebooks

quantization (MCQ) represents centroids as combinations
of several codebook entries to avoid the exponential growth.
Seminal MCQ techniques —such as product quantization
(PQ), residual quantization (RQ), and additive quantization
(AQ)— are based on clustering and linear algebra tech-
niques (Jégou et al., 2010; Chen et al., 2010; Babenko &
Lempitsky, 2014; Martinez et al., 2016; 2018), while more
recent approaches rely on deep neural networks (Yu et al.,
2018; Liu et al., 2018; Morozov & Babenko, 2019; Wang
et al., 2022; Niu et al., 2023).

Conventional RQ (Chen et al., 2010), being a special case of
AQ, iteratively quantizes the residual between the original
vector and its reconstruction from the previous quantization
steps. Standard RQ methods use a fixed codebook for each
quantization step. This is sub-optimal, as the data distribu-
tion for the residuals is dependent on previous steps. To
address this, we propose a neural variant of RQ. Our method
adapts the codebooks at each quantization step using a neu-
ral network, leading to large reductions in error rates for
the final compressed vectors. We call our method QINCO
for Quantization with Implicit Neural Codebooks. Figure 1
shows the conceptual difference between RQ and QINCO.

In contrast to earlier neural MCQ methods (Morozov &
Babenko, 2019; Zhu et al., 2023), QINCO transforms the
codebook vectors, rather than the vectors to be quantized.
The similarity of QINCO to a standard RQ enables combin-
ing it with inverted file indexes (IVF) (Jégou et al., 2010)
and re-ranking techniques for fast approximate decoding,
making QINCO, as well, suitable for highly accurate large-
scale similarity search. Our contributions are as follows:

• We introduce QINCO, a neural residual vector quan-
tizer that — instead of using fixed codebooks — adapts
quantization vectors to the distribution of residuals. It
is stable to train and has few hyperparameters.

• QINCO sets state-of-the-art performance for vector
compression on multiple datasets and rates, and thanks
to its compatibility with fast approximate search tech-
niques, it also beats state-of-the-art similarity search
performance for high recall operating points.

• QINCO codes can be decoded from the most to the
least significant byte, with prefix codes yielding accu-
racy on par with codes specifically trained for that code
length, making QINCO an effective multi-rate codec.

Code can be found at https://github.com/
facebookresearch/QINCo.

2. Related Work
Vector quantization. A vector quantizer maps a vector
x ∈ RD to a vector taken from a finite set of size K (Gray,

1984). This set is called the codebook, and each code-
book entry is referred to as “centroid”, or “codeword”. The
objective is to minimize the distortion between x and its
quantization. Lloyd’s algorithm, a.k.a. k-means, produces a
set of codewords, leading to codes of size ⌈log2(K)⌉ bits.
K-means, however, only scales well up to a few million
centroids, resulting in code lengths in the order of 20 bits,
which is too coarse for many applications.

Multi-codebook quantization. To scale beyond the inher-
ent limitations of k-means, MCQ uses several k-means quan-
tizers, for which various approaches exist. PQ slices vectors
into sub-vectors that are quantized independently (Jégou
et al., 2010). AQ, on the other hand, represents each vector
as a sum of multiple codebook entries (Babenko & Lempit-
sky, 2014; Martinez et al., 2016; 2018), and RQ progres-
sively quantizes residuals (Chen et al., 2010). We build
upon RQ, using neural networks to improve its accuracy by
adapting codebooks to residual distributions.

Neural quantization. Neural quantization has been ex-
plored to learn discrete data representations, which can be
used in discrete sequence models for the generation of im-
ages (van den Oord et al., 2017; Esser et al., 2021; Lee et al.,
2022; Chang et al., 2022) and audio (Copet et al., 2023).
Instead, in this work we focus on discrete representation
learning for the purpose of compression and retrieval. Pre-
vious works have combined existing MCQ approaches, e.g.
PQ, with neural encoders for improving compression and/or
retrieval of specific data modalities, like images (Agustsson
et al., 2017; Liu et al., 2018; Yu et al., 2018; Klein & Wolf,
2019; Jang & Cho, 2021; Wang et al., 2022; El-Nouby et al.,
2023), audio (Défossez et al., 2023; Kumar et al., 2023)
and graph networks (He et al., 2023). Improvements in
these works typically arise from adjustments in the learning
objective or improving the optimization of MCQ using reg-
ularizers or relaxations, while not fundamentally changing
the MCQ procedure itself. On the contrary, in this work,
we focus on a fundamental new approach for MCQ, while
assuming data embeddings are readily available and fixed.

Most similar to our work are UNQ (Morozov & Babenko,
2019) and DeepQ (Zhu et al., 2023), who also focus on im-
proving MCQ for already-embedded vectors, using neural
networks. Both models include a trainable data transforma-
tion that precedes the non-differentiable quantization step
and, therefore, model the selected quantization vector as a
sample from a categorical distribution, for which gradient
estimators exist. DeepQ leverages the REINFORCE estima-
tor (Glynn, 1990; Williams, 1992) with additional control
variates to reduce its variance, and UNQ uses the straight-
through-Gumbel-Softmax estimator (Jang et al., 2017; Mad-
dison et al., 2017) with carefully initialized and trainable
Boltzmann temperatures (Huijben et al., 2022). Both mod-
els use the nearest centroids, rather than a sampled centroid,

2

https://github.com/facebookresearch/QINCo
https://github.com/facebookresearch/QINCo

Residual Quantization with Implicit Neural Codebooks

for encoding after training. Opposed to UNQ and DeepQ,
QINCO transforms the codebooks, rather than the data to be
quantized, and thus encodes in the data space directly with-
out leveraging a trainable transformation before quantiza-
tion. This omits the need for gradient estimation. Moreover,
it prevents posterior collapse after which all transformed
embeddings are projected on the same centroid, something
that requires additional regularization in training of UNQ
and DeepQ.

Re-ranking. It is common practice to accelerate large-scale
nearest neighbor search with approximation techniques that
rely on a cheap distance measure to select a “shortlist” of
nearest neighbors, which are subsequently re-ordered using
a more accurate measure. This re-ordering can, e.g., be
done using a finer quantizer (Jégou et al., 2011) —or in the
limit without quantizer (Guo et al., 2020)— compared to
the one used for creating the shortlist. It is also possible
to re-interpret the same codes with a more complex de-
coding procedure. For example, polysemous codes (Douze
et al., 2016) can be compared both as binary codes with
Hamming distances, similar to (He et al., 2013), and as PQ
codes. UNQ (Morozov & Babenko, 2019) uses a fast AQ
for search and re-ranks with a slower decoding network.
It has also been shown that in some cases, given a codec,
it is possible to train a neural decoder that improves the
accuracy (Amara et al., 2022), and use the trained decoder
to re-rank the shortlist. To enable fast search with QINCO,
we also create a shortlist for re-ranking with a less accurate
but faster linear decoder for which —given the QINCO
encoder— a closed-form solution is available in the least-
squared sense (Babenko & Lempitsky, 2014). On top of the
approximate decoding, an inverted file structure (IVF) can
direct the search on a small subset of database vectors. UNQ
was extended in this way by Noh et al. (2023). We show
that the IVF structure integrates naturally with QINCO.

Other connections. In our work a network is used to dy-
namically parameterize residual quantization codebooks.
This is related to weight generating networks, see e.g. (Ma
et al., 2020), and in a more remote manner to approaches
that use one network to perform gradient-based updates of
another network, see e.g. (Andrychowicz et al., 2016).

3. RQ with Implicit Neural Codebooks
We first briefly review RQ to set some notation; for more
details see, e.g., Chen et al. (2010). We use x ∈ RD to
denote vectors we aim to quantize using M codebooks of
K elements each. Let x̂m for m = 1, . . . ,M be the recon-
struction of x based on the first m − 1 quantization steps,
with x̂1 := 0. For each step m, RQ learns a codebook
Cm ∈ RD×K to quantize the residuals rm = x − x̂m.
We denote the centroids in the columns of Cm as cmk for
k = 1, . . . ,K. To encode x, at each step the selected cen-

troid is cmim , where im = argmink=1,...,K ∥rm − cmk ∥
2
2.

The M quantization indices i = (i1, . . . , iM) are finally
stored to represent x using M⌈log2(K)⌉ bits. To decode i,
the corresponding codebook elements are summed to obtain
the approximation x̂ =

∑M
m=1 c

m
im .

3.1. Implicit neural codebooks

At each step of the previously-described RQ scheme, all
residuals are quantized with a single step-dependent code-
book Cm. This is sub-optimal, as in general the distribution
of residuals differs across quantization cells. In theory, one
could improve upon RQ by using a different specialized
codebook for each hierarchical Voronoi cell. In practice,
however, as the number of hierarchical Voronoi cells grows
exponentially with the number of quantization steps M ,
training and storing such local codebooks is feasible only
for very shallow RQs. For example, for short 4-byte codes
with M=4 and K=256 we already obtain over four billion
centroids. Since training explicit specialized codebooks is
infeasible, we instead make these codebooks implicit: they
are generated by a neural network. The trainable parameters
are not the codebooks themselves, but included in the neural
network that generates them.

For each quantization step m we train a neural network
fθm that produces specialized codebook Cm for the residu-
als rm in the corresponding hierarchical Voronoi cell. We
condition fθm upon the reconstruction so far x̂m, and a
base codebook C̄m, and use it for improving the K vec-
tors in the mth codebook in parallel: cmk = fθm(x̂m, c̄mk).
Base codebooks C̄ = (C̄1, . . . , C̄M) are initialized using
a pre-trained conventional RQ, and fθm contains residual
connections (He et al., 2016) that let the base codebook pass-
through, while allowing trainable multi-layer perceptrons
(MLPs) to modulate the codebook. This architecture pre-
vents spending many training cycles to achieve RQ baseline
performance. The base codebooks are made trainable pa-
rameters themselves as well, so that C̄m ⊂ θm. See Fig. 1
for an overview of QINCO and its relation to RQ.

More precisely, for all K centroids in the mth codebook,
fθm first projects the concatenation of c̄mk and x̂m using an
affine transformation: R2D → RD, after which L residual
blocks are used, each containing a residual connection that
sums the input to the output of an MLP with two linear
layers (ReLU-activated in between): RD → Rh → RD.
Since x̂1 = 0 by construction, it does not provide useful
context for conditioning, so we simply set fθ1 to identity,
resulting in C1 = C̄1. Therefore, the number of trainable
parameters |θ| =

∑
m |θm| in QINCO equals:

|θ| = M KD︸︷︷︸
C̄m

+(M − 1)
[(

2D2 +D
)︸ ︷︷ ︸

concat. block

+ 2LDh︸ ︷︷ ︸
residual-MLPs

]
. (1)

3

Residual Quantization with Implicit Neural Codebooks

3.2. Encoding, decoding and training

Encoding a vector into a sequence of quantization indices
proceeds as in conventional RQ encoding, with the only
difference that QINCO constructs the mth codebook via
fθm , instead of using a fixed codebook per step.

As for decoding, unlike conventional RQ, QINCO follows
a sequential process, as codebook-generating network fθm
requires partial reconstruction x̂m. Given code i, for each
quantization step m = 1, . . . ,M reconstruction follows:
x̂m+1 ← x̂m + fθm(x̂m, c̄mim), with x̂ := x̂M+1 being the
final reconstruction.

To train parameters θ = (θ1, . . . , θM) we perform stochastic
gradient decent to minimize the mean-squared-error (MSE)
between each residual and the selected centroid. For each
quantization step, we optimize the following elementary
training objective, defined per data point as:

Lm(θ) = min
k=1,...,K

∥rm − fθm(x̂m, c̄mk)∥22 . (2)

Note that both rm and x̂m implicitly depend on parameters
(θ1, . . . , θm−1). Therefore, gradients from later quantiza-
tion steps propagate back to earlier ones as well. Combining
this loss for all M steps yields the final loss:

LQINCO(θ) =

M∑
m=1

Lm(θ). (3)

4. Large-scale Search with QINCO

For nearest-neighbor search in billion-scale datasets it is pro-
hibitive to exhaustively decompress all vectors with QINCO,
and compute distances between the query and the decom-
pressed vectors. The resemblance of QINCO to conven-
tional MCQ enables the use of existing methods to speed
up similarity search. To this end, we introduce a fast search
pipeline, referred to as IVF-QINCO, that includes IVF
(Sec. 4.1), approximate decoding (see Sec. 4.2), and re-
ranking with the QINCO decoder. This pipeline gradually
refines the search, and concentrates compute on the most
promising database vectors.

4.1. Inverted file index (IVF)

A common technique in large-scale search consists of par-
titioning the database in KIVF buckets using k-means, and
maintaining for each bucket a list of assigned vectors (Jégou
et al., 2010). Given a query, only data in the PIVF ≪ KIVF

buckets corresponding to the PIVF centroids closest to the
query are accessed to speed up search. In addition, since a
database vector is assigned to a bucket, this means that the
nearest centroid is the bucket centroid. This prior is used
to make the codec more accurate (Noh et al., 2023). IVF
integrates naturally with QINCO: each database vector is

assigned to one IVF bucket iIVF, and that bucket’s centroid
is then used as the first estimate x̂1 = ciIVF (instead of 0)
of the QINCO code. Thus, in contrast to vanilla QINCO,
the first codebook C̄1 is not fixed but generated by (non-
identity) fθ1 . The subsequent QINCO coding steps remain
the same.

4.2. Approximate decoding

Searching with IVF reduces the number of distance com-
putations by a factor KIVF/PIVF. However, compared to
PQ and RQ, this does not result in competitive search times
when combined with QINCO. This is because PQ and RQ,
in addition to being cheaper to decode, can benefit from
pre-computation of inner products between the query and
all codebook elements. Distance computation between the
query and a compressed database vector then reduces to
summing M pre-computed dot-products per database vec-
tor, which amounts to M look-ups and additions (Jégou
et al., 2010). Note that, for RQ, when using ℓ2 distances
instead of dot-products for search, the norm of the vectors
must also be stored (Babenko & Lempitsky, 2014).

QINCO codebooks are not fixed, so this speed-up by table
look-ups can not be applied directly. However, it is possible
to fit an additive decoder with fixed and explicit codebooks
per quantization level, using codes from the QINCO en-
coder. This returns approximate distances that can be used
to create a short-list of database vectors for which the more
accurate QINCO decoder is applied. More precisely, let
G = (G1, . . . ,GM) denote a set of M explicit codebooks,
and let gm

k ∈ RD denote the kth element in the mth code-
book. The MSE, defined per data point x, yields:

LMSE(G) = ||x−
M∑

m=1

gm
im ||22, (4)

where
∑M

m=1 g
m
im is the reconstruction of x using code i

from the QINCO encoder. This optimization can be solved
in closed form (Babenko & Lempitsky, 2014). We refer to
this approximate decoder as “AQ decoder”.

4.3. Implementation

We implement IVF-QINCO in Faiss (Douze et al., 2024),
starting from a standard IVF index with AQ encoding. For
each query, we use HNSW (Malkov & Yashunin, 2018) to
search the PIVF nearest centroids (Baranchuk et al., 2018)
and do compressed-domain distance computations in the
corresponding inverted lists (note that, similar to RQ, this
requires one additional byte per vector to encode the norms).
We retrieve the top-nshort nearest vectors with approximate
distances from the AQ decoder. Then we run QINCO decod-
ing on the shortlist to compute the final results. See App. A.1
for more implementation details.

4

Residual Quantization with Implicit Neural Codebooks

5. Experiments
5.1. Experimental setup

Datasets and metrics. We leverage datasets that vary in di-
mensionality (D) and modality: Deep1B (D=96) (Babenko
& Lempitsky, 2016) and BigANN (D=128) (Jégou et al.,
2011) are widely-used benchmark datasets for VQ and sim-
ilarity search that contain CNN image embeddings and
SIFT descriptors, respectively. Facebook SimSearchNet++
(FB-ssnpp; D=256) (Simhadri et al., 2022) contains image
embeddings intended for image copy detection that were
generated using the SSCD model (Pizzi et al., 2022) for
a challenge on approximate nearest neighbor search. It
is considered challenging for indexing, as the vectors are
spread far apart. SIFT1M (D=128) (Jégou et al., 2010) is
a smaller-scale dataset of SIFT descriptors used for vec-
tor search benchmarks. For all datasets, we use available
data splits that include a database, a set of queries and a
training set, and we hold out a set of 10k vectors from the
original training set for validation, except for the smaller
SIFT1M dataset for which we use 5k of the 100k vectors
as validations vectors. Lastly, we introduce a new Con-
triever dataset that consists of 21M 100-token text passages
extracted from Wikipedia, embedded (D=768) using the
Contriever model (Izacard et al., 2022). This model is a
BERT architecture (Devlin et al., 2018) fine-tuned specifi-
cally for text retrieval. We randomly split the embeddings in
1M database vectors, 10k queries, and 20M training vectors,
of which we use 10k as a hold-out validation set.

We report compression performance using MSE on 1M
database vectors. To evaluate search performance we ad-
ditionally report the nearest-neighbor recall percentages at
ranks 1, 10 and 100 using 10k non-compressed queries
and 1M or 1B compressed database vectors. For resource
consumption we focus on parameter counts: since QINCO
contains essentially linear layers, the decoding time is pro-
portional to this count, making it a good proxy for run time.

Baselines. We compare QINCO to widely-adopted base-
lines OPQ (Ge et al., 2013), RQ (Chen et al., 2010), and
LSQ (Martinez et al., 2018), for which we use implementa-
tions in the Faiss library with default settings(Douze et al.,
2024). We also compare to state-of-the-art neural baselines
UNQ (Morozov & Babenko, 2019), RVPQ (Niu et al., 2023),
and DeepQ (Zhu et al., 2023). RVPQ slices vectors into
chunks like PQ and subsequently performs RQ separately
in each block rather than using a single quantizer per block.
For UNQ, RVPQ and DeepQ we quote performance from
the original papers. For UNQ we also reproduced results us-
ing the author’s public code, and run additional experiments,
see App. A.2 for more details.

Training details. We train models on 500k or 10M vectors
(except for SIFT1M, that contains only 95k training vectors),

Table 1. Comparison of QINCO with state-of-the-art methods in
terms of reconstruction error (MSE) and nearest-neighbor search
recall (R@1) in percentages. We report QINCO with L = 16,
except for Contriever1M, where L=12 is used.

BigANN1M Deep1M Contriever1M FB-ssnpp1M

MSE R@1 MSE R@1 MSE R@1 MSE R@1
(×104) (×104)

8
by

te
s

OPQ 2.95 21.9 0.26 15.9 1.87 8.0 9.52 2.5
RQ 2.49 27.9 0.20 21.4 1.82 10.2 9.20 2.7
LSQ 1.91 31.9 0.17 24.6 1.65 13.1 8.87 3.3
UNQ 1.51 34.6 0.16 26.7 — — — —
QINCO 1.12 45.2 0.12 36.3 1.40 20.7 8.67 3.6

16
by

te
s OPQ 1.79 40.5 0.14 34.9 1.71 18.3 7.25 5.0

RQ 1.30 49.0 0.10 43.0 1.65 20.2 7.01 5.4
LSQ 0.98 51.1 0.09 42.3 1.35 25.6 6.63 6.2
UNQ 0.57 59.3 0.07 47.9 — — — —
QINCO 0.32 71.9 0.05 59.8 1.10 31.1 6.58 6.4

Table 2. Recall values at different ranks for similarity search.
QINCO with L=4 is reported.

4 bytes 8 bytes

R@1 R@10 R@100 R@1 R@10 R@100

SIFT1M

RVPQ 10.2 34.7 74.5 30.3 73.8 97.4
DeepQ 11.0 37.7 76.8 28.0 70.2 96.4
QINCO 14.9 45.5 82.7 35.8 80.4 98.6

Deep1M

DeepQ 7.4 30.0 72.5 20.9 62.1 94.1
QINCO 9.1 36.3 77.8 25.4 72.1 97.4

and perform early stopping based on the validation loss.
During training, all data is normalized by dividing the vector
components by their maximum absolute value in the training
set. Appendix A.3 provides additional training details.

The number of trainable parameters in QINCO scales lin-
early with the number of residual blocks L and the hidden
dimension h of the residual-MLPs. Preliminary experiments
showed that the performance gain of increasing either L or
h by the same factor, was very similar, see App. B.1. There-
fore, to vary the capacity of QINCO, we varied the number
of residual blocks L, and fixed the hidden dimension to
h = 256. For most experiments we use M ∈ {8, 16} quan-
tization levels and vocabulary size K = 256, which we
denote as “8 bytes” and “16 bytes” encoding.

5.2. Quantization performance

In Tab. 1 we compare QINCO against the baselines on four
datasets. For Contriever we report QINCO with L=12, for
the other datasets we report L=16. QINCO outperforms
all baselines on all datasets with large margins. On BigANN
for example, QINCO reduces the MSE by 26% and 44%
for 8 and 16 bytes encodings respectively, and search recall
(R@1) is improved by more than 10 points for both encod-
ings. In general we find that QINCO optimally uses all

5

Residual Quantization with Implicit Neural Codebooks

2 4 6 8 10 12 14 16
Quantization step m

0k
20

k
40

k
60

k
80

k
10

0k

M
SE

MSE for BigANN1M database after each quantization step
Base codebooks at initialization
QINCo-predicted codebooks at end of training

Figure 2. MSE (mean ± std. dev.) on BigANN1M across 16 quanti-
zation steps before training of QINCO (L=16), and after training
on 10M samples.

Table 3. Complexity of encoding and decoding per vector (in float-
ing point operations, FLOPS) and indicative timings on 32 CPU
cores (in µs) with parameters: D=128; QINCO: L=2, M=8,
h=256; UNQ: h′=1024; b=256; RQ: beam size B=5. In practice,
at search time for OPQ and RQ we perform distance computations
in the compressed domain, which takes M FLOPS (0.16 ns).

Encoding Decoding

FLOPS time FLOPS time

OPQ D2 + KD 1.5 D(D + 1) 1.0
RQ KMDB 8.3 MD 1.3
UNQ h′(D+h′+Mb+MK) 18.8 h′(b+h′+D+M) 13.0
QINCO 2MKD(D + Lh) 823.4 2MD(D + Lh) 8.3

codewords without explicitly enforcing this using regular-
ization during training, see App. B.2. Note that the methods
that we compare have different numbers of parameters and
training set sizes, and also vary in encoding and decoding
speed. These factors are analyzed in sections 5.3 and 5.4.

To compare to reported results for DeepQ (Zhu et al., 2023)
and RVPQ (Niu et al., 2023), we train a smaller QINCO
(L= 4) on 100k vectors for Deep1B and 95k vectors for
SIFT1M. Table 2 shows that QINCO substantially outper-
forms these methods as well on both datasets.

Figure 2 shows that QINCO gains accuracy with respect
to the base RQ in all quantization steps, but the relative
improvement is larger in the deeper ones. An explanation
is that for deeper quantization steps, the residual distribu-
tions tend to become more heterogeneous across cells, so
specialized codebooks predicted by QINCO become more
useful.

5.3. Search performance

In Tab. 3 we report the complexity and corresponding encod-
ing/decoding times of QINCO and baselines. All timings
are performed on 32 threads of a 2.2 GHz E5-2698 CPU
with appropriate batch sizes. In particular for encoding,
QINCO is slower than the competing methods both in terms
of complexity and timings. Given the encoding complex-
ity of QINCO on CPU, we run encoding on GPU for all
QINCO experiments not related to timing. The encoding
time for the same QINCO model on a Tesla V100 GPU is

Table 4. Search accuracy (R@1) using the approximate AQ de-
coder only (row 1), AQ in combination with QINCO (with L=2)
to re-rank a shortlist of size nshort obtained using the AQ decoder
(rows 2, 3, 4), and QINCO to decode the full database (row 5).

BigANN1M Deep1M

8 bytes 16 bytes 8 bytes 16 bytes

AQ 12.7 15.6 11.9 17.6
nshort = 10 30.5 43.1 25.3 40.3
nshort = 100 38.9 62.8 30.3 53.0
nshort = 1000 40.1 67.2 31.2 54.9
QINCO 40.2 67.5 31.1 55.0

Table 5. MSE of QINCO and IVF-QINCO for 8- and 16-byte
codes on BigANN1M for L=4.

8 bytes 16 bytes

QINCo 1.24 × 104 3.77 × 103

IVF-QINCo 0.78 × 104 2.74 × 103

28.4 µs per vector.

Since the search speed depends on the decoding speed of
the model, we experiment with approximate decoding for
QINCO, as described in Sec. 4.2. For each query we fetch
nshort results using the approximate AQ decoding and do a
full QINCO decoding on these to produce the final search
results. Table 4 shows that the R@1 accuracy of the ap-
proximate AQ decoding is low compared to decoding with
QINCO (and compared to RQ). However, re-ranking the top-
1000 results (i.e., 0.1% of the database) of the AQ decoder
with QINCO brings the recall within 0.3% of exhaustive
QINCO decoding.

Only using approximate decoding to create a shortlist does
not yield competitive search speeds yet. As such, we exper-
iment with IVF-QINCO on billion-scale datasets, which
combines AQ approximate decoding with IVF (see Sec. 4).
We use IVF-QINCO with KIVF=106 buckets. In terms of
pure encoding (i.e. without AQ decoding), IVF-QINCO
already improves the MSE of regular QINCO thanks to the
large IVF quantizer, see Tab. 5.

In Fig. 3 we plot the speed-accuracy trade-offs obtained
on BigANN1B (database of size 109) using IVF-QINCO,
IVF-PQ and IVF-RQ. We report IVF-RQ results and IVF-
QINCo with two settings of build-time parameters (number
of blocks L for IVF-QINCo and beam size B for IVF-RQ)
that adjust the trade-off between search time and accuracy.
There are three search-time parameters: PIVF, efSearch (a
HNSW parameter) and nshort. For each method we evalu-
ate the same combinations of these parameters and plot the
Pareto-optimal set of configurations. We observe that there
is a continuum from IVF-PQ, via IVF-RQ to IVF-QINCO:
IVF-PQ is fastest but its accuracy saturates quickly, IVF-RQ
is a bit slower but gains about 5 percentage points of recall;
IVF-QINCO is again slower but results in 10 to 20 per-

6

Residual Quantization with Implicit Neural Codebooks

10 15 20 25 30 35
R@1

101

102

103

104

105

QP
S

(3
2

th
re

ad
s)

8 bytes

IVF-PQ
IVF-RQ B=5
IVF-RQ B=20
IVF-QINCo L=2
IVF-QINCo L=4

20 30 40 50 60
R@1

16 bytes

40 50 60 70 80
R@1

32 bytes

Figure 3. Speed-accuracy trade-off in terms of queries per second
(QPS) and recall@1 for IVF-QINCO, on BigANN1B (109 vec-
tors), compared to IVF-PQ and IVF-RQ.

centage points of recall above IVF-RQ. The impact of the
build-time parameters is significant but does not bridge the
gap between the methods. For the operating points where
IVF-QINCO is interesting, it can still sustain hundreds
to thousands of queries per second. This is the order of
speeds at which hybrid memory-flash methods operate (Sub-
ramanya et al., 2019), except that QINCO uses way less
memory. Appendix B.3 presents additional analyses on fast
search with IVF-QINCO.

5.4. Further analyses

Scaling experiments. To investigate the interaction be-
tween training set size and model capacity, we train QINCO
on both 500k and 10M vectors for codes of 8 and 16 bytes,
and vary the number of residual blocks L. Figure 4 shows
that in all cases the accuracy significantly improves with
more training data, and that given enough training data it
keeps improving with larger model capacity L. For less
training data (500k vectors), increasing the capacity too
much can degrade the accuracy, due to overfitting.

To test whether baselines benefit similarly from more train-
ing data, we train OPQ, RQ and LSQ on 10M training
vectors. Table S2 in App. B.4 shows that these algorithms
hardly benefit from more training data. UNQ was origi-
nally trained on 500k training vectors using shallow encoder
and decoder designs: both only contained a two-layer MLP
with h′=1024 hidden dimensions. By increasing either the
depth (L′) or width (h′) of these MLPs, while training on
500k vectors, we found that UNQ suffered from overfitting
and test performance decreased (also when deviating from
the hyperparameter settings given by the authors). However,
training UNQ on 10M vectors improved the MSE for deeper
(larger L′) and wider (higher h′) MLPs. However, when
evaluating the number of trainable parameters against MSE
performance, Fig. S5 in App. B.4 shows that the Pareto front
of these better-performing UNQ models remains far from

QINCO’s performance.

Dynamic Rates. We evaluate whether a QINCO model
trained for long codes can be used to generate short codes, or
equivalently, whether partial decoding can be performed by
stopping the decoding after m < M steps. Figure 5 shows
the MSE per quantization step on BigANN1M for both the
8- and 16-byte models (L=16), which is almost identical
for m ≤ 8. This has several benefits: compressed domain
rate adjustment (vectors can be approximated by cropping
their codes); amortized training cost by only training for the
largest M ; and simple model management (only a single
model is required). This also implies that the loss at step m
hardly influences the trainable parameters in steps < m. Ap-
pendix B.5 shows similar graphs for Deep1M and the R@1
metric for both datasets. They show that with 12 bytes and
more, QINCO outperforms 16-byte-UNQ’s R@1=59.3%
for BigANN1M and R@1=47.9% for Deep1M.

Integration with product quantization. For efficiency
when generating large codes, RQ is often combined with
PQ to balance sequential RQ stages with parallel PQ cod-
ing (Babenko & Lempitsky, 2015; Niu et al., 2023). In
this setup, the vector is divided into sub-vectors, and an
RQ is trained on each sub-vector. QINCO can equivalently
be combined with PQ. We train QINCO and PQ-QINCO
(L=2) on 10M vectors of FB-ssnpp for 32-byte encoding.
Figure 6 shows the trade-off between number of parame-
ters and performance for PQ-QINCO and QINCO. Inter-
estingly, using more PQ blocks deteriorates performance
until a turning point, where performance improves again.
Vanilla PQ (Jégou et al., 2010) has 65.5k trainable parame-
ters (way fewer than the PQ-QINCO variants) and obtains
MSE=55.7k (much worse than PQ-QINCO). Compared
to QINCO, PQ-QINCO speeds up encoding and search in
high-rate regimes, at the cost of accuracy.

QINCO variant for high-dimensional data. The num-
ber of trainable parameters in QINCO scales in O(D2),
see Equation (1). For high-dimensional embeddings, we
propose QINCO-LR, a variant of QINCO that contains an
additional low-rank (LR) projection: for each QINCO step,
we replace the first affine layer R2D → RD by two linear
layers that map R2D → Rh → RD. QINCO-LR scales
in O(hD). We fix h= 256 (same as the residual blocks)
and observe that QINCO-LR (8 bytes; L= 4) trained on
10M Contriever embeddings achieves a database MSE of
1.46 with 16.71M trainable parameters, as compared to an
MSE of 1.45 for vanilla QINCo with 20.85M parameters.
QINCO-LR is thus 20% more parameter-efficient, while
barely loosing performance, making QINCO-LR interesting
for even larger embeddings, as more than 1,000 dimensions
is not uncommon (Devlin et al., 2018; Oquab et al., 2023).

Allocating bits. Given a fixed bits budget M log2(K),
PQ and additive quantizers are more accurate with a few

7

Residual Quantization with Implicit Neural Codebooks

2 4 8 12 16
No. residual blocks L

4k

6k

8k
10

k
12

k
14

k

M
SE

BigANN1M

2 4 8 12 16
No. residual blocks L

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

Deep1M

1 2 4 8 12
No. residual blocks L

1.1
0

1.2
0

1.3
0

1.4
0

1.5
0

1.6
0

Contriever1M

2 4 8 12 16
No. residual blocks L

65
k

70
k

75
k

80
k

85
k

90
k

FB-ssnpp1M

8 bytes T=500k
8 bytes T=10M
16 bytes T=500k
16 bytes T=10M

Figure 4. Performance of QINCO of residual blocks L and a training set size T of 500k (open) or 10M (solid).

2 4 6 8 10 12 14 16
Quantization step m

10
k

30
k

50
k

70
k

M
SE

8 bytes QINCo with truncated encoding
16 bytes QINCo with truncated encoding

Figure 5. The MSE after the mth quantization step is very similar
for the 8 bytes and 16 bytes models for BigANN1M.

106 107

log (no. parameters)
40

.0k
41

.0k
42

.0k
43

.0k

M
SE

QINCo 32x8

PQ-QINCo 2x16x8

PQ-QINCo 4x8x8
PQ-QINCo 8x4x8

PQ-QINCo 16x2x8

Figure 6. Comparing 32 byte encodings of FB-ssnpp for QINCO

and PQ-QINCO. The setting 16 × 2 × 8 means we use 16 PQ
blocks, M=2 residual steps and K=28=256 centroids.

large codebooks (small M , large K) than with many small
codebooks (large M , small K), as the latter setting has
a lower capacity (fewer trainable parameters). To investi-
gate whether QINCO behaves similarly, we trained QINCO
(T = 500k, L = 4, and a base learning rate of 10−3) on
BigANN1M with M = 10 codebooks with the default
K = 28; and M = 8 codebooks with K = 210. Table 6
shows that these two modes of operation are more similar,
i.e. only 2.1% decrease in MSE, than for RQ and LSQ, for
which MSE decreased 11.1% and 6.5%, respectively.

The reason for this different behavior of QINCO with re-
spect to additive quantizers, is that the relation between M ,
K and the number of trainable parameters in QINCO de-
pends on the number of residual blocks L. For increasing L,
the two modes of operation (small M , large K vs small K,
large M) get closer in terms of trainable parameters, which
reduces the gap in performance.

Table 6. Performance trade-offs on BigANN1M for two QINCO

settings that yield 10-byte codes.
M=10, K=28 M=8, K=210

MSE (×104) R@1 MSE (×104) R@1 ∆ MSE ∆ R@1

RQ 2.07 35.5 1.84 37.2 -11.1% +4.8%
LSQ 1.55 37.6 1.45 39.3 -6.5% +4.5%
QINCO 0.96 49.9 0.94 50.1 -2.1% +0.4%

Additional ablations studies. Finally, we summarize main
findings from more ablations presented in App. B.6.

(i) QINCO can be trained using only the MSE loss after
the last quantization step, i.e. LM (θ), instead of summing
the M losses from all quantization steps as in Equation (3).
However, this drastically reduced performance and the opti-
mization became unstable.

(ii) QINCO’s M losses can be detached, such that each
loss only updates the parameters θm of one QINCO step.
This slightly deteriorated or did not affect MSE, while re-
call levels remained similar, or slightly improved in some
cases. In general, each loss thus has a marginal impact on
earlier quantization steps. This corroborates our finding that
QINCO can be used with dynamic rates during evaluation.

(iii) The number of trainable parameters in QINCO scales
linearly with the number of quantization steps M . To test
whether QINCO benefits from having M different neural
networks fθm , we share (a subset of the) parameters among
the M steps and observed drops in performance. Yet, per-
formance remained superior to LSQ in all tested cases.

6. Conclusion
We introduced QINCO, a neural vector quantizer based
on residual quantization. QINCO has the unique property
that it adapts the codebook for each quantization step to the
distribution of residual vectors in the current quantization
cell. To achieve this, QINCO leverages a neural network
that is conditioned upon the selected codewords in previous
steps, and generates a specialized codebook for the next step.

8

Residual Quantization with Implicit Neural Codebooks

The implicitly-available set of available codebooks grows
exponentially with the number of quantization steps, which
makes QINCO a very flexible multi-codebook quantizer.
We experimentally validate QINCO and compare it to state-
of-the-art baselines on six different datasets. We observe
substantial improvements in quantization performance, as
measured by the reconstruction error, and nearest-neighbor
search accuracy. We show that QINCO can be combined
with inverted file indexing for efficient large-scale vector
search, and that this reaches new high-accuracy operating
points. Finally, we find that truncating QINCO codes during
encoding or decoding, results in quantization performance
that is on par with QINCO models trained for smaller bit
rates. This makes QINCO an effective multi-rate quantizer.

QINCO opens several directions for further research, e.g.
to explore implicit neural codebooks for other quantization
schemes such as product quantization, in designs specifi-
cally tailored to fast nearest-neighbor search, and for com-
pression of media such as audio, images or videos. On
the algorithmic level, we plan to explore the use of beam
search during QINCO encoding in future work to investi-
gate whether a possible improvement in accuracy outweighs
the added complexity.

Impact Statement
This paper presents work whose goal is to advance the state
of the art in data compression and similarity search. Al-
though there are many potential societal consequences of
our work, we feel none of them must be specifically high-
lighted here as our contributions do not enable specific new
use cases but rather improve existing ones.

References
Agustsson, E., Mentzer, F., Tschannen, M., Cavigelli, L.,

Benini, L., and Van Gool, L. Soft-to-hard vector quantiza-
tion for end-to-end learning compressible representations.
In NeurIPS, 2017.

Amara, K., Douze, M., Sablayrolles, A., and Jégou, H.
Nearest neighbor search with compact codes: A decoder
perspective. In ICMR, 2022.

Andrychowicz, M., Denil, M., Gómez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., Shillingford, B., and de Freitas, N.
Learning to learn by gradient descent by gradient descent.
In NeurIPS, 2016.

Babenko, A. and Lempitsky, V. Additive quantization for
extreme vector compression. In CVPR, 2014.

Babenko, A. and Lempitsky, V. Tree quantization for large-
scale similarity search and classification. In CVPR, 2015.

Babenko, A. and Lempitsky, V. Efficient indexing of billion-
scale datasets of deep descriptors. In CVPR, 2016.

Baranchuk, D., Babenko, A., and Malkov, Y. Revisiting
the inverted indices for billion-scale approximate nearest
neighbors. In ECCV, 2018.

Chang, H., Zhang, H., Jiang, L., Liu, C., and Freeman,
W. T. MaskGIT: Masked generative image transformer.
In CVPR, 2022.

Chen, Y., Guan, T., and Wang, C. Approximate nearest
neighbor search by residual vector quantization. Sensors,
10(12):11259–11273, 2010.

Copet, J., Kreuk, F., Gat, I., Remez, T., Kant, D., Synnaeve,
G., Adi, Y., and Défossez, A. Simple and controllable
music generation. In NeurIPS, 2023.

Cover, T. M. and Thomas, J. A. Elements of Information
Theory. John Wiley & Sons, 1991.

Défossez, A., Copet, J., Synnaeve, G., and Adi, Y. High
fidelity neural audio compression. Transactions on Ma-
chine Learning Research, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of North American
Chapter of the Association for Computational Linguistics
(NAACL), 2018.

Douze, M., Jégou, H., and Perronnin, F. Polysemous codes.
In ECCV, 2016.

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G.,
Mazaré, P.-E., Lomeli, M., Hosseini, L., and Jégou, H.
The Faiss library. arXiv preprint, 2401.08281, 2024.

El-Nouby, A., Muckley, M. J., Ullrich, K., Laptev, I., Ver-
beek, J., and Jégou, H. Image compression with product
quantized masked image modeling. Transactions on Ma-
chine Learning Research, 2023.

Esser, P., Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis. In CVPR, 2021.

Ge, T., He, K., Ke, Q., and Sun, J. Optimized product
quantization for approximate nearest neighbor search. In
CVPR, 2013.

Glynn, P. W. Likelihood ratio gradient estimation for
stochastic systems. Communications of the ACM, 33
(10):75–84, 1990.

Gray, R. Vector quantization. IEEE Transactions on Acous-
tics, Speech and Signal Processing, 1(2):4–29, 1984.

9

Residual Quantization with Implicit Neural Codebooks

Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern,
F., and Kumar, S. Accelerating large-scale inference with
anisotropic vector quantization. In ICML, 2020.

He, K., Wen, F., and Sun, J. K-means hashing: An affinity-
preserving quantization method for learning binary com-
pact codes. In CVPR, 2013.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

He, T., Gao, L., Song, J., and Li, Y.-F. Semisupervised
network embedding with differentiable deep quantization.
IEEE Transactions on Neural Networks and Learning
Systems, 34(8):4791–4802, 2023.

Huijben, I. A., Kool, W., Paulus, M. B., and Van Sloun, R. J.
A review of the Gumbel-max trick and its extensions for
discrete stochasticity in machine learning. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 45
(2):1353–1371, 2022.

Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski,
P., Joulin, A., and Grave, E. Unsupervised dense infor-
mation retrieval with contrastive learning. Transactions
on Machine Learning Research, 2022.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with Gumbel-Softmax. In ICLR, 2017.

Jang, Y. K. and Cho, N. I. Self-supervised product quanti-
zation for deep unsupervised image retrieval. In ICCV,
2021.

Jégou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 33(1):117–128,
2010.

Jégou, H., Tavenard, R., Douze, M., and Amsaleg, L.
Searching in one billion vectors: Re-rank with source
coding. In ICASSP, 2011.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Klein, B. and Wolf, L. End-to-end supervised product quan-
tization for image search and retrieval. In CVPR, 2019.

Kumar, R., Seetharaman, P., Luebs, A., Kumar, I., and Ku-
mar, K. High-fidelity audio compression with improved
RVQGAN. In NeurIPS, 2023.

Lee, D., Kim, C., Kim, S., Cho, M., and Han, W.-S. Autore-
gressive image generation using residual quantization. In
CVPR, 2022.

Liu, B., Cao, Y., Long, M., Wang, J., and Wang, J. Deep
triplet quantization. In ACM International conference on
Multimedia, 2018.

Ma, N., Zhang, X., Huang, J., and Sun, J. Weightnet: Re-
visiting the design space of weight networks. In ECCV,
2020.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. In ICLR, 2017.

Malkov, Y. A. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(4):824–
836, 2018.

Martinez, J., Clement, J., Hoos, H. H., and Little, J. J. Re-
visiting additive quantization. In ECCV, 2016.

Martinez, J., Zakhmi, S., Hoos, H. H., and Little, J. J.
LSQ++: Lower running time and higher recall in multi-
codebook quantization. In ECCV, 2018.

Morozov, S. and Babenko, A. Unsupervised neural quanti-
zation for compressed-domain similarity search. In ICCV,
2019.

Niu, L., Xu, Z., Zhao, L., He, D., Ji, J., Yuan, X., and Xue,
M. Residual vector product quantization for approximate
nearest neighbor search. Expert Systems with Applica-
tions, 232, 2023.

Noh, H., Hyun, S., Jeong, W., Lim, H., and Heo, J.-P. Dis-
entangled representation learning for unsupervised neural
quantization. In CVPR, 2023.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec,
M., Khalidov, V., Fernandez, P., Haziza, D., Massa, F.,
El-Nouby, A., et al. DINOv2: Learning Robust Visual
Features Without Supervision. Transactions on Machine
Learning Research, 2023.

Paterek, A. Improving regularized singular value decompo-
sition for collaborative filtering. In Proceedings of KDD
cup and workshop, 2007.

Pizzi, E., Roy, S. D., Ravindra, S. N., Goyal, P., and Douze,
M. A self-supervised descriptor for image copy detection.
In CVPR, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
ICML, 2021.

Schwenk, H. and Douze, M. Learning joint multilingual
sentence representations with neural machine translation.
In Workshop on Representation Learning for NLP, 2017.

10

Residual Quantization with Implicit Neural Codebooks

Simhadri, H. V., Williams, G., Aumüller, M., Douze, M.,
Babenko, A., Baranchuk, D., Chen, Q., Hosseini, L., Kr-
ishnaswamny, R., Srinivasa, G., et al. Results of the
NeurIPS’21 challenge on billion-scale approximate near-
est neighbor search. In NeurIPS 2021 Competitions and
Demonstrations Track, 2022.

Subramanya, S. J., Kadekodi, R., Krishaswamy, R., and
Simhadri, H. V. DiskANN: Fast accurate billion-point
nearest neighbor search on a single node. In NeurIPS,
2019.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. Neural
discrete representation learning. In NeurIPS, 2017.

Wang, J., Zeng, Z., Chen, B., Dai, T., and Xia, S.-T. Con-
trastive quantization with code memory for unsupervised
image retrieval. In AAAI, 2022.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3):229–256, 1992.

Ypsilantis, N.-A., Chen, K., Cao, B., Lipovskỳ, M., Dogan-
Schönberger, P., Makosa, G., Bluntschli, B., Seyedhos-
seini, M., Chum, O., and Araujo, A. Towards universal
image embeddings: A large-scale dataset and challenge
for generic image representations. In ICCV, 2023.

Yu, T., Yuan, J., Fang, C., and Jin, H. Product quantization
network for fast image retrieval. In ECCV, 2018.

Zhu, X., Song, J., Gao, L., Gu, X., and Shen, H. T. Revisit-
ing multi-codebook quantization. IEEE Transactions on
Image Processing, 32:2399–2412, 2023.

11

Residual Quantization with Implicit Neural Codebooks

A. Implementation details
A.1. IVF Faiss implementation

Faiss has a residual quantization implementation combined with an inverted file (IVF-RQ). The corresponding index factory
name that we use for the 16-byte experiments is IVF1048576_HNSW32,RQ16x8_Nqint8, which gives the number of
IVF centroids (KIVF = 220), indexed with a HNSW graph-based index (32 links per node), the size of the RQ (16× 8 bits)
and how the norm is encoded for fast search (with an 8-bit integer). To build the IVF-RQ we also set the beam size directly
in the index. The 1M IVF centroids are obtained by running k-means on GPU, but otherwise the IVF-RQ experiments run
only on CPU, as IVF-RQ is not implementated on GPU in Faiss.

It turns out that this index structure can be used as-is for the IVF-QINCO experiments because the decoder and fast-search
functionality of IVF-RQ and IVF-QINCO are the same: both are an AQ decoder. Therefore, we build an IVF-RQ index, set
the codebook tables to G (Sec. 4.2) and fill in the index with pre-computed QINCO codes for the databse vectors.

At search time, the Faiss index is used to retrieve the top-nshort search results and the corresponding codes (that are extracted
from the inverted lists). The decoding and re-ranking is performed in Pytorch. The total search time is thus the sum of (1)
the initial search time (that depends on PIVF and efSearch), (2) the QINCO decoding time (that depends on nshort) and
(3) the distance computations and reranking (that are normally very fast).

A.2. Training UNQ

We use the author’s code of UNQ (Morozov & Babenko, 2019) to replicate their experimental results and run additional
experiments. We noticed that the original code picks the best model based on R@1 accuracy on the query set that was also
used to report results, which is overly optimistic for real-world settings. To correct for this, we use the same validation
set as in the QINCO experiments, but exploited those vectors as validation queries and picked the best model based on
R@1 performance of those. As such, for our UNQ reproductions, recall numbers may be slightly lower than reported in the
original paper (Morozov & Babenko, 2019).

We wanted to test the scalability of UNQ, both in terms of model capacity and number of training vectors. However, UNQ’s
triplet loss requires substantial compute for mining negative samples, as it does a nearest-neighbor search of all vectors
in the training set, each time a new set of negatives needs to be drawn. Running this search is feasible on 500k training
vectors, as used in the experiments reported in the original UNQ paper, but for 10M vectors it results in infeasible running
times where a single negative mining pass takes over eight hours. However, as noted by the UNQ authors in an ablation
of their paper (Morozov & Babenko, 2019, Table 5), the triplet loss term does not contribute substantially, and actually
decreases performance for R@1 and R@10 for the tested setting (BigANN1M, 8 bytes). As such, we set α = 0 in (Morozov
& Babenko, 2019, Eq. 12) when running UNQ on 10M vectors, which turns off the triplet loss. This enables scaling
experiments to 10M training vectors. UNQ* models in Tab. S2 and all results in Fig. S5 are trained as described above.

A final challenge we faced when training UNQ was instability. When increasing the capacity (either by increasing the width
or depth of the encoder/decoder), the training gets stuck due to large gradients when the learning rate is set to 10−3 as
proposed by the authors. For this reason, we also experimented with a learning rate of 10−4, which stabilized a substantial
portion of the runs. For all UNQ experiments reported in this supplemental material, we tested both learning rates (10−3

and 10−4), and report the best performing UNQ model.

A.3. Training QINCO

QINCO and its variants were implemented in Pytorch 2.0.1 and trained using the Adam optimizer with default set-
tings (Kingma & Ba, 2015) across eight GPUs with an effective batch size of 1,024. The same seed for randomization was
used in all experiments. The base learning rate was reduced by a factor 10 every time the loss on the validation set did
not improve for 10 epochs. We stopped training when the validation loss did not improve for 50 epochs. In general this
happened within 200–350 epochs, depending on the model size and dataset.

During training, we compute the loss from Equation (3) in two passes: (1) an encoding of the training batch without tracking
the gradients, and (2) computation of the loss with gradients when the codes are known. This speeds up the computation
2.5× compared to a naive implementation.

When we trained QINCO on the small training set (i.e. T=500k) we noticed that for some datasets, a base learning rate

12

Residual Quantization with Implicit Neural Codebooks

0 50 100 150 200 250
Epoch

0.030

0.032

0.034

0.036

Va
lid

at
io

n
lo

ss

L=4; h=256
L=2; h=512
L=8; h=256
L=4; h=512
L=24; h=256
L=4; h=1536

Figure S1. Validation loss on 8 bytes encoding QINCO models trained on 10M BigANN. Changing the model capacity using either L or
h with the same factor similarly affects validation loss.

Table S1. Entropy H of codeword assignments, averaged over codebooks, of the compressed database.
BigANN1M Deep1M

8
by

te
s

OPQ 7.90 7.95
RQ 7.95 7.96
LSQ 7.95 7.95
UNQ 8.00 7.99
QINCO 7.99 7.99

16
by

te
s OPQ 7.94 7.93

RQ 7.97 7.98
LSQ 7.93 7.94
UNQ 7.99 7.99
QINCO 7.99 7.99

of 10−3 resulted in slightly better performance than a base rate of 10−4. However for some of the larger QINCO models
trained on 10M vectors a lower base learning rate worked better. We opted for a uniform setting of 10−4 that can be used in
all models and datasets, 10−3 was only used when mentioned explicitly in the text.

To initialize the base codebooks C̄, we used the RQ implementation from the Faiss library (Douze et al., 2024), with a beam
size B = 1. This resulted in competitive or slightly better performance than the default B = 5, presumably because for
QINCO we also used a greedy assignment (equivalent to a beam size of one).

B. Additional analyses
B.1. Capacity of QINCO

The number of trainable parameters scales linearly with both the number of residual blocks L and the hidden dimension h of
the residual-MLPs, see Equation (1). Figure S1 plots the validation loss of different 8-bytes QINCO models trained on
BigANN. Curves with the same color have the same model capacity, but differ in L and h. It can be seen that changing one
or the other has a similar effect on model performance. A slight advantage is visible for increasing L rather than h. For that
reason —in order to create only one parameter that influences model capacity— we propose to fix h=256 and adjust L to
change the capacity of QINCO.

B.2. Codeword usage

To investigate whether QINCO suffers from codebook collapse — a common problem in neural quantization models — one
can use the average Shannon entropy (averaged over codebooks) to expresses the distribution of selected codewords by the
compressed database. It is defined as: H = − 1

M

∑M
m=1

∑K
k=1 p

m
k log2(p

m
k), and upper-bounded by log2(K) bits. Here,

pmk is the empirical probability that the kth codeword gets assigned in the mth codebook when compressing the full database.

We find that QINCO achieves near-optimal codeword usage, H ≈ log2(K) bits, in all cases, see Tab. S1. Note that
UNQ (Morozov & Babenko, 2019) also achieves this, but it requires regularization at training time, which introduces an
additional hyperparameter that weighs this regularizing term. Also the authors of DeepQ (Zhu et al., 2023) propose to use

13

Residual Quantization with Implicit Neural Codebooks

10 15 20 25 30 35
R@1

101

102

103

104

105

QP
S

(3
2

th
re

ad
s)

8 bytes

IVF-PQ
IVF-RQ B=5
IVF-RQ B=20
IVF-QINCo L=2
IVF-QINCo L=4

20 25 30 35 40 45 50 55
R@1

16 bytes

30 40 50 60 70 80
R@1

32 bytes

Figure S2. Speed in queries per second (QPS) vs search accuracy (R@1) trade-offs for the Deep1B dataset.

such a regularization term.

The fact that QINCO is not reliant on such additional regularization can be attributed to (i) QINCO is initialized with base
codebooks using RQ that enforces a good initial spread of assignments, and (ii) since QINCO does not deploy an encoder
before quantization, codebook collapse by the encoder, where all data vectors are mapped to a similar point in latent space,
cannot occur.

B.3. Fast search

Results on Deep1B. Figure S2 shows the speed-recall trade-offs for the Deep1B dataset, similar to the results shown for
BigANN1B in Fig. 3 of the main paper. There is a wide range of high-accuracy operating points where QINCo is competitive
or outperforms IVF-PQ and IVF-RQ for 8 and 16-byte encoding. The trade-offs for the 32-byte setting are less interesting
compared to RQ and PQ, because here the upper bound accuracy of QINCO w.r.t. these methods is not high enough. It is
possible that PQ-QINCO would be a better option in this case.

Both for BigANN1B (Fig. 3) and Deep1B (Fig. S2), it can be seen that the capacity parameter L slightly changes the
Pareto front (green vs. yellow curves). At high accuracy operating points, IVF-QINCO with L=2 starts to become slower
than IVF-QINCO with L= 4, which seems counter-intuitive. This, however, is caused by the fact that in this regime,
IVF-QINCO with L= 2 requires a longer short-list (higher nshort) than IVF-QINCO with L= 4 to achieve the same
accuracy, while at lower accuracies IVF-QINCO with L=2 is faster due to its lower decoding complexity.

Decomposing performance over parameters. Pareto-optimal curves do not show the runtime parameters that are used in
each experiment. Figure S3 shows all the combination of parameters for a small experiment with 10M database elements and
an IVF index of just 216 = 64k centroids. In this case, the IVF centroids are searched exhaustively, without an approximate
HNSW index, so there is no efSearch parameter involved. This makes it possible to show all parameter combinations.
The Pareto-optimal points are indicated in gray squares: they are the ones that give the best accuracy for a given time budget
or conversely the fastest search for a given recall requirement.

Figure S4 show the same trade-offs for the BigANN1B dataset for a subset of the parameter sets. It shows that for
Pareto-optimal points, the three considered parameters need to be set to “compatible” values: it is useless to set a high PIVF

with a low nshort and vice-versa. The granularity of the parameter we tried out is relatively coarse. The settings for PIVF

are clearly separated and there are probably slightly better operating points for intermediate settings like nshort = 30 or
nshort = 700.

14

Residual Quantization with Implicit Neural Codebooks

0.2 0.3 0.4 0.5 0.6
R@1

102

103

104

QP
S

(3
2

th
re

ad
s)

 1 4 16
 64

 256

1024

BigANN10M, IVF65k, QINCo M=16 L=2

nshort=10
nshort=20
nshort=50
nshort=100
nshort=200
nshort=500
nshort=1000
Pareto-optimal points

Figure S3. All combinations of PIVF and nshort for one dataset. For some points we indicate the PIVF value.

0.2 0.3 0.4 0.5 0.6
R@1

102

103

QP
S

(3
2

th
re

ad
s)

4
64

 1
0

12
8

4

10

25
6

4

10

10
24

 4

 1
0

8
12
8

10

8
40
96

 1
0

16
 6
4

10

4
16

 2
0

4
40
96

 2
012

8

20
48

 1
0

20
48

 5
12

 1
0

8
8

20

4
40
96

 5
0

16
 6
4

20

32
 1
6

20

32
 6
4

20

32
 5
12

 2
0

10
24

 6
4

20

20
48

 4
09
6

20

40
96

 2
04
8

20

8
32

 5
0

4
40
96

 5
00

4
51
2

20
00

16
 3
2

50

32
 1
6

50

32
 1
28

 5
0

64
 6
4

50

40
96

 5
12

 5
0

16
 6
4

10
0

8
16

 2
00
0

32
 1
6

10
0

8
64

 2
00
0

32
 2
56

 1
00

64
 3
2

10
0

64
 5
12

 1
00

12
8

51
2

10
0

32
 1
28

 2
00

64
 1
28

 2
00

12
8

64

 2
00

25
6

10
24

 2
00

51
2

51
2

20
0

32
 5
12

 5
00

64
 5
12

 5
00

12
8

25
6

50
0

25
6

51
2

50
0

51
2

51
2

50
0

10
24

 1
02
4

50
0

12
8

25
6

10
00

25
6

51
2

10
00

51
2

20
48

 1
00
0

10
24

 1
02
4

10
00

12
8

10
24

 2
00
0

25
6

10
24

 2
00
0

10
24

 2
04
8

20
00

20
48

 5
12

 2
00
0

40
96

 2
04
8

20
00

BigANN1B, IVF1M, QINCo 16 bytes, L=4

suboptimal parameters
Pareto-optimal parameters

Figure S4. The set of parameters that are tried out for one of the curves of Fig. 3. Each point is obtained by setting three parameters: the
PIVF, HNSW’s efSearch and nshort. We indicate the values of these parameters (in this order) for some of the results and color them
from lowest (blue) to highest (red) with green in-between.

15

Residual Quantization with Implicit Neural Codebooks

Table S2. Performance gain by scaling up from T =500k training vectors to T =10M vectors is limited for OPQ, RQ and LSQ, while
QINCO improves further when more training data is available. Also UNQ improves from more training data, see App. B.4 for more
details on scaleability of UNQ. Training on 500k vectors, QINCO is reported with the number of residual blocks L that resulted in best
performance. For both rates, this was L=12 for BigANN1M and Deep1M, L=1 for Contriever1M, and L=2 for Fb-ssnpp1M. When
using 10M training vectors we report QINCO with L=16 in general, and L=12 for Contriever1M. For UNQ we report numbers from
the original paper (Morozov & Babenko, 2019), where models were trained on 500k vectors, as well as the results of models we trained on
10M vectors using their codebase, denoted UNQ∗. For the 8-byte setting, UNQ∗ achieved highest performance using a hidden dimension
of h′=1, 536 and L′=6 encoder/decoder layers. For 16 bytes, best performance was found using h′=1, 536 and L′=4.

BigANN1M Deep1M Contriever1M FB-ssnpp1M

T MSE (×104) R@1 R@10 R@100 MSE R@1 R@10 R@100 MSE R@1 R@10 R@100 MSE (×104) R@1 R@10 R@100

8 bytes

OPQ 500k 2.95 21.9 64.8 95.4 0.26 15.9 51.2 88.2 1.87 8.0 24.7 50.8 9.52 2.5 5.1 10.9
OPQ 10M 2.99 21.3 64.3 95.6 0.26 15.1 51.1 87.9 1.87 8.5 24.3 50.4 9.52 2.5 5.0 11.2
RQ 500k 2.49 27.9 75.2 98.2 0.20 21.4 63.5 95.2 1.82 10.2 26.9 52.4 9.20 2.7 6.1 13.6
RQ 10M 2.49 27.9 75.2 98.0 0.20 21.9 64.0 95.2 1.82 9.7 27.1 52.6 9.18 2.7 5.9 14.3
LSQ 500k 1.91 31.9 79.5 98.9 0.17 24.6 69.4 97.0 1.65 13.1 33.9 62.7 8.87 3.3 7.5 17.3
LSQ 10M 1.89 30.6 78.7 98.9 0.17 24.5 68.8 96.7 1.64 13.1 34.9 62.5 8.82 3.5 8.0 18.2
UNQ 500k 1.51 34.6 82.8 99.0 0.16 26.7 72.6 97.3 — — — — — — — —
UNQ∗ 10M 1.12 39.7 88.3 99.6 0.14 29.2 77.5 98.8 — — — — — — — —
QINCO 500k 1.38 40.2 88.0 99.6 0.15 29.4 77.6 98.5 1.57 15.4 38.0 65.5 8.95 3.0 7.7 17.1
QINCO 10M 1.12 45.2 91.2 99.7 0.12 36.3 84.6 99.4 1.40 20.7 47.4 74.6 8.67 3.6 8.9 20.6

16 bytes

OPQ 500k 1.79 40.5 89.9 99.8 0.14 34.9 82.2 98.9 1.71 18.3 40.9 65.4 7.25 5.0 11.8 25.9
OPQ 10M 1.79 41.3 89.3 99.9 0.14 34.7 81.6 98.8 1.71 18.1 40.9 65.8 7.25 5.2 12.2 27.5
RQ 500k 1.30 49.0 95.0 100.0 0.10 43.0 90.8 99.8 1.65 20.2 43.5 68.2 7.01 5.4 13.0 29.0
RQ 10M 1.30 49.1 94.9 100.0 0.10 42.7 90.5 99.9 1.65 19.7 43.8 68.6 7.00 5.1 12.9 30.2
LSQ 500k 0.98 51.1 95.4 100.0 0.09 42.3 89.7 99.8 1.35 25.6 53.8 78.6 6.63 6.2 14.8 32.3
LSQ 10M 0.97 49.8 95.3 100.0 0.09 41.4 89.3 99.8 1.33 25.8 55.0 80.1 6.55 6.3 16.2 35.0
UNQ 500k 0.57 59.3 98.0 100.0 0.07 47.9 93.0 99.8 — — — — — — — —
UNQ∗ 10M 0.47 64.3 98.8 100.0 0.06 51.5 95.8 100.0 — — — — — — — —
QINCO 500k 0.47 65.5 99.1 100.0 0.06 53.0 96.2 100.0 1.30 26.5 54.3 79.5 6.88 5.7 14.4 31.6
QINCO 10M 0.32 71.9 99.6 100.0 0.05 59.8 98.0 100.0 1.10 31.1 62.0 85.9 6.58 6.4 16.8 35.5

B.4. Scaling baselines

Table S2 shows the performance for QINCO and all baselines both trained on 500k vectors and 10M vectors. OPQ, RQ
and LSQ do not benefit from more training data in general, while UNQ did improve. A more detailed analysis on UNQ’s
scalability follows in this section.

In Tab. S2, for 500k training vectors we use the original numbers from the paper (Morozov & Babenko, 2019), while
we denote with UNQ∗ results we obtained by training on 10M vectors by re-running the author’s codebase, while model
selection was based on the hold-out validation set that we created, see App. A.2. The triplet loss was not used in this scenario
as the negative mining on 10M training vectors resulted in prohibitively slow training.

On 500k training vectors, we found that any increase in model size led to overfitting and increasing MSE numbers. However,
we did find that UNQ scaled to 10M training vectors quite well for both BigANN1M and Deep1M, with R@1 numbers
improving from 34.6% to 39.7% and from 26.7% to 29.2% on Deep1M, respectively for 8 bytes. Similar results are observed
for 16 bytes. Despite this, from Fig. S5 we see that QINCO scales even better; MSE rapidly decreases with increasing
capacity with far fewer parameters, for both quantities of training data. This shows that QINCo outperforms UNQ both in
the low- and high-data regime (with capacity being scaled accordingly).

Note that we experimented with changing the depth L′ of the encoder and decoder of UNQ. This parameter was fixed
to L′ = 2 by the authors, and therefore we did not parameterize L′ in Tab. 3. Including L′ in the number of FLOPS for
encoding and decoding of UNQ, results in h′(D+(L′ − 1)h′+Mb+MK

)
and h′(b+(L′ − 1)h′+D+M

)
, respectively.

16

Residual Quantization with Implicit Neural Codebooks

0.5 1.0 1.5 2.0 2.5
no. params 1e7

12000

13000

14000

15000
M

SE

8 bytes
UNQ, 500k
UNQ, 10M
QINCo, 500k
QINCo, 10M

0.5 1.0 1.5 2.0 2.5 3.0
no. params 1e7

3500

4000

4500

5000

5500

6000

6500

M
SE

16 bytes

UNQ, 500k
UNQ, 10M
QINCo, 500k
QINCo, 10M

Figure S5. Scaling results comparing UNQ to QINCo. All UNQ models were trained by us using the author’s code. For the UNQ training
with T =500k vectors, all increases in parameter counts based on expanding the encoder/decoder led to overfitting, and so we observed
optimal model performance with hyperparameters from the paper. The single point visualized for “UNQ, 500k” in both graphs is close to
the MSE of the models presented by Morozov & Babenko (2019), but with the model selection criteria outlined in A.2. For T =10M
vectors, we found the best UNQ model used a hidden dimension of h′=1, 536 (instead of the default 1,024), and so in our plots we scale
the number of layers in the encoder and decoder using L′ ∈ {2, 4, 6}. Note that these Pareto curves include the optimal performance
point for UNQ reported in Tab. S2. For QINCO we show curves with h=256 and L ∈ {2, 4, 8, 12, 16}. With all settings, UNQ has
worse operating points for both model and data scaling than QINCO. In some cases, stability was an issue, as can be seen for the highest
parameter count setting with UNQ for the 16-byte results.

Table S3. Comparison of UNQ with 16-byte encoding, and QINCO with 12- and 13-byte encoding.
BigANN1M Deep1M

Code length MSE R@1 MSE R@1
(×104)

UNQ 16 bytes 0.57 59.3 0.07 47.9
QINCO 12 bytes 0.57 61.8 0.08 49.7
QINCO 13 bytes 0.49 64.1 0.07 53.0

B.5. Dynamic rates

Figure S6 shows the MSE and R@1 performance for QINCO trained for 8-byte and 16-byte encoding. We observe that
QINCO trained for 8- and 16-byte encoding performs very similar at the varying rates.

In Tab. S3 we recap the results of UNQ from Tab. 1 of the main paper using 16-byte encoding, and compare them to QINCO
results using 12 and 13 byte encoding. The results of QINCO using 12 bytes equal or improve over those of UNQ using 16
bytes, except for MSE on Deep1M where QINCO matches UNQ’s 16 bytes results with only 13 bytes.

B.6. Ablations

Table S4 shows results of the ablations for which the main conclusions were provided in Sec. 5.4. Below we provide more
details for each of those.

One loss vs M losses. QINCO can be trained using only an MSE loss after the last quantization step, i.e. LM (θ), instead
of using the M losses as given in Equation (3). In Tab. S4, however, we show that this drastically reduces performance.
Additionally, we observed that optimization became more unstable, which could not be circumvented by using a lower
(base) learning rate.

Training the M models separately. The M losses in QINCO can be detached, such that each mth loss only updates
the trainable parameters in the mth part of QINCO. Table S4 shows that MSE in all cases deteriorated, while the recall
performances remained rather similar, or slightly increased for 8 bytes Deep1B encoding. In general, we might thus
conclude that there is no large effect of the mth loss function on earlier quantization steps (i.e. < m). This corroborates the
earlier-made observation that QINCO can be used with dynamic rates during evaluation.

17

Residual Quantization with Implicit Neural Codebooks

2 4 6 8 10 12 14 16
Quantization step m

10
k

30
k

50
k

70
k

M
SE

8 bytes QINCo with truncated encoding
16 bytes QINCo with truncated encoding

(a) MSE on BigANN1M

2 4 6 8 10 12 14 16
Quantization step m

10
.0

30
.0

50
.0

70
.0

R@
1

(%
)

8 bytes QINCo with truncated encoding
16 bytes QINCo with truncated encoding

(b) R@1 on BigANN1M

2 4 6 8 10 12 14 16
Quantization step m

0.2
0

0.4
0

0.6
0

M
SE

8 bytes QINCo with truncated encoding
16 bytes QINCo with truncated encoding

(c) MSE on Deep1M

2 4 6 8 10 12 14 16
Quantization step m

10
.0

30
.0

50
.0

70
.0

R@
1

(%
)

8 bytes QINCo with truncated encoding
16 bytes QINCo with truncated encoding

(d) R@1 on Deep1M

Figure S6. MSE and R@1 for BigANN1M and Deep1M for QINCO (L = 16) trained for 8-byte and 16-byte encodings, truncated at a
varying number of bytes.

Sharing parameters over quantization steps. The number of trainable parameters in QINCO scales linearly with M ,
the number of bytes used for quantization, see Equation (1). To test whether QINCO actually benefits from having M
specialized codebook-updating models, we share (a subset of the) parameters of each of those models over all M steps.
We run three variants: (i) only the parameters of the first concatenation block are shared, (ii) only the parameters of the
residual-MLPs are shared, and (iii) both the concatenation block and residual-MLP parameters are shared over M . All
models were trained on T = 500k vectors, and with L = 8 residual blocks. Table S4 shows that performance indeed drops
when the codebook-predicting models are shared over the M quantization steps. A direct relation is visible between the
number of parameters that gets reduced by these actions, and the drop in performance. This finding suggests that the QINCO
benefits from learning M specialized codebook-predicting models.

Table S4. Ablation performance for QINCO models trained on T = 500k vectors, with L = 8. Compared to the base QINCO model (I),
performance heavily degrades when using only the MSE loss on the last quantization step (II). Detaching the M losses does slightly
deteriorate the MSE reconstruction performance in all cases, but does not seem to affect recall that much (III). Sharing trainable parameters
across the M quantization steps reduces performance (IV-VI), mainly when a large part of the parameters are shared (VI).

BigANN1M Deep1M

MSE (×104) R@1 R@10 R@100 no. params. MSE R@1 R@10 R@100 no. params.

8 bytes

I QINCO 1.40 39.7 87.4 99.6 4.2M 0.15 29.6 77.6 98.5 3.1M
II QINCO only last loss LM (θ) 2.81 16.2 55.4 90.8 4.2M 0.20 17.4 55.8 91.6 3.1M
III QINCO M detached losses 1.42 39.1 87.6 99.5 4.2M 0.15 30.0 78.0 98.8 3.1M
IV QINCO share concatenate blocks over M 1.46 38.8 87.5 99.5 4.0M 0.15 28.7 75.7 98.4 3.0M
V QINCO share residual-MLPs over M 1.69 37.0 85.4 99.3 1.0M 0.16 27.4 74.5 98.1 0.7M
VI QINCO share concatenate blocks & residual-MLPs 1.66 37.1 85.2 99.4 0.8M 0.16 28.4 75.4 97.9 0.6M

16 bytes

I QINCO 0.47 65.7 99.0 100.0 8.9M 0.06 53.2 96.6 100.0 6.6M
II QINCO only last loss LM (θ) 2.85 16.1 53.2 90.1 8.9M 0.14 27.1 72.3 97.1 6.6M
III QINCO M detached losses 0.52 65.2 98.7 100.0 8.9M 0.06 53.1 96.5 100.0 6.6M
IV QINCO share concatenate blocks over M 0.49 66.2 99.0 100.0 8.4M 0.07 51.4 95.7 100.0 6.3M
V QINCO share residual-MLPs over M 0.69 61.8 98.5 100.0 1.5M 0.08 50.0 94.7 100.0 1.1M
VI QINCO share concatenate blocks & residual-MLPs 0.71 59.4 98.3 100.0 1.1M 0.08 49.6 95.2 100.0 0.8M

18

