
Smooth Min-Max Monotonic Networks

Christian Igel 1

Abstract
Monotonicity constraints are powerful regular-
izers in statistical modelling. They can sup-
port fairness in computer-aided decision mak-
ing and increase plausibility in data-driven scien-
tific models. The seminal min-max (MM) neural
network architecture ensures monotonicity, but
often gets stuck in undesired local optima dur-
ing training because of partial derivatives of the
MM nonlinearities being zero. We propose a
simple modification of the MM network using
strictly-increasing smooth minimum and maxi-
mum functions that alleviates this problem. The
resulting smooth min-max (SMM) network mod-
ule inherits the asymptotic approximation prop-
erties from the MM architecture. It can be used
within larger deep learning systems trained end-
to-end. The SMM module is conceptually simple
and computationally less demanding than state-
of-the-art neural networks for monotonic mod-
elling. Our experiments show that this does not
come with a loss in generalization performance
compared to alternative neural and non-neural
approaches.

1. Introduction
In many data-driven modelling tasks we have a priori
knowledge that the output is monotonic, that is, non-
increasing or non-decreasing, in some of the input vari-
ables. This knowledge can act as a regularizer, and often
monotonicity is a strict constraint for ensuring the plau-
sibility and therefore acceptance of the resulting model.
We are particularly interested in monotonicity constraints
when learning bio- and geophysical models from noisy ob-
servations, see Figure 1. Examples from finance, medicine
and engineering are given, for instance, by Daniels & Ve-
likova (2010), see also the review by Cano et al. (2019).

1Department of Computer Science, University of Copen-
hagen, Copenhagen, Denmark. Correspondence to: Christan Igel
<igel@diku.dk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

0 20 40 60 80

crown area (m2/plant)

0

100

200

300

400

500

600

700

800

w
o

o
d

dr
y

m
as

s
(k

g/
pl

an
t)

MM

XG

SMM

Figure 1. Learning an allometric equation from data with an orig-
inal min-max network (MM), XGBoost (XG) and a smooth
min-max network (SMM), here estimating wood dry mass (and
thereby stored carbon) from tree crown area (Hiernaux et al.,
2023; Tucker et al., 2023).

Monotonicity constraints can incorporate ethical principles
into data-driven models and improve their fairness (e.g., see
Cole & Williamson, 2019; Wang & Gupta, 2020).

Work on monotonic neural networks was pioneered by
the min-max (MM) architecture proposed by Sill (1997),
which is simple, elegant, and able to asymptotically ap-
proximate any monotone target function by a piecewise lin-
ear neural network model. However, learning an MM net-
work, which can be done by unconstrained gradient-based
optimization, often does not lead to satisfactory results.
Thus, a variety of alternative approaches were proposed,
which are much more complex than an MM network mod-
ule (for recent examples see Milani Fard et al., 2016; You
et al., 2017; Gupta et al., 2019; Yanagisawa et al., 2022;
Sivaraman et al., 2020; Liu et al., 2020, and Nolte et al.,
2022). We argue that the main problem when training an
MM network are partial derivatives being zero because of
the maximum and minimum computations. This leads to
large parts of the MM network being silent, that is, most
parameters of the network do not contribute to computing
the model output at all, and therefore the MM network un-
derfits the training data with a very coarse piecewise lin-

1

Smooth Min-Max Monotonic Networks

ear approximation. We alleviate this issue by replacing the
maximum and minimum by smooth and monotone coun-
terparts. The resulting neural network module is referred
to as smooth min-max (SMM) and exhibits the following
properties:

• The SMM network inherits the asymptotic approxima-
tion properties of the min-max architecture, but does not
suffer from large parts of the network not being used after
training.

• The SMM module can be used within a larger deep
learning system and be trained end-to-end using uncon-
strained gradient-based optimization in contrast to stan-
dard isotonic regression and (boosted) decision trees.

• The SMM module is simple and does not suffer from the
curse of dimensionality when the number of constrained
inputs increases, in contrast to lattice based approaches.

• The function learned by SMM networks is smooth in
contrast to isotonic regression, linearly interpolating lat-
tices, and boosted decision trees.

• Our experiments show that the advantages of SMM do
not come with a loss in performance. In experiments on
elementary target functions, SMM compared favorably
with min-max networks, isotonic regression, XGBoost,
expressive Lipschitz monotonic networks, and hierarchi-
cal lattice layers; and SMM also worked well on partial
monotone real-world benchmark problems.

We would like to stress that the smoothness property is not
just a technical detail. It influences how training data are
inter- and extrapolated, and smoothness can be important
for scientific plausibility. Figure 1 shows an example where
an allometric equation is learned from noisy observations
using the powerful XGBoost (Chen & Guestrin, 2016) as
well as simple MM and SMM layers. In this example, the
output (wood dry mass) should be continuously increasing
with the input (tree crown area). The MM layer collapses
to a linaet function. Both XGBoost and the SMM layer
give good fits in terms of mean squared error, neither the
staircase shape nor the constant extrapolation of the tree-
based model are scientifically plausible.

The next section will present basic theoretical results on
neural networks with positive weights and the MM archi-
tecture as well as a brief overview of interesting alternative
neural and non-neural approaches to monotonic modelling.
After that, Section 3 will introduce the SMM module and
show that it inherits the asymptotic approximation proper-
ties from MM networks. Section 4 will present an empiri-
cal evaluation of the SMM module with a clear focus on the
monotonic modelling capabilities in comparison to alterna-
tive neural and non-neural approaches before we conclude
in Section 5.

2. Background
A function f(x) depending on x = (x1, . . . , xd)

T ∈ Rd

is non-decreasing in variable xi if x′
i ≥ xi

implies f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xd) ≥

f(x1, . . . , xi−1, xi, xi+1, . . . , xd); being non-increasing
is defined accordingly. A function is called monotonic if
it is non-increasing or non-decreasing in all d variables.
Without loss of generality, we assume that monotonic
functions are non-decreasing in all d variables (if the
function is supposed to be non-increasing in a variable
xi we simply negate the variable and consider −xi). We
address the task of inferring a monotonous model from
noisy measurements. For regression we are given samples
Dtrain = {(x1, y1), . . . , (xn, yn)} where yi = f(xi) + εi
with f being monotonic and εi being a realization of a
random variable with zero mean. Because of the random
noise, Dtrain is not necessarily a monotonic data set, which
implies that interpolation does in general not solve the
task.

2.1. Neural Networks with Positive Weights

Basic theoretical results. A common way to enforce
monotonicity of canonical neural networks is to restrict the
weights to be non-negative. If the activation functions are
monotonic, then a network with non-negative weights is
also monotonic (Archer & Wang, 1993; Sill, 1997; Daniels
& Velikova, 2010). However, this does not ensure that the
resulting network class can approximate any monotonous
function arbitrarily well. If the activation functions of the
hidden neurons are standard sigmoids (logistic/Fermi func-
tions) and the output neuron is linear (e.g., the activation
function is the identity), then a neural network with pos-
itive weights and at most d layers can approximate any
continuous function mapping from a compact subset of Rd

to R arbitrarily well (Daniels & Velikova, 2010, Theorem
3.1). Interesting recent theoretical work by Mikulincer &
Reichman (2022) shows that with Heaviside step activa-
tion functions the above result can be achieved with four
layers for non-negative inputs (their interpolation results
assume monotone data and are therefore not applicable to
the general case of noisy data). However, if the activation
functions in the hidden layers are convex, such as the pop-
ular (leaky) ReLU and ELU (Nair & Hinton, 2010; Maas
et al., 2013; Clevert et al., 2016) activation functions, then a
canonical neural network with positive weights is a combi-
nation of convex functions and as such convex, and accord-
ingly one can find a non-convex monotonic function that
cannot be approximated within an a priori fixed additive
error (Mikulincer & Reichman, 2022, Lemma 1).

Min-max networks. Min-max (MM) networks as pro-
posed by Sill (1997) are a concave combination – taking the
minimum – of convex combinations – taking the maximum

2

Smooth Min-Max Monotonic Networks

max max max

mi n

Figure 2. Schema of a min-max module.

– of monotone linear functions, where the monotonicity is
ensured by positive weights, see Figure 2. The architecture
comprises K groups of linear neurons, where, following
the original notation, the number of neurons in group k is
denoted by hk. Given an input x ∈ Rd, neuron j in group
k computes

a(k,j)(x) = w(k,j) · x− b(k,j) (1)

with weights w(k,j) ∈ (R+
0)

d and bias b(k,j) ∈ R. Then all
hk outputs within a group k are combined via

g(k)(x) = max
1≤j≤hk

a(k,j)(x) (2)

and the output of the network is given by

y(x) = min
1≤k≤K

g(k)(x) . (3)

For classification tasks, y can be interpreted as the logit.
To ensure positivity of weights during unconstrained op-
timization, we encode each weight w

(k,j)
i by an uncon-

strained parameter z
(k,j)
i , where w

(k,j)
i = exp

(
z
(k,j)
i

)
(Sill, 1997) or w(k,j)

i results from squaring (Daniels & Ve-
likova, 2010) or applying the exponential linear function
(Cole & Williamson, 2019) to z

(k,j)
i . The order of the mini-

mum and maximum computations can be reversed (Daniels
& Velikova, 2010). The convex combination of concave
functions gives the following asymptotic approximation ca-
pability:

Theorem 1 (Sill, 1997; Daniels & Velikova, 2010). Let
f(x) be any continuous, bounded monotonic function with
bounded partial derivatives, mapping [0, 1]d to R. Then
there exists a function fnet(x) which can be implemented
by a monotonic network such that |f(x)− fnet(x)| < ϵ for
any ϵ > 0 and any x ∈ [0, 1]d.

2.2. Related Work

Lattice layers. Neural networks with lattice layers con-
stitute a state-of-the-art approach for incorporating mono-
tonicity constraints (Milani Fard et al., 2016; You et al.,

2017; Gupta et al., 2019; Yanagisawa et al., 2022). A lat-
tice layer defines a hypercube with Ld vertices. The inte-
ger hyperparameter L > 1 defines the granularity of the
hypercube and d is the input dimensionality, which is re-
placed by the number of input features with monotonic-
ity constraints in hierarchical lattice layers (HLLs, Yanag-
isawa et al., 2022). In contast to the original lattice ap-
proaches, a HLL can be trained by unconstrained gradient-
based-optimization. The Ld scaling of the number of pa-
rameters is a limiting factor. For larger d, the task has to
be broken down using an ensemble of several lattice layers,
each handling fewer constraints (Milani Fard et al., 2016).

Certified monotonic neural networks. A computation-
ally very expensive approach to monotonic modelling is to
train standard piece-wise linear (ReLU) networks and to
ensure monotonicity afterwards. Liu et al. (2020) propose
to train with heuristic regularization that favours mono-
tonicity. After training, it is checked by solving a MILP
(mixed integer linear program) if the network fulfills all
constraints. If not, the training is repeated with stronger
regularization. Sivaraman et al. (2020) suggest to adjust the
output of the trained network to ensure monotonicity. This
requires solving an SMT (satisfiability modulo theories, a
generalization of SAT) problem for each prediction.

Lipschitz monotonic networks. Nolte et al. (2022) have
proposed Lipschitz monotonic networks (LMNs). The idea
of LMNs is to ensure that a base model is λ-Lipschitz with
respect to the L1-norm and then to add λxi to the model
for each constrained input i. LMNs are smooth and can be
trained end-to-end. The LMN approach requires choosing
the Lipschitz constant λ. To enforce the Lipschitz property
of neural models, normalization of the weight matrices is
added. However, to ensure that the networks can approx-
imate any monotonic Lipschitz bounded function, one has
to additionally use special activation functions to prevent
“gradient attenuation” (in the experiments by Nolte et al.
the GroupSort activation function was used), see also Anil
et al. (2019). This approximation result is slightly weaker
than Theorem 1 in the sense that the choice of λ constrains
the class of functions the LMN can approximate.

Constrained monotonic neural networks. Runje &
Shankaranarayana (2023) have been recently proposed
constrained monotonic neural networks (CMNNs). To en-
sure monotonicity, these networks constrain the weights to
be positive. In order to be able to approximate any mono-
tonic function, the neurons within a CMNN layer use three
different activation functions. Given some zero-centered,
non-decreasing, convex, lower-bounded activation function
(e.g., the ReLU), two additional activation functions are
constructed: the corresponding concave function result-
ing from reflecting the graph both vertically and horizon-

3

Smooth Min-Max Monotonic Networks

tally (similar to the work by Eidnes & Nøkland, 2018) and
a bounded function constructed from the other two other
functions. The CMNN layers can be trained using uncon-
strained gradient-based optimization. The approach is sim-
ple and elegant and enjoys asymptotic approximation prop-
erties similar to Theorem 1.

Non-neural approaches. There are many approaches to
monotonic prediction not based on neural networks, we re-
fer to Cano et al. (2019) for a survey. We would like to
highlight isotonic regression (Iso), which is often used for
classifier calibration (e.g., see Niculescu-Mizil & Caruana,
2005). In its canonical form (e.g., see Best & Chakravarti,
1990 and De Leeuw et al., 2009), Iso fits a piece-wise
constant function to the data and is restricted to univariate
problems. The popular XGBoost gradient boosting library
(Chen & Guestrin, 2016) also supports monotonicity con-
straints. XGBoost incrementally learns an ensemble of de-
cision trees; accordingly, the resulting regression function
is piece-wise constant.

3. Smooth Monotonic Networks
We now introduce the smooth min-max (SMM) network
module, which addresses problems of the original MM ar-
chitecture. The latter often performs worse than alterna-
tive approaches both in terms of training and test error, and
the outcome of the training process strongly depends on
the initialization. Even if an MM architecture has enough
neurons to be able to approximate the underlying target
functions well (see Theorem 1), the neural network pa-
rameters realizing this approximation may not be found by
the (gradient-based) learning process. When using MM
modules in practice, they often underfit the training data
and seem to approximate the data using a piecewise linear
model with very few pieces –– much less than the number
of neurons. This observation is empirically studied in Sec-
tion 4.1. We say that neuron j∗ in group k∗ in an MM unit
is active for an input x, if k∗ = argmin1≤k≤K g(k)(x) and
j∗ = max1≤j≤hk

a(k,j)(x). A neuron is silent over a set of
inputs X ⊂ Rd if it is not active for any x ∈ X . If neuron
j in group k is silent over all inputs from some training set
Dtrain, we have ∂y/∂a(k,j)(x) = 0 for all x ∈ X . Once a
neuron is silent over the training data, which can easily be
the case directly after initialization or happen during train-
ing, there is a high chance that gradient-based training will
not lead to the neuron becoming active. Indeed, our ex-
periments in Section 4.1 show that only a small fraction of
the neurons in an MM module are active when the trained
model is evaluated on test data.

The problem of silent neurons and the lack of smoothness
can be addressed by replacing the minimum and maximum
operation in the MM architecture by smooth counterparts.

Not every approximation to the maximum/minimum func-
tion is suitable, it has to preserve monotonicity, need to
work for positive and negative arguments, should have a
bounded approximation error which can be controlled (see
Corollary 1), should be smooth, and need to be computable
efficiently without numerical problems. The LogSumExp
function has all these properties. Let x1, . . . , xn ∈ R. We
define the scaled LogSumExp function with scaling param-
eter β > 0 as

LSEβ(x1, . . . , xn) =
1

β
log

n∑
i=1

exp(βxi)

=
1

β

(
c+ log

n∑
i=1

exp(βxi − c)

)
, (4)

where the constant c can be freely chosen to increase nu-
merical stability, in particular as c = max1≤i≤n xi. The
functions LSEβ(X) and LSE−β(X) are smooth and mono-
tone increasing in x1, . . . , xn. It holds:

max
1≤i≤n

xi < LSEβ(x1, . . . , xn) ≤ max
1≤i≤n

xi+
1

β
ln(n) (5)

min
1≤i≤n

xi −
1

β
ln(n) ≤ LSE−β(x1, . . . , xn) < min

1≤i≤n
xi

(6)
The proposed SMM module is identical to an MM module,
except that Equation (2) and Equation (3) are replaced by

g
(k)
SMM(x) = LSEβ

(
a(k,1)(x), . . . , a(k,hk)(x)

)
and (7)

ySMM(x) = LSE−β

(
g
(1)
SMM(x), . . . , g

(K)
SMM(x)

)
. (8)

We treat β, properly encoded to ensure positvity, as an ad-
ditional learnable parameter. Thus, the number of param-
eters of an SMM module is 1 + (d + 1)

∑K
k=1 hk. If the

target function is known to be (strictly) concave, we can set
K = 1 and h1 > 1; if it is known to be convex, we set
K > 1 and can set hk = 1 for all k. The default choice is
K = h1 = h2 = · · · = hK .

We can rewrite the above definition such that the β param-
eter appears only once, rescaling the final output. The β
factors acting on the a(k,j)(x) can be absorbed by the pa-
rameters w(k,j) and b(k,j) (which could be considered by
the initializing of these parameters). The outer β factors in
Equation (7) and the inner β factors in Equation (8) cancel.
Thus we get the equivalent simpler definition

g
(k)
SMM(x) = LSE1

(
a(k,1)(x), . . . , a(k,hk)(x)

)
and (9)

ySMM(x) = β LSE−1

(
g
(1)
SMM(x), . . . , g

(K)
SMM(x)

)
, (10)

in which the role of β is just a final linear rescaling.

4

Smooth Min-Max Monotonic Networks

3.1. Approximation Properties

The SMM inherits the approximation properties from the
MM, e.g.:
Corollary 1. Let f(x) be any continuous, bounded mono-
tonic function with bounded partial derivatives, mapping
[0, 1]d to R. Then there exists a function fsmooth(x) which
can be implemented by a smooth monotonic network such
that |f(x) − fsmooth(x)| < ϵ for any ϵ > 0 and any
x ∈ [0, 1]d.

Proof. Let ϵ = γ + δ with γ > 0 and δ > 0. From Theo-
rem 1 we know that there exists an MM network fnet with
|f(x) − fnet(x)| < γ. Let fsmooth be the smooth mono-
tonic neural network as defined by Equation (7) and Equa-
tion (8) with the same weights and bias parameters as fnet.
Let H = maxKh=1 hk. For all x and groups k we have

g
(k)
SMM(x) = LSEβ

(
a(k,1)(x), . . . , a(k,hk)(x)

)
≤ max

1≤j≤hk

a(k,j)(x) +
1

β
ln(hk)

≤ g(k)(x) +
1

β
ln(H) . (11)

Thus, also ySMM(x) ≤ y(x)+ 1
β ln(H). Similarly, we have

ySMM(x) = LSE−β

(
g
(1)
SMM(x), . . . , g

(K)
SMM(x)

)
≥ LSE−β

(
g(1)(x), . . . , g(K)(x)

)
≥ min

1≤k≤K
g(k)(x)− 1

β
ln(K)

= y(x)− 1

β
ln(K) . (12)

Thus, setting β = δ−1 lnmax(K,H) ensures for all x
that |fnet(x) − fsmooth(x)| ≤ δ and therefore |f(x) −
fsmooth(x)| < γ + δ = ϵ.

3.2. Partial Monotonic SMM

Let X be a subset of variables from {x1, . . . , xd}. Then
a function is partial monotonic in X if it is monotonic in
all xi ∈ X . The min-max and smooth-mini-max modules
are partial monotonic in X if the positivity constraint is
imposed for weights connecting to xi ∈ X (Daniels & Ve-
likova, 2010); the other weights can vary freely. However,
more general module architectures are possible. Let us split
the input vector into (xc,xu), where xc comprises all X
and xu the remaining xi ̸∈ X . Let Ψ(k,j) : Rd−|X| →
(R+

0)
|X | and Φ(k,j) : Rd−|X| → Rl(k,j)

for some inte-
ger l(k,j) denote neural subnetworks for each neuron j =
1, . . . , hk in each group k = 1, . . . ,K (which may share
weights). Then replacing Equation (1) by a(k,j)(x) =

w(k,j) · x+Ψ(k,j)(xu) · xc +w
(k,j)
u ·Φ(xu)− b(k,j) with

w
(k,j)
u ∈ Rl(k,j)

and ∀m ∈ X : w
(k,j)
m ≥ 0 preserves the

constraints.

4. Experiments
We empirically compared different monotonic modelling
approaches on well-understood benchmark functions. We
also present results for various partial monotonic real-
world data sets.1 As in related studies, the results on the
partial monotonic real-world data reflect the general induc-
tive bias of the overall system architecture, not only the
performance of the network modules handling monotonic-
ity constraints; this bears the risk that the processing of the
unconstrained features occludes the monotonic modelling
performance.

In our experiments, we assumed that we do not have any
prior knowledge about the shape of the target function and
set K = h1 = h2,= · · · = hK = 6. To avoid hyperparam-
eter overfitting, we used the these hyperparameters for the
SMM modules in all experiments. We use the exponen-
tial encoding to ensure positive weights. The weight pa-
rameters z(k,j)i and the bias parameters were randomly ini-
tialized by samples from a Gaussian distribution with zero
mean and unit variance truncated to [−2, 2]. We also used
exponential encoding of β and initialize lnβ with −1.

We compared against isotonic regression (Iso) as imple-
mented in the Scikit-learn library (Pedregosa et al., 2011)
and XGBoost (XG, Chen & Guestrin, 2016). As initial ex-
periments showed a tendency of XG to overfit, we eval-
uated XG with and without early-stopping. We consid-
ered hierarchical lattice layers (HLL) as a state-of-the-art
representative of lattice-based approaches using the well-
documented implementation made available by the au-
thors2. For a comparison of HLL with other lattice mod-
els we refer to Yanagisawa et al. (2022). Furthermore, we
applied LMNs using the implementation by Nolte et al..3

For our new experiments, we adopted the basic architecture
used in the ChestXRay experiments by Nolte et al. (2022)
with two hidden layers and Lipschitz parameter one. The
number of neurons in the hidden layers is determined by a
width parameter. In each experiment, we considered two
model sizes. The width parameter should be even, and
we picked the width such that the model size (in degrees
of freedom) of the small LMNs is smaller or equal to the
size of the corresponding SMM. The larger LMNl used a
width parameter increased by two compared to LMNs. The
resulting model sizes embrace the corresponding SMM
model size, see next section and Table B.4 and Table C.9 in
the appendix. In our experiments, the neural network mod-
els SMM, MM, HLL, and LMN were trained by the same

1All experiments, plots, tables, and statistics can be re-
produced using the source code available from https://
github.com/christian-igel/SMM.

2https://ibm.github.io/pmlayer
3https://github.com/niklasnolte/

MonotonicNetworks

5

https://github.com/christian-igel/SMM
https://github.com/christian-igel/SMM
https://ibm.github.io/pmlayer
https://github.com/niklasnolte/MonotonicNetworks
https://github.com/niklasnolte/MonotonicNetworks

Smooth Min-Max Monotonic Networks

unconstrained iterative gradient-based optimization proce-
dure.

4.1. Univariate Modelling

We considered three simple basic univariate functions on
[0, 1], the convex fsq(x) = x2 , the concave fsqrt(x) =

√
x,

and the scaled and shifted logistic function fsig = (1 +
exp(−10(x − 1/2))−1; see also the work by Yanagisawa
et al. (2022) for experiments on fsq and fsqrt. For each ex-
perimental setting, T = 21 independent trials were con-
ducted. For each trial, the Ntrain = 100 training data points
Dtrain were generated by randomly sampling inputs from
the domain. Mean-free Gaussian noise with standard devia-
tion σ = 0.01 was added to target outputs (i.e., the training
data were typically not monotone, in contrast to, e.g., the
setting considered by Mikulincer & Reichman, 2022). The
test data Dtest were noise-free evaluations of Ntest = 1000
evenly spaced inputs covering the input domain.

We compared SMM, MM, HLL, LMN as well as isotonic
regression (Iso) and XGBoost (XG) with and without early-
stopping. For K = 6, the MM and SMM modules have 72
and 73 trainable parameters, respectively. We matched the
degrees of freedom and set the number of vertices in the
HLL to 73; LMNs and LMNl had width parameters 6 and
8 resulting in 61 and 97 trainable parameters, respectively.
We set the number of estimators in XGBoost to ntrees = 73
and ntrees = 35 (as the behavior was similar, we report only
the results for ntrees = 73 in the following); for all other
hyperparameters the default values were used. When us-
ing XGBoost with early-stopping, referred to as XGval, we
used 25 % of the training data for validation and set the
number of early-stopping rounds to ⌊ntrees/10⌋. The isotonic
regression baseline requires specifying the range of the tar-
get functions, and also HLL presumes a codomain of [0, 1].
This is useful prior information not available to the other
methods, in particular as some of the training labels may lie
outside this range because of the added noise. We evaluated
the methods by their mean-squared error (MSE). Details of
the gradient-based optimization are given in Appendix A.

The test and training results of the experiments on the uni-
variate functions are summarized in Table 1 and Table C.5,
respectively. The distribution of the results is visualized
in Figure C.3. In all experiments SMM gave the smallest
median test error, and all differences between SMM and
the other methods were statistically significant (paired two-
sided Wilcoxon test, p < 0.001). The lower training errors
of XG and Iso indicate overfitting. However, in our ex-
perimental setup, early-stopping in XGval did not improve
the overall performance. The lattice layer performed better
than XGBoost. SMM was statistically significantly better
than HLL and both LMN variants;‘ the latter did not per-
form well in this experimental setup. Figure C.4 depicts

the results of a random trial, showing the different ways
the models extra- and interpolate.

Silent neurons. Overall, SMM clearly outperformed
MM. The variance of the MM learning processes was sig-
nificantly higher, see Figure C.3. This can be attributed to
the problem of silent neurons; the MM training got stuck in
undesired local minima. When looking at the 3 · 21 = 63
trials on the univariate test functions after training, the max-
imum number of MM neurons at least once active over the
test data set was as low as 5 out of 36; the mean num-
ber of active neurons was 2.8. On average 3.7 neurons in
a network were active directly after initialization, that is,
the training typically decreased the number of active neu-
rons.4 For SMM, we inspected the sum of the test predic-
tions

∑
(x,y)∈Dtest

ySMM(x) after training. We counted for
how many neurons both partial derivatives of this sum w.r.t.
the neuron’s parameters were zero, which could happen for
numerical reasons. This was rarely the case. On average
more than 31 neurons were active after training using this
notion of activity and never less than 14. Detailed results
for MM and SMM are given in Table C.6 in the appendix.

Robustness. After these experiments, we evaluated the
robustness of the SMM results for different choices of ini-
tial lnβ ∈ {−3,−2,−1, 0, 1} and K = hk ∈ {2, 4, 6, 8}.
The results are shown in Table C.7 in the appendix. Our
default choice of β = −1 with K = 6 was suboptimal in
all cases. We used Equation (9) and Equation (10) without
changing the initialization of the weights and biases, and as
expected the choice of the initial β had little influence on
the performance. These results show the robustness of the
SMM approach and that β does not introduce a sensitive
hyperparameter but just one additional model weight.

4.2. Multivariate Functions

We evaluated SMM, XG, HLL and LMN on multivariate
monotone target functions. The original MM was dropped
because of the previous results, Iso because the consid-
ered algorithm does not extend to multiple dimensions in
a canonical way (the Scikit-learn implementation only sup-
ports univariate tasks). We considered three input dimen-
sionalities d ∈ {2, 4, 6}. In each trial, we randomly con-
structed a function. Each function mapped a [0, 1]d input
to its polynomial features up to degree 2 and computed a
weighted sum of these features, where for each function the
weights were drawn independently uniformly from [0, 1]
and then normalized by the sum of the weights. For ex-
ample, for d = 2 we had (x1, x2)

T 7→ (w1 + w2x1 +

4Before developing the SMM, we tried to solve the problem of
silent neurons by improving the initialization, however, without
success.

6

Smooth Min-Max Monotonic Networks

Table 1. Median test errors on univariate (top) and mutivariate (bottom) tasks based on 21 trials per experimental setting. A star indicates
that the difference on the test data in comparison to SMM is statistically significant (paired two-sided Wilcoxon test, p < 0.001). The
mean-squared error (MSE) values are multiplied by 103.

MM SMM XG XGval Iso HLL LMNs LMNl

fsq 0.10∗ 0.01 0.14∗ 0.18∗ 0.04∗ 0.04∗ 0.37∗ 0.09∗

fsqrt 0.32∗ 0.02 0.14∗ 0.20∗ 0.06∗ 0.06∗ 0.28∗ 0.27∗

fsig 0.22∗ 0.01 0.13∗ 0.17∗ 0.04∗ 0.04∗ 0.25∗ 0.26∗

SMM XGs XGs
val XGl XGl

val HLLs HLLl LMNs LMNl

d = 2 0.00 0.23∗ 0.26∗ 0.23∗ 0.26∗ 0.03∗ 0.03∗ 0.07∗ 0.03∗

d = 4 0.01 0.66∗ 0.76∗ 0.66∗ 0.76∗ 0.03∗ 0.08∗ 0.29∗ 0.06∗

d = 6 0.02 0.74∗ 0.82∗ 0.74∗ 0.82∗ 0.10 0.13∗ 0.07 0.07∗

w3x2 + w4x
2
1 + w5x

2
2 + w6x1x2) ·

(∑6
i=1 wi

)−1

with
w1, . . . , w6 ∼ U(0, 1). We uniformly sampled Ntrain =
500 and Ntest = 1000 training and test inputs from [0, 1]d,
and noise was added as above.

For K = 6, the dimensionalities result in 109, 181, and 253
learnable parameters for the SMM. The number of learn-
able parameters for HLL is given by the Ld vertices in the
lattice. In each trial, we considered two lattice sizes. For
HLLs, we set L to 10, 3, and 2 for d equal to 2, 4, and 6,
respectively; for HLLl we increased L to 11, 4, and 3, re-
spectively. We also considered two LMN architectures. For
both LMN and HLL the smaller network had fewer and the
larger had more degrees of freedom than the correspond-
ing SMM, see Table C.9 in the appendix. We ran XGBoost
with ntrees = 100 (XGs) and ntrees = 200 (XGl), with and
without early-stopping.

The test error results of T = 21 trials are summarized in
Table 1. The corresponding training errors are shown in
Table C.8 in the appendix. The boxplot Figure C.5 in the
appendix visualizes the results. The newly proposed SMM
statistically significantly outperformed all other algorithms
in all settings, except HLLs and LMNs for d = 6 where
the lower errors reached by SMM are not significant. Us-
ing early stopping did not improve the XGBoost results
in our setting, and doubling the number of trees did not
have a considerable effect on training and test errors. We
also measured the neural network training times for 1000
iterations, see Table C.9 in the Appendix C. HLLs was
more than an order of magnitude slower than LMNs and
the fastest method SMM.

4.3. UCI Partial Monotone Functions

As a proof of concept, we considered modelling partial
monotone functions on real-world data sets from the UCI
benchmark repository (Dua & Graff, 2017). Details about

the experiments are provided in Appendix B. We took
all regression tasks and constraints from the first group
of benchmark functions considered by Yanagisawa et al.
(2022). The input dimensionality d and number of con-
straints |X | were d = 8 and |X | = 3 for the Energy Effi-
ciency data (Tsanas & Xifara, 2012) (with two regression
targets Y1 and Y2), d = 6 and |X | = 2 for the QSAR data
(Cassotti et al., 2015), and d = 8 and |X | = 1 for Con-
crete (Yeh, 1998). We performed 5-fold cross-validation.
From each fold available for training, 25 % were used as a
validation data set for early-stopping and final model selec-
tion, giving a 60:20:20 split in accordance with Yanagisawa
et al. (2022). In the partial monotone setting, HLL inter-
nally uses an auxiliary neural network. We used a network
with a single hidden layer with 64 neurons, which gave bet-
ter results than the larger default network. We considered
SMM with unrestricted weights for the unconstrained in-
puts. We also added an auxiliary network. The SMM64

model computes a(k,j)(x) = w(k,j) · x + Φ(xu) − b(k,j),
where Φ : Rd−|X| → R is a neural network with 64 hidden
units processing the unconstrained inputs, see Appendix B
for details. Similar to HLL, we incorporate the knowledge
about the targets being in [0, 1] by applying a standard sig-
moid to the activation of the output neuron. We present XG
results for ntrees = 100, increasing the number of trees to
ntrees = 500 did not yield superior results.

The mean cross-validation test error is shown in Table 2.
SMM64 performed best for one task, XG in the others.
SMM64 had the lowest CV test error of the neural network
approaches on the two Energy tasks, and the larger LMN
on QSAR and on Concrete.

4.4. Comparison with Recently Published Results

The question arises how our approach compares to the re-
sults on larger real-world data sets presented by Nolte et al.
(2022). Thanks to Nolte et al. who make their code for their

7

Smooth Min-Max Monotonic Networks

Table 2. Results on partial monotone UCI tasks, cross-validation error averaged over the MSE of 5 folds. The MSE is multiplied by 100.
The dof columns give the numbers of trainable parameters, ntrees the maximum number of estimators in XGBoost.

SMM64 SMM XG HLL LMNs LMNl

Dtest dof Dtest dof Dtest ntrees Dtest dof Dtest dof Dtest dof

Energy Y1 0.14 774 0.25 325 0.22 100 0.45 2139 0.27 727 0.22 841
Energy Y2 0.24 774 0.61 325 0.11 100 0.29 2139 0.44 727 0.34 841
QSAR 1.03 638 1.02 253 0.98 100 0.99 905 1.01 581 0.99 683
Concrete 1.78 902 1.79 325 1.71 100 4.59 707 2.20 841 1.71 963

Table 3. Comparison on common benchmark functions. The results for counterexample-guided learning of monotonic neural networks
(COMET), Lipschitz monotonic networks (LMNs) and certified monotonic neural networks (Certified) are taken from Nolte et al.
(2022), the results for XGBoost (XG), constrained monotonic neural networks (CMNN), and lattice ensembles (Crystals, Milani Fard
et al., 2016) from Runje & Shankaranarayana (2023). The SMM experiments used the code from Nolte et al. (2022) and exactly their
experimental setup (three trials, etc.), see caption of their Table 1. Accuracies and corresponding standard deviations are given in percent.
SMM64 sig. refers to the architecture with sigmoidal output activation.

COMPAS BlogFeedback LoanDefaulter ChestXRay Heart Disease Auto MPG
Method ↑↑ Test Acc ↓↓ RMSE ↑↑ Test Acc ↑↑ Test Acc ↑↑ Test Acc ↑↑ Test Acc ↓↓ MSE

pretrained end-to-end

Certified 68.8± 0.2 0.158± 0.001 65.2± 0.1 62.3± 0.2 66.3± 1.0
LMN 69.3± 0.1 0.160± 0.001 65.44± 0.03 67.6± 0.6 70.0± 1.4 89.6± 1.9 7.58± 1.2
LMN mini 0.155± 0.001 65.28± 0.01
COMET 86± 3 8.81± 1.81
Crystal 66.3± 0.1 0.164± 0.002 65.0± 0.1
CMNN 69.2± 0.2 0.156± 0.001 65.3± 0.01 89± 0 8.37± 0.08
XG 68.5± 0.1 0.176± 0.005 63.7± 0.1
SMM64 69.5± 0.1 0.192± 0.002 65.41± 0.03 67.9± 0.4 70.1± 1.2 88.5± 1.0 7.51± 1.6
SMM64 mini 0.154± 0.0004 65.47± 0.003
SMM64 sig. 91.3± 1.89

experiments available,5 we could evaluate SMM exactly
as in their work. Additionally, we compared to the cor-
responding results reported by Runje & Shankaranarayana
(2023). We employed the SMM64 model already used in
Section 4.3. As done by Nolte et al. (2022), we conducted
only three trials, not enough to establish that the observed
differences are statistically significant. Note that the eval-
uation procedure implemented by Nolte et al. (2022) as-
sumes an oracle identifying the network with the lowest
test error during training (i.e., the results in Table 3 are not
unbiased estimates of generalization performance). It has
to be stressed that the LMN results presented by Nolte et al.
(2022) were produced using different network architectures
and different hyperparameters of the learning algorithm for
the different tasks. In contrast, we achieved our results us-
ing a single architecture which was not tuned for the tasks.
We also used exactly the same number of training steps,

5https://github.com/niklasnolte/
MonotonicNetworks

we only adjusted the learning rates. For the Heart Disease
task, we also provide the results when adding an additional
sigmoid to the output and a slightly longer training time.

We added our experimental results to the values for LMNs,
certified monotonic neural networks (Liu et al., 2020) and
counterexample-guided learning of monotonic neural net-
works (COMET, Sivaraman et al., 2020) as given by Nolte
et al. (2022) and to the results for XGBoost (XG), con-
strained monotonic neural networks (CMNN), and lattice
ensembles (Crystals, Milani Fard et al., 2016) from Runje
& Shankaranarayana (2023). SMM models gave better re-
sults in all of the benchmarks. For BlogFeedback we prof-
ited from the feature selection used by Nolte et al. (2022).
For Heart Disease, the architecture with the additional out-
put sigmoid gave the best results (if we use the same num-
ber of training iterations the average result equals the 89.6
reported for LMN).

8

https://github.com/niklasnolte/MonotonicNetworks
https://github.com/niklasnolte/MonotonicNetworks

Smooth Min-Max Monotonic Networks

5. Conclusions
The smooth min-max (SMM) module is a simple, efficient,
theoretically sound, and – as we would argue – very elegant
way to ensure monotonicity. The experiments confirmed
our hypothesis that the pioneering min-max (MM) archi-
tecture suffers from silent neurons. This issue is addressed
by the SMM, which is the main reason why the proposed
approach achieves state-of-the-art performance. In light
of our results, many neural network approaches for mod-
elling monotonic functions appear overly complex, both
in terms of algorithmic description length and especially
computational complexity. For example, lattice-based ap-
proaches suffer from the exponential increase in the num-
ber of trainable parameters with increasing dimensionality,
and other approaches rely on solving SMT and MILP prob-
lems, which are typically NP-hard. The SMM is designed
to be a module usable in a larger learning system that is
trained end-to-end. From the methods considered in this
study, MM, HLL, CMNN, and LMN have this property,
and we regard SMM as a drop-in replacement for those.

Which of the monotonic regression methods considered in
this study results in a better generalization performance is
of course task dependent. The different models have dif-
ferent inductive biases. All artificial benchmark functions
considered in our experiments were smooth, matching the –
rather general and highly relevant – application domain the
SMM module was developed for. The monotonicity con-
straints of SMM act as a strong regularizer, and overfitting
was no problem in our experiments. The SMM approach
does not add hyperparameters to MM. All SMM experi-
ments were performed with a single hyperparameter set-
ting for the architecture. This shows the robustness of the
method. We regard the way SMM networks inter- and ex-
trapolate (see Figure 1 and Figure C.4) as a big advantage
over XG, HLL, and Iso for the type of scientific modelling
tasks that motivated our work. LMNs and CMNNs share
many of the desirable properties of SMMs. LMNs require
imposing an upper bound on the Lipschitz constant of the
network. Such a bound can act as a regularizer and supports
theoretical analysis of the neural network. Thus, if such a
bound is desired anyway, the LMN approach is a conve-
nient way to additionally ensure monotonicity. However, a
wrongly chosen bound can limit the approximation capa-
bilities. The current asymptotic approximation results are
less general for LMNs compared to CMNNs and SMMs.
CMNNs appear to perform very similar to SMM and seem
to be a comparable alternative. However, our experiments
show that there are no reasons to prefer LMNs or CMNNs
over SMMs because of generalization performance and ef-
ficiency.

In summary, SMM modules provide an efficient way to
ensure monotonicity. They inherit the simplicity and the

asymptotic approximation guarantees from of the original
min-max approach and performed well in our experimental
evaluation without architecture and hyperparameter tuning.

Acknowledgements
I thank the Villum Foundation for their support through the
project Deep Learning and Remote Sensing for Unlocking
Global Ecosystem Resource Dynamics (DeReEco) and the
Pioneer Centre for AI, DNRF grant number P1.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning (ML). There are many potential soci-
etal consequences of our work. We would like to highlight
the importance of monotonicity constraints for the fairness
of ML systems. As for example Wang & Gupta (2020)
point out, monotonicity can be used to implement ethical
principles and social norms such as “favor the less fortu-
nate” and “do not penalize good attributes.”

References
Anil, C., Lucas, J., and Grosse, R. Sorting out Lipschitz

function approximation. In International Conference on
Machine Learning (ICML), pp. 291–301, 2019.

Archer, N. P. and Wang, S. Application of the back propa-
gation neural network algorithm with monotonicity con-
straints for two-group classification problems. Decision
Sciences, 24(1):60–75, 1993.

Best, M. J. and Chakravarti, N. Active set algorithms for
isotonic regression; a unifying framework. Mathemati-
cal Programming, 47(1-3):425–439, 1990.

Cano, J.-R., Gutiérrez, P. A., Krawczyk, B., Woźniak, M.,
and García, S. Monotonic classification: An overview on
algorithms, performance measures and data sets. Neuro-
computing, 341:168–182, 2019.

Cassotti, M., Ballabio, D., Todeschini, R., and Consonni,
V. A similarity-based QSAR model for predicting
acute toxicity towards the fathead minnow (pimephales
promelas). SAR and QSAR in Environmental Research,
26(3):217–243, 2015.

Chen, T. and Guestrin, C. XGBoost: A scalable tree boost-
ing system. In International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 785–794. ACM,
2016.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast
and accurate deep network learning by exponential linear
units (ELUs). In International Conference on Learning
Representations (ICLR), 2016.

9

Smooth Min-Max Monotonic Networks

Cole, G. W. and Williamson, S. A. Avoiding resentment via
monotonic fairness. arXiv preprint arXiv:1909.01251,
2019.

Daniels, H. and Velikova, M. Monotone and partially
monotone neural networks. IEEE Transactions on Neu-
ral Networks, 21(6):906–917, 2010.

De Leeuw, J., Hornik, K., and Mair, P. Isotone optimiza-
tion in R: pool-adjacent-violators algorithm (PAVA) and
active set methods. Journal of Statistical Software, 32
(5):1–24, 2009.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Eidnes, L. H. and Nøkland, A. Shifting mean activation to-
wards zero with bipolar activation functions. In Interna-
tional Conference on Learning Representations (ICLR)
Workshop Track Proceedings, 2018.

Gupta, A., Shukla, N., Marla, L., Kolbeinsson, A., and
Yellepeddi, K. How to incorporate monotonicity in deep
networks while preserving flexibility? In NeurIPS 2019
Workshop on Machine Learning with Guarantees, 2019.

Hiernaux, P., Issoufou, B.-A. H., Igel, C., Kariryaa, A.,
Kourouma, M., Chave, J., Mougin, E., and Savadogo,
P. Allometric equations to estimate the dry mass of sa-
hel woody plants from very-high resolution satellite im-
agery. Forest Ecology and Management, 529, 2023.

Igel, C. and Hüsken, M. Empirical evaluation of the im-
proved Rprop learning algorithm. Neurocomputing, 50
(C):105–123, 2003.

Liu, X., Han, X., Zhang, N., and Liu, Q. Certified mono-
tonic neural networks. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 33, pp.
15427–15438, 2020.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. Rectifier non-
linearities improve neural network acoustic models. In
International Conference on Machine Learning (ICML),
2013.

Mikulincer, D. and Reichman, D. Size and depth of mono-
tone neural networks: interpolation and approximation.
In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Milani Fard, M., Canini, K., Cotter, A., Pfeifer, J., and
Gupta, M. Fast and flexible monotonic functions with
ensembles of lattices. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 29, 2016.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted Boltzmann machines. In International Confer-
ence on Machine Learning (ICML), pp. 807–814, 2010.

Niculescu-Mizil, A. and Caruana, R. Predicting good
probabilities with supervised learning. In International
Conference on Machine learning (ICML), pp. 625–632,
2005.

Nolte, N., Kitouni, O., and Williams, M. Expressive mono-
tonic neural networks. In International Conference on
Learning Representations (ICLR), 2022.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Édouard Duch-
esnay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

Prechelt, L. Early stopping — but when? In Montavon, G.,
Orr, G. B., and Müller, K.-R. (eds.), Neural Networks:
Tricks of the Trade: Second Edition, pp. 53–67. Springer,
2012.

Riedmiller, M. and Braun, H. A direct adaptive method for
faster backpropagation learning: The RPROP algorithm.
In IEEE International Conference on Neural Networks,
pp. 586–591. IEEE, 1993.

Runje, D. and Shankaranarayana, S. M. Constrained mono-
tonic neural networks. In International Conference on
Machine Learning (ICML), volume 202 of PMLR, pp.
29338–29353, 2023.

Sill, J. Monotonic networks. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 10. MIT
Press, 1997.

Sivaraman, A., Farnadi, G., Millstein, T., and Van den
Broeck, G. Counterexample-guided learning of mono-
tonic neural networks. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 33, pp.
11936–11948, 2020.

Tsanas, A. and Xifara, A. Accurate quantitative estimation
of energy performance of residential buildings using sta-
tistical machine learning tools. Energy and Buildings,
49:560–567, 2012.

Tucker, C., Brandt, M., Hiernaux, P., Kariryaa, A., Ras-
mussen, K., Small, J., Igel, C., Reiner, F., Melocik, K.,
Meyer, J., Sinno, S., Romero, E., Glennie, E., Fitts, Y.,
Morin, A., Pinzon, J., McClain, D., Morin, P., Porter,
C., Loeffle, S., Kergoat, L., Issoufou, B.-A., Savadogo,
P., Wigneron, J.-P., Poulter, B., Ciais, P., Kaufmann,
R., Myneni, R., Saatchi, S., and Fensholt, R. Sub-
continental scale carbon stocks of individual trees in
African drylands. Nature, 615:80–86, 2023.

10

http://archive.ics.uci.edu/ml

Smooth Min-Max Monotonic Networks

Wang, S. and Gupta, M. Deontological ethics by mono-
tonicity shape constraints. In International Conference
on Artificial Intelligence and Statistics (AISTATS), pp.
2043–2054, 2020.

Yanagisawa, H., Miyaguchi, K., and Katsuki, T. Hierarchi-
cal lattice layer for partially monotone neural networks.
In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Yeh, I.-C. Modeling of strength of high-performance con-
crete using artificial neural networks. Cement and Con-
crete Research, 28(12):1797–1808, 1998.

You, S., Ding, D., Canini, K., Pfeifer, J., and Gupta, M.
Deep lattice networks and partial monotonic functions.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 30, 2017.

11

Smooth Min-Max Monotonic Networks

A. Gradient-based Optimization
The neural network models SMM, MM, and HLL were fitted by unconstrained iterative gradient-based optimization of the
mean-squared error (MSE) on the training data. We used the Rprop optimization algorithm (Riedmiller & Braun, 1993;
Igel & Hüsken, 2003). On the fully monotone benchmark functions, we did not have a validation data set for stopping
the training. Instead, we monitored the training progress over a training strip of length k defined by Prechelt (2012) as

Pk(t) = 103 ·
(∑t

t′=t−k+1
Etrain(t

′)

k·mint
t′=t−k+1

Etrain(t′)

)
for t ≥ k. Here t denotes the current iteration (epoch) and Etrain(t

′) the MSE on

training data at iteration t′. Training is stopped as soon the progress falls below a certain threshold τ . We used k = 5 and
τ = 10−3. This is a very conservative setting which worked well for HLL and was then adopted for all algorithms.

B. Details on UCI Experiments
The experiments on partial monotone functions were inspired by Yanagisawa et al. (2022). As briefly discussed in Sec-
tion 4, a fair comparison on complex partial monotone real-world tasks is challenging. There is the risk that the performance
on the unconstrained features overshadows the processing of the constraint features. Therefore, we did not consider the
second group of UCI tasks from the study by Yanagisawa et al., because the fraction of constrained features in these prob-
lems is too low – and we would argue that the low number of constrained features already is an issue for the problems in
the first group when evaluating monotone modelling. We selected all regression tasks from the first group, see the overview
in Table 2. We used the same constraints, see Table 2, and normalization to [0, 1] of inputs and targets as Yanagisawa et al.
(2022).

Furthermore, architecture and hyperparameter choices become more important in the UCI experiments compared to the
experiments on the comparatively simple benchmark functions. For partial monotone tasks, the HLL requires an auxiliary
neural network. The default network did not give good results in initial experiments, so we replaced it by a network with
a single hidden layer with 64 neurons, which performed considerably better. The lattice sizes of the constrained input
features were set to k = 3.

For a fair comparison, we also added an auxiliary network with 64 neurons to the SMM module. For complex real-world
tasks, an isolated SMM module with a single layer of adaptive weights – despite the asymptotic approximation results – is
not likely to be the right architecture. Thus, we considered SMM modules with a single neural network Φ : Rd−|X| → Rd

with one hidden layer and compute a(k,j)(x) = w(k,j) ·x+Φ(xu)− b(k,j), where d is the input dimensionality, xu are the
unconstrained inputs, |X | is the number of constrained variables, and ∀m ∈ X : w

(k,j)
m ≥ 0, see end of Section 3. We set

the number of hidden neurons of Φ to 64, so that degrees of freedom are similar to the HLL employed in our experiments.
Also similar to HLL, we incorporate the knowledge about the targets being in [0, 1] by applying a standard sigmoid σ to
the activation of the output neuron. The resulting architecture, which we refer to as SMM64, can alternatively be written
as as a residual block computing σ(y(x) + Φ(xu)), where y(x) is the standard SMM. This may be the simplest way to
augment the SMM.

Table B.4. UCI regression data sets and constraints as considered by Yanagisawa et al. (2022). The input dimensionality is denoted by
d, the number of data points by n. The last five columns give the number of trainable parameters of the models used in the experiments;
SMM and SMM64 denote the smooth min-max network without and with auxiliary neural network Φ.

d n monotone features no. parameters
SMM SMM64 HLL LMNs LMNl

Energy 8 768 X3, X5, X7 325 744 2139 727 841
QSAR 6 908 MLOGP, SM1_Dz(Z) 253 638 905 581 683
Concrete 8 1030 Water 325 902 707 841 963

We performed 5-fold cross-validation to evaluate the methods. Each data fold available for training was again split to get a
validation data set, giving a 60:20:20 spit into training, validation, and test data as considered by Yanagisawa et al. (2022).
We monitored the MSE on the validation data during training and stored the model with the smallest validation loss. If the
validation error did not decrease for 100 epochs, the training was stopped.

12

Smooth Min-Max Monotonic Networks

C. Additional Results

Table C.5. Training errors on univariate tasks. The mean-squared error (MSE) values are multiplied by 103.

MM SMM XG XGval Iso HLL LMNs LMNl

fsq 0.17 0.10 0.05 0.11 0.03 0.03 0.42 0.14
fsqrt 0.35 0.09 0.04 0.10 0.03 0.03 0.31 0.25
fsig 0.27 0.10 0.05 0.11 0.04 0.04 0.36 0.43

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

tr
ai

n
in

g
M

S
E

fsq

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

fsqrt

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

fsig

MM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNl

0.000

0.001

0.002

0.003

0.004

0.005

0.006

te
st

M
S

E
(w

/o
n

oi
se

)

MM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNl

0.0000

0.0005

0.0010

0.0015

0.0020

MM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNlMM SMM XG XGval Iso HLL LMNs LMNl

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Figure C.3. Results on univariate functions based on T = 21 trials. Depicted are the median, first and third quartile of the MSE (without
clipping the outputs to the target function codomain); the whiskers extend the box by 11/2 the inter-quartile range, dots are outliers.
Training errors are shown in the top, test errors in the bottom row.

13

Smooth Min-Max Monotonic Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

y

fsq

XG

XGval

Iso

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

fsqrt

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

fsig

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

MM

SMM

HLL

LMNl

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure C.4. Function approximation results of a single trial (outputs not clipped) for each of the three univariate functions. The top row
shows the non-neural, the bottom row the neural methods.

Table C.6. Active neurons on univariate tasks when evaluated on the test sets. For MM, a neuron was not active in a trial if it never
contributed to an output when the network was evaluated on the test data. For SMM, a neuron was regarded as not active in a trial if the
partial derivatives of the sum of the predictions on the test set w.r.t the parameters of the neuron were all zero. For MM, we report the
number of active neurons before and after training.

MM SMM
initial final

min mean max min mean max min mean max
fsq 1 3.4 6 2 3.4 5 16 31.1 36
fsqrt 2 3.9 7 1 2.1 4 22 33.8 36
fsig 1 3.7 7 2 3.0 5 14 29.9 36
overall 1 3.7 7 1 2.8 5 14 31.6 36

14

Smooth Min-Max Monotonic Networks

Table C.7. Test errors on univariate tasks for SMM different choices of K and initial β. Values shown are medians over 11 trails. The
mean-squared error (MSE) values are multiplied by 103. We used Equation (9) and Equation (10) without changing the initialization
of the weights and biases. As expected the choice of the initial β did not have a big effect. Thus, β should be viewed as an additional
weight, not as a hyperparameter.

lnβ
-3 -2 -1 0 1

K fsq

2 0.0293 0.0246 0.0269 0.0183 0.0125
4 0.0255 0.0270 0.0240 0.0109 0.0092
6 0.0243 0.0126 0.0124 0.0087 0.0058
8 0.0122 0.0131 0.0100 0.0078 0.0062

fsqrt

2 0.0598 0.0599 0.0615 0.0632 0.0711
4 0.0547 0.0262 0.0190 0.0265 0.0115
6 0.0298 0.0255 0.0211 0.0156 0.0123
8 0.0213 0.0222 0.0165 0.0137 0.0143

fsig

2 0.0071 0.0048 0.0048 0.0036 0.0048
4 0.0044 0.0043 0.0046 0.0064 0.0058
6 0.0041 0.0040 0.0059 0.0057 0.0138
8 0.0040 0.0039 0.0063 0.0098 0.0067

Table C.8. Multivariate tasks, training error. The mean-squared error (MSE) values are multiplied by 103.

SMM XGs XGs
val XGl XGl

val HLLs HLLl LMNs LMNl

d = 2 0.10 0.14 0.19 0.14 0.19 0.08 0.07 0.16 0.12
d = 4 0.10 0.19 0.33 0.19 0.33 0.09 0.06 0.27 0.15
d = 6 0.09 0.13 0.30 0.13 0.30 0.14 0.03 0.15 0.14

Table C.9. Multivariate tasks, degrees of freedom of the neural networks and accumulated training times (on an Apple M1 Pro) in
seconds for conducting 21 trials with 1000 training steps each.

SMM HLLs HLLl LMNs LMNl

time (s) dof time (s) dof time (s) dof dof time (s) dof

d = 2 9.68 109 328.87 100 432.95 121 9.72 105 10.22 151
d = 4 9.50 181 293.86 81 1236.81 256 10.13 171 10.46 229
d = 6 9.82 253 235.91 64 7682.16 729 10.47 253 10.92 323

15

Smooth Min-Max Monotonic Networks

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

tr
ai

n
in

g
M

S
E

d = 2

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

d = 4

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040
d = 6

SMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNl

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

te
st

M
S

E
(w

/o
n

oi
se

)

SMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNl

0.0000

0.0002

0.0004

0.0006

0.0008

SMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNlSMM XGs XGs
val XGl

XGl
val

HLLsHLLlLMNsLMNl

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Figure C.5. Results on multivariate functions based on T = 21 trials. Depicted are the median, first and third quartile of the MSE; the
whiskers extend the box by 11/2 the inter-quartile range, dots are outliers. Early-stopping reduced the XGBoost training accuracy but
did not lead to an improvement on the test data.

16

