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Abstract
We propose a new procedure named PASOA,
for Bayesian experimental design, that performs
sequential design optimization by simultaneously
providing accurate estimates of successive
posterior distributions for parameter inference.
The sequential design process is carried out via a
contrastive estimation principle, using stochastic
optimization and Sequential Monte Carlo (SMC)
samplers to maximise the Expected Information
Gain (EIG). As larger information gains are
obtained for larger distances between successive
posterior distributions, this EIG objective may
worsen classical SMC performance. To handle
this issue, tempering is proposed to have both
a large information gain and an accurate SMC
sampling, that we show is crucial for performance.
This novel combination of stochastic optimization
and tempered SMC allows to jointly handle
design optimization and parameter inference.
We provide a proof that the obtained optimal
design estimators benefit from some consistency
property. Numerical experiments confirm the
potential of the approach, which outperforms
other recent existing procedures.

1. Introduction
A design refers to some experimental conditions required
to perform an experiment and get observations from the
phenomenon under study. Assuming that such a design
is characterized by some parameters denoted by ξ, simple
examples of ξ are coordinates in a 2D space or a frequency
at which we wish to measure a quantity of interest. The
overall goal of experimental design can be summarized
as the acquisition of good quality data, which is of
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increasing importance in numerous scientific and industrial
applications, see e.g. (Ryan et al., 2016; Rainforth et al.,
2024). Quality can be defined from numerous view points,
allocating resources for information gathering, improving
precision and/or prediction or reducing experimental costs.
In this work, we assume that the desired designs are
continuous parameters ξ ∈ E that maximize information
on some parameters of interest θ ∈ Θ ⊂ Rm. In Bayesian
Optimal Experimental Design (BOED), a Bayesian model
is specified over θ (Chaloner & Verdinelli, 1995; Sebastiani
& Wynn, 2000; Amzal et al., 2006; Ryan et al., 2016;
Rainforth et al., 2024). The criterion defining the optimality
of a design may then depend on the application (Ryan
et al., 2016; Kleinegesse & Gutmann, 2021) but the most
used of them is the expected information gain (EIG). It
targets designs that most reduce the entropy of the posterior
distribution over θ, or equivalently that maximize the
Kullback-Leibler divergence between the posterior and the
prior, and this in expectation over all possible experimental
outcomes, see eq. (1,2). The Bayesian formulation is
particularly convenient in sequential contexts, where we
wish to exploit the results of previous experiments to guide
the design of future ones. Unfortunately, computing and
optimizing the EIG sequentially requires sampling from an
evolving sequence of intractable posterior distributions. We
propose to use a sequential Monte-Carlo (SMC) approach
for an efficient sequential sampling (Del Moral et al., 2006;
Doucet & Lee, 2018; Naesseth et al., 2019; Chopin &
Papaspiliopoulos, 2020; Dai et al., 2022) and in the spirit
of some original and recent approaches (Huan & Marzouk,
2014; Kleinegesse & Gutmann, 2021; Foster et al., 2019;
2020; 2021; Blau et al., 2022), we adopt a stochastic
optimization approach to optimize the EIG. The originality
of our approach is to use SMC in conjunction with stochastic
optimization to efficiently sample the relevant quantities
and estimate the required noisy gradients. However, naive
SMC is potentially problematic. In sequential EIG-based
optimization, larger gains are obtained for larger distances
between successive posterior distributions, which is a
particularly bad scenario for SMC performance. A solution
is to consider distribution tempering or annealing (Neal,
2001; Del Moral et al., 2006), which creates a path of
intermediate closer distributions for a more accurate SMC
sampling (Figures 1 and 2). We name our approach PASOA,
for Particle baSed Bayesian Optimal Adaptive design, where
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Figure 1. Source location example at steps 5, 7, 9, 11. Over design steps, particles concentrate faster to true sources (red crosses) with
PASOA (2nd line) than with SMC (1st line). Lower particle weights in blue, higher in yellow.

particles refer to samples featuring an evolving Bayesian
posterior information that adaptively guides the successive
design estimation. To our knowledge, such a combination,
of stochastic optimization and SMC or tempered SMC, has
not been proposed before for BOED. It allows to benefit
from both techniques’ advantages. Stochastic optimization
provides a more scalable way to handle sequential design
optimization, while the principled SMC framework allows
to efficiently perform an accurate parameter inference by
reusing samples from past experiments. This high quality
inference is exploited in turn via stochastic optimization
to yield informative design estimators coming with good
theoretical features. We show that these estimators are
consistent and converge in probability to the optimal designs.
On the numerical side, we verify their practical performance
on benchmark design problems. We observe significantly
higher information gains than previous methods, including
sophisticated and reinforcement learning approaches (Blau
et al., 2022; Foster et al., 2020), with these gains leading,
in turn, to improved posterior inference and parameter
estimation. We thus provide the first theoretical result of
this kind in the BOED literature, while also highlighting
tempering as a mean to greatly enhance the performance of
SMC in BOED.

2. Related work
Simulations required for EIG optimization can be obtained
via Markov Chain Monte Carlo (MCMC) algorithms, see
e.g. Kleinegesse & Gutmann (2020) for a static design.
In a sequential design context, the necessity to do so
at each step is very simulation intensive (Amzal et al.,
2006; Kleinegesse et al., 2020). Typically, Kleinegesse
et al. (2020) extend Kleinegesse & Gutmann (2020) to
a sequential setting but shows up to only K = 4 or 5
experiments. As an alternative, SMC samplers have been
used in previous work, e.g. Drovandi et al. (2014; 2013)
use SMC but only for finite-valued design parameters,
avoiding the problematic optimization by reducing it to
a finite number of comparisons. Another attempt (Kuck

et al., 2006) proposes SMC to handle the optimisation part
but restricts to static one-step design. In our work, we
consider both the continuous design and sequential setting,
which was referred to as an open question by Ryan et al.
(2016). Recent ideas using stochastic optimization (Blau
et al., 2022; Kleinegesse & Gutmann, 2021; Foster et al.,
2020; 2021; 2019; Huan & Marzouk, 2014) have since
then paved the way to efficient optimisation formulation
of sequential BOED but without consideration of SMC
techniques and somewhat neglecting posterior distribution
inference. A solution explored by Foster et al. (2019;
2020) uses mean field variational approximations of the
posterior distributions but with no guarantee on their quality,
while Foster et al. (2021); Blau et al. (2022) bypass the
need for such posterior estimation using a reinforcement
learning formulation. In this work, we show that superior
performance than these previous solutions can be obtained
with SMC, from which we also derive new good features.
We provide theoretical results and guarantees that have not
been formulated before in modern BOED and we shed a new
light on tempering by showing that it can be crucial in SMC-
based sequential BOED, to face the contradiction between
searching for the largest information gain and maintaining
good sampling performance.

3. Sequential Bayesian Optimal Experimental
Design (BOED)

The Bayesian framework is a unified way to account for
prior information via a probability distribution p(θ), for
uncertainties about the observations y through a distribution
p(y|θ, ξ), and for a design criterion (also called utility
function) F (ξ,θ,y) describing the experimental aims. The
prior is assumed to be independent of ξ and p(y|θ, ξ)
available in closed-form.

Expected Information Gain (EIG). There exists various
utility functions F depending on the targeted task (Ryan
et al., 2016; Kleinegesse & Gutmann, 2021). In this
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work, we focus on parameter estimation and consider an
information-based utility leading to the so-called expected
information gain (EIG). The EIG, denoted by I , admits
several equivalent expressions, see e.g. (Foster et al., 2019).
It can be written as the expected loss in entropy when
accounting for an observation y at ξ (eq. (1)) or as a mutual
information or expected Kullback-Leibler divergence (eq.
(2)). Using p(y,θ|ξ) = p(θ|y, ξ)p(y|ξ) = p(y|θ, ξ)p(θ),

I(ξ) = Ep(y|ξ)[H(p(θ))−H(p(θ|Y, ξ)] (1)
= Ep(y|ξ) [KL(p(θ|Y, ξ), p(θ))] (2)

where random variables are indicated with uppercase
letters, Ep[·] denotes the expectation with respect to p,
KL the Kullback-Leibler divergence and H(p(θ)) =
−Ep(θ)[log p(θ)] is the entropy of p. We thus look for ξ∗

satisfying
ξ∗ ∈ argmax

ξ∈Rd
I(ξ) . (3)

Before optimizing I(ξ), evaluating I(ξ) is often difficult
due to the intractability of p(θ|y, ξ) and p(y|ξ).

Sequential design. Solving (3) is a static or one-step
design problem. A single ξ or multiple {ξ1, ·, ξK} are
selected prior to any observation, measurements {y1, ·,yK}
are made for these design parameters and the experiment
is stopped. The prior p(θ) can be used to encode previous
observations but in static design, the selected designs depend
only on the model. In contrast, in sequential or iterated
design, K experiments are planned sequentially to construct
an adaptive strategy, meaning that for the kth experiment,
the best ξk is selected taking into account the previous
design parameters and associated observations Dk−1 =
{(y1, ξ1), ·, (yk−1, ξk−1)}. Then, yk is measured at ξk and
Dk is updated into Dk = Dk−1 ∪ (yk, ξk). This approach
is referred to as greedy or myopic, in that the next design ξk
is chosen as if it was the last one. Non-myopic approaches
exist, using for instance reinforcement learning principles
(Blau et al., 2022; Foster et al., 2021) but with another
layer of complexity and performance that are not always
superior, see (Blau et al., 2022) or our results in Section
7. In this work, we limit ourselves to the greedy approach,
replacing in (1) or (2) the prior p(θ) by our current belief on
θ, namely p(θ|Dk−1) = p(θ|y1, ξ1, ·,yk−1, ξk−1), and to
solve iteratively for

ξ∗k ∈ argmax
ξ∈Rd

Ik(ξ), (4)

where Ik(ξ) = E[H(p(θ|Dk−1))−H(p(θ|Y, ξ,Dk−1))]

= E [KL(p(θ|Y, ξ,Dk−1), p(θ|Dk−1))] (5)

and E is with respect to p(y|ξ,Dk−1). Observations are
assumed conditionally independent so that p(θ|Dk) ∝
p(θ)

∏k
i=1p(yi|θ, ξi)which also leads to

p(θ|Dk) ∝ p(θ|Dk−1) p(yk|θ, ξk) . (6)

EIG contrastive bound optimization. Going back to the
optimization in (3), we focus on the continuous design case
and assume that quantities are differentiable when needed
and that gradients are well defined. This is generally not
a restrictive assumption except for discrete design spaces
that may require specific treatments, see e.g. (Blau et al.,
2022; Drovandi et al., 2014). A standard gradient ascent
algorithm would consist, at iteration t, of updating ξt+1 =
ξt + γt ∇ξI(ξ)|ξ=ξt

with a stepsize γt, but in practice both
I(ξ) and its gradient ∇ξI(ξ) are intractable. However, they
can both be expressed as expectations, which naturally leads
to consider stochastic approximation approaches (Borkar,
2008), among which the most popular is the Stochastic
Gradient (SG) algorithm. In a BOED setting, if ∇ξI(ξ) is
expressed as an expectation ∇ξI(ξ) = E[f(ξ,X)] over a
random variable X, the SG iteration writes ξt+1 = ξt +
γt f(ξt,xt) with xt a realisation of X. This assumes that
we can differentiate under the integral sign in (2). There
exist different ways to differentiate, including the popular
reparametrization trick, but SG for I(ξ) remains difficult
to perform due to the intractability of the integrand in (2).
An alternative has been proposed by Foster et al. (2019;
2020) referred to as a variational approach. It consists of
optimizing a tractable lower bound of I(ξ) and computing
ξ∗ via an alternate maximization. We also consider such a
bound, IPCE , introduced by Foster et al. (2020) and named
the Prior Contrastive Estimation (PCE) bound. It is based
on contrastive samples from L additional variables θℓ, for
ℓ = 1 : L, distributed following the prior p(θ) as θ, which
is rewritten as θ0. IPCE is defined as

IPCE(ξ) = Ep(y|θ0,ξ)
∏L

ℓ=0 p(θℓ)
[F (ξ,θ0, ·,θL,Y)] (7)

with F (ξ,θ0, ·,θL,y)=log
p(y|θ0, ξ)

1
L+1

∑L
ℓ=0 p(y|θℓ, ξ)

.

IPCE is a lower bound I(ξ) ≥ IPCE(ξ) and the bound is
tight when L tends to ∞ (see Foster et al. (2020) for a proof).
It is tractable as all expressions p(y|θℓ, ξ) are tractable,
and its gradient requires only the gradient ∇ξp(y|θ, ξ).
Stochastic approximation can be applied to maximize IPCE

as ∇ξIPCE(ξ) can be expressed as an expectation via
reparametrization. More specifically, we assume that there
exists a transformation T ξ

θ0
such that Y = T ξ

θ0
(U) with

U ∈ U independent of ξ and θ0 and easy to simulate,
e.g. U is a standard Gaussian. It follows under some mild
conditions specified in the Appendix that

∇ξIPCE(ξ)=Ep(u)
∏L

ℓ=0p(θℓ)

[
∇ξF (ξ,θ0, ·,θL,T

ξ
θ0
(U))

]
(8)

A similar bound and its gradient can be derived for
sequential design optimization (4). Using conditional
independence (6), at each step k, p(θ) only needs to be
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replaced by the current posterior p(θ|Dk−1),

IkPCE(ξ)=

Ep(y|θ0,ξ))
∏L

ℓ=0 p(θℓ|Dk−1)
[F (ξ,θ0, ·,θL,Y)] (9)

∇ξIkPCE(ξ)=Ep(u)
∏L

ℓ=0p(θℓ|Dk−1)

[
∇ξF(ξ,θ0, ·,θL,T

ξ
θ0
(U))

]
.

The stochastic gradient algorithm is summarized in
Algorithm 1, with the additional possibility to estimate
gradients with minibatches of size Nt, in line 5.

Algorithm 1 SG with minibatches (Nt)t=1:T at step k to
optimize IkPCE in (9)

1: Set T iterations, ξ0, stepsizes (γt)t=1:T

2: while t ≤ T do
3: Sample θi

ℓ,t∼ p(θ|Dk−1), ℓ=0:L, i=1:Nt

4: Sample ui
t ∼ p(u), for i = 1 : Nt

5: Set∇t+1=
1
Nt

Nt∑
i=1

∇ξF (ξ,θi
0,t, ·,θ

i
L,t,T

ξ
θi
0,t
(ui

t))|ξ=ξt

6: Update ξt+1 = ξt + γt∇t+1

7: return ξ∗k = ξT or a Polyak averaging value

Optimizing the contrastive bound IkPCE requires then
sampling θ0, ·,θL from p(θ|Dk−1) (Algorithm 1 line
3). This is more costly than sampling from the prior, as
p(θ|Dk−1) is only know up to a normalizing constant (6),
but can be efficiently dealt with using a SMC approach as
detailed in the next section.

4. Tempered Sequential Monte Carlo
SMC Step

t-step

µλτ−1 µλτµ0 = pk−1 µ1 = pk

Figure 2. Tempered SMC, a SMC step from pk−1 to pk (blue)
performed in T intermediate tempering steps (red).

SMC samplers extend the idea of importance sampling
by re-using samples from one distribution to another,
and benefit from numerous theoretical results (Del Moral
et al., 2006; Doucet & Lee, 2018; Naesseth et al., 2019;
Chopin & Papaspiliopoulos, 2020; Dai et al., 2022). More
specifically, denoting P(Θ) the set of probability measures
on Θ, the goal is to provide samples (called particles)
from a sequence of probability distributions {pk}k=1:K

in P(Θ). To simplify, we deal with probability densities
assuming absolute continuity with respect to the Lebesgue
measure but the setting is more general, e.g. (Chopin &
Papaspiliopoulos, 2020). A standard MCMC approach
would require to build an ergodic kernel Mk and to run

Algorithm 2 Adaptive tempered SMC at step k

1: Set τ=0, λ0=0,M,ESSmin, Mλ, resample
2: Sample θ1:M

0 ∼ p(θ|Dk−1) = µλ0
(θ)

3: Set wi
0=

1
M , i=1 : M and w1:M

0 ={w1
0, ·, wM

0 }
4: while λτ < 1 do

5: Set τ = τ + 1

6: Set θ̃
1:M

τ−1= resample(θ1:M
τ−1,w

1:M
τ−1)) ∼ µλτ−1

7: Sample θi
τ ∼Mλτ−1(θ̃

i

τ−1, ·) for i=1:M ,
8: Set θ1:M

τ = {θ1
τ , ·,θ

M
τ } Resampling and Markov kernel step

9: Solve for γ, (
∑M

i=1 p(yk|θi
τ ,ξk)

γ
)
2∑M

i=1 p(yk|θi
τ ,ξk)

2γ = ESSmin

10: Set λτ = λτ−1+γ Tempered step

11: Set w̃i
τ = p(yk|θi

τ , ξk)
γ , wi

τ =
w̃i

τ

M∑
j=1

w̃j
τ

for i=1:M

12: Set w1:M
τ = {w1

τ , · · ·, wM
τ } Compute new weights

13: return θ1:M
k = θ1:M

τ ,w1:M
k = w1:M

τ for a particle

approximation pMk =
M∑
i=1

wi
kδθi

k
of p(·|Dk) = µ1

a Markov chain from scratch for each pk. In contrast,
SMC samplers provide the possibility to approximate pk
recycling samples from pk−1. SMC samplers aim at
propagating M particles θ1:M

k−1 = {θ1
k−1, ·,θ

M
k−1} and

their corresponding weights w1:M
k−1 = {w1

k−1, ·, wM
k−1}

in such a way that the empirical distribution pMk of
the particles at time k converges to pk in some sense:
meaning that for all integrable functions ϕ, EpM

k
[ϕ(θ)] =∑M

i=1 w
i
kϕ(θ

i
k) −−−−→

M→∞
Epk

[ϕ(θ)]. However, as showed

by Agapiou et al. (2017), the number of particles M
required for an accurate particle approximation pMk scales
exponentially with the Kullback-Leibler distance between
the proposal pk−1 and target pk distributions. For
pk−1(θ) = p(θ|Dk−1) and pk(θ) = p(θ|Dk), this is
problematic as EIG optimization aims at increasing this
distance, see (4,5). Moving from p(θ|Dk−1) to p(θ|Dk)
with just one SMC step might then yield poor results. A
solution is to consider tempering (Neal, 2001; Del Moral
et al., 2006; Syed et al., 2021) to move along a sequence of
probability distributions interpolating between p(θ|Dk−1)
and p(θ|Dk). A tempering path is a sequence of the form
µλτ with 0 = λ0 < λτ < . . . < λT = 1 where µ0 = pk−1

and µ1 = pk (Figure 2). Usually, only the initial and final
distributions are imposed. Intermediate distributions µλτ

are not of interest so that the λτ ’s can be chosen as desired.
A popular approach is to use what is know as the geometric
path: µλτ (θ) ∝ pk−1(θ)

1−λτ pk(θ)
λτ , which using (6),

takes the form µλτ (θ) ∝ p(θ|Dk−1) p(yk|θ, ξk)λτ or
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equivalently µλτ
(θ) ∝ µλτ−1

(θ) p(yk|θ, ξk)λτ−λτ−1 . As
setting the sequence λτ manually can be a challenging
task with disappointing results, we follow the adaptive
strategy proposed by Jasra et al. (2011). Given a user-
set threshold ESSmin interpreted as an effective sample
size, at iteration τ of the tempered SMC procedure, given
a current set of particles θ1:M

τ , we set recursively λτ =
λτ−1 + γ with γ the solution in [0, 1− λτ−1] of the

equation (
∑M

i=1 p(yk|θi
τ ,ξk)

γ
)
2∑M

i=1 p(yk|θi
τ ,ξk)

2γ = ESSmin . If γ is not in

[0, 1− λτ−1], λτ is set to 1 and the tempering stops. This is
a relatively simple task to solve with numerical root finding.
This procedure guarantees that the SMC approximation
error remains stable over iterations, see (Jasra et al., 2011)
for details. It can be interpreted as a way to control the Chi-
square pseudo-distance between the successive distributions,
see (Chopin & Papaspiliopoulos, 2020) Proposition 17.2.
Tempered SMC then requires like SMC an unbiased
resampling scheme denoted by resample(θ1:M ,w1:M ).
Resampling is the action of drawing randomly from a
weighted sample, so as to obtain an unweighted sample.
Several unbiased resampling schemes are listed in Chapter
9 of Chopin & Papaspiliopoulos (2020) and studied in
e.g. (Gerber et al., 2019; Crisan & Doucet, 2002).
The most standard one is multinomial resampling which
draws samples independently according to their weights.
Tempered SMC also requires a family of Markov kernels
(Mλ)λ so that Mλ : Θ → P(Θ) leaves µλ invariant.
Tempering is illustrated in Figure 2 and in Algorithm 2.

5. Particle EIG contrastive bound
approximation and optimization

Algorithms 1 and 2 can then be combined iteratively. We
call the resulting algorithm PASOA. Algorithm 2 at step
k provides a particle approximation of p(θ|Dk) used in
Algorithm 1 line 3 at step k + 1 to optimize the next EIG
contrastive bound Ik+1

PCE and get ξ∗k+1. A new yk+1 is then
measured at ξ∗k+1, Dk+1 is set to Dk ∪ {yk+1, ξ

∗
k+1} and

Algorithm 2 is used again to get a particle approximation
of p(θ|Dk+1) etc. More specifically, the M weighted
particles produced by Algorithm 2 are used to approximate
the intractable p(θ|Dk) and to simplify the sampling of the
L+ 1 contrastive variables in line 3 of Algorithm 1 at step
k + 1. In practice, line 3 can be performed in different
ways. We propose the following one, which has good
numerical and asymptotic properties (see Section 6). Due
to the use of generally large numbers L (typically L = 200)
of contrastive samples, expectations of interest, e.g. (7,8),
are computed in a large dimensional space ΘL+1 even if
Θ is of moderate dimension. A simple way to mitigate
the dimension impact is to start from M = N(L + 1)
particles using a SMC procedure on Θ and partition them
into L + 1 disjoint subsets of N particles, denoted by

θ1:N
k,ℓ , for ℓ= 0 :L, with their associated weights denoted

by W 1:N
k,ℓ with

∑N
i=1 W

i
k,ℓ = 1. Seeing particles and

weights as random variables, if the resampling procedure
used in Algorithm 2 is so that the resampled values are
independent conditionally on the previous particles, then
the L + 1 collections of random variables denoted by
ζNk,ℓ = {W i

k,ℓ,θ
i
k,ℓ}i=1:N are independent and identically

distributed (i.i.d.) conditionally on the previous particles.
For instance, multinomial resampling preserves conditional
independence. From the weighted particles produced by
Algorithm 2, we then derive L+ 1 i.i.d. random probability
measures PN

k,ℓ =
∑N

i=1 W
i
k,ℓδθi

k,ℓ
(δθ is the Dirac measure

at θ) and the gradient estimate at each iteration t, Algorithm
1 line 5, is computed with θi0,t, . . . , θ

i
L,t values sampled

independently from realizations pNk,ℓ of the respective
independent particle approximations PN

k,ℓ for i = 1 : Nt

and ℓ = 0 : L. We thus define PN
k,ℓ on Θ and use in our

SG algorithm approximated distributions on ΘL+1 which
are product measures ⊗L

ℓ=0P
N
k,ℓ. It follows a SG procedure,

detailed in the Appendix (Algorithm 3), which produces
an estimator ξ∗k+1,N from the optimization of a particle
approximation of Ik+1

PCE defined as

Ik+1,N
PCE (ξ)=Ep(u)

∏L
ℓ=0 pN

k,ℓ(θℓ)

[
F(ξ,θ0, ·,θL,T

ξ
θ0
(U))

]
(10)

The advantage of such a product form particle
approximation over standard SMC lies in the following
observation. Standard SMC would consist in using∏L

ℓ=0p(θℓ) ≈ PN
k (θ0, ·,θL) where

PN
k =

N∑
i=1

(
L∏

ℓ=0

W i
k,ℓ

)
δ(θi

k,0,·,θ
i
k,L) . (11)

As an alternative, with the same M weights and particles,
our product form approach is using

∏L
ℓ=0 p(θℓ) ≈∏L

ℓ=0 p
N
k,ℓ(θℓ), which can be rewritten as a sum, i.e.

L∏
ℓ=0

pNk,ℓ =

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
k,ℓ

)
δ
(θ

i0
k,0,·,θ

iL
k,L)

. (12)

There are two main differences between (11) and (12). First,
(12) is more statistically efficient: the θi

k,ℓ are i.i.d. and
so all permutations (θi0

k,0, ·,θ
iL
k,L) of these samples, for

1 ≤ i0, . . . , iL ≤ N , are identically distributed. Hence
(12) averages over NL+1 tuples while its conventional
counterpart (11) only averages over N tuples. This increase
in tuple number leads to a decrease in estimators variance.
With the same particles, product-form (12) makes the most
out of every sample available. Second, in contrast to tuples
in (11), those in (12) are not independent because the same
θi
k,ℓ appears in many terms of the sum. As a consequence,

using product form approximations requires to generalize
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standard SMC results, which rely on the independence of
the terms in the sum. In the next section, we take that into
account to show the convergence of the quantities involved
in PASOA.

6. Asymptotic properties
With the contrastive bound approach, to increase
approximations quality, we can play with L the number
of contrastive samples and N the number of particles. It has
already been shown by Foster et al. (2020) that increasing
L improves the quality of the IPCE bound that becomes
tight, i.e. to the limit equal to the EIG. We then study
the behavior of our approximations when the number N
of particles tends to ∞. The sequential design values
produced can be seen as realizations of random estimators
{ξ∗k+1,N}N≥1 targeting points of maximum of random
criterion functions {Ik+1,N

PCE (ξ)}N≥1. We use here the same
notation for random quantities and their realizations. We
first establish the convergence of the criterion functions
adapting standard SMC techniques in Proposition 1, and
then the convergence of their points of maximum, i.e. the
consistency of the {ξ∗k+1,N}N≥1 to the optimal designs in
Proposition 2.

Convergence of product particle approximations. With
the use of contrastive samples, expectations are computed
in ΘL+1. Particles could then be considered as
(L + 1)-dimensional elements in this space so that
standard SMC convergence results could apply (Chopin
& Papaspiliopoulos, 2020), Chapter 11. However, working
in a (L + 1)-dimensional space is more challenging for
SMC and not necessary for the type of convergence result
we need. As importance sampling, SMC suffers from
the weights’ variance which scales unfavorably with the
dimension of the problem (Naesseth et al., 2019; Chopin
& Papaspiliopoulos, 2020). In contrast, in Section 5, we
define PN

k,ℓ on Θ and use in our SG algorithm (Algorithm 3
in Appendix) approximated distributions on ΘL+1 which
are product measures ⊗L

ℓ=0P
N
k,ℓ. Such products have been

used in various settings but have been only recently studied
in a more general way (Kuntz et al., 2022). However,
theoretical results therein do not cover the use of product
form estimators within SMC samplers. Other papers
that consider structured SMC settings (Rebeschini & van
Handel, 2015; Lindsten et al., 2017; Kuntz et al., 2024;
Aitchison, 2019) differ from our work in key aspects further
discussed in Appendix Section C.1.

Let Cb(ΘL+1) denote the set of functions ϕ : ΘL+1 → R
that are measurable and bounded, and let ||ϕ||∞ denote the
supremum norm ||ϕ||∞ = supθ∈ΘL+1 |ϕ(θ)|. Using the
notation and terminology of Chopin & Papaspiliopoulos
(2020) and previous authors before them, we introduce

the potential function Gk,τ which in our setting is equal
to Gk,τ (θ) = p(yk|θ, ξk)γ and used in Algorithm 2 to
compute weights. We simplified the notation but γ may also
depend on k and τ . More specifically, in standard tempering,
γ is a preset constant but in Algorithm 2, we use an adaptive
tempering where γ depends on previous particles. Although
adaptive tempering schemes are often more challenging to
study, e.g. (Salomone et al., 2018; Beskos et al., 2016;
Del Moral et al., 2012), this is not problematic in our setting
as γ ≤ 1 and all we require is Gk,τ to be bounded.

For our result, the assumption that p(yk|θ, ξk) is bounded
and strictly positive is enough but more general results and
cases are available in (Beskos et al., 2016; Jasra et al., 2011).
The following proposition establishes the convergence in
L2-norm, which also implies the convergence in L1-norm
and in probability.

Following Chopin & Papaspiliopoulos (2020); Crisan &
Doucet (2002), we can establish similarly Lp-norm (p > 2)
and almost-sure convergence but convergence in probability
is sufficient for consistency of the design estimators.
We denote by ζNk,L the collection of random variables
ζNk,L = {W i

k,ℓ,θ
i
k,ℓ}i=1:N,ℓ=0:L, and use the short notation

p⊗L+1
k [ϕ] for p⊗L+1

k [ϕ] = E∏L
ℓ=0 p(θℓ|Dk)

[ϕ(θ0, ·,θL)].

Proposition 1 (L2 convergence) Using Algorithm 2 with
multinomial resampling and assuming that all potential
functions Gk,τ are upper bounded, there exists a constant
ck such that, for all functions ϕ ∈ Cb(ΘL+1),

EζN
k,L

{ N∑
i0=1

·
N∑

iL=1

L∏
ℓ=0

W iℓ
k,ℓ ϕ(θ

i0
k,0, ·,θ

iL
k,L)− p⊗L+1

k [ϕ]

}2
≤ ck cN,L ∥ϕ∥2∞

with cN,L = 1 − (1 − 1
N )L+1 ≈ L+1

N and where the
expectation is taken over all the realizations of the random
tempered SMC method, or equivalently on ζNk,L.

The proof is detailed in Appendix and extends the proof in
Chapter 11 of Chopin & Papaspiliopoulos (2020) which is
itself mainly based on (Crisan & Doucet, 2002). Note that
the first term in the outer expectation above corresponds to
the expectation of ϕ with respect to ⊗L

ℓ=0P
N
k,ℓ, which is a

random variable as the PN
k,ℓ are random measures. For any

ξ ∈ E , when ϕ is set to ϕξ(θ0, ·,θL) = fPCE(ξ,θ0, ·,θL),

with fPCE(ξ,θ0, ·,θL) = Ep(u)

[
F (ξ,θ0, ·,θL,T

ξ
θ0
(U))

]
assumed to be bounded on ΘL+1 for all ξ, then
p⊗L+1
k [ϕξ] = Ik+1

PCE(ξ), the PCE lower bound (9) we seek
to optimize at step k + 1. Similarly, the expectation of ϕξ

with respect to ⊗L
ℓ=0P

N
k,ℓ is Ik+1,N

PCE (ξ) in (10). It follows
from Proposition 1 that

EζN
k,L

[{
Ik+1,N
PCE (ξ)− Ik+1

PCE(ξ)
}2
]
≤ ck cN,L ∥ϕ∥2∞,
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or in other words that for all ξ ∈ E , the sequence of
random variables {Ik+1,N

PCE (ξ)}N≥1 converges in L2-norm
to Ik+1

PCE(ξ) when N tends to ∞. Using Chebyshev’s
inequality this also implies the convergence in probability,
pointwise in ξ, that is for all ξ, for all ϵ > 0,

lim
N→∞

pζN
k,L

(∣∣∣Ik+1,N
PCE (ξ)− Ik+1

PCE(ξ)
∣∣∣ ≥ ϵ

)
= 0. (13)

To further comment this result and give more insight on
the constants involved, we note that interestingly, if the
normalized potential functions are bounded by 1 (see
Appendix Section C.2 for details), the constant denoted
by ck in Proposition 1 remains low and decreases when
L increases. Otherwise, the constant may increase very
fast with k and, even if k is relatively low in BOED,
the bound may become uninformative for finite N . This
is actually a well referenced behavior in SMC, see e.g.
(Chopin & Papaspiliopoulos, 2020). In our work, we limited
the presentation to simple conditions but with stronger
assumptions, in particular on the Markov kernels, it is
possible to limit the growing of ck over steps k, see Section
11.4. in (Chopin & Papaspiliopoulos, 2020).

Consistency of the sequential design estimators. Under
additional assumptions, specified in Proposition 2, it follows
from Proposition 1 that the design parameters found at each
step of our procedure tend to the ideal ones.

Assume Ik+1
PCE(ξ) reaches its maximum in ξ∗k+1 and

consider a sequence {ξ∗k+1,N}N≥1 of estimators defined
by

ξ∗k+1,N ∈ argmax
ξ∈E

Ik+1,N
PCE (ξ) . (14)

Proposition 2 states that {ξ∗k+1,N}N≥1 are consistent
estimators of ξ∗k+1, i.e. that for all ϵ > 0,

lim
N→∞

pζN
k,L

(
∥ξ∗k+1,N − ξ∗k+1∥ ≥ ϵ

)
= 0. (15)

The assumptions in Proposition 2 are in a simplified form.
More general situations could be handled but would require
more complex developments while not changing the general
idea. To simplify the presentation, our first assumption
(A1) is that the design space E is compact. The second
assumption (A2) is to ensure that the point of maximum
ξ∗k+1 is isolated or well-separated and that only design
values in the neighborhood of ξ∗k+1 reaches values close to
Ik+1
PCE(ξ

∗
k+1) (see Lemma 5 in Appendix). Assumption (A3)

indicates that estimators ξ∗k+1,N could be points of near
maximum only. The formulation of (A3) uses additional
variables ρN that account for the fact that estimators ξ∗k+1,N

are usually only approximations of the maxima in (14), as
in practice the optimization task is solved numerically with
a given precision that can be controlled in the sense that a

bound on the approximation error can be provided. If we
assume that ξ∗k+1,N is an exact maximizer of Ik+1,N

PCE (ξ),
then (A3) is trivially satisfied with ρN = 0. In our setting,
ξ∗k+1,N is obtained by a stochastic gradient algorithm for
which we could exhibit the ρN sequence but this is a
particular case left to the interested reader. This point
of view, the assumptions and the technique of proof we
are using, are similar to the ones used for establishing
asymptotic properties of M -estimators (van der Vaart,
1998; van der Vaart & Wellner, 1996). A proof is given
in Appendix, using the pointwise convergence (13) from
Proposition 1 and several intermediate results.

Proposition 2 (Consistency) Assume

A1 E ∈ Rd is a compact set.

A2 For all ξ ̸= ξ∗k+1, Ik+1
PCE(ξ) < Ik+1

PCE(ξ
∗
k+1)

A3 There exists a sequence {ρN}N≥1 of positive
random variables and a sequence of random variables
{ξ∗k+1,N}N≥1 in E that satisfy

∀ϵ > 0, lim
N→∞

pζN
k,L

(ρN ≥ ϵ) = 0

lim inf
N→∞

pζN
k,L

(
Ik+1,N
PCE (ξ∗k+1,N )≥Ik+1,N

PCE (ξ∗k+1)− ρN

)
=1

Then the sequence {ξ∗k+1,N}N≥1 is consistent, i.e. for all
ϵ > 0,

lim
N→∞

pζN
k,L

(
∥ξ∗k+1,N − ξ∗k+1∥ ≥ ϵ

)
= 0.

7. Numerical experiments
To benchmark our method in terms of information gained,
we use the sequential prior contrastive estimation (SPCE)
and sequential nested Monte Carlo (SNMC) bounds
introduced in (Foster et al., 2021) and used in (Blau
et al., 2022). For a number K of experiments leading to
ξ1, ·, ξK , and L contrastive variables, SPCE and SNMC are
respectively lower and upper bounds for the total EIG, i.e.
the expected information gained from the entire sequence
ξ1, ·, ξK and they become tight when L tends to ∞. Their
exact expressions are given in Appendix Sections D.1 and
D.2. They have the advantage of using only samples
from the prior p(θ) and not from the successive posterior
distributions, thus not considering posterior approximation
errors and making them convenient criteria to compare
methods on design sequences only. Methods can be
compared via their [SPCE, SNMC] intervals which contain
the total EIG. However, one benefit of our approach is to
also provide accurate posterior estimation for subsequent
accurate parameter estimation. To assess this aspect, we
use the L2 Wasserstein distance between the weighted

7
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particles yielded by our method and the true parameter
θ. We consider two other recent approaches, namely a
reinforcement learning-based approach RL-BOED from
(Blau et al., 2022) and the variational prior contrastive
estimation VPCE of Foster et al. (2020). RL-BOED is
a non-myopic approach, while VPCE involves iteratively
optimizing IPCE in a myopic manner but estimating
posterior distributions with variational inference. We also
compare with a non tempered version of our approach and
with a random baseline, where the observations {y1, ·,yK}
are simulated with designs generated randomly. For
methods that do not provide posterior estimations or poor
quality ones (RL-BOED, VPCE, Random), we compute
Wasserstein distances on posterior samples obtained by
using tempered SMC on their design and observation
sequences. In contrast, naive SMC Wasserstein distances
are computed on the SMC posterior samples to better assess
the impact of tempering via the comparison with PASOA.

Source location. We consider the 2D location finding
experiment used in (Foster et al., 2021; Blau et al., 2022).
It consists of S hidden sources in R2 whose locations
θ = {θ1, ·,θS} are unknown. Each source emits a signal
whose intensity attenuates according to the inverse-square
law. The measured signal is the superposition of all these
signals. The design problem is to choose where to make
the measurements to best learn the source locations. If a
measurement is performed at a point ξ ∈ R2, the signal
strength is µ(θ, ξ) = b +

∑S
s=1

αs

m+||θs−ξ||22
where αs, b

and m are constants. A standard Gaussian prior is assumed
for each θs ∼ N (0, I) and the likelihood is assumed log-
normal, (logy|θ, ξ) ∼ N (logµ(θ, ξ), σ) with standard
deviation σ. We set S = 2, α1 = α2 = 1, m = 10−4, b =
10−1, σ = 0.5 and we plan K = 30 successive design
optimisations. The Markov kernel is that of a Metropolis-
Hasting scheme with a Gaussian proposal centered at the
current particle with a variance set to the empirical variance
of the particles. We use L = 200 contrastive variables for
the IkPCE bound. Algorithm 2 is used to get N = 100

simulations θ1:N
ℓ of each contrastive variable. The Adam

algorithm (Kingma & Ba, 2015) is then used with standard
hyperparameters to perform the stochastic gradient.

The whole experiment is repeated 100 times but drawing
source locations at random each time. Figure 3, column 1,
shows, with respect to k, the median and standard error for
SPCE, SNMC and the L2 Wasserstein distances between
weighted particles and the true source locations.

A first observation is that design optimization leads to a
significant improvement over the naive random baseline.
For VPCE and RL-BOED we recover the results shown
in Figure 1 of Blau et al. (2022). Our method leads to a
significant improvement, both in terms of information gain
and posterior estimation. It improves by 30% RL-BOED

results on SPCE and provides much higher SNMC. The
L2 Wasserstein distance is two order of magnitude lower,
suggesting the higher quality of our measurements.

Figure 3. Source location. Column 1: median and standard
error over 100 rollouts for SPCE (top), SNMC (middle) and
L2 Wasserstein distance (bottom) with respect to the number of
experiments k. Column 2: impact of the number of particles (5K
to 1M) on median SPCE, SNMC and Wasserstein distance for
PASOA (plain) and SMC (dotted). Note the logarithmic scale.

Both plain SMC and PASOA outperform the other methods.
Additional illustration of the benefit of tempering is visible
in Figure 1 where PASOA better estimates the posterior
concentrating around the true sources when SMC leads to
more scattered particles and is less efficient in removing
particles from non informative locations. Tempering allows
to reduce the number of particles, outperforming SMC
even with much fewer particles, e.g. 5e3 vs 106 for a
lower computation time (Figure 3, column 2, and Table
1). The number of tempering steps tends to decrease with
the number of experiments as more information is gathered
(Appendix Figure 6). PASOA is also more robust to prior
misspecification (Figure 7).

Constant Elasticity of Substitution (CES). In this other
model (Blau et al., 2022; Foster et al., 2020), an agent
compares two baskets of goods with 3 items each and
gives a rating in [0, 1]. The design is a 6-dimensional
vector representing quantities for each item in each basket.
There are 3 parameters θ = (ρ,α = (α1, α2, α3), u)
in dimension 5, which have to be recovered from the
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Table 1. Impact of the number of particles on average computation
times for Source location on a V100 GPU and on average total
tempering steps for PASOA.

Particles 50 000 100 000 320 000 1 000 000
SMC 25.1s ± 0.1s 30.1s ± 0.1s 61.7 ± 0.1s 130.1 ± 0.2s

PASOA 25.9s ± 0.1s 31.4s ± 0.1s 63.4 ± 0.1s 134.4 ± 0.2s
Tempering steps 120.2 120.0 116.1 114.2

Figure 4. CES example. Median and standard error over 100
rollouts, with respect to the number of experiments k, for SPCE
-plain , SNMC -dashed (left) and Wasserstein distance (right).

agent’s ratings of different baskets. The design task is
challenging since most basket configurations provide very
little information. Figure 4 shows the obtained SPCE,
SNMC and Wasserstein distance curves for K = 10
experiments. SMC-based methods outperform again RL-
BOED and VPCE, both in terms of design sequences and
Wasserstein distances. For PASOA, the [SPCE, SNMC]
intervals (Figure 4 left) are distinctly above the other ones.
For clarity sake, the SMC [SPCE, SNMC] intervals are not
plotted but shown in Appendix Figure 8.

For a global view of the methods, Table 2 summarizes the
main features and running times, with more explanations in
Appendix Section D.3. Additional experimental results and
implementation details are also given in the Appendix. The
chosen models are benchmarks used in BOED. A real-word
application would be a great addition but is out of the scope
of this paper.

Table 2. Main features of the compared methods. Column 5 shows
training times required for amortization.

Method Posterior Amortized Non-myopic Training Time
PASOA ✓ ✗ ✗ —

SMC ✓ ✗ ✗ —

RL-BOED (Blau et al., 2022) ✗ ✓ ✓
CES: ∼ 20h

Sources: ∼ 10h
VPCE (Foster et al., 2020) ✓ ✗ ✗ —

8. Conclusion
We have introduced a new Bayesian sequential design
optimization algorithm which also provides posterior
distribution estimates for parameter inference. The

procedure uses a tempering principle to handle the fact
that maximizing information gain jeopardizes standard
SMC samplers accuracy. Although greedy, our approach
performs better than the long-sighted reinforcement learning
approach of Blau et al. (2022). As already observed by
Blau et al. (2022), a possible explanation is the use of
posterior information in our optimisation process. Moreover,
the lesser performance of VPCE, which uses suboptimal
variational posterior approximations, suggests that the key to
a good EIG optimization is an accurate posteriors estimation,
which can be achieved via SMC and further improved with
tempering. Accurately estimating posterior distributions
seems more important and more critical than planning
multiple steps ahead. In addition, when the design parameter
is high dimensional, all methods are likely to suffer from
the difficulty of searching in a high dimensional design
space, but as a myopic approach PASOA is likely to suffer
less than non myopic approaches for which the search space
grows exponentially as the number of experiments increases.
Nevertheless, investigating the possibility to extend our
approach via a policy-based method would be interesting.
Another difficulty may come from a high dimensional
parameter. Augmenting the parameter dimension makes
inference more difficult. If posterior inference fails, PASOA
may loose its specific advantage and result in design of
lesser quality. Methods that do not rely on these posterior
estimation are less prone to this loss of design performance.
However, the goal of experimental design is to provide
informative data to infer and ultimately gain information on
the parameter of interest. Even if other methods may then
provide better SPCE values, this is useless if the posterior
is impossible to estimate correctly. In practice, for PASOA,
one might use a more sophisticated tuned Markov kernel and
exploit the advantage of tempering that a good kernel allows
to scale to higher dimensions, see Section 17.2.3 in (Chopin
& Papaspiliopoulos, 2020). At last, investigating amortized
simulation-based inference such as (Ivanova et al., 2021;
Kleinegesse & Gutmann, 2021; Kleinegesse et al., 2020) to
handle models which are only available through simulations
would be an important next step for applications.
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In this appendix, we provide proofs for the theoretical results in our paper and additional details on the implementation and
numerical experiments.

A. Particle EIG contrastive bound optimization
The algorithm below summarizes the procedure developed for design optimization. It is the result of the combination of
Algorithms 1 and 2 in the main body. It results from the replacement in the former of the current posterior p(θ|Dk−1) by its
particle approximation resulting from the adaptive tempering in Algorithm 2.

Algorithm 3 Particle EIG contrastive bound stochastic optimization at step k + 1

1: Set T iterations, ξ0, stepsizes (γt)t=1:T

2: Run tempered SMC Algorithm 2 (main body) at step k for M = N(L + 1), and set L + 1 independent particle
approximations PN

k,ℓ, for ℓ = 0 : L (see main paper Section 5 for details)
3: while t ≤ T do
4: Sample θi

ℓ,t∼ PN
k,ℓ, for ℓ=0:L, i=1:Nt

5: Sample ui
t ∼ p(u), for i = 1 : Nt

6: Set∇t+1=
1
Nt

Nt∑
i=1

∇ξF (ξ,θi
0t, ·,θ

i
Lt,T

ξ
θi
0t
(ui

t))|ξ=ξt

7: Update ξt+1 = ξt + γt∇t+1

8: return ξ∗k+1,N =ξT or a Polyak averaging value

B. Differentiation under the integral sign
We briefly recall standard conditions under which it is possible to exchange differentiation and expectation operators. In our
setting this implies conditions that are also useful for other results in Section C.3. Indeed to carry out a stochastic gradient
algorithm (Algorithms 1 and 3), we assume that all quantities are well defined. In particular,

∇ξIPCE(ξ)=Ep(u)
∏L

ℓ=0 p(θℓ)

[
∇ξF (ξ,θ0, ·,θL,T

ξ
θ0
(U))

]
. (16)

Denoting pu ⊗ p⊗L+1
θ the product probability distribution p(u)

∏L
ℓ=0 p(θℓ) on U × ΘL+1, sufficient conditions for

(16) are that the function F is differentiable in ξ for pu ⊗ p⊗L+1
θ -almost all (u,θ0, ·,θL) and its gradient satisfies∣∣∣∇ξF (ξ,θ0, ·,θL,T

ξ
θ0
(u))

∣∣∣ ≤ H(θ0, ·,θL, u) where H has a bounded expectation. In particular this implies the continuity
properties (ii) and (iii) required in Lemma 4 and 5 below.

In practice, it can also be useful to notice that the gradient required within the expectation (16) can be expressed using only
the log-likelihood gradient. To simplify, in the expression below we denote T ξ

θ0
(u) by y. Using the definition of F , it comes,

∇ξF (ξ,θ0, ·,θL, y) = ∇ξ log p(y|ξ,θ0)−
L∑

ℓ=0

wℓ(θ0, ·,θL, ξ, y) ∇ξ log p(y|ξ,θℓ) (17)

where the wℓ(θ0, ·,θL, ξ, y) =
p(y|ξ,θℓ)

L∑
ℓ′=0

p(y|ξ,θℓ′ )

sum to 1 and act as weights. Thus we only need to compute for all θ0,θℓ, the

gradient ∇ξ log p(T
ξ
θ0
(u)|ξ,θℓ).

C. Proofs of main and intermediate results
We first specify the steps that lead to Proposition 1 in the main body. The overall goal is to show that products of particle
approximations have similar convergence properties than single particle approximations.

C.1. Product form estimators

Product form estimators have been used in various places in the literature but only studied in a more formal and general
way in some recent work (Kuntz et al., 2022). Their advantages are clearly highlighted in (Kuntz et al., 2022) but the
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theoretical results therein do not cover the use of product form estimators within SMC samplers. In contrast, (Rebeschini
& van Handel, 2015; Lindsten et al., 2017; Kuntz et al., 2024; Aitchison, 2019) consider SMC settings that may look
similar to ours but differ in key aspects. Indeed, (Rebeschini & van Handel, 2015) proposed a so-called block particle filter
consisting of a product of local smaller particle filters to approximate particle filters in high dimensional models. The last
line of their Algorithm 2 clearly shows that the block particle filter is equivalent to running several independent particle
filters on smaller dimensional spaces. In contrast, we run a single SMC from which we extract at each step a product form
estimate of the target distribution. This allows to compute expectations and other inferential quantities in a more efficient
way, using the advantages of product form estimators, notably their lower variance, as explained in (Kuntz et al., 2022). The
Divide-and-Conquer SMC (DaC-SMC) methodology introduced in (Lindsten et al., 2017) and further studied in (Kuntz
et al., 2024) targets a different objective, which is to generalize the sequential nature of standard SMC to a more general
tree-structured execution flow of the sampler. Hierarchical decompositions of variables of interest into subsets are considered
and product form estimators are used to recombined the splitted subsets of particles. Typical use cases include sets of
variables exhibiting a graph dependence structure such as Markov random fields. In contrast, in our work, the execution
flow remains sequential, corresponding to a tree that is a simple line, and we do not address complex parameter structures.
At last, the Tensor Monte Carlo technique proposed in (Aitchison, 2019) shares similarity with DaC-SMC but focuses on
computational aspects and does not cover as many theoretical properties. The work in (Aitchison, 2019) proposes to exploit
dependence structures in variables and conditional independence properties to address the issue of computing the very large
sums induced by product form estimators. This is not an issue we encounter as, in our work, the computation of very large
sums is avoided via stochastic approximation.

The advantage of using a product of particle approximations justifies a new analysis of the SMC procedure. Interestingly,
the product-form can also help to mitigate the growth of constant ck in the L2 bound in Proposition 1 (c′τ in the proof below).
Increasing L can allow to reduce ck to an extent that can make the bound informative for finite sample N . See the remark at
the end of Section C.2.

C.2. Convergence of product form particle approximations

The result is intuitive and generalizes standard SMC proofs but as mentioned in the previous section, we believe it is not
covered in previous work. It requires additional care as illustrated in Lemma 1 below. We follow the presentation in
Chapter 11 of Chopin & Papaspiliopoulos (2020) which is mainly based on the presentation in (Crisan & Doucet, 2002). As
mentioned in (Chopin & Papaspiliopoulos, 2020) it is not the most general presentation but it has the advantage of using
standard tools while presenting the general idea. For simplicity, we only present the L2 convergence result, which is enough
to prove Proposition 1.

To simplify the notation, we use τ as the time or step index and µτ , Mτ for , µλτ ,Mλτ as in Algorithm 2, to denote the
step and successive targets and Markov kernels, but this extends to k and pk, as we repeat the same process sequentially.
For a SMC procedure on Θ, Gτ denotes then the so-called potential function involved in the weights normalization and
G̃τ = Gτ/(µτ−1Mτ−1(Gτ )) its normalization. For example, in our setting in Section 6, Gτ (θ) = Gk,τ (θ) = p(yk|θ, ξk)γ .
Recall that for a function ϕ on Θ, we then have

µτ [ϕ] = Eµτ [ϕ] = µτ−1Mτ−1[ϕ G̃τ ] =

∫
G̃τ (θ)ϕ(θ)

{∫
Mτ−1(θ

′,θ) µτ−1(θ
′) dθ′

}
dθ. (18)

As a particular case, we have

µτ (θℓ) = µτ [δθℓ
] = G̃τ (θℓ)

{∫
Mτ−1(θ

′,θℓ) µτ−1(θ
′) dθ′

}
dθ (19)

µτ−1Mτ−1[G̃τ ] = µτ [1] = 1 (20)

We generalize these definitions and results on the product space ΘL+1 with ϕ being now a function of L+ 1 variables. For
a function ϕ on ΘL+1, we use notation Mτϕ for the function

Mτϕ : (θ0, ·,θL) →
∫

·
∫

ϕ(θ′
0, ·,θ

′
L)

(
L∏

ℓ=0

Mτ (θℓ,θ
′
ℓ) dθ

′
ℓ

)
. (21)
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Similarly, we denote µ⊗L+1
τ [ϕ] = Eµ⊗L+1

τ
[ϕ] =

∫
·
∫
ϕ(θ0, ·,θL)

(∏L
ℓ=0 µτ (θℓ) dθℓ

)
. Defining,

(µτ−1Mτ−1)
⊗L+1[ϕ] =

∫
·
∫

ϕ(θ0, ·,θL)

L∏
ℓ=0

{∫
Mτ−1(θ

′
ℓ,θℓ) µτ−1(θ

′
ℓ) dθ

′
ℓ

}
dθℓ.

we can deduce from (18) (respectively via (19) and (20) that

µ⊗L+1
τ [ϕ] = (µτ−1Mτ−1)

⊗L+1

[
ϕ

L∏
ℓ=0

G̃τ (θℓ)

]
, (22)

(µτ−1Mτ−1)
⊗L+1

[
L∏

ℓ=0

G̃τ (θℓ)

]
= µ⊗L+1

τ [1] = 1. (23)

The strategy is to establish Proposition 1 by decomposing the error at step τ as a sum of contributions from each step
(sampling, reweighting, resampling, etc.) of the current and previous steps. We first need a general result on variances of
sum of random variables.

Lemma 1 Let {Xi
ℓ}ℓ=0:L,i=1:N a collection of i.i.d. random variables on X . For any function ϕ on XL+1 so that the

variances exist we have, for all (i0, ·, iL) ∈ [1 : N ]L+1,

V ar
(
ϕ(Xi0

0 , ·, XiL
L )
)
= V ar

(
ϕ(X1

0 , ·, X1
L)
)

and we denote this common variance by V ar(ϕ1). We can then bound the following variance

V ar

(
N∑

i0=1

·
N∑

iL=1

ϕ(Xi0
0 , ·, XiL

L )

)
≤ NL+1

(
NL+1 − (N − 1)L+1

)
V ar(ϕ1)

Proof. Let us denote I = [1 : N ], J = IL+1, j = (i0, ·, iL) for iℓ ∈ I , and use the short notation ϕj = ϕ(Xi0
0 , ·, XiL

L ).
Then

V ar

(
N∑

i0=1

·
N∑

iL=1

ϕ(Xi0
0 , ·, XiL

L )

)
= V ar(

∑
j∈J

ϕj) =
∑
j∈J

V ar(ϕj) +
∑
j∈J

∑
j′ ̸=j

Cov(ϕj′ , ϕj)

= NL+1V ar(ϕ1) +
∑
j∈J

∑
j′ ̸=j

Cov(ϕj′ , ϕj) .

The second covariance term is a sum of N2(L+1) −NL+1 pairwise covariances among which a number are zero due to
the independence of the {Xi

ℓ}ℓ=0:L,i=1:N . To count them, we notice that for each j = (i0, ·, iL) ∈ J , Cov(ϕj , ϕ
′
j) = 0

for every j′ ∈ J such that j′ = (i′0, ·, i′L) with i′ℓ ∈ I\{iℓ}. There are thus (N − 1)L+1 such j′. It follows that there are
altogether NL+1(N − 1)L+1 null covariance terms and NL+1(NL+1 − (N − 1)L+1 − 1) non null ones. For each non
null covariance, the Cauchy-Schwartz inequality implies that Cov(ϕj′ , ϕj) ≤

√
V ar(ϕj′)V ar(ϕj) = V ar(ϕ1), which

concludes the proof. □

We then recall some notation and definitions specific to our product form particle approximation. The tempered SMC
procedure in Algorithm 2 produces M = N(L+ 1) particles denoted by θ1:M

τ at each step indexed by τ . When partitioning
these particles into L + 1 disjoint subset we will denote by θ1:N

ℓ,τ the N particles in each subset with ℓ = 0 : L + 1. We
denote by ζNk,L the collection of random variables ζNk,L = {W i

k,ℓ,θ
i
k,ℓ}i=1:N,ℓ=0:L, and use the short notation p⊗L+1

k [ϕ]

for p⊗L+1
k [ϕ] = E∏L

ℓ=0 p(θℓ|Dk)
[ϕ(θ0, ·,θL)]. We write Fτ−1 for the σ-algebra Fτ−1 = σ

(
θ1:M
τ−1

)
. Let Cb(ΘL+1)

denote the set of functions ϕ : ΘL+1 → R that are measurable and bounded, and let ||ϕ||∞ denote the supremum norm
||ϕ||∞ = supθ∈ΘL+1 |ϕ(θ)|. The following lemma bounds the Monte Carlo error at step τ .
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Lemma 2 (Monte Carlo error) Using Algorithm 2 with a multinomial resampling scheme, for all functions ϕ ∈ Cb(ΘL+1),

EζN
k,L

{ 1

NL+1

N∑
i0=1

·
N∑

iL=1

ϕ(θi0
0,τ , ·,θ

iL
L,τ )−

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ−1

)
Mτ−1ϕ(θ

i0
0,τ−1, ·,θ

iL
L,τ−1)

}2
≤cN,L∥ϕ∥2∞ (24)

with cN,L = 1−
(
1− 1

N

)L+1
and where the expectation is taken over all the realizations of the random tempered SMC

method, or equivalently on ζNk,L.

Proof. Multinomial resampling preserves conditional independence so that the particles θ1:N
ℓ,τ are i.i.d. conditionally on

Fτ−1 and their conditional distribution is

θi
ℓ,τ |Fτ−1 ∼

N∑
i=1

W i
ℓ,τ−1Mτ−1(θ

i
ℓ,τ−1, ·).

Thus for all i0, ·, iL,

EζN
k,L

[
ϕ(θi0

0,τ , ·,θ
iL
L,τ ) | Fτ−1

]
=

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ−1

)
Mτ−1ϕ(θ

i0
0,τ−1, ·,θ

iL
L,τ−1)

= EζN
k,L

[
1

NL+1

N∑
i0=1

·
N∑

iL=1

ϕ(θi0
0,τ , ·,θ

iL
L,τ ) | Fτ−1

]
.

It follows that

EζN
τ,L

{ 1

NL+1

N∑
i0=1

·
N∑

iL=1

ϕ(θi0
0,τ , ·,θ

iL
L,τ )−

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ−1

)
Mτ−1ϕ(θ

i0
0,τ−1, ·,θ

iL
L,τ−1)

}2

| Fτ−1


= V ar

[
1

NL+1

N∑
i0=1

·
N∑

iL=1

ϕ(θi0
0,τ , ·,θ

iL
L,τ ) | Fτ−1

]
=

1

N2(L+1)
V ar

[
N∑

i0=1

·
N∑

iL=1

ϕ(θi0
0,τ , ·,θ

iL
L,τ ) | Fτ−1

]
≤ cN,L V ar

[
ϕ(θ1

0,τ , ·,θ
1
L,τ ) | Fτ−1

]
≤ cN,L EζN

τ,L

[
ϕ(θ1

0,τ , ·,θ
1
L,τ )

2 | Fτ−1

]
≤ cN,L ∥ϕ∥2∞

The line before last above results from Lemma 1. Using the tower property, we get (24). □

The constant cN,L is equivalent to L+1
N and tends to 0 when N tends to ∞. The next Lemma involves the potential functions

Gτ . Note that in Section 6, Gτ corresponds to Gk,τ (θ) = p(yk|θ, ξ)γ , where γ usually also depends on τ and k as it is
found adaptively. However all we need is that the potential and then the likelihood is upper bounded in θ.

Lemma 3 (Weights normalization error) If Gτ is upper bounded, then for all functions ϕ ∈ Cb(ΘL+1),

EζN
τ,L

{ N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ

)
ϕ(θi0

0,τ , ·,θ
iL
L,τ )−

1

NL+1

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

G̃τ (θ
iℓ
ℓ,τ )

)
ϕ(θi0

0,τ , ·,θ
iL
L,τ )

}2


≤ ∥ϕ∥2∞ EζN
k,L

{ L∏
ℓ=0

(
1

N

N∑
i=1

G̃τ (θ
i
ℓ,τ )

)
− 1

}2


where G̃τ = Gτ/(µτ−1Mτ−1(Gτ )).

Proof. By definition

W iℓ
ℓ,τ =

Gτ (θ
iℓ
ℓ,τ )∑N

i=1 Gτ (θ
i
ℓ,τ )

=
G̃τ (θ

iℓ
ℓ,τ )∑N

i=1 G̃τ (θ
i
ℓ,τ )
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Thus the term in the square in the left hand side is(
N∑

i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ

)
ϕ(θi0

0,τ , ·,θ
iL
L,τ )

)(
1− 1

NL+1

L∏
ℓ=0

(

N∑
i=1

G̃τ (θ
i
ℓ,τ ))

)

and the first factor is bounded by ∥ϕ∥∞ since
N∑

i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ

)
= 1. □

The two Lemmas can now be combined to establish the proposition below.

Proposition 1 (L2 convergence) Using Algorithm 2 with multinomial resampling and assuming that potential functions
Gτ are upper bounded, there exists constants cτ , c′τ so that, for all functions ϕ ∈ Cb(ΘL+1),

EζN
k,L

{ 1

NL+1

N∑
i0=1

·
N∑

iL=1

ϕ(θi0
0,τ , ·,θ

iL
L,τ )−(µτ−1Mτ−1)

⊗L+1[ϕ]

}2
≤cτ cN,L ∥ϕ∥2∞ (25)

EζN
k,L

{ N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ

)
ϕ(θi0

0,τ , ·,θ
iL
L,τ )−µ

⊗L+1
τ [ϕ]

}2
≤c′τ cN,L ∥ϕ∥2∞ (26)

with cN,L = 1− (1− 1
N )L+1.

Proof The proof works by induction on τ . Replacing µτ−1Mτ−1 by µ0, at τ = 0, (25) holds with c0 = 1. Assume (25)
holds at step τ , we first show that (26) also holds at step τ . The left hand side in (26) can be decomposed into

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ

)
ϕ(θi0

0,τ , ·,θ
iL
L,τ )− µ⊗L+1

τ [ϕ] =

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ

)
ϕ(θi0

0,τ , ·,θ
iL
L,τ )−

1

NL+1

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

G̃τ (θ
iℓ
ℓ,τ )

)
ϕ(θi0

0,τ , ·,θ
iL
L,τ )

+
1

NL+1

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

G̃τ (θ
iℓ
ℓ,τ )

)
ϕ(θi0

0,τ , ·,θ
iL
L,τ )− µ⊗L+1

τ [ϕ] .

For all ϕ, when ϕ′(θ0, ·,θL) =
(∏L

ℓ=0 G̃τ (θℓ)
)
ϕ(θ0, ·,θL), we have (µτ−1Mτ−1)

⊗L+1[ϕ′] = µ⊗L+1
τ [ϕ] by (22). The

second term can then be bounded by cτ cN,L∥ϕ′∥2∞, applying (25) with ϕ′. For the first term, we apply Lemma 3 and then
(25) with ϕ(θ0, ·,θL) =

∏L
ℓ=0 G̃τ (θℓ) since then (µτ−1Mτ−1)

⊗L+1[ϕ] = µ⊗L+1
τ [1] = 1 by (23). Finally we get (26) with

c′τ = 4cτ∥G̃τ∥2(L+1)
∞ where we have used that E[(X + Y )2] ≤ 2(E[X2] + E[Y 2]). We then show that (26) at step τ − 1

implies (25) at step τ . Similarly, we have,

1

NL+1

N∑
i0=1

·
N∑

iL=1

ϕ(θi0
0,τ , ·,θ

iL
L,τ )− (µτ−1Mτ−1)

⊗L+1[ϕ] =

1

NL+1

N∑
i0=1

·
N∑

iL=1

ϕ(θi0
0,τ , ·,θ

iL
L,τ )−

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ−1

)
Mτ−1ϕ(θ

i0
0,τ−1, ·,θ

iL
L,τ−1)

+

N∑
i0=1

·
N∑

iL=1

(
L∏

ℓ=0

W iℓ
ℓ,τ−1

)
Mτ−1ϕ(θ

i0
0,τ−1, ·,θ

iL
L,τ−1)− (µτ−1Mτ−1)

⊗L+1[ϕ] .

The first term can be bounded using Lemma 2 and for the second term by applying (26) at τ − 1 to function Mτ−1ϕ defined
in (21). Then (25) holds with cτ = 2(1 + c′τ−1). □
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Proposition 1 in the paper is just the result above but reduced to the presentation of (26). To give more insight on the
constants involved in Proposition 1, we note that the constant denoted by ck corresponds to c′τ in the above proof. A well
referenced behavior in SMC, see e.g. (Chopin & Papaspiliopoulos, 2020), is that this constant may increase very fast
with k and become uninformative for finite N . Without considering tempering for simplicity, it comes that c0 = 1 and
ck = 4(2 + ck−1)∥G̃∥2(L+1)

∞ , where ∥G̃∥∞ denotes the upper bound in θ of G̃k(θ) ∝ p(yk|θ, ξk), which is assumed here
to be independent on the specific value of yk and ξk. It follows that ck = 2

∑k
i=1(4∥G̃∥2(L+1)

∞ )i. Interestingly, with our
product form approximation, if ∥G̃∥∞ < 1, ck remains low and decreases when L increases.

C.3. Consistency of the sequential design estimators

We specify the steps that lead to the proof of Proposition 2 in the main body. We first recall some notation and definitions.
The sequential design values produced by Algorithm 3 above can be seen as realizations of random estimators {ξ∗k+1,N}N≥1

targeting points of maximum of random criterion functions {Ik+1,N
PCE (ξ)}N≥1,

Ik+1,N
PCE (ξ) = Ep(u)

∏L
ℓ=0 pN

k,ℓ(θℓ)

[
F (ξ,θ0, ·,θL,T

ξ
θ0
(U))

]
.

A natural question is to study the limiting distributions of these random quantities when the number of particles N tends
to infinity. The main property is the following Theorem 1, which results from a general result from M-estimator theory
(van der Vaart, 1998; van der Vaart & Wellner, 1996). The two following lemmas are then useful to provide simpler sufficient
conditions to satisfy the Theorem’s assumptions and to establish our main result in Proposition 2 in the main body, also
recalled below.

Theorem 1 (Theorem 5.7 in (van der Vaart, 1998)) Assume

(i) For all ϵ > 0,

lim
N→∞

pζN
k,L

(
sup
ξ∈E

|Ik+1,N
PCE (ξ)− Ik+1

PCE(ξ)| ≥ ϵ

)
= 0. (27)

(ii) For all ϵ > 0,

sup
∥ξ−ξ∗

k+1∥≥ϵ

Ik+1
PCE(ξ) < Ik+1

PCE(ξ
∗
k+1) . (28)

(iii) There exists a sequence of positive random variables {ρN}N≥1 and a sequence of random variables {ξ∗k+1,N}N≥1

in E that satisfy
∀ϵ > 0, lim

N→∞
pζN

k,L
(ρN ≥ ϵ) = 0

lim inf
N→∞

pζN
k,L

(
Ik+1,N
PCE (ξ∗k+1,N ) ≥ Ik+1,N

PCE (ξ∗k+1)− ρN

)
= 1.

Then the sequence of estimators {ξ∗k+1,N}N≥1 is consistent, i.e. for all ϵ > 0,

lim
N→∞

pζN
k,L

(
∥ξ∗k+1,N − ξ∗k+1∥ ≥ ϵ

)
= 0.

Proof. The proof is a special case of Theorem 5.7 in (van der Vaart, 1998). We reproduce it using our notation. In all
the following proofs, to simplify, we drop the k + 1 notation, so that Ik+1

PCE(ξ) and Ik+1,N
PCE (ξ) are now simply denoted by

IPCE(ξ) and INPCE(ξ) and their respective maximizers by {ξ∗} and {ξ∗N}. Since ξ∗ maximizes IPCE(ξ), it comes that for
all N ≥ 1,

0 ≤ IPCE(ξ
∗)− IPCE(ξ

∗
N )

= (IPCE(ξ
∗)− INPCE(ξ

∗)) + (INPCE(ξ
∗)− INPCE(ξ

∗
N )) + (INPCE(ξ

∗
N )− IPCE(ξ

∗
N )) .
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The first and third terms in the sum are bounded by sup
ξ∈E

|IPCE(ξ) − INPCE(ξ)| while the second term can be bounded

by ρN + (INPCE(ξ
∗)− INPCE(ξ

∗
N )− ρN ) δ{IN

PCE(ξ∗)−IN
PCE(ξ∗

N )>ρN} where δA is the indicator function which is 1 if A is
satisfied and 0 otherwise. It follows that

0 ≤ IPCE(ξ
∗)− IPCE(ξ

∗
N )

≤ 3max

(
2 sup
ξ∈E

|IPCE(ξ)− INPCE(ξ)|, ρN ,
(
INPCE(ξ

∗)− INPCE(ξ
∗
N )− ρN

)
δ{IN

PCE(ξ∗)−IN
PCE(ξ∗

N )>ρN}

)
.

Assumptions (i) and (iii) imply that all three terms in the max tend to 0 in probability so that for all η > 0,

lim
N→∞

pζN
k,L
(IPCE(ξ

∗)− IPCE(ξ
∗
N ) ≥ η) = 0. (29)

Then, for all ϵ > 0, using (ii), for all ξ satisfying ∥ξ − ξ∗∥ ≥ ϵ, there exists η > 0 so that IPCE(ξ) ≤ IPCE(ξ
∗)− η. This

implies that {∥ξ∗N − ξ∗∥ ≥ ϵ} ⊂ {IPCE(ξ
∗
N ) ≤ IPCE(ξ

∗)− η} and

pζN
k,L
(∥ξ∗N − ξ∗∥ ≥ ϵ) ≤ pζN

k,L
(IPCE(ξ

∗
N ) ≤ IPCE(ξ

∗)− η) = pζN
k,L
(IPCE(ξ

∗)− IPCE(ξ
∗
N ) ≥ η) .

The limit in N of this last term tends to 0 by (29), which concludes the proof. □

In general, the uniform convergence in (i) is the most difficult assumption to check but in our setting, when E is compact,
it is easily derived from previous assumptions and the pointwise convergence in probability ((iv) below), which can be
derived from the L2 convergence in Proposition 1 (see comments in the main body). Recall the following definition,

fPCE(ξ,θ0, ·,θL) = Ep(u)

[
F (ξ,θ0, ·,θL,T

ξ
θ0
(U))

]
and the shortcut notation p⊗L+1

k =
L∏

ℓ=0

p(θℓ|Dk).

Lemma 4 Assume

(i) E ∈ Rd is a compact set.

(ii) Ik+1
PCE(ξ) is a continuous function in ξ.

(iii) fPCE(ξ,θ0, ·,θL) is a continuous function in ξ for p⊗L+1
k -almost all (θ0, ·,θL).

(iv) Convergence in probability pointwise: For all ξ ∈ E and all ϵ > 0,

lim
N→∞

pζN
k,L

(
|Ik+1,N
PCE (ξ)− Ik+1

PCE(ξ)| ≥ ϵ
)
= 0.

Then the uniform convergence in Theorem 1 (i) is satisfied, that is, for all ϵ > 0,

lim
N→∞

pζN
k,L

(
sup
ξ∈E

|Ik+1,N
PCE (ξ)− Ik+1

PCE(ξ)| ≥ ϵ

)
= 0.

Proof. Continuous functions on a compact set are uniformly continuous. It follows from (ii) and (iii) that for all ϵ > 0,
there exists η > 0 so that for all ξ′ ∈ E ,

sup
∥ξ−ξ′∥≤η

|IPCE(ξ)− IPCE(ξ
′)| ≤ ϵ (30)

and for p⊗L+1
k -almost all (θ0, ·,θL),

sup
∥ξ−ξ′∥≤η

|fPCE(ξ,θ0, ·,θL)− fPCE(ξ
′,θ0, ·,θL)| ≤ ϵ. (31)
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Let B(ξ, η) be a ball centered at ξ with radius η. As E is compact, for all η > 0, it is possible to extract, from the cover set⋃
ξ∈E

B(ξ, η), a finite subcover
⋃

b=1:B

B(ξ(b), η) so that E ⊂
⋃

b=1:B

B(ξ(b), η) and

sup
ξ∈E

|INPCE(ξ)− IPCE(ξ)| = max
b=1:B

sup
ξ∈B(ξ(b),η)

|INPCE(ξ)− IPCE(ξ)| . (32)

For all b = 1 : B, and all ξ ∈ B(ξ(b), η), we also have that

|INPCE(ξ)− IPCE(ξ)| ≤ |INPCE(ξ)− INPCE(ξ
(b))|+ |INPCE(ξ

(b))− IPCE(ξ
(b))|+ |IPCE(ξ

(b))− IPCE(ξ)|

which implies

sup
ξ∈B(ξ(b),η)

|INPCE(ξ)− IPCE(ξ)| ≤ sup
ξ∈B(ξ(b),η)

{
|INPCE(ξ)− INPCE(ξ

(b))|
}

(33)

+ |INPCE(ξ
(b))− IPCE(ξ

(b))|

+ sup
ξ∈B(ξ(b),η)

{
|IPCE(ξ

(b))− IPCE(ξ)|
}

For the first term in the right-hand side,

sup
ξ∈B(ξ(b),η)

{
|INPCE(ξ)− INPCE(ξ

(b))|
}
≤ EpN⊗L+1

k

[
sup

∥ξ−ξ(b)∥≤η

|fPCE(ξ,θ0, ·,θL)− fPCE(ξ
(b),θ0, ·,θL)|

]

By Proposition 1 (26), the right-hand side above tends in L2-norm and then in probability when N tends to ∞ to

Ep⊗L+1
k

[
sup

∥ξ−ξ(b)∥≤η

|fPCE(ξ,θ0, ·,θL)− fPCE(ξ
(b),θ0, ·,θL)|

]
,

which is smaller than ϵ by (31). The second term in the right-hand side of (33) tends in probability to 0 by (iv) for all ξ(b).
Finally, using (30), the third term in (33) is smaller than ϵ. To conclude, (32) implies the uniform convergence (27). □

The following result gives simpler sufficient conditions for Assumption (ii) in Theorem 1 to hold.

Lemma 5 Assume

(i) E ∈ Rd is a compact set.

(ii) Ik+1
PCE(ξ) is a continuous function in ξ .

(iii) For all ξ ̸= ξ∗k+1, Ik+1
PCE(ξ) < Ik+1

PCE(ξ
∗
k+1) .

Then Assumption (ii) of Theorem 1 is satisfied.

Proof. A continuous function reaches its maximum on a compact set. It follows that Ik+1
PCE(ξ) reaches its maximum

on the compact subset E\B(ξ∗k+1, ϵ). Let ξϵ denote a value at which this maximum is reached. Then (iii) implies that
Ik+1
PCE(ξϵ) < Ik+1

PCE(ξ
∗
k+1), which leads to (28). □

Using Lemmas 4 and 5, we can now replace in Theorem 1 Assumptions (i) and (ii) by simpler conditions. It follows the
Proposition 2 presented in the paper and recalled below.

Proposition 2 Assume

A1 E ∈ Rd is a compact set.

20



PASOA- PArticle baSed Bayesian Optimal Adaptive design

A2 For all ξ ̸= ξ∗k+1, Ik+1
PCE(ξ) < Ik+1

PCE(ξ
∗
k+1)

A3 There exists a sequence of positive random variables {ρN}N≥1 and a sequence of random variables {ξ∗k+1,N}N≥1 in
E that satisfy

∀ϵ > 0, lim
N→∞

pζN
k,L
(ρN ≥ ϵ) = 0

lim inf
N→∞

pζN
k,L

(
Ik+1,N
PCE (ξ∗k+1,N ) ≥ Ik+1,N

PCE (ξ∗k+1)− ρN

)
= 1.

Then the sequence of estimators {ξ∗k+1,N}N≥1 is consistent, i.e. for all ϵ > 0,

lim
N→∞

pζN
k,L

(
∥ξ∗k+1,N − ξ∗k+1∥ ≥ ϵ

)
= 0.

Proof. With E compact, we can use Lemma 4. The continuity of Ik+1
PCE(ξ) and fPCE has been already assumed earlier as

specified in Section B and Lemma 4 (iv) is a consequence of Proposition 1. It follows the uniform convergence property (i)
in Theorem 1. Then (A1-2) and Lemma 5 imply (ii) in Theorem 1. With (A3), Theorem 1 leads to the result. Note that if
we assume that ξ∗k+1,N is an exact maximizer of Ik+1,N

PCE (ξ) then (A3) is trivially satisfied with ρN = 0.

D. Numerical experiments
D.1. Sequential prior contrastive estimation (SPCE) criterion

We specify the SPCE introduced by Foster et al. (2021) and used in our experiments and those of Blau et al. (2022) to assess
the design sequence quality in our comparison. For a number K of experiments, DK = {(y1, ξ1), ·, (yK , ξK)} and L
contrastive variables, SPCE is defined as

SPCE(ξ1, ·, ξK) = E K∏
k=1

p(yk|ξk,θ0)
L∏

ℓ=0

p(θℓ)

log
K∏

k=1

p(yk|θ0, ξk)

1
L+1

L∑
ℓ=0

K∏
k=1

p(yk|θℓ, ξk)

 . (34)

SPCE is a lower bound of the total EIG which is the expected information gained from the entire sequence of design
parameters ξ1, . . . , ξK and it becomes tight when L tends to ∞. In addition, SPCE has the advantage to use only samples
from the prior p(θ) and not from the successive posterior distributions. It makes it a fair criterion to compare methods on
design sequences only. Considering a true parameter value denoted by θ∗, given a sequence of design values {ξk}k=1:K ,
observations {yk}k=1:K are simulated using p(y|θ∗, ξk) respectively. Therefore, for a given Dk, the corresponding SPCE
is estimated numerically by sampling θ1, ·,θL from the prior,

SPCE(DK) =
1

N

N∑
i=1

log

K∏
k=1

p(yk|θ∗, ξk)

1
L+1

(
K∏

k=1

p(yk|θ∗, ξk) +
L∑

ℓ=1

K∏
k=1

p(yk|θi
ℓ, ξk)

)
 .

As shown in (Foster et al., 2021) (Appendix A), SPCE increases with L to reach the total EIG I(ξ1, . . . , ξK) when L → ∞
at a rate O(L−1) of convergence. More specifically, it is shown in (Foster et al., 2021) that

0 ≤ I(ξ1, . . . , ξK)− SPCE(ξ1, . . . , ξK) ≤ C

L+ 1
(35)

where C = Ep(DK)p(θ|DK)

[
p(DK |θ)
p(DK)

]
− 1 with the notation p(DK |θ) =

K∏
k=1

p(yk|θ, ξk).

It is also shown in (Foster et al., 2021) that for a given L, SPCE is bounded by log(L+ 1) while the upper bound SNMC
below is potentially unbounded. As in (Blau et al., 2022), if we use L = 107 to compute SPCE and SNMC, the bound is
log(L+ 1) = 16.12 for SPCE. In practice this does not impact the numerical methods comparison as the intervals [SPCE,
SNMC] containing the total EIG remain clearly distinct.
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D.2. Sequential nested Monte Carlo (SNMC) criterion

Similarly, an upper bound on the total EIG, with similar features, has also been introduced by Foster et al. (2021). Its
expression is very similar to that of SPCE, varying only through the sum in the denominator,

SNMC(ξ1, ·, ξK) = E K∏
k=1

p(yk|ξk,θ0)
L∏

ℓ=0

p(θℓ)

log
K∏

k=1

p(yk|θ0, ξk)

1
L

L∑
ℓ=1

K∏
k=1

p(yk|θℓ, ξk)

 .

D.3. Implementation details

For VPCE (Foster et al., 2020) and RL-BOED (Blau et al., 2022), we use the code available at github.com/csiro-mlai/RL-
BOED, using the settings recommended therein to reproduce the results in the respective papers. From the obtained
sequences of observations and design values, we compute SPCE and SNMC as explained above and retrieve the same results
as in their respective papers.

Our code is implemented in Jax (Bradbury et al., 2020) and available at github.com/iolloj/pasoa. Several packages are used
through the repository. Namely, we used Optax (Babuschkin et al., 2020) to run Gradient Descents, the Sequential Monte
Carlo part was heavily inspired and built using Kernels from BlackJax (Lao & Louf, 2022) and we used OTT (Cuturi et al.,
2022) to compute Wasserstein distances.

Table 3 summarizes the main features and running times of the compared methods. The RL-BOED method has the advantage
to be both non-myopic and amortized in the sense that a policy is learnt upfront and then used straightforwardly at each new
experiment. It follows a much longer training time, which does not exist for the other methods. Note that in comparison
the deployment times of all methods are neglible (see Table 1 in the paper). In contrast RL-BOED does not provide
approximations for the posterior distributions.

Table 3. Main features and training times of the compared methods: the second column indicates whether a method also provides
approximation of posterior distribution, the third if it is amortized and the fourth if it is non-myopic. The last column shows training times
for the amortized method RL-BOED and a sequence of K experiments run on a single Nvidia V100 GPU, for the source finding and CES
examples.

Method Posterior Amortized Non-myopic Training Time
PASOA ✓ ✗ ✗ —

SMC ✓ ✗ ✗ —

RL-BOED (Blau et al., 2022) ✗ ✓ ✓
CES: ∼ 20h

Sources: ∼ 10h
VPCE (Foster et al., 2020) ✓ ✗ ✗ —

D.4. Hardware details

Our method can be run on a local machine and was tested on a Apple M1 Pro 16Gb chip. However, for a faster running
time, each experiment was finally produced by running our method on a single Nvidia V100 GPU. One other advantage of
tempering and of our PASOA method is that by reducing the number of needed particles for an accurate procedure, it lowers
the hardware requirements for this method as it becomes feasible to run it on CPUs (see Table 1).

D.5. Checking the assumptions given in the theoretical results

Ideally, the models used in experiments should satisfy the assumptions appearing in our propositions. For the L2 convergence
result (Proposition 1), the conditions are easy to check. Proposition 1 requires that the potential functions Gk,τ are bounded.
It is sufficient to check that the likelihood p(y|θ, ξ) as a function of θ is bounded (main Section 6 before Proposition 1). For
the source location model, the likelihood is log-normal and is bounded independently of θ,y, and ξ. For the CES example,
the likelihood is a mixture given in equation (36), Section D.7 below where the last component is a logit-normal distribution.
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Both p0 and p1 in equations (37) and (38) below are in [0, 1]. The only potentially problematic case may be when ση → 0.
In that case, 1− p0 tends to 0 and for p1 we can use the approximation below equation (38). It follows that the third term
(1− p0 − p1) q(y|θ, ξ) in (36) remains bounded.

For the consistency result (Proposition 2), conditions (A1) and (A2) can be stronger than necessary. Note that condition
(A3) is not directly related to the model but to the optimization procedure and could be ignored. The important weaker
condition is (ii) in Theorem 1. Similarly to consistency results in M-estimator theory (see e.g. van der Vaart (1998)), in our
work, we assume that ξ∗k+1 is a global and unique maximum of Ik+1

PCE ((A2)). Condition (ii) actually states that ξ∗k+1 is in
addition well separated (see Figure 5.2 of van der Vaart (1998) for an illustration of this notion). Lemma 5 gives sufficient
conditions for (ii), which results in (A1) and (A2) in Proposition 2. (A1) is that the design space is compact and (A2) states
that ξ∗k+1 is a unique global maximum (not necessary well separated). (A1) is easy to check but (A2) is strong and not
usually easy to check. Both can be relaxed with additional technicalities, see section 5.2.1 of van der Vaart (1998). For the
CES model, the design space is compact. For the source example, it can be restricted to [−X,X]2 without specific care, as
e.g. in (Blau et al., 2022). For (A2), we have not found yet a general way to check this for the IPCE bound. Note though,
that this unchecked assumption is common practice as it would require more care to talk about consistency if the maximum
was not unique and global.

D.6. Source location example

For the 2D location finding example used in (Foster et al., 2021; Blau et al., 2022) and tested in the paper, with 2 sources,
K = 30 successive design optimisations, and 100 repetitions of the experiment, the number of gradient steps was set to 5000
and the ESS for the SMC procedure to 0.9. Also, in practice stratified resampling was preferred to multinomial resampling.
The latter has the advantage to considerably simplify the proofs and this mismatch between theory and practice is very
common in the SMC literature. Figure 3 in the paper shows the SPCE, SNMC and the L2 Wasserstein distances between
weighted particles and the true source locations, providing three quantitative assessment and comparison of methods. As an
additional, visual assessment of the quality of the posterior approximation provided by our method, Figure 1 in the paper
and Figure 5 below illustrate the evolution of the particles over the design steps, starting from a sample following the prior
to a sample concentrating around the true source locations. In particular, the k = 0 step shows particles simulated according
to the prior. In most use cases, plain SMC already gives better results than other reference methods. Figure 1 and Table 1 in
the paper show that tempering allows to reduce the number of particles. In Figure 5 below, the source locations, indicated by
red crosses in the plots, are chosen in a part of the space not well covered by the prior to illustrate the robustness of our
approach to a potential prior misspecification. After some iterations PASOA is able to explore the parameter space to finally
concentrate the posterior on the true source locations. In contrast, SMC may miss some of the sources when they are outside
the prior mass or when there are too many of them. We suspect that prior misspecification is a typical very common feature
that jeopardizes SMC performance while impacting much less PASOA. This is actually the same problem encountered with
IS that tempering aims at solving. Similarly, Figure 7 shows, in terms of SPCE, SNMC and Wasserstein distance, that SMC
is more robust with tempering. Figure 6 indicates the number of tempering steps taken on average. The median (over 100
rollouts) number of tempering steps varies from 14 to 2 and is globally decreasing, being under 5 after 15 experiments.
The number of tempering steps reduces when the posterior concentrates and when adding new observations becomes less
informative.

D.7. Constant Elasticity of Substitution example

This other model, used in (Blau et al., 2022; Foster et al., 2020), comes from behavioral economics. In this model, an agent
compares two baskets of goods and gives a rating y on a sliding scale from 0 to 1. The goal is to design the two baskets of
goods so as to infer the agent’s utility function, which depends on some unknown parameters. The designs are 6-dimensional
vectors ξ = (ξ1, ξ2) corresponding to the two baskets with 3 values each ξd = (ξd,1, ξd,2, ξd,3) ∈ [0 : 100]3 for d = 1, 2,
which represent quantities for 3 items in each basket. There are 3 parameters θ = (ρ,α, u) in dimension 5, whose prior
distributions are respectively ρ ∼ Beta(1, 1), α = (α1, α2, α3) ∼ Dirichlet(1, 1, 1) and log u ∼ N (1, 3).

The model likelihood is given by the following model that uses a subjective utility function U and two hyperparameters
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Figure 5. PASOA evolution of particles (in purple) over some selected steps k. Particles correspond initially to a sample from the prior
p(θ) and progressively evolve to a sample of particles located around the initially unknown true source positions indicated by red crosses.
Green crosses indicate the optimal measurement locations ξ∗

k obtained at each step k.

Figure 6. Source location example: median (over 100 rollouts) number of tempering steps over the number of experiments, with respect to
the number of particles.

ϵ = 2−22 and τ = 0.005,

y = f(η, ϵ)

where η ∼ N (µη, σ
2
η)

with µη = (U(ξ1)− U(ξ2)) u

ση = (1 + ∥ξ1 − ξ2∥) τ u

For d = 1, 2, U(ξd) =
(
α1ξ

ρ
d,1 + α2ξ

ρ
d,2 + α3ξ

ρ
d,3

)1/ρ
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Figure 7. Source location example. Prior misspecification: median (over 100 rollouts) (a) SPCE, (b) SNMC and (c) Wasserstein distances
for SMC (blue) and PASOA (red).

where f(η, ϵ) takes it values in [ϵ, 1− ϵ] and is a censored sigmoid defined by

f(η, ϵ) = 1− ϵ if η ≥ logit(1− ϵ)

= ϵ if η ≤ logit(ϵ)

= (1 + exp(−η))−1 otherwise

with logit(y) = log(y/(1− y)). In other words, y is a censored logit-normal distribution with parameters µη and ση. Its
density is a mixture

p(y|θ, ξ) = p0δϵ(y) + p1δ1−ϵ(y) + (1− p0 − p1) q(y|θ, ξ) (36)

where q(y|θ, ξ) = 1
ση

√
2πy(1−y)

exp(
(logit(y)−µη)

2

2σ2
η

) is the density of a logit-normal distribution and p0 and p1 are defined
by the following logit-normal CDF values

p0 = q(y ≤ ϵ) = p(η ≤ logit(ϵ)) = F

(
logit(ϵ)− µη

ση

)
(37)

p1 = 1− q(y ≤ 1− ϵ) = 1− p(η ≤ logit(1− ϵ)) = 1− F

(
logit(1− ϵ)− µη

ση

)
(38)

with the last equalities involving the normal CDF values of variable η and the standard normal CDF F values. In practice,
computing log p0 and log p1 may sometimes be numerically problematic when p0 or p1 become too small. Computing p0 or
p1 involves computing lower and upper Gaussian tails. In this case, following (Foster et al., 2020), we use the following first
order asymptotic approximation of the standard normal CDF, when x is large,

1− F (x) ≈ 1

x
√
2π

exp(−x2/2).

and when x is small (negative)

F (x) = 1− F (−x) ≈ 1

−x
√
2π

exp(−x2/2).

Thus, denoting f the pdf of the standard normal distribution, log p0 ≈ log f(x)−log(−x) with x =
logit(ϵ)−µη

ση
and log p1 ≈

log f(x)− log(x) with x =
logit(1−ϵ)−µη

ση
or to summarize both approximations when |x| is large, log f(x)− log(|x|).

Implementation details, if not otherwise specified, are the same as for the source location example. We plan K = 10
successive design optimisations and repeat the whole experiment 100 times for varying values of the true parameters, for all
methods, PASOA, SMC, RL-BOED, VPCE and the random design baseline. This is overall a more challenging example as
the objective function has many suboptimal local maxima, and the stochastic gradient procedure may be more sensitive to
initialization. The number of gradient steps was set to 5000. For the SMC procedure, the ESS was set to 0.9, the Markov
kernel is that of a random walk Metropolis-Hasting scheme with prior transformations mapping the parameters to R4. The
transformations used are respectively, u′ = log u, ρ′ = logit(ρ) = log ρ

1−ρ , and α′
1 = log α1

α3
, α′

2 = log α2

α3
, with the inverse
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transformations being u = expu′, ρ = exp ρ′

1+exp ρ′ , α1 =
expα′

1

1+expα′
1+expα′

2
, α2 =

expα′
2

1+expα′
1+expα′

2
and α3 = 1

1+expα′
1+expα′

2
.

We use then L = 100 contrastive variables with each N = 500 simulations.

Figure 4 in the paper and Figures 8 and 9 below show, with respect to k, the median and standard error of the SPCE, SNMC
and Wasserstein distances between weighted particles and the true parameters. We observe for all methods more variability
in the repetitions for this example. In terms of total EIG, the difference with RL-BOED is not as large as in the source
location example, but the difference remains large for Wasserstein distances. PASOA still shows better performance in
terms of information gain as measured by SPCE and SNMC. In Figure 4 in the paper, we observe that in experiments 0-2,
our approach temporarily loses its advantage over RL-BOED due to insufficiently refined particle approximations of the
posteriors. However, this edge is regained in subsequent experiments as more information from the posteriors becomes
available. Our better design sequences are also visible in the Wasserstein distance plot presented in Figure 4. Figure 8
left shows on the same plot the SPCE and SNMC curves. Without tempering, SMC gains an advantage only in the latter
steps 7-9 in terms of information gained, while, in the Wasserstein distance plot presented in Figure 4, SMC shows better
performance from the start. A possible explanation is that, as shown in Figure 9 below, RL-BOED performs better on
parameter ρ at the expense of sacrificing precision on the others. Overall the Wasserstein distance for all parameters remains
in favor of our methods but it may be that a better precision on ρ leads to a slightly higher information gain (Figure 8 left).

In our current tempering implementation, the Markov kernel is fixed to a standard Metropolis-Hastings scheme for all steps.
It is out of the scope of this paper but possible directions for improvement include using more sophisticated kernels, such as
Langevin or Hamiltonian Monte Carlo moves, as suggested in the Tuning parameters section p.1591 of Dai et al. (2022) and
in references therein. More generally, a number of recommendations, as reviewed in (Dai et al., 2022), have been reported
as efficient and could be investigated.

Figure 8. CES example. Median and standard error over 100 tollouts, with respect to the number of experiments k. The [SPCE, SNMC]
intervals containing the totel EIG are plot, respectively with plain (SPCE lower bound) and dashed (SNMC upper bound) lines. Left:
SMC (blue) vs RL-BOED (green) and VPCE (yellow). Right: SMC (blue) vs PASOA (red).

D.8. Non differentiable examples

When the model log-likelihood is not differentiable, either because the gradient is not available or difficult to compute,
or because the design space is discrete, the stochastic gradient part of our method cannot be directly applied. However,
we can still use the other parts by replacing the optimization step by either an exhaustive argmax, in the case of a finite
design space, or by Bayesian optimization (Snoek et al., 2012; Henrández-Lobato et al., 2014; Benassi et al., 2011) which
does not requires gradients. This can be seen as an advantage of myopic solutions, which allow such replacements to be
easily performed. For each sequential optimization, the search space remains of reasonable size or dimension and does not
increases exponentially. This is not the case for other policy-based approach, e.g. (Foster et al., 2021), which would involve
a challenging high-dimensional Bayesian optimization of the policy parameters, or an exhaustive search in an exponentially
increasing space with K.
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Figure 9. CES example. Median and standard error of Wasserstein distances for each parameter (ρ,α, u) separately.

To illustrate this situation, another benchmark example used in (Blau et al., 2022; Moffat et al., 2020) is the Prey population
example. The design is a discrete variable. Instead of using stochastic gradient descent to optimize the IkPCE bound at each
step sequentially, we can compute it for every possible design and take the argmax. The same can be done to adapt VPCE
to this discrete design space, while RL-BOED has the advantage to be applicable for both continuous and discrete spaces.
Without the gradient part, our approach is similar to that of Moffat et al. (2020) but with an additional tempering, which was
already reported to compare favorably to RL-BOED in Figure 4 of Blau et al. (2022).
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