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Abstract
Motivated by conditional independence testing,
an essential step in constraint-based causal discov-
ery algorithms, we study the nonparametric Von
Mises estimator for the entropy of multivariate dis-
tributions built on a kernel density estimator. We
establish an exponential concentration inequality
for this estimator. We design a test for condi-
tional independence (CI) based on our estimator,
called VM-CI, which achieves optimal paramet-
ric rates under smoothness assumptions. Lever-
aging the exponential concentration, we prove a
tight upper bound for the overall error of VM-CI.
This, in turn, allows us to characterize the sam-
ple complexity of any constraint-based causal dis-
covery algorithm that uses VM-CI for CI tests.
To the best of our knowledge, this is the first
sample complexity guarantee for causal discovery
for non-linear models and non-Gaussian continu-
ous variables. Furthermore, we empirically show
that VM-CI outperforms other popular CI tests
in terms of either time, sample complexity, or
both. This enhancement significantly improves
the performance in structure learning as well.

1. Introduction
Causal discovery, the pursuit of uncovering the cause-and-
effect relationships governing complex systems, has been
the focus of research in machine learning, statistics, and
various scientific domains over the past few decades. This
is due to the extensive impact of causal inference, which
enables us to make well-informed decisions and policies.

Current approaches for learning causal mechanisms with

1College of Management of Technology, EPFL,
Lausanne, Switzerland. Correspondence to: Fateme
Jamshidi <fateme.jamshidi@epfl.ch>, Luca Ganassali
<luca.ganassali@universite-paris-saclay.fr>, Negar Kiyavash
<negar.kiyavash@epfl.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

data can be divided into two categories: score-based (e.g.,
Chickering, 2002; Solus et al., 2021; Zheng et al., 2018; Zhu
et al., 2019), and constraint-based, e.g., Peter-Clark (PC)
algorithm (Spirtes et al., 2000) and grow-shrink (GS) algo-
rithm (Margaritis & Thrun, 1999). Score-based approaches
place restrictions on the functional causal model and/or the
distribution of data. Consequently, these methods can strug-
gle to identify an accurate causal graph when dealing with
complex relationships between variables or in the presence
of hidden variables. On the other hand, constraint-based
methods often do not rely on the aforementioned assump-
tions and directly test for conditional independence (CI)
relations between pairs of variables to determine causal
connections.

Theoretical performance guarantees of constraint-based dis-
covery algorithms in the literature nearly always hinge on
the availability of a perfect CI oracle, which determines
whether two random variables are conditionally indepen-
dent. In practice, this oracle is substituted with a statistical
conditional independence test, which assesses independence
using a limited number of observed data points. Hence, to
ensure the reliability and applicability of constraint-based
causal discovery methods, it is imperative to establish ro-
bust sample complexity guarantees. Sample complexity of
a causal discovery algorithm is the minimum number of
data samples needed to infer the causal graph accurately at
a given confidence level.

Unlike unconditional independence testing, conditional in-
dependence is not a testable hypothesis without further
assumptions on the distribution. Shah & Peters (2020)
proved this fundamental hardness result by showing that
if (X,Y, Z) has an absolutely continuous distribution with
respect to the Lebesgue measure and a given CI test (to
identify if X and Y are independent given Z) has a level
less than α, there is no alternative under which the test has
a power greater than α. Neykov et al. (2021) showed that
minimax optimal bounds could be obtained when defining
an alternative by discarding distributions that are ‘ε−close’
to the null hypothesis.

It is noteworthy that CI tests are well understood for discrete
variables (see Canonne et al., 2018). Another solved case is
that of linear models with Gaussian noise, where conditional
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independence is equivalent to zero partial correlation, which
is simple to assess.

In this paper, we derive sample complexity guarantees for
CI tests for continuous distributions. Specifically, we de-
sign conditional independence tests built upon estimating
conditional mutual information, a measure of conditional
dependence between variables. The mutual information
I(X;Y |Z) between two random variables X,Y condi-
tioned on Z is given by:

∫∫∫
log
(

pZ(z)pX,Y,Z(x,y,z)
pX,Z(x,z)pY,Z(y,z)

)
pX,Y,Z(x, y, z) dx dy dz .

Furthermore,

I(X;Y |Z) = I(X;Y, Z)− I(X;Z)

= H(X,Z) +H(Y, Z)−H(Z)−H(X,Y, Z) . (1)

Hence, estimating I(X;Y |Z) reduces to estimating en-
tropy, the approach we shall take. Specifically, we use the
Von Mises estimator Ĥvm, defined in Section 2.1, which has
theoretical and practical advantages. First, this estimator is
straightforward to compute by the usual trick of replacing
the integration step with a Monte Carlo type summation.
Second, when combined with a (nonparametric) kernel es-
timate of the density, under smoothness1 assumptions on
the joint, Ĥvm converges at the parametric rate O(n−1/2),
and hence escapes the curse of dimensionality. Finally, it is
computationally efficient: its time complexity is linear in
the dimension and quadratic in the number of samples.

Contributions Our main contributions are as follows:

(i) We establish an exponential concentration inequality
for Ĥvm when the joint density is computed via kernel
density estimation (KDE). This allows for deriving a
tighter sample complexity bound for Ĥvm compared
to those obtained by a standard appeal to Markov’s
inequality.

(ii) We define a test for conditional independence, VM-CI,
based on Von Mises estimators and establish its sample
complexity when discriminating the null hypothesis,
denoted by H0, of conditional independence from an
alternative of the form H1 := I(X;Y |Z) > Imin,
with a given level of confidence 1−α. These results are
robust for all sufficiently smooth, compactly supported
distributions with positive lower bounds.

(iii) We show that the established sample complexity guar-
antees of VM-CI yield sample complexity bounds for

1The appropriate notion of smoothness, β−Hölder smoothness,
will be introduced in Definition 1.

any constraint-based causal discovery algorithm un-
der mild smoothness assumptions. As an example, we
present these bounds for two popular methods, PC and
GS. To the best of our knowledge, these are the first
sample complexity guarantees for causal discovery al-
gorithms with non-linear models and non-Gaussian
continuous variables.

Outline of the paper The kernel density estimator, as
well as plug-in and Von Mises entropy estimators, are de-
fined in Section 2. In Section 3, we establish the exponential
concentration properties of Ĥvm, define a CI test based on
the former, and derive its error rates. Section 4 is dedicated
to causal discovery, where we derive sample complexity
guarantees for PC and GS algorithms. Numerical experi-
ments are presented in Section 5. Proofs of our theorems
and corollaries are deferred to Appendix A, and further de-
tails on numerical experiments can be found in Appendix
B.

Related Work
Conditional independence testing for continuous vari-
ables In the past decade, several methods for CI testing for
continuous variables have been developed. One approach
(see, e.g., Huang, 2010) is to discretize the conditioning set
Z to a set of bins and perform simple independence tests
in each bin. This strategy suffers from the curse of dimen-
sionality, i.e., as the dimension of Z grows, the number of
required samples increases drastically.

Another range of approaches is based on kernel methods.
These procedures are comprised of two steps. In the first
step, X and Y are separately regressed on Z via kernel ridge
regression (Zhang et al., 2012). In the second step, the inde-
pendence of the residuals is tested. This is often done using
the Hilbert-Schmidt independence criterion (HSIC, Gretton
et al., 2005) or variants of it (Zhang et al., 2012). Recently, a
so-called generalized covariance measure was used in Shah
& Peters (2020) to test the independence of the residuals.
Theoretical guarantees for the second step, i.e., HSIC (as
well as its most recent variants such as Nyström based inde-
pendence criterion, see Kalinke & Szabó, 2023), are now
well understood. The standard parametric rate O(n−1/2)
can be achieved as long as appropriate conditions on the de-
cay rate of the eigenvalues of the corresponding covariance
operator are satisfied. For the first step, namely kernel ridge
regression, as stated in Shah & Peters (2020), achieving the
parametric rate requires the function f : z 7→ E[X |Z = z]
to be β−smooth (say, β−Hölder) with β > d/2. The afore-
mentioned approaches suffer from two main drawbacks.
The first one is the time complexity of kernel ridge regres-
sion: it involves inverting a n× n matrix, which in general,
takes O(n3) operations. This cubic time complexity pre-
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vents the use of the method on large datasets, as we illustrate
in Section 5. The time complexity of our proposed method
is O(dn2) (see Remark 6), which significantly improves
on the former. The second drawback is theoretical: to the
best of our knowledge, only the convergence rate under
the assumptions listed earlier is known, but for instance,
no exponential concentration is established. As a conse-
quence, with existing results, sample complexity guarantees
for these methods are not as tight as ours.

CI testing can also rely on estimating conditional mutual
information: the works by Liu et al. (2012) and Singh &
Póczos (2016) are the most relevant to our study. In both
articles, the authors consider kernel density estimate of the
joint density, in dimension d = 2 in the latter and d ≥ 2
in the former, and prove an exponential concentration for
the plug-in estimator of entropy. In Poczos & Schneider
(2011), the consistency of a plug-in estimator for Rényi
divergences using a k-nearest neighbors (KNN) estimate
of the density was studied. To the best of our knowledge,
the convergence rate of this KNN-based estimator is not
known. Instead, here we consider the Von Mises estimator
combined with a Kernel density estimate (KDE), which is
both easier and efficient to compute, and most importantly,
converges with better rates than the plug-in estimator2. Em-
pirically, as we shall see in Section 5, KNN-based estimators
converge more slowly than the estimator using KDE. An-
other drawback of KNN is that it is not clear how to tune
k in practice, while KDE hyperparameters can be tuned by
cross-validation (see e.g., Wasserman, 2023). Convergence
properties, asymptotic normality, and rates for Von Mises
estimators were studied in Kandasamy et al. (2015). Our
work complements these results by showing an exponential
concentration inequality.

Belghazi et al. (2018) proposed the mutual information
neural network estimator (MINE) for estimating mutual in-
formation between two continuous random variables. They
rewrite the mutual information using the dual representation
of KL divergence (Donsker & Varadhan, 1983), which al-
lows us to formulate the estimation problem as a function
optimization. They consider a family of functions parame-
terized by a deep neural network and solve the optimization
using stochastic gradient descent. They derive a sample
complexity bound for an estimator which approximates the
true mutual information with ε error. The bound scales
as Ω(d log d/ε2) and could be applied directly to derive
sample complexity bounds for causal discovery algorithms.
However, such bounds are overly dependent on dimension
d. In practice, the estimate requires over 2× 106 to begin
to converge, which far exceeds the number of samples we

2As a consequence, our smoothness assumption required to
obtain the parametric rate O(n−1/2) – the best we can hope for –
is weaker than those in Singh & Póczos (2016) (β > d/2 versus
β > d).

require (see Section 5).

A recent work (Akbari et al., 2023) studies a different ap-
proach based on optimal transport (OT). The idea is first to
learn a parametric lower triangular monotone map between
the unknown joint distribution p and a reference distribution
q, typically a standard isotropic Gaussian. Once this map
is learned, they can estimate the joint distribution p and re-
cover the conditional independence relationships. Although
this method appears to be of practical interest, no theoretical
guarantees are available, e.g. its consistency is not proved.

Sample complexity in causal discovery Sample complex-
ity for causal discovery has been investigated in the past two
decades. For the most part, these works rely on simplifying
assumptions such as the linearity and/or Gaussianity of the
model. For instance, Kalisch & Bühlman (2007); Ghoshal
& Honorio (2017) study the case where variables are Gaus-
sian, for which CI testing boils down to estimating partial
correlations. Other works have considered linear models
(Chen et al., 2019) or imposed additional assumptions on
the variance of the noise (Park & Raskutti, 2018; Gao et al.,
2020). Another well-studied case is that of discrete variables
(Friedman & Yakhini, 2013; Zuk et al., 2012; Wadhwa &
Dong, 2021). For instance, in this context, Wadhwa & Dong
(2021) established the sample complexity of two causal dis-
covery algorithms: inferred causation (IC) and PC, using
the CI test introduced by Canonne et al. (2018). This CI test
is designed for testing the conditional independence for dis-
crete distributions p, namely testing H0 := X ⊥⊥ Y |Z vs
H1 := supq TV(p, q) > ε, where TV is the total variation
distance, ε > 0. The supremum is over discrete probability
mass functions such that X ⊥⊥q Y |Z. They showed that
the output of the CI test is correct with a probability of
at least 2/3. In general, testing causal directions requires
additional assumptions or information. In the bivariate dis-
crete case, Acharya et al. (2023) recently established the
sample complexity of distinguishing cause from effect when
interventional data is available. They obtain a sample com-
plexity which depends on the domain size and characterize
the trade-off between the required number of observational
and interventional samples.

2. Background on Kernel Density Estimation
and Entropy Estimation

We begin by presenting some definitions and notations that
appear throughout the paper. Notations f = o(g), f = O(g)
and f = Θ(g) refer to standard Landau notations. The
norm ∥ · ∥1 denotes the L1 norm of a vector in Rd. We
assume the d−dimensional vector X takes values in X , a
compact subset of Rd. Given a tuple s = (s1, . . . , sd) of
non negative integers, we define |s| :=

∑d
i=1 sj , xs :=

xs1
1 · · ·xsd

d , s! := s1! · · · sd!, and Ds denotes the operator
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Ds := ∂|s|

∂s1x1...∂
sdxd

.

Definition 1. (Hölder class, see e.g., Tsybakov, 2008, Def-
inition 1.2) For L > 0 and a positive integer β, f : X ⊆
Rd → R belongs to the Hölder class Σ(β, L) on X if f is
β times differentiable, and if for s = (s1, . . . , sd) such that
|s| = β, Dsf is bounded by L, uniformly in s and x, that is
sups:|s|=β supx∈X |Dsf(x)| ≤ L . f is said to be β-Hölder
smooth if f ∈ Σ(β, L) for some L > 0.

For any k times differentiable function g on X ⊆ Rd, and
a ∈ X , we denote by gk,a the truncated degree k Taylor
expansion of g at a, i.e.

gk,a(x) :=
∑

s:|s|≤k

Dsg(a)

s!
(x− a)s .

2.1. Plug-in versus Von Mises Estimator for Entropy

Assume we have access to n samples (x(i))1≤i≤n =

((x
(i)
1 , . . . , x

(i)
d ))1≤i≤n of a d−dimensional random vector

X = (X1, . . . , Xd), with density p with a compact support
X in Rd. We seek to estimate the joint entropy

H(p) := H(X1, . . . , Xd) = −
∫
X
p(x) log p(x) dx . (2)

The plug-in estimator of H is given by

Ĥplug−in := −
∫
X
p̂(x) log p̂(x) dx, (3)

where p̂ is an estimate of the joint probability density. As
discussed in the related work, this estimator was studied by
Liu et al. (2012) and Singh & Póczos (2016). In practice,
computing the numerical approximation of the integral in
(3) is costly when dimension d increases. Herein, we study
the Von Mises estimator defined as follows:

Ĥvm := − 2

n

n∑
i=n/2+1

log p̂(x(i)) . (4)

To estimate the entropy, the data is split into two parts. The
first part is used to estimate the density p̂h, and the second
half is used to estimate Ĥvm using p̂h according to (4). Note
that using Taylor expansion of p 7→ −p log p around p̂ in
(2) results in3:

H(p) = H(p̂)−
∫
X (log p̂(x) + 1)(p(x)− p̂(x)) dx

+O
(∫

X (p(x)− p̂(x))2 dx
)

= −
∫
X p(x) log p̂(x) dx+O

(∫
X (p(x)− p̂(x))2 dx

)
,
(5)

3This is up to justifying swapping the O and the integral, which
will be done later in the proof of Theorem 2.

since
∫
X p(x) dx =

∫
X p̂(x) dx = 1. This motivates the

estimation of H(p) with −
∫
X p(x) log p̂(x) dx. Ĥvm in

(4) is derived by replacing the integral with the Monte Carlo
sum. Expansion (5) is often referred to as the Von Mises
expansion (see Krishnamurthy et al., 2014).

As discussed earlier, to estimate the entropy H , we need to
estimate the joint density p. We discuss an approach based
on Kernel density estimation in the next section. Please
refer to Tsybakov (2008) for more details.

2.2. Kernel Density Estimation

Multivariate kernel density estimation (KDE) provides an
estimate of the density p of the following form. For all
x = (x1, . . . , xd) in X ,

p̂h(x) :=
2

n

n/2∑
i=1

1

hd
Kd

(
x(i) − x

h

)
, (6)

where h := h(n) > 0 is the bandwidth and Kd : Rd →
R is a kernel, satisfying

∫
Kd(x) dx = 1 to ensure that∫

X p̂h(x) dx = 1. Recall that we use the first half of the
samples (x(i))1≤m≤n/2 to compute p̂h.

The choice of Kd is generally very open. However, when
approximating smooth densities, kernels of order ℓ > 0 are
very useful. We define them below.

Definition 2 (Kernels of given order). Let ℓ be a positive
integer. We say that a kernel Kd : Rd → R is a kernel of
order ℓ if x 7→ xsK(x) is integrable for all |s| ≤ ℓ and∫

K(x)dx = 1 and
∫

xsK(x)dx = 0 for |s| = 1, . . . , ℓ .

In particular, a kernel of order ℓ is orthogonal to any poly-
nomial of degree ≤ ℓ with no constant term.

Product kernels In our practical implementations, we
will consider product kernels of the form

Kd(x) = ⊗dK(x) := K(x1) ·K(x2) · · ·K(xd),

where K is a one-dimensional kernel satisfying∫
K(u) du = 1. We hence have

p̂h(x) :=
2

n

n/2∑
i=1

1

hd
K

(
x
(i)
1 − x1

h

)
· · ·K

(
x
(i)
d − xd

h

)
.

Note that in view of Definition 2, if K is of order ℓ > 0 then
⊗dK(x) is also of order ℓ.

Legendre kernels Tsybakov, 2008, in Section 1.2.2 pro-
vides a method to build a one-dimensional kernel sup-
ported on [−1, 1] of any given order β as follows. Let
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{ϕm}m≥0 be the orthonormal basis of Legendre polynomi-
als L2([−1, 1],dx) defined by

ϕm(x) :=

√
2m+ 1

2

1

2mm!

dm

dxm
[(x2 − 1)m] (7)

for all m ≥ 0, with ϕ0(x) =
1√
2

by convention. Then, for
β > 0, the kernel Kβ defined by

Kβ(x) :=

β∑
m=0

ϕm(0)ϕm(x)1|x|≤1 (8)

is of order4 β. We will henceforth refer to kernels Kβ as
Legendre kernels.

3. Exponential Concentration for Entropy
Estimation

In this section, we present one of our main results: the expo-
nential concentration for our MI estimator. For pedagogical
reasons, we begin by presenting the exponential concentra-
tion for the KDE estimator, a result known in the literature.
We then proceed to establish an exponential concentration
for the Von Mises estimator of entropy and, finally, the MI
estimator. A tight upper bound on the error rate of our
VM-CI test follows as a corollary. We recall that the kernel
density estimator p̂h is defined in (6).

3.1. Exponential Concentration for Multivariate Kernel
Density Estimation

To obtain the exponential concentration of p̂h, we must first
establish a few technical conditions on kernel Kd.
Assumption 1 (Assumptions on the kernel Kd).

(1a) Kd is uniformly upper bounded by some κ > 0,

(1b) Kd is of order β (see Definition 2),

(1c) The class of functions

F :=

{
Kd

(
x− ·
h

)
,x ∈ Rd, h > 0

}
satisfies supQ N(F , L2(Q), ε∥F∥L2(Q)) ≤

(
A
ε

)v
,

where A and v are for two positive numbers, N(T, d, ε)
denotes the ε-covering number (see, e.g. John Lafferty, 2008-
2010) of the metric space (T, d), F is the envelope function
of F (i.e. F (x) := supf∈F |f(x)|), and the supremum is
taken over the set of all probability measures on Rd. The
quantity v is called the V C dimension of F .

4Note that by symmetry of Legendre polynomials,
ϕ2m+1(0) = 0 for all m ≥ 0, hence K2ℓ = K2ℓ+1. We
will hence often consider β to be odd so that Kβ is exactly of
order β and not of order β + 1.

Assumption (1c) appears in Giné & Guillou (2002); Rinaldo
& Wasserman (2010) and is at the heart of the exponential
inequality obtained in Liu et al. (2012). This assumption is
known to hold for a large class of kernels (van der Vaart &
Wellner, 1996; Nolan & Pollard, 1987), such as compactly
supported polynomial kernels and Gaussian kernels5.

Remark 1. Kernel Kβ defined in (8) satisfies Assumption 1.
Therefore, product kernel Kd := ⊗dKβ inherits the same
property.

Theorem 1 (Exponential concentration of ∥p− p̂h∥∞). As-
sume that p belongs to the Hölder class Σ(β, L) on X for
some β, L > 0 and that Kd satisfies Assumption 1. Let
h = hn = Θ(n− 1

2β+d ). Then, there exist C1, C2, ε0 > 0

and n0 ≥ 0 such that for all n− β
2β+d (log n)1/2 ≤ εn ≤ ε0:

∀n ≥ n0, P (∥p− p̂h∥∞ > εn) ≤ C1 exp(−C2n
2β

2β+d ε2n) .

The proof of this result, which appears in Appendix A for the
sake of completeness, follows from standard bias analysis
and results in Rinaldo & Wasserman (2010).

3.2. Exponential Concentration for Entropy Estimation

Before stating our result on the exponential concentration
of estimator Ĥvm – which we recall is defined in (4) – we
describe the conditions which density p must satisfy.

Assumption 2 (Assumptions on the density p).

(2a) The support of p, X , is a compact set in Rd,

(2b) p is lower-bounded on X by some pmin > 0,

(2c) p belongs to Hölder class Σ(β, L) for some L > 0.

Remark 2 (Positivity of p̂h). The kernel Kd can take nega-
tive values6, as does p̂h. Hence, log p̂h will not be defined
in general, which poses issues in the definition of Ĥvm. As
proved by Giné and Guillou (see Theorem 2.3 in Giné &
Guillou, 2002), Theorem 1 together with (14) and an appli-
cation of Borel-Cantelli Lemma shows that almost surely,
n

β
2β+d (log n)−1/2∥p − p̂h∥∞ converges to some bounded

random variable C. As a result, if p satisfies (2a), then
almost surely there exists n0 such that for n ≥ n0, p̂h is
point-wise positive. In the sequel, indeed, we assume that n
is large enough.

5Assumption (1c) also holds in the following examples: if
Kd(x) = ϕ(T (x)), where T is a polynomial in Rd and ϕ is a
bounded real function of bounded variation if the graph of Kd

is a pyramid (truncated or not); or if Kd = 1I1×···×Id where
I1, . . . , Id are closed intervals of R (van der Vaart & Wellner,
1996; Nolan & Pollard, 1987).

6For instance, any kernel of order β ≥ 2 needs to take negative
values by definition.
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Remark 3. As seen in the next Theorem, the assumption
that p > pmin is necessary to establish that Ĥvm has an
exponential convergence rate. In practice, for non-lower
bounded densities, one can truncate the density on a com-
pact interval which is large enough so that the entropies of
the densities are close. Since the threshold used in VM-CI
(9) is always a positive constant (Imin/2) in the end this
truncation is always possible.

Theorem 2 (Exponential concentration of Ĥvm in (4)). As-
sume that Kd satisfies Assumption 1 and that p satisfies
Assumption 2. Let h = hn = Θ(n− 1

2β+d ). Then, there exist
C1, C2, C

′
1, C

′
2, ε0 > 0 and n0 ≥ 0, such that for all εn

such that max(n− 2β
2β+d log n, n−1/2) ≤ εn ≤ ε0:

∀n ≥ n0, P(|Ĥvm −H(p)| > εn) ≤ C1e
−C2n

2β
2β+d εn

+ C ′
1e

−C′
2n

1/2εn .

Remark 4. Note that when p is smooth enough (β > d/2),
Ĥvm converges at parametric rate O(n−1/2) which is the
best rate we can hope for.

Remark 5. The well-known rate O(n−min( 1
2 ,

2β
2β+d )) for

Von Mises entropy estimation (see Wasserman, 2023) is
immediate from Theorem 2. Note that when d = 2, we
retrieve the concentration inequality of Liu et al. (2012).
The minimax rates for entropy estimation are known to be
slightly better, O(n−min( 1

2 ,
4β

4β+d )) and can be achieved, but
come at the cost of more complex estimators, requiring
higher order corrections in the Von Mises expansion (5).

3.3. Consequences for Error Rates of VM-CI

We start with an immediate corollary of Theorem 2, which
states a dimension-free exponential concentration bound for
conditional mutual information as long as the probability
distributions are smooth enough. Given our application of
interest, causal discovery, we assume X and Y are both
one-dimensional, but Z is of dimension dZ. In view of (1),
we can estimate I(X;Y |Z) by

Îvm := Ĥvm(X,Z) + Ĥvm(Y,Z)− Ĥvm(Z)− Ĥvm(X,Y,Z) ,

where Ĥvm is the Von Mises estimator in (4).

Corollary 1 (Dimension-free exponential concentration of
Îvm for smooth densities). Assume that

• joint distributions pX,Y,Z, pX,Z, pY,Z, and pZ satisfy
Assumption 2 for some β > 0 such that β > 1 + dZ/2,
and

• kernels involved in estimators Ĥvm(X,Y,Z) (resp.
Ĥvm(X,Z), Ĥvm(Y,Z) and Ĥvm(Z)) satisfy Assump-
tion 1, with β given in the previous bullet.

Choose bandwidth hn as follows:

hn =


Θ(n

− 1
2β+2+dZ ) for Ĥvm(X,Y,Z),

Θ(n
− 1

2β+1+dZ ) for Ĥvm(X,Z) and Ĥvm(Y,Z),

Θ(n
− 1

2β+dZ ) for Ĥvm(Z),

then, there exist C1, C2, ε0 > 0 and n0 ≥ 0 such that for
all constant 0 < ε ≤ ε0,

∀n ≥ n0, P(|Îvm − I(X;Y |Z)| > ε) ≤ C1 exp(−C2n
1/2ε) .

To provide performance guarantees for our CI test, we re-
quire the following mild assumption.

Assumption 3 (Minimum level of dependency). There ex-
ists Imin > 0 such that X , Y , and Z are either conditionally
independent (i.e., X ⊥⊥ Y |Z) or I(X;Y |Z) > Imin.

Under the Assumption 3, we can define the following hy-
pothesis test.

H0 := I(X;Y |Z) = 0 vs. H1 := I(X;Y |Z) > Imin .

The test, VM-CI, is defined as follows.

TVM−CI :=

{
1 if Îvm > Imin/2,

0 elsehow.
(9)

Corollary 2 (Error rates for VM-CI). Under Assumption 3
as well as the assumptions stated in Corollary 1, the sum
of type one and type two errors for TVM−CI is bounded by
O
(
exp(−cn1/2Imin)

)
for some c > 0. Hence, in order to

achieve a confidence level 1 − α ∈ [0, 1) it suffices that

n ≥ Ω
(

1
I2
min

log2
(
1
α

))
.

Remark 6 (Time complexity of VM-CI). Assume that each
evaluation of Kd is done in O(d). Then, each appeal to p̂h
takes O(dn) operations. Hence, Ĥvm, Îvm, and VM-CI can
be computed in O(dn2).

4. Application: Sample Complexity
Guarantees for Causal Discovery

In this section, we present a brief background on causal
discovery and review two classic causal algorithms, PC and
GS, before deriving their sample complexity when using
the VM-CI test. Note that under appropriate assumptions,
these sample complexities are optimal since they inherit the
parametric convergence rate of VM-CI, which is the best
we can hope for.

4.1. Background on Causal Discovery

A directed acyclic graph (DAG) is defined as G = (X, E),
where X = {X1, . . . , Xm} (resp. E ⊆ X × X) denotes
the set of vertices (resp. directed edges) of G, such that G

6
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contains no directed cycle. Each vertex Xk ∈ X represents
a random variable. Vertices X,Y ∈ X are called neighbors
in G if (X,Y ) or (Y,X) belongs to E. We denote the set
of neighbors of X G by NG(X). Causal discovery (a.k.a
structure learning) is the task of learning the causal graph
G from n i.i.d. samples drawn from the joint distribution p,
commonly referred to as the observational distribution.

We assume that G and p satisfy Markov and faithfulness
properties, which state that conditional independence rela-
tionships in p correspond to so-called d-separation (a graph-
ical condition) in G 7. Two DAGs satisfying Markov and
faithfulness properties are Markov equivalent if they have
the same set of d-separations (i.e., encode the same set of
conditional independence). The equivalence class of a DAG
G is called the Markov equivalence class (MEC) of G. It is
well-known that without further assumptions, we can only
learn the underlying causal DAG up to its Markov equiva-
lence from the observational data alone (Spirtes et al., 2000;
Pearl, 2009).

4.2. PC Algorithm (Spirtes et al., 2000)

PC begins with a complete, undirected graph C on the vertex
set X. Starting from ℓ = 0, the algorithm considers pairs of
variables X and Y adjacent in C such that |NC(X)\Y | ≥ ℓ.
For all Z ⊆ NC(X) \ Y such that |Z| = ℓ, PC iteratively
tests X ⊥⊥ Y |Z. If the conditional independence holds for
a subset Z, the edge {X,Y } is removed in C. After step
ℓ = ∆, the maximum degree in G, the process terminates.
The last step of the algorithm consists of orienting the edges
in C, leveraging the information acquired in the previous
phase as well as applying so-called Meek rules (see Meek,
1995). If all CI tests outputs are correct, the final graph C is
the essential graph8 of G. Furthermore, recall that m is the
number of nodes in G.
Theorem 3 (Sample complexity of PC). Assume that all CI
tests involving (X,Y,Z) with X,Y ∈ X and Z ⊆ X, |Z| ≤
∆9, Assumptions 1 (on the kernel), 2 (on the joint), and 3
(on the minimum level of dependency) are satisfied. Let α >
0. Then, PC algorithm using VM-CI tests with threshold
Imin/2 recovers the MEC of G with probability ≥ 1−α, as

long as n ≥ Ω

((
∆+1
Imin

log(m/α)
)2)

.

Remark 7. The sample complexity result of Theorem 3
results from the exponential concentration derived in The-
orem 2. The previously known rate (Wasserman, 2023)
E[|Îvm − I|] ≤ Cn−1/2 and applying Markov’s inequality

7We refer the reader to Pearl (2009) for definitions and further
discussion on this topic.

8The essential graph of G represents the Markov equivalence
class of G. Namely, it has the same skeleton and v-structures (see
Pearl, 2009).

9∆ is the maximum degree or an upper bound on the maximum
degree in G.

yields the much looser10 bound n ≥ Ω

((
m∆+1

αImin

)2)
.

4.3. GS Algorithm (Margaritis & Thrun, 1999)

Definition 3 (Markov boundary). The Markov boundary
of a random variable X in set X, denoted by MB(X), is a
minimal set S ⊆ X\{X} such that X ⊥⊥ X\(S∪{X}) |S.

The GS algorithm first recovers the Markov boundary of
each variable X ∈ X, as follows. Starting with MB(X) =
∅,

1. (Growing phase) While ∃Y ∈ X \ {X} such that
Y ⊥⊥ X |MB(X), add Y to MB(X),

2. (Shrinking phase) While ∃Y ∈ MB(X) such that
Y ̸⊥⊥ X |MB(X) \ {Y }, remove Y from MB(X).

Then, GS recovers the non-oriented graph structure. For ev-
ery X ∈ X and Y ∈ MB(X), a non-oriented edge {X,Y }
is added if

3. for all S ⊆ T, where T is the set with the smaller
cardinality between MB(X)\{Y } and MB(Y )\{X},
it holds that X ̸⊥⊥ Y |S.

Finally, every edge {X,Y } is oriented Y → X if

4. ∃Z ∈ N(X) \ (N(Y ) ∪ {Y }) such that for all S ⊆
W, where W is the set with the smaller cardinality
between MB(Y ) \ {X,Z} and MB(Z) \ {X,Y }, it
holds that Y ̸⊥⊥ Z |S ∪ {X}.

The last step of GS is the same as in PC, namely, it applies
the Meek rules.

Theorem 4 (Sample complexity of GS). Assume that
maxX∈X |MB(X)| ≤ Γ and that for all CI test involv-
ing (X,Y,Z) with X,Y ∈ X,Z ⊆ X, |Z| ≤ Γ, As-
sumptions 1 (on the kernel), 2 (on the joint), and 3 (on
the minimum level of dependency) are satisfied. Then, GS
algorithm using VM-CI tests with threshold Imin/2 recov-
ers the MEC of G with probability ≥ 1 − α, as long as

n ≥ Ω

(
1

Imin
log
(

m2+mΓ22Γ

α

)2)
.

10Note that the sample complexity of PC obtained when MINE
(Belghazi et al., 2018) is used to estimate the mutual informa-

tion scales as Ω
((

(m/2+∆+1)
Imin

log(m/α)
)2

)
, which already im-

proves over Markov inequality but is still much looser than ours.
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Figure 1: Results of the numerical experiments, with the x-axis representing the number of samples (n). The red curves
correspond to our method.
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Figure 2: Underlying causal graph in the experiments.

5. Numerical Experiments
5.1. Experiments for Single Conditional Independence

Test

We compared VM-CI to other CI tests discussed in the
related work, including the KNN-based estimator (Poczos &
Schneider, 2011), MINE (Belghazi et al., 2018), the HSIC-
based CI test 11(Zhang et al., 2012), the OT-based method
(Akbari et al., 2023), and the standard Gaussian partial
correlation test.

We conducted the experiments using power-law distributed

11Provided in Kalainathan et al. (2020).

synthetic data. For each value of n, we ran nexp = 5000
experiments, the first half with X ⊥⊥ Y |Z, the second half
with I(X;Y |Z) > Imin. The resulting estimated errors
(sum of type I and type II errors) are depicted as a function
of n in Figure 1a. In the figures, our method is denoted as
‘KDE’. More details regarding the generative models and
parameters can be found in Appendix B.

These results illustrate that when dealing with non-Gaussian
data, VM-CI outperforms most other methods in terms of
type I and type II errors, except for the HSIC-based method
(Zhang et al., 2012). However, VM-CI competes favorably
with HSIC when the sample size n exceeds 1500, and it is
significantly faster, as demonstrated in Figure 1b. Among
the methods we explored, the OT-based approach of Akbari
et al. (2023) comes close to that of VM-CI, although its
performance and time complexity fall slightly short of VM-
CI.

8
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5.2. Experiments for Causal Discovery Algorithms

In addition to CI tests, we ran experiments to assess PC
performance using VM-CI compared to PC performance
using other CI tests. These experiments were performed on
non-Gaussian synthetic data generated using a Structural
Equation Model (SEM) with the causal graph depicted in
Figure 2.

For each value of n, we conducted 25 experiments and
depicted the overall loss in Figures 1c. The overall loss
is defined as the total number of missing, extra, and mis-
oriented edges in the resulting graph. Additional details
regarding the SEM and its parameters, along with similar
experiments for GS, can be found in Appendix B.

As shown, VM-CI outperforms all methods except HSIC.
Once again, VM-CI is competitive with HSIC when n ≥
1500, and it significantly outpaces HSIC in terms of com-
putational efficiency. It is noteworthy that, despite being an
efficient CI test, the OT-based method performs poorly in
our example. This may be attributed to several factors: (i)
the absence of theoretical guarantees such as consistency
for the OT method; (ii) the lack of robustness of PC/GS
to errors in CI tests12; and (iii) the strong dependence of
the performance of this method on the dimension. The re-
maining results are consistent with the performance of the
CI tests in Figure 1a.

To conclude, we emphasize that among the reviewed meth-
ods, those that compete favorably with VM-CI either suffer
from the lack of theoretical guarantees or have a prohibitive
time complexity, or a combination of both.

6. Conclusion
We established an exponential concentration inequality for
the nonparametric Von Mises estimator. Using this estima-
tor, we designed VM-CI to test conditional independence.
This test achieves optimal parametric rates under smooth-
ness assumptions and provides a tight upper bound for the
error. This further allowed us to compute the sample com-
plexity of causal discovery algorithms using VM-CI, the first
such guarantee for non-linear models and non-Gaussian con-
tinuous variables. Our empirical findings show that VM-CI
overall outperforms other popular conditional independence
tests in terms of time, sample complexity, or both. Meth-
ods competing with VM-CI either require excessive time
complexity or suffer from a lack of theoretical guarantees.

12A single error in one of the many CI tests in PC/GS can lead
to a drastically different graph.

Impact Statement
This work introduces VM-CI, a novel conditional indepen-
dence test utilizing a nonparametric Von Mises estimator for
the entropy of multivariate distributions. By establishing an
exponential concentration inequality for this estimator, we
design a test that achieves optimal parametric rates under
smoothness conditions. This provides the first sample com-
plexity guarantee for causal discovery in non-linear models
with non-Gaussian continuous variables. This method has
broad implications across multiple domains, including pol-
icy analysis, public health, economics, and environmental
research, by offering more robust and efficient tools for
causal inference. We anticipate no specific ethical issues or
negative societal impacts resulting from this work.
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A. Proofs
A.1. Proof of Theorem 1

Proof of Theorem 1. To prove our result, we use the standard bias-variance decomposition:

|p(x)− p̂h(x)| ≤ |p(x)− ph(x)|︸ ︷︷ ︸
bias

+ |ph(x)− p̂h(x)|︸ ︷︷ ︸
variance

, (10)

where we recall that ph := E[p̂h]. We bound the bias and variance terms separately.

Bounding the bias.

p(x)− ph(x) = p(x)− 2

n

n/2∑
i=1

∫
1

hd
Kd

(
x(i) − x

h

)
p(x(i)) dx(i)

= p(x)−
∫

1

hd
Kd

(
x′ − x

h

)
p(x′) dx′

(a)
=

∫
Kd(y)(p(x)− p(x+ hy)) dy, (11)

where (a) results from change of variable y = (x′ − x)/h. We now take advantage of the fact that functions in Σ(β, L) are
well approximated by their Taylor expansions. Namely, we have the following classical result:

Lemma 1. If g ∈ Σ(β, L) on X ⊆ Rd, then for all a,x ∈ X ,

|g(x)− gβ−1,a(x)| ≤ L
∥x− a∥β1

β!
. (12)

Proof of Lemma 1. We apply Taylor’s theorem at the order β − 1. There exists c ∈ [0, 1] such that

g(x) =
∑

|s|≤β−1

Dsg(a)

s!
(x− a)s +

∑
|s|=β

Dsg(a+ c(x− a))

s!
(x− a)s

Hence

|g(x)− gβ−1,a(x)| ≤
∑
|s|=β

L
|x− a|s

s!
= L

∥x− a∥β1
β!

,

by the multinomial theorem.

With Lemma 1 in mind, (11) becomes

|p(x)− ph(x)| ≤
∣∣∣∣∫ Kd(y)(p(x)− pβ−1,x(x+ hy)) dy

∣∣∣∣
+

∫
|Kd(y)(p(x+ hy)− pβ−1,x(x+ hy))|dy (13)

Note that p(x)− pβ−1,x(x+ hy) is a polynomial in y, of degree ≤ β, and with no constant term. Since Kd is of order β,
the first term of the RHS of (13) evaluates to 0. This gives in turn, applying Lemma 1,

|p(x)− ph(x)| ≤ Lhβ

∫
|Kd(y)|∥y∥β1 dy ≤ Chβ , (14)

for some constant C > 0, since y 7→ |Kd(y)|∥y∥β1 is integrable by assumption. Note that the bound (14) is uniform in
x ∈ X .

Bounding the variance. The variance satisfies an exponential concentration property, thanks to Assumption (1c). We
leverage on a result from (Rinaldo & Wasserman, 2010), obtained by applying some previously established results from
(Giné & Guillou, 2002).

12
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Proposition 1 (Proposition 9 in (Rinaldo & Wasserman, 2010)). Assume that Kd satisfies (1a) and (1c). Then, for any

D1 > 0 there exists constants D2, D3, ε0 > 0 and n0 > 0 such that, if hn → 0, hd
n

| log hn| → 0, and D1

√
| log hn|
nhd

n
≤ εn ≤ ε0,

then

P
(
sup
x∈X

|ph(x)− p̂h(x)| > εn

)
≤ D2 exp

(
−D3nh

d
nε

2
n

)
(15)

Completing the proof. Taking hn = Θ(n− 1
2β+d ) (minimizing the MISE Θ(h2β) + Θ( 1

nhd )), D1 = 1 and

n− β
2β+d (log n)1/2 ≤ εn/2 ≤ ε0 ensures that Proposition 1 applies for εn/2. Applying (14) to h = hn gives that

almost surely ∥p− ph∥∞ = O(n− β
2β+d ) < εn/2 for n large enough. Now, for n large enough,

P(∥p− p̂h∥∞ > εn) ≤ P(∥p− ph∥∞ > εn/2) + P(∥ph − p̂h∥∞ > εn/2)

≤ 0 +D2 exp
(
−C2n

− 2β
2β+d ε2n

)
,

which ends the proof of Theorem 1.

A.2. Proof of Theorem 2

Proof of Theorem 2. As stated in (5), the first step is to rigorously justify the Von Mises expansion. Note that since
(−y log y)′ = − log y − 1 and (−y log y)′′ = −1/y, then for a given x ∈ X ,

| − p(x) log p(x) + p̂h(x) log p̂h(x) + (log p̂h(x) + 1)(p(x)− p̂h(x))| ≤
(
sup
x∈X

1

|p̂h(x)|

)
(p(x)− p̂h(x))

2, (16)

and since p is lower bounded by pmin > 0, then by Remark 2, for n large enough, supx∈X
1

|p̂h(x)| ≤ 2/pmin and we can
integrate of (16) over X to indeed get

H(p) = H(p̂h)−
∫
X
(log p̂h(x) + 1)(p(x)− p̂h(x)) dx+O

(∫
X
(p(x)− p̂h(x))

2 dx

)
= −

∫
X
p(x) log p̂h(x) dx+O

(∫
X
(p(x)− p̂h(x))

2 dx

)
. (17)

This in turn implies that

Ĥvm −H(p) = − 2

n

n∑
i=n/2+1

log p̂h(x
(i)) +

∫
X
p(x) log p̂h(x) dx+O

(∫
X
(p(x)− p̂h(x))

2 dx

)
. (18)

The first two terms are the difference between an empirical mean and its expectation w.r.t. p. Recall that n is large enough
so that ∥p− p̂h∥∞ < pmin/2 (Remark 2). Hence, since p is bounded on the compact set X , so is p̂h. Every term in the sum∑n

i=n/2+1
2
n log p̂h(x

(i)) is almost surely bounded by c/n where c > 0 is a constant. Azuma-Hoeffding inequality yields

P

∣∣∣∣∣∣− 2

n

n∑
i=n/2+1

log p̂h(x
(i)) +

∫
X
p(x) log p̂h(x) dx

∣∣∣∣∣∣ > εn/2

 ≤ 2 exp

(
− ε2n
8
∑n

i=n/2+1(c/n)
2

)

= 2 exp

(
−ε2nn

4c

)
≤ C ′

1 exp
(
−C ′

2n
1/2εn

)
, (19)

since n1/2εn > 1 by assumption. The second part of the result comes from the inequality

P
(∫

X
(p(x)− p̂h(x))

2 dx > t

)
≤ P

(
sup
x∈X

|p(x)− p̂h(x)| >
√
t/Vol(X )

)
, (20)

and appealing to Theorem 1 with a deviation
√
εn/C4 where C4 > 0 is some constant (depending on pmin and Vol(X )).

13
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A.3. Proof of Corollary 1

Proof of Corollary 1. The proof of Corollary 1 is a straightforward application of Theorem 2 to Ĥvm(X,Y,Z), Ĥvm(X,Z),
Ĥvm(Y,Z) and Ĥvm(Z). The dimension-free rate comes from the assumption β > 1+dZ/2, which implies that 2β

2β+(2+dZ) ,
2β

2β+(1+dZ) and 2β
2β+dZ

are always larger than 1/2.

A.4. Proof of Corollary 2

Proof of Corollary 2. Let I := I(X;Y |Z). The sum of type one and type two errors of T is easily bounded for n large
enough by applying Corollary 1 as follows.

P(reject H0 |H0) + P(accept H0 |H1) ≤ P(|Îvm − I| > Imin/2) + P(|Îvm − I| > Imin/2)

≤ 2C1 exp
(
−C2n

1/2Imin/2
)
.

Finding n such that the RHS of the above is less than α concludes the proof.

A.5. Proof of Theorem 3

Proof of Theorem 3. By definition, the number of CI tests required by this algorithm to recover the MEC is upper bounded
by 2

(
m
2

)∑∆−1
i=0

(
m−1

i

)
= O(m∆+1). Using Corollary 2 and the union bound, the probability that at least one of the outputs

of these CI tests is incorrect is less than:

C1m
∆+1 exp

(
−C2n

1/2Imin/2
)
.

Finding n such that the RHS of the above is less than α gives n ≥ Ω

((
∆+1
Imin

log(m/α)
)2)

and concludes the proof.

A.6. Proof of Theorem 4

Proof of Theorem 4. Steps 1-2 conduct O(m) CI tests in the worst case, hence O(m2) CI tests are needed to recover all
Markov boundaries. Recall maxX∈X |MB(X)| ≤ Γ. Then Step 3 needs O(mΓ2Γ) CI tests. Finally, Step 4 performs
O(mΓ22Γ) tests at the worst case. The rest of the steps of the algorithm do not require CI tests. Therefore, GS requires
O(m2 +mΓ22Γ) number of CI tests.

Using Corollary 2 and the union bound, the probability that at least one of the outputs of these CI tests is incorrect is less
than:

(m2 +mΓ22Γ)m∆+1 exp
(
−C2n

1/2Imin/2
)
.

Finding n such that the RHS of the above is less than α gives n ≥ Ω

(
1

Imin
log
(

m2+mΓ22Γ

α

)2)
and concludes the

proof.

B. Further on Numerical Experiments
B.1. Single Conditional Independence Test

Model In our tests, X and Y are one dimensional and Z = (Z1, Z2) is two dimensional. X,Y, Z1, Z2 are distributed
on [0, 1] with same marginal distributions pβ(x) = (β + 1.15)xβ+0.151[0,1](x) for some positive integer β. Note that this
distribution – often referred to as power law distribution – is β−Hölder smooth (see Definition 1). Next, we denote by
U([0, 1]) the uniform law on [0, 1]. We generate the data via inverse transform sampling as follows:

UZ,1 ∼ U([0, 1])
UZ,2 ∼ U([0, 1])

UX | (UZ,1, UZ,2) ∼ t1δUZ,1
+ t2δUZ,2

+ (1− t1 − t2)U([0, 1])
UY | (UZ,1, UZ,2, UX) ∼ t1δUZ,1

+ t2δUZ,2
+ txyδUX

+ (1− t1 − t2 − txy)U([0, 1]),

14
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where t1, t2, txy are non-negative real numbers such that t1 + t2 + txy < 1. Then X,Y, Z1 and Z2 are obtained as follows:
X = (UX)

1
β+1.15 , Y = (UY )

1
β+1.15 , Z1 = (UZ,1)

1
β+1.15 , and Z2 = (UZ,2)

1
β+1.15 . Note that it suffices to take txy = 0 to get

conditional independence of X and Y given Z. In the case where X ⊥⊥ Y |Z we took β = 3 and (t1, t2, txy) = (0.2, 0.2, 0).
For X ̸⊥⊥ Y |Z we took β = 3 and (t1, t2, txy) = (0.2, 0.1, 0.3) and Imin = 0.11.

Parameters We present in Table 1 the parameters used for numerical experiments on CI tests.

Method Reference Parameters Values

KDE + Von Mises This paper
β 3

Imin 0.11
γ s.t. hn = γn− 1

2β+2+2 0.35

KNN + Von Mises (Poczos & Schneider,
2011)

Imin 0.05
number of bins k ⌊

√
n⌋

MINE (Belghazi et al., 2018) Imin 0.11
number of epochs 10 if n ≤ 100, 50 if n = 250, 100 otherwise

HSIC (Zhang et al., 2012) statistical significance α 0.001
Gaussian – statistical significance α 0.05
OT-based (Akbari et al., 2023) threshold δ 1.7

Table 1: Parameters for CI tests in numerical experiments

Further comments on performance of MINE As shown in Figure 1a, MINE ((Belghazi et al., 2018)) performs very
poorly in our experiments; the total error is close to 1. This is because the number of samples at which we work is way
smaller than the number of samples required for the method to work, namely ∼ 2× 106.

B.2. PC and GS Algorithms

The model For our experiments in Section 5.2, we used the following Structural Equation Model (SEM) to generate the
data:

X1 := U1

X2 := U2

X3 := X2
1 +X2 + U3

X4 := U4

X5 := 0.5×X2
1 − 0.5×X2

4 + U5

X6 := X3
4 −X5 + U6,

where Ui variables are i.i.d. power-law distributed with density pβ(x) = (β + 1.15)xβ+0.151[0,1](x). It is clear from this
SEM that the corresponding causal graph is the one displayed in Figure 2.

Parameters Table 2 provides the parameters employed in numerical experiments for the PC and GS algorithms with
various CI testers.

Experiments for GS Similar to Section 5.2, we conducted experiments to evaluate the performance of the GS algorithm
when using VM-CI as a CI tester vs. other CI testers. To do so, we used the aforementioned SEM. Results for GS are shown
in Figure 3. Similar to the results observed for the PC algorithm, this figure illustrates that VM-CI surpasses the majority of
approaches, with HSIC being the only exception. Nevertheless, analogous to PC, VM-CI competes with HSIC when the
number of samples increases and offers significantly better computational efficiency than HSIC.

15
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Method Reference Parameters Values

KDE + Von Mises This paper
β 3

Imin 0.01
γ s.t. hn = γn− 1

2β+2+2 0.35

KNN + Von Mises (Poczos & Schneider,
2011)

Imin 0.05
number of bins k ⌊

√
n⌋

MINE (Belghazi et al., 2018) Imin 0.01
number of epochs 10 if n ≤ 100, 50 if n = 250, 100 otherwise

HSIC (Zhang et al., 2012) statistical significance α 0.001
Gaussian – statistical significance α 0.05
OT-based (Akbari et al., 2023) thresholds δ(dZ = 2, . . . , 6) [1.9, 1.8, 1.2, 0.4, 0.4]

Table 2: Parameters for PC and GS tests in numerical experiments

250 500 750 1000 1250 1500 1750 2000

0

1

2

3

4

5
Overall loss

GS_KDE
GS_KNN
GS_MINE
GS_HSIC
GS_Gaussian
GS_OT

(a) Overall loss of GS algorithm with various CI testers.
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(b) Runtime (s) of GS algorithm with various CI testers.

Figure 3: Results of the numerical experiments for GS (on the x-axis: number of samples n). The red curves correspond to
our method.
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