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Abstract

Human motion taxonomies serve as high-level hi-

erarchical abstractions that classify how humans

move and interact with their environment. They

have proven useful to analyse grasps, manipula-

tion skills, and whole-body support poses. De-

spite substantial efforts devoted to design their

hierarchy and underlying categories, their use

remains limited. This may be attributed to the

lack of computational models that fill the gap be-

tween the discrete hierarchical structure of the tax-

onomy and the high-dimensional heterogeneous

data associated to its categories. To overcome

this problem, we propose to model taxonomy data

via hyperbolic embeddings that capture the as-

sociated hierarchical structure. We achieve this

by formulating a novel Gaussian process hyper-

bolic latent variable model that incorporates the

taxonomy structure through graph-based priors

on the latent space and distance-preserving back

constraints. We validate our model on three differ-

ent human motion taxonomies to learn hyperbolic

embeddings that faithfully preserve the original

graph structure. We show that our model properly

encodes unseen data from existing or new taxon-

omy categories, and outperforms its Euclidean

and VAE-based counterparts. Finally, through

proof-of-concept experiments, we show that our

model may be used to generate realistic trajecto-

ries between the learned embeddings.

1. Introduction

Robotic systems or virtual characters that exhibit human-

or animal-like capabilities are often inspired by biological

insights (Siciliano & Khatib, 2016). In the particular context

of motion generation, it is first necessary to understand how
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humans move and interact with their environment to then

generate biologically-inspired motions and behaviors of

robotic hands, arms, humanoids, or animated characters.

In this endeavor, researchers have proposed to structure

and categorize human hand grasps and body poses into

hierarchical classifications known as taxonomies. Their

structure depends on the sensory variables considered to

categorize human motions and the interactions with the

environment, as well as on associated qualitative measures.

Different taxonomies have been proposed in the area of hu-

man and robot grasping (Cutkosky, 1989; Feix et al., 2016;

Abbasi et al., 2016; Stival et al., 2019). Feix et al. (2016) in-

troduced a hand grasp taxonomy whose structure was mainly

defined by the hand pose and the type of contact with the

object. As such taxonomy heavily depends on subjective

qualitative measures, Stival et al. (2019) proposed a quan-

titative tree-like hand grasp taxonomy based on muscular

and kinematic patterns. A similar data-driven approach was

used to design a grasp taxonomy based on contact forces

in (Abbasi et al., 2016). Bullock et al. (2013) introduced a

hand-centric manipulation taxonomy that classifies manipu-

lation skills according to the type of contact with the objects

and the object motion imparted by the hand. A different

strategy was developed by Paulius et al. (2019), who de-

signed a manipulation taxonomy based on a categorization

of contacts and motion trajectories. Humanoid robotics also

made significant efforts to analyze human motions, thus

proposing taxonomies as high-level abstractions of human

motion configurations. For example, Borràs et al. (2017)

analyzed the contacts between the human limbs and the en-

vironment to design a whole-body support pose taxonomy.

Besides their analytical purpose in biomechanics or robotics,

some of the aforementioned taxonomies were employed

for modeling grasp actions (Romero et al., 2010; Lin &

Sun, 2015), for planning contact-aware whole-body pose

sequences (Mandery et al., 2016a), and for learning manip-

ulation skills embeddings (Paulius et al., 2020). However,

despite most of these taxonomies carry a well-defined hi-

erarchical structure, it was often overlooked. First, these

taxonomies were usually employed for classification tasks

where only the tree leaves were used to define target classes,

disregarding the full taxonomy structure (Feix et al., 2016;
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Abbasi et al., 2016). Second, the discrete representation

of the taxonomy categories hindered their use for motion

generation (Romero et al., 2010).

Arguably the main difficulty of leveraging human motion

taxonomies is the lack of computational models that exploit

(i) the domain knowledge encoded in the hierarchy, and (ii)

the information of the high-dimensional data associated to

the taxonomy categories. We tackle this problem from a

representation learning perspective by modeling taxonomy

data as embeddings that capture the associated hierarchical

structure. Inspired by the pioneer work of Krioukov et al.

(2010) on the use of hyperbolic geometry on complex hierar-

chies, and by recent advances on hierarchical representation

learning (Nickel & Kiela, 2017; 2018; Mathieu et al., 2019;

Montanaro et al., 2022), we propose to leverage the hyper-

bolic manifold (Ratcliffe, 2019) to learn such embeddings.

An important property of the hyperbolic manifold is that

distances grow exponentially when moving away from the

origin, and shortest paths between distant points tend to pass

through it, resembling a continuous hierarchical structure.

Therefore, we hypothesize that the geometry of the hyper-

bolic manifold allows us to learn embeddings that comply

with the hierarchical structure of human motion taxonomies.

In this paper we propose a Gaussian process hyperbolic

latent variable model (GPHLVM) to learn embeddings of

taxonomy data on the hyperbolic manifold. Our first con-

tribution tackles the challenges that arise when imposing a

hyperbolic geometry to the latent space of the well-known

GPLVM (Lawrence, 2003; Titsias & Lawrence, 2010), a

model that has been successfully applied in human pose

estimation and motion generation (Lawrence & Quiñonero

Candela, 2006; Urtasun et al., 2008; Gupta et al., 2008; Ding

& Fan, 2015; Lalchand et al., 2022b), and in complex set-

tings such as robotic dressing assistants (Nishanth Koganti

& Ikeda, 2019). Specifically, we reformulate the Gaus-

sian distribution, the kernel, and the optimization process

of the GPLVM to account for the geometry of the hyper-

bolic latent space. To do so, we leverage the hyperbolic

wrapped Gaussian distribution (Nagano et al., 2019), and

provide a positive-definite-guaranteed approximation of the

hyperbolic kernel proposed by McKean (1970). Moreover,

we resort to Riemannian optimization (Absil et al., 2007;

Boumal, 2023) to optimize the GPHLVM embeddings. Our

GPHLVM is conceptually similar to the GPLVM for Lie

groups (Jensen et al., 2020), which also imposes geometric

properties to the GPLVM latent space. However, our formu-

lation is specifically designed for the hyperbolic manifold

and fully built on tools from Riemannian geometry. More-

over, unlike (Tosi et al., 2014) and (Jørgensen & Hauberg,

2021), where the latent space was endowed with a pullback

Riemannian metric learned via the GPLVM mapping, we

impose the hyperbolic geometry to the GPHLVM latent

space as an inductive bias to comply with the hierarchical

structure of taxonomy data. As a second contribution, we

introduce mechanisms to enforce the taxonomy structure

in the learned embeddings through graph-based priors on

the latent space and via graph-distance-preserving back con-

straints (Lawrence & Quiñonero Candela, 2006; Urtasun

et al., 2008).

We validate our approach on three distinct human motion

taxonomies: a bimanual manipulation taxonomy (Krebs

& Asfour, 2022), a hand grasps taxonomy (Stival et al.,

2019), and a whole-body support pose taxonomy (Borràs

et al., 2017). The proposed GPHLVM successfully learns

hyperbolic embeddings that comply with the original graph

structure of all the considered taxonomies, and it properly

encodes unseen poses from existing or new taxonomy nodes.

Moreover, we show how we can exploit the continuous

geometry of the hyperbolic manifold to generate trajectories

between different embeddings pairs via geodesic paths in

the latent space. We leverage this to, for example, generate

realistic trajectories that are competitive with state-of-the-art

character animation, while being trained at low data regimes.

Our results show that GPHLVM consistently outperforms

its Euclidean and VAE-based counterparts. The source code

and video accompanying the paper are available at https:

//sites.google.com/view/gphlvm/.

2. Background

Gaussian Process Latent Variable Models: A GPLVM

defines a generative mapping from latent variables

{xn}
N
n=1,xn ∈ R

Q to observations {yn}
N
n=1,yn ∈ R

D by

modeling the corresponding non-linear transformation with

Gaussian processes (GPs) (Lawrence, 2003). The GPLVM

is described as,

yn,d ∼ N (yn,d; fn,d, σ
2
d)

with fn,d ∼ GP(md(xn), kd(xn,xn)),

and xn ∼ N (0, I),

(1)

where yn,d denotes the d-th dimension of the observation yn,

md(·) : R
Q → R and kd(·, ·) : R

Q × R
Q → R are the GP

mean and kernel function, respectively, and σ2
d is a hyper-

parameter. Conventionally, the hyperparameters and latent

variables of the GPLVM were optimized using maximum

likelihood or maximum a posteriori (MAP) estimates. As

this does not scale gracefully to large datasets, contemporary

methods use inducing points and variational approximations

of the evidence (Titsias & Lawrence, 2010). In contrast to

neural-network-based generative models, GPLVMs are data

efficient and provide automatic uncertainty quantification.

Riemannian geometry: To understand the hyperbolic

manifold, it is necessary to first define some basic Rieman-

nian geometry concepts (Lee, 2018). To begin with, consider

a Riemannian manifoldM, which is a locally Euclidean

topological space with a globally-defined differential struc-

ture. For each point x ∈M, there exists a tangent space
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Figure 1: Left: Illustration of the Lorentz L2 and Poincaré P2 models of the hyperbolic manifold. The former is depicted as the gray
hyperboloid, while the latter is represented by the blue circle. Both models show a geodesic ( ) between two points x1 ( ) and x2 ( ).
The vector u ( ) lies on the tangent space of x1 such that u = Log

x1
(x2). Right: Hand grasp taxonomy (Stival et al., 2019) used in

one of our experiments. Grasp types are organized in a tree structure based on their muscular and kinematic properties. Each leaf node of
the tree is a hand grasp type. The lines represent the depth of the leaves, e.g., PE and IE are at distance 2 and 3 from the root node.

TxM that is a vector space consisting of the tangent vectors

of all the possible smooth curves passing through x. A Rie-

mannian manifold is equipped with a Riemannian metric,

which permits to define curve lengths inM. Shortest-path

curves, called geodesics, can be seen as the generalization

of straight lines on the Euclidean space to Riemannian man-

ifolds, as they are minimum-length curves between two

points inM. To operate with Riemannian manifolds, it is

common practice to exploit the Euclidean tangent spaces. To

do so, we resort to mappings back and forth between TxM
andM, which are the exponential and logarithmic maps.

The exponential map Expx(u) : TxM→M maps a point

u in the tangent space of x to a point y on the manifold, so

that it lies on the geodesic starting at x in the direction u,

and such that the geodesic distance dM between x and y

equals the distance between x and u. The inverse operation

is the logarithmic map Logx(u) :M→ TxM. Finally, the

parallel transport Px→y

(
u
)
: TxM→ TyM operates with

manifold elements lying on different tangent spaces.

Hyperbolic manifold: The hyperbolic space H
d is the

unique simply-connected complete d-dimensional Rieman-

nian manifold with a constant negative sectional curva-

ture (Ratcliffe, 2019). There are several isometric models

for the hyperbolic space, in particular, the Poincaré ball Pd

and the Lorentz (hyperboloid) model Ld (see Fig. 1-left).

The latter representation is chosen here as it is numerically

more stable than the former, and thus better suited for Rie-

mannian optimization (see App. A.1 for the principal Rie-

mannian operations and their illustration on the Lorentz

model). However, the Poincaré model provides a more intu-

itive representation and is here used for visualization. This

is easily achieved by leveraging the isometric mapping be-

tween both models (see App. A.2 for details). An important

property of the hyperbolic manifold is the exponential rate

of the volume growth of a ball with respect to its radius. In

other words, distances in H
d grow exponentially when mov-

ing away from the origin, and shortest paths between distant

points on the manifold tend to pass through the origin, re-

sembling a continuous hierarchical structure. Because of

this, the hyperbolic manifold is often exploited to embed

hierarchical data such as trees or graphs (Nickel & Kiela,

2017; Chami et al., 2020). Although its potential to em-

bed discrete data structures into a continuous space is well

known in the machine learning community, its application

in motion analysis and generation is presently scarce.

Hyperbolic wrapped Gaussian distribution: Probabilis-

tic models on Riemannian manifolds demand to work with

probability distributions that consider the manifold geom-

etry. We use the hyperbolic wrapped distribution (Nagano

et al., 2019), which builds on a Gaussian distribution on the

tangent space at the origin µ0 = (1, 0, . . . , 0)T of Ld, that

is then projected onto the hyperbolic space after transporting

the tangent space to the desired location. Intuitively, the

construction of this wrapped distribution is as follows (see

also Fig. 6): (1) sample a point ṽ ∈ R
d from the Euclidean

normal distribution N (0,Σ), (2) transform ṽ to an element

of Tµ0
Ld ⊂ R

d+1 by setting v = (0, ṽ)T, (3) apply the

parallel transport u = Pµ0→µ

(
v
)
, and (4) project u to Ld

via Expµ(u). The resulting probability density function is,

logNLd(x;µ,Σ) = logN (v;0,Σ) (2)

− (d− 1) log (sinh(∥u∥L)/∥u∥L) ,

with v = Pµ→µ0

(
u
)
, u = Logµ(x), and ∥u∥2

L
= ⟨u,u⟩µ.

The hyperbolic wrapped distribution (Nagano et al., 2019)

has a more general expression given in (Skopek et al., 2020).

3. The proposed GPHLVM

We present the GPHLVM, that extends GPLVM to hyper-

bolic latent spaces. A GPHLVM defines a generative map-

ping from the hyperbolic latent space LQ to the observation

space, e.g., the data associated to the taxonomy, based on

GPs. By considering independent GPs across the observa-

tion dimensions, the GPHLVM is formally described as,

yn,d ∼ N (yn,d; fn,d, σ
2
d)

with fn,d ∼ GP(md(xn), k
LQ

d (xn,xn))

and xn ∼ NLQ(µ0, αI),

(3)

where yn,d denotes the d-th dimension of the observation

yn ∈ R
D and xn ∈ L

Q is the corresponding latent variable.

Our GPHLVM is built on hyperbolic GPs, characterized by
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a mean function md(·) : LQ → R (usually set to 0), and

a kernel kL
Q

d (·, ·) : LQ × LQ → R. These kernels encode

similarity information in the latent hyperbolic manifold and

should reflect its geometry to perform effectively, as de-

tailed in §. 3.1. Also, the latent variable x ∈ LQ is assigned

a hyperbolic wrapped Gaussian prior NLQ(µ0, αI) based

on (2), where µ0 is the origin of LQ, and the parameter α
controls the spread of the latent variables in LQ. As Eu-

clidean GPLVMs, our GPHLVM can be trained by finding

a MAP estimate or via variational inference. However, spe-

cial care must be taken to guarantee that the latent variables

belong to the hyperbolic manifold, as explained in §. 3.2.

3.1. Hyperbolic kernels

For GPs in Euclidean spaces, the squared exponential (SE)

and Matérn kernels are standard choices (Rasmussen &

Williams, 2006). In the modern machine learning literature

these were generalized to non-Euclidean spaces such as

manifolds (Borovitskiy et al., 2020; Jaquier et al., 2021)

or graphs (Borovitskiy et al., 2021). The generalized SE

kernels can be connected to the much studied heat kernels.

These are given (cf. Grigoryan & Noguchi (1998)) by,

kL
2

(x,x′) =
σ2

C∞

∫ ∞

ρ

se−s2/(2κ2)

(cosh(s)− cosh(ρ))1/2
ds, (4)

kL
3

(x,x′) =
σ2

C∞

ρ

sinh ρ
e−ρ2/(2κ2), (5)

where ρ = distLd(x,x′) is the geodesic distance between

x,x′ ∈ Ld, κ and σ2 are the kernel lengthscale and vari-

ance, and C∞ is a normalizing constant. To the best of our

knowledge, no closed form expression for L2 is known. In

this case, the kernel is approximated via a discretization

of the integral. One appealing option is the Monte Carlo

approximation based on the truncated Gaussian density. Un-

fortunately, such approximations easily fail to be positive

semidefinite if the number of samples is not very large. We

address this via an alternative Monte Carlo approximation,

kL
2

(x,x′) ≈
σ2

C ′
∞

1

L

L∑

l=1

sl tanh(πsl) w w, (6)

where ⟨xP , b⟩ =
1
2 log

1−|xP |2
|xP−b|2 is the hyperbolic outer prod-

uct with xP being the representation of x as a point on

the Poincaré disk P2 = D, w = e(2sli+1)⟨xP ,bl⟩ with

i, z denoting the imaginary unit and complex conjuga-

tion, respectively, bl
i.i.d.
∼ U(T) with T the unit circle, and

sl
i.i.d.
∼ e−s2κ2/2

1[0,∞)(s). The distributions of bl and sl are

easy to sample from: The former is sampled by applying

x → e2πix to x ∼ U([0, 1]) and the latter is (proportional

to) a truncated normal distribution. Importantly, the right-

hand side of (6) is easily recognized to be an inner product

in the space CL, which implies its positive semidefiniteness.

Notice that we leverage the isometry between Lorentz and

Poincaré models (see App. A) for computing the kernel (6)

(see App. B for details on (6)). Note that hyperbolic kernels

for LQ with Q > 3 are generally defined as integrals of

the kernels (4) (Grigoryan & Noguchi, 1998). Analogs of

Matérn kernels for LQ are obtained as integral of the SE

kernel of the same dimension (Jaquier et al., 2021).

3.2. Model training

As in the Euclidean case, training the GPHLVM is equiva-

lent to finding optimal latent variables X = {xn}
N
n=1 and

hyperparameters Θ = {θd}
D
d=1 by solving argmax

X ,Θ ℓ,

with xn ∈ L
Q, θd being the hyperparameters of the d-th GP,

and ℓ as a loss function. We introduce a GPHLVM trained

via MAP estimation for small datasets and a variational

GPHLVM that handles larger datasets, providing users with

the most appropriate tool for their needs. Note that recent

extensions of GPLVM (Lalchand et al., 2022a;b) scale to

massively large datasets via stochastic variational inference.

For small datasets, the GPHLVM can be trained by maxi-

mizing the log posterior, i.e., ℓMAP = log
(
p(Y |X)p(X)

)

with Y = (y1 . . .yN )T and X = (x1 . . .xN )T. For large

datasets, the GPHLVM can be trained, similarly to the

so-called Bayesian GPLVM (Titsias & Lawrence, 2010),

by maximizing the marginal likelihood of the data, i.e.,

ℓVA = log p(Y ) = log
∫
p(Y |X)p(X)dX . As this quan-

tity is intractable, it is approximated via variational inference

by adapting the methodology of Titsias & Lawrence (2010)

to hyperbolic latent spaces, as explained next. Correspond-

ing algorithms are provided in App. D.

Variational inference: We approximate the posterior

p(X|Y ) by a variational distribution defined as a hyper-

bolic wrapped normal distribution over the latent variables,

qφ(X) =
N∏

n=1

NLQ(xn;µn,Σn), (7)

with variational parameters ϕ = {µn,Σn}
N
n=1, with µn ∈

LQ and Σn ∈ TµnL
Q. Similarly to the Euclidean case (Tit-

sias & Lawrence, 2010), this variational distribution allows

the formulation of a lower bound,

log p(Y ) ≥ Eqφ(X) [log p(Y |X)]− KL
(
qφ(X)||p(X)

)
.

(8)

The KL divergence KL
(
qφ(X)||p(X)

)
between two hyper-

bolic wrapped normal distributions can easily be evaluated

via Monte-Carlo sampling (see App. C.1 for details). More-

over, the expectation Eqφ(X) [log p(Y |X)] can be decom-

posed into individual terms for each observation dimension

as
∑D

d=1 Eqφ(X) [log p(yd|X)], where yd is the d-th col-

umn of Y . For large datasets, each term can be evaluated

via a variational sparse GP approximation (Titsias, 2009;

Hensman et al., 2015). To do so, we introduce M induc-

ing inputs {zd,m}
M
m=1 with zd,m ∈ L

Q for each observa-

tion dimension d, whose corresponding inducing variables
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{ud,m}
M
m=1 are defined as noiseless observations of the

GP in (3), i.e, ud ∼ GP(md(zd), k
LQ

d (zd, zd)). Similar

to (Hensman et al., 2015), we can write,

log p(yd|X) ≥Eqλ(fd)

[
logN (yd;fd(X), σ2

d)
]

− KL
(
qλ(ud)||p(ud|Zd)

)
,

(9)

where we defined qλ(fd) =
∫
p(fd|ud)qλ(ud)dud with

the variational distribution qλ(ud) = N (ud; µ̃d, Σ̃d), and

variational parameters λ = {µ̃d, Σ̃d}
D
d=1. Remember that

the inducing variables ud,m are Euclidean, i.e., the varia-

tional distribution qλ(ud) is a Euclidean Gaussian and the

KL divergence in (9) has a closed-form solution. In this

case, the training parameters of the GPHLVM are the set

of inducing inputs {zd,m}
M
m=1, the variational parameters

ϕ and λ, and the hyperparameters Θ (see App. C.2 for the

derivation of the GPHLVM variational inference process).

Optimization: As several training parameters of the

GPHLVM belong to LQ, i.e., the latent variables xn for

the MAP estimation, or the inducing inputs zd,m and means

µn for variational inference, we need to account for their

hyperbolic geometry during optimization. To do so, we

leverage Riemannian optimization methods (Absil et al.,

2007; Boumal, 2023) to train the GPHLVM. Each step of

first order (stochastic) Riemannian optimization methods is

generally of the form,

ηt ← h
(
grad ℓ(xt), τt−1

)
,

xt+1 ← Expxt
(−αtηt),

τt ← Pxt→xt+1

(
ηt

)
.

(10)

The update ηt ∈ TxtM is first computed as a function

h of the Riemannian gradient grad of the loss ℓ(xt) and

of τt−1, the previous update that is parallel-transported to

the tangent space of the new estimate xt. The estimate

xt is then updated by projecting the update ηt scaled by

a learning rate αt onto the manifold using the exponential

map. The function h is equivalent to computing the update

of the Euclidean algorithm, e.g., ηt ← grad ℓ(xt) for a

simple gradient descent. Notice that (10) is applied on a

product of manifolds when optimizing several parameters.

In this paper, we used the Riemannian Adam (Bécigneul

& Ganea, 2019) implemented in Geoopt (Kochurov et al.,

2020) to optimize the GPHLVM parameters.

4. Incorporating Taxonomy Knowledge

While we are now able to learn hyperbolic embeddings of

the data associated to a taxonomy using our GPHLVM, they

do not necessarily follow the taxonomy graph structure. In

other words, the manifold distances between pairs of em-

beddings do not necessarily match the graph distances. To

overcome this, we introduce graph-distance information as

inductive bias to learn the embeddings. To do so, we lever-

age two well-known techniques in the GPLVM literature:

priors on the embeddings and back constraints (Lawrence

& Quiñonero Candela, 2006; Urtasun et al., 2008). Both are

reformulated to preserve the taxonomy graph structure in

the hyperbolic latent space as a function of the node-to-node

shortest paths.

Graph-distance priors: As shown by Urtasun et al.

(2008), the structure of the latent space can be modified

by adding priors of the form p(X) ∝ e−φ(X)/σ2
φ to the

GPLVM, where ϕ(X) is a function that we aim at minimiz-

ing. Incorporating such a prior may also be alternatively

understood as augmenting the GPLVM loss ℓ with a regu-

larization term −ϕ(X). Therefore, we propose to augment

the loss of the GPHLVM with a distance-preserving graph-

based regularizer. Several such losses have been proposed

in the literature, see (Cruceru et al., 2021) for a review.

Specifically, we define ϕ(X) as the stress loss,

ℓstress(X) =
∑

i<j

(
distG(ci, cj)− distLQ(xi,xj)

)2
, (11)

where ci denotes the taxonomy node to which the observa-

tion yi belongs, and distG, distLQ are the taxonomy graph

distance and the geodesic distance on LQ, respectively. The

loss (11) encourages the preservation of all distances of the

taxonomy graph in LQ. It therefore acts globally, thus al-

lowing the complete taxonomy structure to be reflected by

the GPHLVM. Notice that Cruceru et al. (2021) also survey

a distortion loss that encourages the distance of the embed-

dings to match the graph distance by considering their ratio.

However, this distortion loss is only properly defined when

the embeddings xi and xj correspond to different classes

ci ̸= cj . Interestingly, our empirical results using this loss

were lackluster and numerically unstable (see App. F).

Back-constraints: The back-constrained GPLVM

(Lawrence & Quiñonero Candela, 2006) defines the

latent variables as a function of the observations, i.e.,

xn,q = gq(y1 . . . ,yn;wq) with parameters {wq}
Q
q=1. This

allows us to incorporate new observations in the latent

space after training, while preserving local similarities

between observations in the embeddings. To incorporate

graph-distance information into the GPHLVM and ensure

that latent variables lie on the hyperbolic manifold, we

propose the back-constraints mapping,

xn = Expµ0
(x̃n)

with x̃n,q =

N∑

m=1

wq,mkR
D

(yn,ym)kG(cn, cm).
(12)

The mapping (12) not only expresses the similarities be-

tween data in the observation space via the kernel kR
J

, but

encodes the relationships between data belonging to nearby

taxonomy nodes via kG. In other words, similar observa-

tions associated to the same (or near) taxonomy nodes will
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be close to each other in the resulting latent space. The

kernel kG is a Matérn kernel on the taxonomy graph follow-

ing the formulation introduced in (Borovitskiy et al., 2021),

which accounts for the graph geometry (see also App. E).

We also use a Euclidean SE kernel for kR
D

. Notice that the

back constraints only incorporate local information into the

latent embedding. Therefore, to preserve the global graph

structure, we pair the proposed back-constrained GPHLVM

with the stress prior (11). Note that both kernels are re-

quired in (12): By defining the mapping as a function of the

graph kernel only, the observations of each taxonomy node

would be encoded by a single latent point. When using the

observation kernel only, dissimilar observations of the same

taxonomy node would be distant in the latent space, despite

the additional stress prior, as kR
D

(yn,ym) ≈ 0.

5. Experiments

We test the proposed GPHLVM on three distinct robotics

taxonomies. First, we model the data from the bimanual

manipulation taxonomy (Krebs & Asfour, 2022), that is

a simple binary tree whose nodes represent coordination

patterns of human bimanual manipulation skills. We use

a balanced dataset of 60 whole-body poses extracted from

recordings of bimanual household activities, as in (Krebs &

Asfour, 2022). Each pose is a vector of joint angles yn ∈
R

86. Second, we consider a hand grasp taxonomy (Stival

et al., 2019) that organizes common grasp types into a tree

structure based on their muscular and kinematic properties

(see Fig. 1-right). We use 94 grasps of 19 types obtained

from recordings of humans grasping different objects. Each

grasp is encoded by a vector of wrist and finger joint angles

yn ∈ R
24. Third, we model data from the whole-body

support pose taxonomy (Borràs et al., 2017). Each node

of this taxonomy graph is a support pose defined by its

contacts, so that the distance between nodes can be viewed

as the number of contact changes required to go from a

support pose to another. We use standing and kneeling poses

of the datasets in (Mandery et al., 2016a) and (Langenstein,

2020). The former were extracted from recordings of a

human walking without hand support, or using supports

from a handrail or from a table on one side or on both sides.

The latter were obtained from a human standing up from

a kneeling position. Each pose is identified with a node of

the graph of Fig. 9. We test our approach on an unbalanced

dataset of 100 poses (72 standing and 28 kneeling poses),

where each pose is represented by a vector of joint angles

yn ∈ R
44. Note that we augment the taxonomy to explicitly

distinguish between left and right contacts. The main results

are analyzed in the sequel, while additional experimental

details, results, and comparisons are given in App. G and H.

Implementation details: App. G.1 and App. G.2 describe

the data and hyperparameters used for all experiments. We

used the hyperbolic SE kernels of § 3.1 for the GPHLVMs,

and the classical SE kernel for the Euclidean models. As

GPLVMs are generally prone to local optima during training,

they benefit from a good initialization (Bitzer & Williams,

2010; Ko & Fox, 2011). Here, we initialize the embeddings

of all GPLVMs by minimizing the stress associated with

their taxonomy nodes, so that X = minX ℓstress with ℓstress

as in (11), using the hyperbolic and Euclidean distance for

the GPHLVMs and GPLVMs, respectively (see App. G.2.2).

Since our experiments deal with low-data scenarios, all

models were trained via MAP estimation by maximizing the

loss ℓ = ℓMAP − γℓstress, where γ is a parameter balancing

the two losses (see App. G.2.3 for details).

Hyperbolic embeddings of taxonomy data: We em-

bed the taxonomy data of the aforementioned taxonomies

into 2-dimensional hyperbolic and Euclidean spaces using

GPHLVM and GPLVM. For each, we test the model without

regularization, with stress prior, and with back-constraints

coupled with stress prior. Figures 2a-2c, 3a-3c, and 11a-

11c show the learned embeddings alongside error matrices

depicting the difference between geodesic and taxonomy

graph distances for the bimanual manipulation, hand grasps,

and support pose taxonomies, respectively. As shown in

Figs. 2a, 3a, 11a, the models without regularization do not

encode any meaningful distance structure in latent space. In

contrast, the models with stress prior result in embeddings

that comply with the taxonomy graph structure: The embed-

dings are grouped and organized according to the taxonomy

nodes, the geodesic distances match the graph ones, and ar-

guably more so in the hyperbolic case (see error matrices in

Figs. 2b-2c, 3b-3c, 11b-11c). Moreover, the GPHLVM with

back constraints further organizes the embeddings inside a

class according to the similarity between their observations

(see Figs. 2c, 3c, 11c). Note that augmenting the support

pose taxonomy leads to several groups of the same support

pose in Figs. 11b-11c, e.g., F splits into LF and RF.

A quantitative comparison of the stress values of the latent

embeddings with respect to the graph distances confirms that

a hyperbolic geometry captures better the data structure (see

Table 1). All regularized GPHLVMs with 2-dimensional

latent spaces outperform their Euclidean counterparts. In

general, we observe a prominent stress reduction for the

Euclidean and hyperbolic 3-dimensional latent spaces com-

pared to the 2-dimensional ones. This is due to the in-

crease of volume available to match the graph structure in

3-dimensional spaces relative to 2-dimensional ones. In-

terestingly, the hyperbolic models of the bimanual manip-

ulation and hand grasps taxonomies also outperform the

Euclidean models with 3-dimensional latent spaces (see

models in App. G.5). This is due to the fact that the volume

of balls in hyperbolic space increases exponentially with

respect to the radius of the ball rather than polynomially as

in Euclidean space, which translates to significantly more

space for embedding tree-like data with minimal distortion.
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(a) Vanilla (b) Stress prior (c) BC + stress prior (d) Adding poses (e) Adding a class

Figure 2: Bimanual manipulation categories: The first and last two rows show the latent embeddings and examples of interpolating
geodesics in P2 and R

2, followed by pairwise error matrices between geodesic and taxonomy graph distances. Background colors indicate
the GPLVM uncertainty. Added poses (d) and classes TCAright (e) are marked with stars and highlighted with red in the error matrices.

(a) Vanilla (b) Stress prior (c) BC + stress prior (d) Adding poses (e) Adding a class

Figure 3: Grasps: The first and last two rows show the latent embeddings and examples of interpolating geodesics in P2 and R
2, followed

by pairwise error matrices between geodesic and graph distances. Embeddings colors match those of Fig. 1-right, and background colors
indicate the GPLVM uncertainty. Added poses (d) and classes Qu, St,MW, and Ri (e) are marked with stars and highlighted with red in
the error matrices.
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Table 1: Average stress per geometry and regularization. The stress is computed using (11) and averaged over all pairs of training
embeddings. For models with unseen poses and classes, the stress is computed over all pairs of training and additional embeddings. Lower
stress values indicate better compliance with the taxonomy structure.

TAXONOMY MODEL NO REGULARIZER STRESS BC + STRESS UNSEEN POSES UNSEEN CLASS

BIMANUAL

MANIPULATION

CATEGORIES

GPLVM, R2 2.03± 2.15 0.13± 0.33 0.15± 0.31 0.15± 0.29 0.08± 0.11

GPHLVM, L2
0.98± 1.26 0.11± 0.33 0.09± 0.12 0.09± 0.11 0.13± 2.15

GPLVM, R3 2.39± 2.36 0.01± 0.01 0.20± 0.38 0.20± 0.38 0.05± 0.07

GPHLVM, L3
1.18± 1.35 0.01± 0.03 0.04± 0.08 0.03± 0.07 0.05± 0.07

GRASPS

GPLVM, R2 7.25± 5.40 0.39± 0.41 0.40± 0.44 0.53± 0.77 0.60± 0.73
GPHLVM, L2

5.47± 4.07 0.14± 0.16 0.18± 0.29 0.35± 0.78 0.48± 0.76

GPLVM, R3
8.15± 5.85 0.14± 0.18 0.15± 0.19 0.29± 0.64 0.38± 0.66

GPHLVM, L3 8.37± 5.71 0.04± 0.08 0.07± 0.18 0.23± 0.68 0.37± 0.72

SUPPORT

POSES

GPLVM, R2 3.93± 3.97 0.58± 0.94 0.63± 0.94 0.66± 0.99 0.85± 1.73

GPHLVM, L2
2.05± 2.50 0.51± 0.82 0.53± 0.83 0.56± 0.86 0.86± 1.70

GPLVM, R3
3.76± 3.74 0.24± 0.40 0.29± 0.39 0.30± 0.43 0.55± 1.26

GPHLVM, L3 3.78± 3.71 0.30± 0.38 0.35± 0.45 0.37± 0.50 0.69± 1.36

This inherent property makes hyperbolic spaces a natural fit

to embed hierarchical taxonomies with a tree-like structure,

as the bimanual manipulation and hand grasps taxonomies.

In the case of the support pose taxonomy, the Euclidean

models with 3-dimensional latent space slightly outperform

the 3-dimensional hyperbolic embeddings. We attribute this

to the cyclic graph structure of the taxonomy. Such type of

structure has been shown to be better embedded in spherical

or Euclidean spaces (Gu et al., 2019). Interestingly, despite

the cyclic graph structure of the support pose taxonomy, the

Euclidean models are still outperformed by the hyperbolic

embeddings in the 2-dimensional case (see Table 1). This

suggests that the increase of volume available to match the

graph structure in hyperbolic spaces compared to Euclidean

spaces leads to better low-dimensional representations of

taxonomy data, including those with cyclic graph structure.

Importantly, a comparative study reported in App. H.1

shows that the GPHLVM also outperformed vanilla and hy-

perbolic versions of a VAE to encode meaningful taxonomy

information in the latent space. For all taxonomies, adding

the stress regularization (11) to the VAEs helps to preserve

the graph distance structure, although the embeddings of

different taxonomy nodes are not as clearly separated as

in the GPHLVMs. This is illustrated by the higher aver-

age stress of the VAEs’ latent embeddings and their higher

reconstruction error compared to the GPHLVMs’ (see Ta-

ble 13). Finally, we also tested a GPLVM for learning a

Riemannian manifold (Tosi et al., 2014) of the taxonomy

data, reported in App. H.2, which is unable to capture the lo-

cal and global data structure as this model was not originally

designed for hierarchical discrete data.

Runtimes: Table 2 shows the runtime measurements for

the training and decoding phases of GPHLVM and GPLVM.

The main computational burden arises in the GPHLVM with

a 2-dimensional latent space, which is in sharp contrast with

the experiments using a 3-dimensional latent space. This

Table 2: Average runtime for training and decoding phases over 10
experiments of the hand grasps taxonomy. Training time was mea-
sured over 500 iterations for both models. The implementations
are fully developed on Python, and the runtime measurements were
taken using a standard laptop with 32 GB RAM, Intel Xeon CPU
E3-1505M v6 processor, and Ubuntu 20.04 LTS.

MODEL TRAINING DECODING

GPLVM, R2 2.978s± 0.082 6.256ms± 0.314
GPHLVM, L2 414.67s± 30.87 2.74s± 0.487

GPLVM, R3 3.148s± 0.171 6.774ms± 0.545
GPHLVM, L3 6.887s± 0.307 10.34ms± 1.05

increase in computational cost is mainly attributed to the

2-dimensional hyperbolic kernel (see Table 9 in App. G.3).

This may be alleviated by reducing the number of samples

or via more efficient sampling strategies.

Taxonomy expansion and unseen poses encoding: An

advantage of back-constrained GPLVMs is their affordance

to “embed” new observations into the latent space. We

test the GPHLVM ability to place unseen class instances

or unobserved taxonomy classes into the latent space, hy-

pothesizing that their respective embeddings should be po-

sitioned to preserve the relative distances within the taxon-

omy graph compared to the other latent points. First, we

consider back-constrained GPHLVMs with stress prior pre-

viously trained on a subset of the taxonomies data (i.e., the

models in Figs. 2c, 3c, 11c) and embedded unseen class in-

stances. Figures 2d, 3d and 11d show how the new data land

close to their respective class cluster. Second, we train new

GPHLVMs for the three taxonomies while withholding all

data instance from one or several classes (see App. G.2.4).

We then encode these data and find that they preserve the

relative taxonomy graph distances when compared to the

model trained on the full dataset. Although this is accom-

plished by both models, our GPHLVMs display lower stress

values (see Table 1).
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Figure 4: Motions obtained via geodesic interpolation in the back-
constrained GPHLVM latent space. Top: Grasp taxonomy from
ring (Ri) to index finger extension (IE). Bottom: Support pose
taxonomy from LFRH to K2RH. Gray circles denote contacts.

Trajectory generation via geodesics: The geometry of

the GPHLVM latent space can also be exploited to generate

trajectories in the latent space by following the geodesic,

i.e., the shortest path, between two embeddings. In other

words, our GPHLVM intrinsically provides a mechanism

to plan motions via geodesics in the low-dimensional latent

space. Examples of geodesics between two embeddings

for the three taxonomies are shown in Figs. 2b-2c, 3b-3c,

and 11b-11c, with the colors along the trajectory matching

the class corresponding to the closest hyperbolic latent point.

Importantly, the geodesics in GPHLVMs latent space follow

the transitions between classes defined in the taxonomy. In

other words, the shortest paths in the hyperbolic embed-

ding correspond to the shortest paths in the taxonomy graph.

For instance, in the case of the support pose taxonomy, the

geodesic from LF to F2RH follows LF → F2 → F2RH.

Straight lines in the Euclidean embeddings are more likely

to deviate from the graph shortest path, resulting in transi-

tions that do not exist in the taxonomy, e.g., RFRH→ F2 in

the Euclidean latent space of Figs. 11b-11c. Figure 4 and

App. G.7 show motions resulting from geodesic interpola-

tion in the GPHLVM latent space. The obtained motions are

more realistic than those obtained via linear interpolation in

the GPLVM latent space and as realistic as those obtained

via VPoser (Pavlakos et al., 2019) (see Figs. 16-17).

6. Conclusions
Inspired by the recent developments of human motion tax-

onomies, we proposed a computational model GPHLVM

that leveraged two types of domain knowledge: the structure

of a human-designed taxonomy and a hyperbolic geome-

try on the latent space which complies with the intrinsic

taxonomy’s hierarchical structure. Our GPHLVM allows

us to learn hyperbolic embeddings of the features of the

taxonomy nodes while capturing the associated hierarchical

structure. To achieve this, our model exploited the curvature

of the hyperbolic manifold and the graph-distance informa-

tion as inductive bias. We showed that these two forms

of inductive biases are essential to learn taxonomy-aware

embeddings, encode unseen data, and potentially expand

the learned taxonomy. Moreover, we reported that vanilla

Euclidean approaches underperformed on all the forego-

ing cases. Finally, we introduced a mechanism to generate

taxonomy-aware motions in the hyperbolic latent space.

Note that we assumed that the desired hierarchy is mainly

provided by the given taxonomy, which we use as inductive

bias in our model. Although our assumption is that the pro-

vided taxonomy structure is accurate, our model may also

be encouraged to discover additional hierarchical structure

by adjusting the scale γ of the stress loss function. This

is particularly interesting for cases where the provided tax-

onomy is incomplete or inexact, and thus a lower scale

may allow the model to prioritize unsupervised discovery

of a hierarchical structure from the dataset itself, mitigating

the impact of potential taxonomy errors. An interesting

extension to our work would be incorporating uncertainty

measures for the taxonomy graph. If quantifiable measures

of uncertainty for specific nodes or relationships exist, we

could integrate them into the stress loss. This would allow

us to down-weight the influence of unreliable nodes of the

taxonomy, further improving robustness.

Our proposed GPHLVM opens the door to potential applica-

tions in fields like bioinformatics. For instance, GPHLVM

may uncover hierarchical structures associated to protein

interactions (Alanis-Lobato et al., 2018) or within biolog-

ical sequences (Corso et al., 2021; Macaulay et al., 2023).

Moreover, the availability of a motion taxonomy structure

empowers the GPHLVM to impact various downstream

tasks, including robot motion generation, robotic grasping

and manipulation, human motion prediction, and character

animation. In particular, the taxonomy prior may compen-

sate for the lack of data in some of the foregoing applica-

tions. Unlike other LVMs such as VPoser (Pavlakos et al.,

2019), GAN-S (Davydov et al., 2022), and TEACH (Athana-

siou et al., 2022), which are trained on full human motion

trajectories and thousands of datapoints, our model lever-

ages the taxonomies as inductive bias to better structure

the learned embeddings, and uses geodesics as a simple

and effective motion generator between single poses. How-

ever, as other models, our geodesic motion generation does

not use explicit knowledge on how physically feasible the

generated trajectories are. We plan to investigate how to

include physics constraints or explicit contact data into the

GPHLVM to obtain physically-feasible motions. We will

also work on alleviating the computational cost of the hy-

perbolic kernel by using more efficient sampling strategies.

For example, instead of sampling from a Gaussian distribu-

tion for the approximation (6), we could sample from the

Rayleigh distribution. This is because complex numbers,

whose real and imaginary components are i.i.d. Gaussian,

have absolute value that is Rayleigh-distributed. Finally, we

will investigate other manifold geometries to accommodate

more complex structures coming from highly-heterogeneous

graphs (Giovanni et al., 2022).

9



Bringing Motion Taxonomies to Continuous Domains via GPLVM on Hyperbolic manifolds

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning by incorporating different types of

inductive bias in latent variable models. The introduction

of such inductive bias — particularly those related to taxon-

omy structures — may lead to more explainable Machine

Learning models.

Acknowledgements

NJ and TA were supported by the Carl Zeiss Foundation

through the JuBot project and by the European Union’s Hori-

zon Europe Framework Programme under grant agreement

No 101070596 (euROBIN). MGD collaborated in this work

during his PhD sabbatical at the Bosch Center for Artificial

Intelligence (BCAI). VB was supported by an ETH Zürich
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Lawrence, N. D. and Quiñonero Candela, J. Local distance

preservation in the GP-LVM through back constraints. In

Intl. Conf. on Machine Learning (ICML), pp. 513–520,

2006. doi: 10.1145/1143844.1143909.

Lebedev, N. N., Silverman, R. A., and Livhtenberg, D. Spe-

cial functions and their applications. Physics Today, 18

(12):70, 1965.

Lee, J. Introduction to Riemannian Manifolds. Springer,

2nd edition, 2018. doi: 10.1007/978-3-319-91755-9.

Lin, Y. and Sun, Y. Robot grasp planning based on

demonstrated grasp strategies. The International Journal

of Robotics Research (IJRR), 34(1):26–42, 2015. doi:

10.1177/0278364914555544.

Macaulay, M., Darling, A., and Fourment, M. Fi-

delity of hyperbolic space for bayesian phylogenetic

inference. PLOS Computational Biology, 19(4):1–

20, 04 2023. URL https://doi.org/10.1371/

journal.pcbi.1011084.

Mahmood, N., Ghorbani, N., F. Troje, N., Pons-Moll, G.,

and Black, M. J. AMASS: Archive of motion capture as

surface shapes. In Intl. Conf. on Computer Vision (ICCV),

pp. 5441–5450, 2019. doi: 10.1109/ICCV.2019.00554.
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T. J., and Lawrence, N. D. Topologically-constrained la-

tent variable models. In Intl. Conf. on Machine Learning

(ICML), pp. 1080–1087, 2008. doi: 10.1145/1390156.

1390292.

Whittle, P. Stochastic processes in several dimensions. Bul-

letin of the International Statistical Institute, 40(2):974–

994, 1963.

13



Bringing Motion Taxonomies to Continuous Domains via GPLVM on Hyperbolic manifolds

(a) Exponential and logarithmic maps. (b) Parallel transport.

Figure 5: Principal Riemannians operation on the Lorentz model L2. (a) The geodesic ( ) is the shortest path between the two points x
to y on the manifold. The vector u ( ) lies on the tangent space of x such that y = Exp

x
(u). (b) Px→y

(
v
)

is the parallel transport

of the vector v from TxL2 to TyL2.

A. Hyperbolic manifold

A.1. Manifold operations

As mentioned in the main text (§ 2), we resort to the exponential and logarithmic maps to operate with Riemannian manifold

data. The exponential map Expx(u) : TxM→M maps a point u in the tangent space of x to a point y on the manifold,

while the logarithmic map Logx(u) :M→ TxM performs the corresponding inverse operation. In some settings, it is

necessary to work with data lying on different tangent spaces of the manifold. In this case, one needs to operate with all data

on a single tangent space, which can be achieved by leveraging the parallel transport Px→y

(
u
)
: TxM→ TyM. All the

aforementioned operators are defined in Table 3 for the Lorentz model Ld and illustrated in Fig. 5 for L2. Moreover, we

introduce the inner product ⟨u,v⟩x between two points on Ld, which is used to compute the geodesic distance dM(u,v)
and all the foregoing operations in the Lorentz model, as shown in Table 3.

Table 3: Principal operations on the Lorentz model Ld. For more details, see (Bose et al., 2020) and (Peng et al., 2021).

OPERATION FORMULA

⟨u,v⟩x −u0v0 +
∑d

i=1 uivi

dM(u,v) arcosh(−⟨u,v⟩x)
Exp

x
(u) cosh(∥u∥L)x+ sinh(∥u∥L)

u

∥u∥L
with ∥u∥L =

√
⟨u,u⟩x

Log
x
(y) dM(x,y)√

α2−1
(y + αx) with α = ⟨x,y⟩x

Px→y

(
v
)

v + ⟨y,v⟩x
1−⟨x,y⟩x

(x+ y)

A.2. Equivalence of Poincaré and Lorentz models

As pointed out in the main text (§ 2), it is possible to map points from the Lorentz model to the Poincaré ball via an isometric

mapping. Formally, such an isometry is defined as the mapping function f : Ld → Pd such that

f(x) =
(x1, . . . , xd)

T

x0 + 1
, (13)

where x ∈ Ld with components x0, x1, . . . , xd. The inverse mapping f−1 : Pd → Ld is defined as follows

f−1(y) =

(
1 + ∥y∥2, 2y1, . . . , 2yd

)T

1− ∥y2∥
, (14)

with y ∈ Pd with components y1, . . . , yd. Notice that we used the mapping (13) to represent the hyperbolic embeddings in

the Poincaré disk throughout the paper, as well as in the computation of the kernel kL
2

(4).

A.3. Hyperbolic wrapped Gaussian distribution

Fig. 6 illustrates the hyperbolic wrapped Gaussian distribution (Nagano et al., 2019), which is introduced in § 2 and utilized

as prior distribution for the GPHLVM’s embeddings.
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Figure 6: Illustration of the hyperbolic wrapped Gaussian distribution NLd(x;µ,Σ) on the Lorenz model L2 of the hyperbolic manifold.
Left: Manifold origin µ0, mean µ, and corresponding tangent spaces. Middle: A point v is sampled from a Euclidean Gaussian
distribution in the tangent space of µ0 and moved to TµL2 via the parallel transport. Right: The parallel transported sample u is projected
onto the manifold using the exponential map. The resulting hyperbolic sample is depicted as a red dot.

B. Hyperbolic kernels

As mentioned in the main text (§ 3.1), following the developments on kernels on manifolds like (Borovitskiy et al., 2020;

Jaquier et al., 2021), we may identify the generalized squared exponential kernel with the heat kernel — an important object

studied on its own in the mathematical literature. Due to this, we can obtain the expressions (4). The expression for the case

of L2 requires discretizing the integral, which may lead to an approximation that is not positive semidefinite. We address

this by suggesting another approximation guaranteed to be positive semidefinite.

B.1. Alternative Monte Carlo approximation

Reversing the derivation in (Chavel, 1984, p. 246), we obtain

kP
2

∞,κ,σ2(x,x′) =
σ2

C ′
∞

∫ ∞

0

exp(−s2/(2κ2))P−1/2+is(cosh(ρ))s tanh(πs)ds, (15)

where ρ = distPd(x,x′) denotes the geodesic distance between x,x′ ∈ P2, κ and σ2 are the kernel lengthscale and

variance, C ′
∞ is a normalizing constant and Pα are Legendre functions (Abramowitz & Stegun, 1964). Note that we leverage

the isometry between the Lorentz and Poincaré models for the computation of the kernel. Now we prove that these Legendre

functions are connected to the spherical functions — special functions closely tied to the geometry of the hyperbolic space

and possessing a very important property.

Proposition B.1. Assume the disk model of P2 (i.e. the Poincaré disk). Denote the disk by D and its boundary, the circle,

by T. Define the hyperbolic outer product by ⟨z, b⟩ = 1
2 log

1−|z|2
|z−b|2 for z ∈ D, b ∈ T. Then

P−1/2+is(cosh(ρ)) =

∫

T

e(2si+1)⟨z,b⟩db

︸ ︷︷ ︸
spherical function φ2s(z)

=

∫

T

e(2si+1)⟨z1,b⟩e(2si+1)⟨z2,b⟩db, (16)

where z ∈ D is such that ρ = distP2(z,0) and z1, z2 ∈ D are such that ρ = distP2(z1, z2). Here i denotes the imaginary

unit and z is the complex conjugation.

Proof. Let θ denote the angle between z and b, and note the following simple identities

|z − b|2 = |z|2 + 1− 2|z| cos(θ) = tanh(ρ)2 + 1− 2 tanh(ρ) cos(θ), (17)

1− |z|2 = 1− tanh(ρ)2 = cosh(ρ)−2. (18)

Then, we write

e(2si+1)⟨z,b⟩ =

(
|z − b|2

1− |z|2

)−si−1/2

=
(
cosh(ρ)2(tanh(ρ)2 + 1− 2 tanh(ρ) cos(θ))

)−si−1/2
, (19)

=
(
sinh(ρ)2 + cosh(ρ)2 − 2 sinh(ρ) cosh(ρ) cos(θ)

)−si−1/2
, (20)

= (cosh(2ρ) + sinh(2ρ) cos(θ))
−si−1/2

. (21)
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Figure 7: Hyperbolic kernel values as a function of the distance be-
tween two embeddings for different number of Monte Carlo samples.

On the other hand, by Lebedev et al. (1965, Eq. 7.4.3), we have Pa(cosh(x)) =
1
π

∫ π

0
(cosh(x)+sinh(x) cos(θ))adθ, hence

P−1/2+is(cosh(2ρ)) =
1

π

∫ π

0

(cosh(2ρ) + sinh(2ρ) cos(θ))−1/2+isdθ, (22)

=
1

2π

∫ π

−π

(cosh(2ρ) + sinh(2ρ) cos(θ))−1/2+isdθ, (23)

=

∫

T

e(−2si+1)⟨z,b⟩db = ϕ−2s(z). (24)

This computation roughly follows Cohen & Lifshits (2012, Section 4.3.4). Now, by Cohen & Lifshits (2012, Section 3.5),

we have ϕ−2s(z) = ϕ2s(z) which proves the first identity. Finally, Lemma 3.5 from Cohen & Lifshits (2012) proves the

second identity.

By combining expressions (15) and (16), we get the following Monte Carlo approximation

kP
2

∞,κ,σ2(x,x′) ≈
σ2

C ′
∞

1

L

L∑

l=1

sl tanh(πsl)e
(2sli+1)⟨xP ,bl⟩e(2sli+1)⟨x′

P
,bl⟩, (25)

where bl
i.i.d.
∼ U(T) and sl

i.i.d.
∼ e−s2κ2/2

1[0,∞)(s). This gives the approximation used in the main text (see § 3.1).

Having established a way to evaluate or approximate the heat kernel, analogs of Matérn kernels can be defined by

kν,κ,σ2(x,x′) =
σ2

Cν

∫ ∞

0

uν−1e−
2ν
κ2 uk̃∞,

√
2u,σ2(x,x

′)du, (26)

where k̃∞,
√
2u,σ2 is the same as k∞,

√
2u,σ2 but with the normalizing constant σ2/C∞ dropped for simplicity. Here Cν is

the normalizing constant ensuring that kν,κ,σ2(x,x) = σ2 for all x.

B.2. Influence of the number of Monte Carlo samples

The number of Monte Carlo samples influences the quality of the hyperbolic kernel which is used to evaluate the relationship

between the latent embeddings in the GPHLVM with 2-dimensional latent space. Fig. 7 displays the hyperbolic kernel value

kP
2

∞,κ,σ2(x,x′) with κ = σ = 1 as a function of the distance distL2(x,x′) between two embeddings x,x′ for different

number of Monte Carlo samples. The expected behavior of the hyperbolic kernel is similar to that of the Euclidean SE kernel,

i.e., (1) kP
2

∞,κ,σ2(x,x′) = 1 when distH2(x,x′) = 0, and (2) kP
2

∞,κ,σ2(x,x′) decreases monotonically when distH2(x,x′)
increases. We observe that this second property is not respected for low number of Monte Carlo samples (< 1000), as

the kernel value oscillates when the distance increases. This would result in inconsistent behaviors of the GPHLVM, as

kernel values may be higher for distant embedding pairs than for closer embedding pairs. The kernel generally achieves the

expected behavior when the number of Monte Carlo samples is fixed above 1000. Higher number of samples lead to higher

precision and repeatability in the computation of the kernel at the expense of computation time. For our experiments, we

traded-off between kernel quality and computation time by using 3000 samples for the kernel computation.
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C. GPHLVM variational inference

As mentioned in § 3.2, when training our GPHLVM on large datasets, we resort to variational inference as originally

proposed in (Titsias & Lawrence, 2010). Here we provide the mathematical details about the changes that are needed to

train our model via variational inference.

C.1. Computing the KL divergence between two hyperbolic wrapped normal distributions

As mentioned in § 3.2, we approximate the KL divergence between two hyperbolic wrapped distributions via Monte-Carlo

sampling. Namely, given two hyperbolic wrapped distributions qφ(x) and p(x), we write

KL
(
qφ(x)||p(x)

)
=

∫
qφ(x) log

qφ(x)

p(x)
dx ≈

1

K

K∑

k=1

log
qφ(xk)

p(xk)
, (27)

where we used K independent Monte-Carlo samples drawn from qφ(x) to approximate the KL divergence. These

samples are obtained via the procedure described in § 2, i.e., by sampling an element on the tangent space of the origin

µ0 = (1, 0, . . . , 0)T of Ld, via a Euclidean normal distribution, and then applying the parallel transport operation and the

exponential map to project it onto Ld.

C.2. Details of the variational process

As mentioned in the main text (§ 3.2), the marginal likelihood p(Y ) is approximated via variational inference by approxi-

mating the posterior p(X|Y ) with the hyperbolic variational distribution qφ(X) as defined by (7). The lower bound (8) is

then obtained, similarly as in (Titsias & Lawrence, 2010), as

log p(Y ) = log

∫
p(Y |X)p(X)dX (28)

= log

∫
p(Y |X)p(X)

qφ(X)

qφ(X)
dX = logEqφ(X)

[
p(Y |X)p(X)

qφ(X)

]
(29)

≥ Eqφ(X)

[
log

p(Y |X)p(X)

qφ(X)

]
=

∫
qφ(X) log

p(Y |X)p(X)

qφ(X)
dX (30)

=

∫
qφ(X) log p(Y |X)dX −

∫
qφ(X) log

qφ(X)

p(X)
dX (31)

= Eqφ(X) [log p(Y |X)]− KL
(
qφ(X)||p(X)

)
, (32)

following Jensen’s inequality in (30). As mentioned in § 3.2, the expectation Eqφ(X) [log p(Y |X)] can be decomposed into

individual terms for each observation dimension as
∑D

d=1 Eqφ(X) [log p(yd|X)], where yd is the d-th column of Y . We

then define the inducing inputs Zd and inducing variables ud the same way as the noiseless observations fd, so that the

joint distribution of fd and ud can be written as

p(fd,ud) =

(
fd

ud

)
= N

((
md(X)

md(Zd)

)
,

(
kd(X,X) kd(X,Zd)

kd(Zd,X) kd(Zd,Zd)

))
. (33)
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The lower bound (9) is then obtained for each dimension, similarly as in (Hensman et al., 2015), as

log p(yd|X) =

∫
log p(yd|X,ud)p(ud)dud (34)

= log

∫
p(yd|X,ud)p(ud)

qλ(ud)

qλ(ud)
dud = logEqλ(ud)

[
p(yd|X,ud)p(ud)

qλ(ud)

]
(35)

≥ Eqλ(ud)

[
log

p(yd|X,ud)p(ud)

qλ(ud)

]
=

∫
qλ(ud) log

p(yd|X,ud)p(ud)

qλ(ud)
dud (36)

=

∫
qλ(ud) log p(yd|X,ud)dud −

∫
qλ(ud) log

qλ(ud)

p(ud)
dud (37)

= Eqλ(ud) [log p(yd|X,ud)]− KL
(
qλ(ud)||p(ud)

)
(38)

≥ Eqλ(ud)

[
Ep(fd|ud) [log p(yd|fd(X))]

]
− KL

(
qλ(ud)||p(ud)

)
(39)

= Eqλ(fd) [log p(yd|fd(X))]− KL
(
qλ(ud)||p(ud|Zd)

)
(40)

= Eqλ(fd)

[
logN (yd;fd(X), σ2

d)
]
− KL

(
qλ(ud)||p(ud|Zd)

)
, (41)

where we defined qλ(fd) =
∫
p(fd|ud)qλ(ud)dud with the Euclidean variational distribution qλ(ud) = N (ud; µ̃d, Σ̃d),

and wrote p(ud|Zd) = p(ud) for simplicity. The inequality (36) corresponds to Jensen’s inequality, while (39) is shown

in (Titsias, 2009).

Finally, substituting (41) in (32) results in the following bound on the marginal likelihood

log p(Y ) ≥
N∑

n=1

D∑

d=1

Eqφ(xn)

[
Eqλ(fn,d)

[
logN (yn,d; fn,d(xn), σ

2
d)
]]

−
D∑

d=1

KL
(
qλ(ud)||p(ud|Zd)

)
−

N∑

n=1

KL
(
qφ(xn)||p(xn)

)
. (42)

D. GPHLVM algorithms

In § 3.2, we introduced a GPHLVM trained via MAP estimation for small datasets and a variational GPHLVM that handles

larger datasets with the aim of providing users with the most appropriate model for their specific problems. Algorithms 1

and 2 summarize the training process of the GPHLVM and back-constrained GPHLVM via MAP estimation. Algorithm 3

summarizes the training process of the variational GPHLVM.

Algorithm 1 GPHLVM training via MAP.

Input:

Observations {yn}
N
n=1 with yn ∈ R

D, associated taxonomy classes {cn}
N
n=1, prior on hyperparameters p(Θ).

Output:

Latent variables {xn}
N
n=1 with xn ∈ L

Q, hyperparameters Θ = {θd}
D
d=1.

Initialization:

Set the prior distribution p(x) = NLd(x;µ0, αI).
Initialize the latent variables {xn}

N
n=1.

Training:

repeat

Compute the MAP loss ℓMAP(X,Θ).
Compute additional losses, e.g., ℓstress(X) (11).

X,Θ← RiemannianOptStep(ℓMAP + ℓstress) (10).
until convergence

E. Matérn kernels on taxonomy graphs

As explained in § 4 of the main paper, we leverage the Matérn kernel on graphs proposed by Borovitskiy et al. (2021) to

design a kernel for our back-constrained GPHLVM that accounts for the geometry of the taxonomy graph. Here we provide
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Algorithm 2 Back-constrained GPHLVM training via MAP.

Input:

Observations {yn}
N
n=1 with yn ∈ R

D, associated taxonomy classes {cn}
N
n=1, prior on hyperparameters p(Θ).

Output:

Back-constraints weights {wq,n}
N,Q
n,q=1, hyperparameters Θ = {θd}

D
d=1.

Initialization:

Initialize the back-constraints weights {wq,n}
N,Q
n,q=1.

Training:

repeat

Compute the latent variables {xn}
N
n=1 from back constraints (12).

Compute the MAP loss ℓMAP(X,Θ).
Compute additional losses, e.g., ℓstress(X) (11).

X,Θ← RiemannianOptStep(ℓMAP + ℓstress) (10).
until convergence

Algorithm 3 GPHLVM training via variational inference.

Inputs:

Observations {yn}
N
n=1 with yn ∈ R

D, associated taxonomy classes {cn}
N
n=1, prior on hyperparameters p(Θ).

Outputs:

Inducing inputs {zd,m}
M
m=1 with zd,m ∈ L

Q, hyperbolic variational parameters ϕ = {µn,Σn}
N
n=1, with µn ∈ L

Q and

Σn ∈ TµnL
Q, Euclidean variational parameters λ = {µ̃d, Σ̃d}

D
d=1, hyperparameters Θ = {θd}

D
d=1.

Initialization:

Set the prior distribution p(x) = NLd(x;µ0, αI).
Initialize the inducing inputs {zd,m}

M
m=1.

Initialize the hyperbolic variational distribution over the latent variables qφ(X) (7).

Initialize the Euclidean variational distribution over the inducing variables qλ(ud).
Training:

repeat

Compute the variational loss ℓVA as the lower bound (9).

Compute additional losses, e.g., ℓstress(X) (11).

Z, ϕ, λ,Θ← RiemannianOptStep(ℓVA + ℓstress) (10).
until convergence

the main equations of such a kernel, and refer the reader to (Borovitskiy et al., 2021) for further details. Formally, let us

define a graph G = (V,E) with vertices V and edges E and the graph Laplacian as ∆ = D −W , where W is the graph

adjacency matrix and D its corresponding diagonal degree matrix, with Dii =
∑

j Wij . The eigendecomposition UΛUT

of the Laplacian ∆ is then used to formulate both the SE and Matérn kernels on graphs, as follows,

kG∞,κ(cn, cm) = U
(
e−

κ2

2
Λ

)
UT, and kGν,κ(cn, cm) = U

(
2ν

κ2
+Λ

)−ν

UT, (43)

where κ is the lengthscale (i.e., it controls how distances are measured) and ν is the smoothness parameter determining

mean-squared differentiability of the associated Gaussian process (GP). Note that the graph kernel expressions in (43) are

obtained by considering the connection between Matérn kernel GPs and stochastic partial differential equations, originally

proposed by Whittle (1963) and later extended to Riemannian manifolds in (Borovitskiy et al., 2020). This connection

establishes that SE and Matérn GPs satisfy

e−
κ2

4
∆f = W , and

(
2ν

κ2
+∆

) ν
2

f = W , (44)

where W ∼ N (0, I) and f : V → R, which lead to definition of graph GPs (Borovitskiy et al., 2021).
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(a) Regularization with ℓdistortion (b) Reg. with ℓ̃distortion

Figure 8: Embeddings learned with distortion regularization. (a) and (b) display the latent embeddings alongside distance matrices after
training our GPHLVM model with an added distortion loss ℓdistortion as it was originally defined, and with our modified distortion loss

ℓ̃distortion, respectively. These embeddings indeed show that our regularizations failed to encode the distances in the graph.

F. Distortion loss

As explained in the main paper, we focus on two ways of embedding the graph in the hyperbolic space: a global approach

using a stress regularization which matches graph distances with geodesic distances, and a combination between this

stress regularization and the use of back constraints (see § 4). However, the literature on graph embeddings also surveys a

distortion loss (Cruceru et al., 2021) given by

ℓdistortion(X) =
∑

i<j

∣∣∣∣
distLQ(xi,xj)

2

distG(ci, cj)2
− 1

∣∣∣∣
2

, (45)

which tries to match the graph and manifold distances by minimizing their ratio’s distance to 1.

We found that our problem is more subtle than usual graph embeddings, given that several points in our dataset may

correspond to the same graph node (e.g., two different poses in which the left foot is the only limb in contact). Indeed, notice

that (46) is ill-defined for the case i = j, or equivalently, distG(ci, cj)
2 = 0. This is because all nodes xi are assumed to be

different from each other. However, in our setup, several xi may correspond to the exact same class in the taxonomy.

Our first attempt to remediate this was to add a simple regularizer ε = 10−1 to the denominator. However, this caused the

loss to give more weight to the points where distG(ci, cj)
2 = 0 (see Fig. 8a for the outcome of training a GPHLVM with this

type of regularization). We then considered an alternate definition of distortion in which the term inside the sum is given by

ℓ̃distortion(xi,xj) =

{
λ1 distLQ(xi,xj) if xi and xj’s classes are identical

λ2ℓdistortion(xi,xj) otherwise
(46)

where λ1, λ2 ∈ R
+ are hyperparameters. λ1 governs how much we encourage latent codes of the same class to collapse

into a single point, while λ2 weights how much the geodesic distance should match the graph distance. After manual

hyperparameter tuning, we obtained the latent space and distance matrix portrayed in Figs. 8a 8b. As can be seen in both

accounts, the distortion loss produced lackluster results and failed to properly match the latent space distances with that of

the graph. For these experiments, we used a loss scale of 50, λ1 = 0.01 and λ2 = 10, meaning that we strongly encouraged

the distances between non-identical classes to match in ratio.
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G. Additional details on the experiments of § 5

G.1. Data

For all experiments, we used humans recordings from the KIT Whole-Body Human Motion Database1 (Mandery et al.,

2016b). Additional details on the data of each experiments are described in the sequel.

G.1.1. BIMANUAL MANIPULATION

Table 4 describes the data of the bimanual manipulation taxonomy used in the experiments reported in § 5. We use data

from subject 1723 executing five different bimanual household activities, namely cut and peel a cucumber, roll dough, stir,

and wipe. The taxonomy categories are obtained using the annotations provided in (Krebs & Asfour, 2022). We obtain

data for two bimanual categories that do not appear in the dataset (unimanual right and tightly-coupled asymmetric left

dominant) by mirroring the motions.

Table 4: Description of the bimanual manipulation patterns extracted from the bimanual manipulation taxonomy (Krebs & Asfour, 2022)
used in our experiments.

BIMANUAL CATEGORY ABBREVIATION BIMANUAL ACTIVITY NUMBER

UNIMANUAL LEFT Uleft
PEEL 5

WIPE 5

UNIMANUAL RIGHT Uright
PEEL 5

WIPE 5

UNCOORDINATED BIMANUAL B - 0

LOOSELY COUPLED LC

CUT 2

PEEL 4

STIR 2

WIPE 2

TIGHTLY-COUPLED ASYMMETRIC LEFT DOMINANT TCAleft

CUT 2

PEEL 3

STIR 2

WIPE 3

TIGHTLY-COUPLED ASYMMETRIC RIGHT DOMINANT TCAright

CUT 2

PEEL 3

STIR 2

WIPE 3

TIGHTLY-COUPLED SYMMETRIC TCS ROLL 10

G.1.2. HAND GRASPS

Fig. 1-right shows the hand grasps taxonomy (Stival et al., 2019) and Table 5 describes the data used in § 5. We use grasp

data2 from subjects 2122, 2123, 2125, 2177. The considered human recordings consist of a human grasping an object on a

table, lifting it, and placing it back. We consider a single object per grasp type and extract the wrist and finger joint angles of

the human when the object is at the highest position. Each grasp is identified with a leaf node of the taxonomy tree. Notice

that no data was available for the three-fingers-sphere grasp type.

G.1.3. SUPPORT POSES

Table 6 describes the data of the whole-body support pose taxonomy used in the experiments reported in § 5. Each pose is

identified with a support pose category, i.e., a node of the graph in Fig. 9, and with a set of associated contacts. As shown in

the table, some support poses include several sets of contacts. For example, the support pose F groups all types of support

poses where only one foot is in contact with the environment. In our experiments, we consider an augmented version of the

taxonomy that explicitly distinguishes between left and right contacts. Notice that some sets of contacts are not represented

in the data and thus do not appear in Table 6.

1https://motion-database.humanoids.kit.edu/
2https://motion-database.humanoids.kit.edu/list/motions/?datasets=3534
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Table 5: Description of the grasps extracted from the quantitative grasp taxonomy (Stival et al., 2019) used in our experiments.

CATEGORY GRASP TYPE ABBREVIATION GRASPED OBJECT NUMBER

FLAT GRASPS

LATERAL La PADLOCK 5

EXTENSION TYPE ET FRUIT BARS 5

QUADPOD Qu LEVER RED 5

PARALLEL EXTENSION PE FRUIT BARS 5

INDEX FINGER EXTENSION IE KNIFE 5

DISTAL GRASPS

STICK St FIZZY TABLETS 5

WRITING TRIPOD WT SYRINGE 5

PRISMATIC FOUR FINGERS PF MIXING BOWL 5

POWER DISK PD DOG 5

CYLINDRICAL GRASPS

LARGE DIAMETER LD DWARF 5

MEDIUM WRAP MW POWER TOOL 5

SMALL DIAMETER SD CLAMP 5

FIXED HOOK FH FIZZY TABLETS 5

SPHERICAL GRASPS

TRIPOD Tr PADLOCK 5

POWER SPHERE PS DOG 5

PRECISION SPHERE RS BALL 5

RING GRASPS

THREE FINGERS SPHERE TS - 0

PRISMATIC PINCH PP FLOWER CUP 5

TIP PINCH TP CHOPSTICKS 4

RING Ri COLA BOTTLE 5

Table 6: Description of the support poses extracted from the whole-body support pose taxonomy (Borràs et al., 2017) used in our
experiments.

SUPPORT POSE AUGMENTED SUPPORT POSE CONTACTS NUMBER

F
LF LEFT FOOT 7

RF RIGHT FOOT 6

FH

LFLH LEFT FOOT, LEFT HAND 5

RFRH RIGHT FOOT, RIGHT HAND 6

LFRH LEFT FOOT, RIGHT HAND 5

RFLH RIGHT FOOT, LEFT HAND 6

F2 F2 LEFT FOOT, RIGHT FOOT 6

FH2
LFH2 LEFT FOOT, LEFT HAND, RIGHT HAND 6

RFH2 RIGHT FOOT, LEFT HAND, RIGHT HAND 6

F2H
F2H

l LEFT FOOT, RIGHT FOOT, LEFT HAND 5

F2RH LEFT FOOT, RIGHT FOOT, RIGHT HAND 7

F2H2 F2H2 LEFT FOOT, RIGHT FOOT, LEFT HAND, RIGHT HAND 7

K
LK LEFT KNEE 1

RK RIGHT KNEE 1

FK
LFRK LEFT FOOT, RIGHT KNEE 2

FLK RIGHT FOOT, LEFT KNEE 3

KH
LKLH LEFT KNEE, LEFT HAND 4

RKRH RIGHT KNEE, RIGHT HAND 1

K2 K2 LEFT KNEE, RIGHT KNEE 1

FKH
RFLKLH RIGHT FOOT, LEFT KNEE, LEFT HAND 5

LFRKRH LEFT FOOT, RIGHT KNEE, RIGHT HAND 2

KH2 LKH2 LEFT KNEE, LEFT HAND, RIGHT HAND 1

K2H
K2LH LEFT KNEE, RIGHT KNEE, LEFT HAND 2

K2RH LEFT KNEE, RIGHT KNEE, RIGHT HAND 1

FKH2 RFLKH2 RIGHT FOOT, LEFT KNEE, LEFT HAND, RIGHT HAND 2

K2H2 K2H2 LEFT KNEE, RIGHT KNEE, LEFT HAND, RIGHT HAND 2
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Figure 9: Subset of the whole-body support pose taxonomy (Borràs
et al., 2017) used in one of our experiments. Each node is a support
pose defined by the type of contacts (foot F, hand H, knee K). The lines
represent graph transitions between the taxonomy nodes. Contacts are
depicted by grey dots.

G.2. Implementation details

G.2.1. TRAINING PARAMETERS AND MODEL CHOICES

Table 7 reports the hyperparameters used for the experiments described in § 5. We used the hyperbolic SE kernels defined

in § 3.1 for the GPHLVMs, and the classical SE kernel for the Euclidean models. For the back-constraints mapping (12),

we defined kR
D

(yn,ym) as a Euclidean SE kernel with lengthscale κRD , and kG(cn, cm) as a graph Matérn kernel with

smoothness ν = 2.5 and lengthscale κG. We additionally scaled the product of kernels with a variance σRD,G. For training

the back-constrained GPHLVM and GPLVM, we used a Gamma prior Gamma(α, β) with shape α and rate β on the

lengthscale κ of the kernels.

G.2.2. MODEL INITIALIZATION

To provide a good starting point for their optimization, the embeddings of all GPLVMs were initialized by minimizing the

stress associated with their taxonomy nodes, so that,

X = min
X

ℓstress, (47)

with ℓstress as in (11), using the Euclidean and hyperbolic distance between two embeddings for the GPLVMs and GPHLVM,

respectively. The oracle stress possible for each system, achieved by the initialization, is reported in Table 8.

G.2.3. INFLUENCE OF THE STRESS LOSS SCALE γ

For our experiments, we trained the GPLVMs and GPHLVMs via MAP estimation by maximizing the loss ℓ = ℓMAP−γℓstress,

where γ is a parameter trading-off between the log posterior loss ℓMAP and the stress-based regularization loss ℓstress. The

influence of the loss scale γ is illustrated in Fig. 10 for models trained on the hand grasp taxonomy with 3-dimensional

latent spaces. On one hand, we observe that the stress loss steadily decreases as γ increases. This trend continues until the

embeddings for each node collapse onto a single point in the latent space, achieving the stress that matches the oracle value.

On the other hand, the log-likelihood of the model decreases (a.k.a the negative log-likelihood increases) as γ increases.

For all our experiments, we chose a loss scale γ that trades off between log posterior and stress losses, as depicted by the

vertical line in Fig. 10.

G.2.4. TAXONOMY EXPANSION AND UNSEEN POSES ENCODING

For the first part of the experiments on taxonomy expansion, we encoded unseen poses of each class for the back-

constrained GPLVM and GPHLVM with a stress regularization using the models presented in Table 7. For the second

part of the experiments, we left one or several classes out during training and we “embedded” them using the back-

constraints mapping. The left-out classes are: tightly-coupled asymmetric right dominant (TCAright), {Qu, St,MW,Ri}, and
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Table 7: Summary of experiments and list of hyperparameters.

TAXONOMY MODEL REGULARIZATION LOSS SCALE γ PRIOR ON κL/RQ κRD κG σRD,G OPTIMIZER (LEARNING RATE α)

BIMANUAL

MANIPULATION

CATEGORIES

GPLVM, R2

NO REGULARIZER 0 NONE - - -

ADAM (0.01)STRESS 1500 NONE - - -

BC + STRESS 1000 GAMMA(2, 2) 3.0 1.5 2

GPHLVM, L2

NO REGULARIZER 0 NONE - - -

RIEMANNIAN ADAM (0.025)STRESS 1500 NONE - - -

BC + STRESS 1000 GAMMA(2, 2) 3.0 1.5 2

GPLVM, R3

NO REGULARIZER 0 NONE - - -

ADAM (0.01)STRESS 6000 NONE - - -

BC + STRESS 1200 GAMMA(2, 2) 3.0 1.5 2

GPHLVM, L3

NO REGULARIZER 0 NONE - - -

RIEMANNIAN ADAM (0.025)STRESS 6000 NONE - - -

BC + STRESS 1200 GAMMA(2, 2) 3.0 1.5 2

GRASPS

GPLVM, R2

NO REGULARIZER 0 NONE - - -

ADAM (0.01)STRESS 5500 NONE - - -

BC + STRESS 2000 GAMMA(2, 2) 1.8 1.5 2

GPHLVM, L2

NO REGULARIZER 0 NONE - - -

RIEMANNIAN ADAM (0.05)STRESS 5500 NONE - - -

BC + STRESS 2000 GAMMA(2, 2) 1.8 1.5 2

GPLVM, R3

NO REGULARIZER 0 NONE - - -

ADAM (0.01)STRESS 6000 NONE - - -

BC + STRESS 3000 GAMMA(2, 2) 1.8 1.5 2

GPHLVM, L3

NO REGULARIZER 0 NONE - - -

RIEMANNIAN ADAM (0.05)STRESS 6000 NONE - - -

BC + STRESS 3000 GAMMA(2, 2) 1.8 1.5 2

SUPPORT POSES

GPLVM, R2

NO REGULARIZER 0 NONE - - -

ADAM (0.01)STRESS 7000 NONE - - -

BC + STRESS 5000 GAMMA(2, 2) 2.0 0.8 2

GPHLVM, L2

NO REGULARIZER 0 NONE - - -

RIEMANNIAN ADAM (0.05)STRESS 7000 NONE - - -

BC + STRESS 5000 GAMMA(2, 2) 2.0 0.8 2

GPLVM, R3

NO REGULARIZER 0 NONE - - -

ADAM (0.01)STRESS 10000 NONE - - -

BC + STRESS 8000 GAMMA(2, 2) 2.0 0.8 2

GPHLVM, L3

NO REGULARIZER 0 NONE - - -

RIEMANNIAN ADAM (0.05)STRESS 10000 NONE - - -

BC + STRESS 8000 GAMMA(2, 2) 2.0 0.8 2

Table 8: Oracle stress achieved by the initialization per geometry and regularization. The stress is computed using (11) and averaged over
all pairs of training embeddings. Lower stress values indicate better compliance with the taxonomy structure.

TAXONOMY MODEL ORACLE STRESS

BIMANUAL

MANIPULATION

CATEGORIES

GPLVM, R2 0.034± 0.044

GPHLVM, L2
0.018± 0.022

GPLVM, R3 0.007± 0.010

GPHLVM, L3
0.002± 0.004

GRASPS

GPLVM, R2 0.38± 0.40

GPHLVM, L2
0.13± 0.14

GPLVM, R3 0.13± 0.16

GPHLVM, L3
0.03± 0.04

SUPPORT

POSES

GPLVM, R2 0.56± 0.96

GPHLVM, L2
0.49± 0.82

GPLVM, R3
0.23± 0.45

GPHLVM, L3 0.29± 0.39

FH = {LFLH,RFLH, LFRH,RFRH}, for the bimanual manipulation, hand grasp, and support pose taxonomies, respectively.

The newly-trained models also followed the same hyperparameters presented in Table 7.
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Figure 10: Log-posterior and stress losses for GPHLVMs
( , ) and GPLVMs ( , ) with Q = 3 with
stress regularization as a function of the loss scale γ. The
models are trained on the hand grasp taxonomy. When γ
increases, the models match the oracle stress values ( ,

). The loss scale γ chosen for our experiments ( )
trades off between the two losses.

G.3. Runtimes

In order to show the computational cost of our approach, we ran a set of experiments to measure the average runtime

for the training and decoding phases, using 2 and 3-dimensional latent spaces. As a reference, we added the runtime

measurements of Euclidean counterpart, that is, the vanilla GPLVM. Table 2 shows the runtime measurements. Note that the

main computational burden arises in our GPLHVM with a 2-dimensional latent space, which is in sharp contrast with the

experiments using a 3-dimensional latent space. This increase in computational cost is mainly attributed to the 2-dimensional

hyperbolic kernel. Nevertheless, we also measured the computational cost of evaluating the kernel and the (Riemannian)

optimization of the learned embeddings for both GPLVM and GPHLVM in the 2-dimensional setting. Table 9 shows the

average runtimes for both approaches, where it is possible to observe that the highest computational costs comes from the

hyperbolic kernel computation. This may be alleviated by reducing the number of samples or via more efficient sampling

strategies.

Table 9: Average runtime for kernel evaluation and (Riemannian) optimization of our GPHLVM and vanilla GPLVM over 10 training
iterations of the whole-body support poses taxonomy, using a 2-dimensional latent space for both models. The implementations are fully
developed on Python, and the runtime measurements were taken using a standard laptop with 32 GB RAM, Intel Xeon CPU E3-1505M
v6 processor, and Ubuntu 20.04 LTS. We report the computational cost in miliseconds and percentage w.r.t the total training iteration time.

MODEL KERNEL COMP. [ms] KERNEL COMP. % OPTIMIZATION [ms] OPTIMIZATION %

GPLVM, R2 0.043± 0.009 1% 0.43± 0.063 10%

GPHLVM, L2 730.69± 75.22 32% 1.00± 0.15 0.05%

G.4. Hyperbolic embeddings of support poses

Fig. 11a-11c show the learned embeddings of the support pose manipulation taxonomy alongside error matrices depicting

the difference between geodesic and taxonomy graph distances. As discussed in § 5, the models with stress prior result in

embeddings that comply with the taxonomy graph structure, with additional intra-class organizations for the back-constrained

models. Note that augmenting the support pose taxonomy leads to several groups of the same support pose in Figs. 11b-11c,

e.g., F splits into LF and RF. It is worth noticing that, despite the cyclic graph structure of the support pose taxonomy, the

hyperbolic models outperform the Euclidean models in the 2-dimensional case As reported in § 5, the back-constrained

GPHLVM and GPLVM allow us to properly place unseen poses or taxonomy classes into the latent space (see Figs. 2d-2e).

G.5. Hyperbolic embeddings in L3

In this section, we embed the taxonomy data of the three taxonomies used in § 5 into 3-dimensional hyperbolic and Euclidean

spaces to analyze the performance of the proposed models in higher-dimensional latent spaces. We test the GPHLVM

and GPLVM without regularization, with stress prior, and with back-constraints coupled with stress prior, similarly to the

experiments on 2-dimensional latent spaces reported in § 5 and App. G.4. Figs. 12a-12c, Figs. 13a-13c, and Figs. 14a-14c

show the learned embeddings alongside the corresponding error matrices for the bimanual manipulation taxonomy, the hand

grasps taxonomy, and the whole-body support pose taxonomy, respectively. As expected, and similarly to the 2-dimensional

embeddings, the models without regularization do not encode any meaningful distance structure in the latent spaces (see
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(a) Vanilla (b) Stress prior (c) BC + stress prior (d) Adding poses (e) Adding a class

Figure 11: Support poses: The first and last two rows show the latent embeddings and examples of interpolating geodesics in P2 and
R

2, followed by pairwise error matrices between geodesic and taxonomy graph distances. Embeddings colors match those of Fig. 9,

and background colors indicate the GPLVM uncertainty. Added poses (d) and classes FH = F
{l,r}

H
{l,r} (e) are marked with stars and

highlighted with red in the error matrices.

Figs. 12a, 13a, 14a). In contrast, the models with stress prior result in embeddings that comply with the taxonomy graph

structure, and the back constraints further organize the embeddings inside a class according to the similarity between

their observations (see Figs. 12b-12c, 13b-13c, 14b-14c). As discussed in § 5, we generally observe a prominent stress

reduction for the Euclidean and hyperbolic 3-dimensional latent spaces compared to the 2-dimensional ones (see Table 1).

For taxonomies with a tree structure, such as the bimanual manipulation and hand grasps taxonomy, all Euclidean models

are still outperformed by the 3-dimensional hyperbolic embeddings. This is due to the fact that hyperbolic spaces are ideal

to embed such purely-hierarchical taxonomies. For taxonomies with cyclic structure, such as the support pose taxonomy, the

Euclidean models with 3-dimensional latent space slightly outperform the 3-dimensional hyperbolic embeddings. Moreover,

similarly to the 2-dimensional cases, the back-constrained GPHLVM and GPLVM allow us to properly place unseen poses

or taxonomy classes into the latent space (see Figs. 12d-12e, 13d-13e, 14d-14e).

G.6. Marginal log-likelihoods of trained models

Table 10 shows the marginal log-likelihood (MLL)

p(Y) = p(Y|X,Θ)p(X)p(Θ) (48)

of the GPHLVM and GPLVM described in § 5. We observe that the marginal log-likelihood of the models with regularization

is slightly lower than that of the models without regularization. This is due to the combination of the two losses ℓMAP and

ℓstress when training the regularized models, resulting in a trade-off. In other words, we expect the non-regularized models to

achieve the highest MLL. Interestingly, the gap between the MLL of non-regularized and regularized models is reduced for

the bimanual manipulation and grasping taxonomies compared to the support pose taxonomy. We hypothesize that this is

due to the tree structure of the two former taxonomies, which are ideally embedded in hyperbolic spaces. We would like

to emphasize that the MLL (48) depends on the prior distribution p(X), which itself is defined based on the geometry of

the manifold, and on the prior p(Θ) imposed on the model parameters, which also differs across geometries (see Table 7).

Therefore, comparing the values of the MLL across geometries may generally be misleading.
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(a) Vanilla (b) Stress prior (c) BC + stress prior (d) Adding poses (e) Adding a class

Figure 12: Bimanual manipulation categories: The first and last two rows show the latent embeddings and examples of interpolating
geodesics in P3 and R

3, followed by pairwise error matrices between geodesic and taxonomy graph distances. Added poses (d) and
classes (e) are marked with crosses and highlighted with red in the error matrices.

(a) Vanilla (b) Stress prior (c) BC + stress prior (d) Adding poses (e) Adding a class

Figure 13: Grasps: The first and last two rows show the latent embeddings and examples of interpolating geodesics in P3 and R
3,

followed by pairwise error matrices between geodesic and taxonomy graph distances. Embeddings colors match those of Fig. 4. Added
poses (d) and classes (e) are marked with crosses and highlighted with red in the error matrices.
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(a) Vanilla (b) Stress prior (c) BC + stress prior (d) Adding poses (e) Adding a class

Figure 14: Support poses: The first and last two rows show the latent embeddings and examples of interpolating geodesics in P3 and R
3,

followed by pairwise error matrices between geodesic and graph distances. Embeddings colors match those of Fig. 9. Added poses (d)
and classes (e) are marked with crosses and highlighted with red in the error matrices.

Table 10: Marginal log-likelihood per geometry and regularization.

TAXONOMY MODEL NO REG. STRESS BC + STRESS

BIMANUAL

MANIPULATION

CATEGORIES

GPLVM, R2 79.50 75.11 68.76

GPHLVM, L2 78.42 73.38 73.49

GPLVM, R3 83.13 69.86 83.93

GPHLVM, L3 84.55 68.44 79.77

GRASPS

GPLVM, R2 9.97 4.55 9.49

GPHLVM, L2 7.91 4.19 5.82

GPLVM, R3 12.15 5.00 9.58

GPHLVM, L3 9.60 3.45 9.15

SUPPORT

POSES

GPLVM, R2 6.96 −13.30 −6.06

GPHLVM, L2 5.52 −12.29 −7.47

GPLVM, R3 10.63 −14.35 −4.90

GPHLVM, L3 8.71 −15.43 −4.14

G.7. Additional motions obtained via geodesic interpolation and comparisons

Figs. 15 and 16 show additional examples of motions obtained via geodesic interpolation between two embeddings of the

hand grasps taxonomy in the latent space of the GPHLVM. The generated motions look realistic and smoothly interpolate

between the given initial and final grasps. In comparison, motions obtained via linear interpolation between two embeddings

in the Euclidean latent space of the GPLVM are less realistic. They display less regular interpolation patterns (see Fig. 15c)

and are often noisy, featuring wavering wrist or finger motions (see Figs. 15a, 15b, and 16b). This is supported by the higher
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(a) Ring (Ri) to index finger extension (IE)

(b) Quadpod (Qu) to parallel extension (PE)

(c) Small diameter (SD) to tripod (Tr)

Figure 15: Generated motions for grasps. Top: Motions obtained via geodesic interpolation in the latent space of the back-constrained
GPHLVM trained on the the hand grasp taxonomy (Fig. 3c). Bottom: Motions obtained via linear interpolation in the latent space of the
corresponding back-constrained GPLVM.
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(a) Tip pinch (TP) to fixed hook (FH)

(b) Writing tripod (WT) to power disk (PD)

Figure 16: Generated motions for grasps. Top: Motions obtained via geodesic interpolation in the latent space of the back-constrained
GPHLVM trained on the the hand grasp taxonomy (Fig. 3c). Bottom: Motions obtained via linear interpolation in the latent space of the
corresponding back-constrained GPLVM.

average jerkiness of the motions generated from the GPLVM compared to those generated from the GPHLVM, as reported

in Table 11. Moreover, the generated grasps reflect less accurately the taxonomy categories (see, e.g., the parallel extension

(PE) grasp in Fig. 15b or the tip pinch (TP grasp of Fig. 16a). Interestingly, the geodesic interpolation between two grasps

in the latent space of the GPHLVM allows us to generate unobserved transitions between hand grasps. As such, it offers us a

mechanism to generate data that are generally difficult to collect via human motion recordings.

Figs. 17-19 show additional examples of motions obtained via geodesic interpolation between two embeddings of the

whole-body support pose taxonomy in the latent space of the GPHLVM. The generated motions look realistic, smoothly

interpolate between the given initial and final body poses, and are consistent with the transitions between classes encoded in

the taxonomy. In comparison, motions obtained via linear interpolation between two embeddings in the Euclidean latent

space of the GPLVM look less realistic and are less smooth (see Table 11). In particular, the resulting kneeling poses often

look unnatural (see Figs. 17 and 19).

We also compare the trajectories generated via geodesic interpolation with the trajectories generated in the latent space

of VPoser (Pavlakos et al., 2019, Sec. 3.3), a state-of-the art human pose latent space obtained from a VAE trained on

MoCap data and used to generate human motions. VPoser was introduced by Pavlakos et al. (2019) as a body pose prior to
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(a) LFRH to K2RH

Figure 17: Generated motions for support poses. Top: Motion obtained via geodesic interpolation in the latent space of the back-
constrained GPHLVM trained on the support pose taxonomy (Fig. 11c). Middle: Motion obtained via linear interpolation in the latent
space of the corresponding back-constrained GPLVM. Bottom: Motion obtained via linear interpolation in the latent space of VPoser.
Contacts are depicted by gray circles in the two first rows.

Table 11: Average jerkiness (a.k.a. smoothness (Balasubramanian et al., 2015)) of the motions obtained via linear and geodesic
interpolation in the latent space of the back-constrained GPLVMs and GPHLVMs.

TAXONOMY MODEL JERKINESS

GRASPS
GPLVM, R2 1377.05± 1721.44

GPHLVM, L2
108.65± 140.54

SUPPORT

POSES

GPLVM, R2 210.08± 228.97

GPHLVM, L2
27.15± 27.58

address the problem of building a full 3D model of human gestures by learning a deep neural network that jointly models

the human body, face and hands from RBG images. Pavlakos et al. (2019) released the weights of their model under a

non-commercial licence.3 Of the two models available, we downloaded version 2, and followed the instructions on their

repository for set-up.4 Since our human poses used a different number of joints, we searched inside the KIT dataset part of

the AMASS dataset (Mahmood et al., 2019) for similar poses with the same contacts configuration. Table 12 shows the

exact poses used in the comparison. These poses were embedded into the latent space of VPoser. The motions obtained via

linear interpolation in the space of VPoser are displayed in the bottom rows of Figs. 17-19. We observe that the motions

generated by our approach are as realistic as the ones obtained from VPoser. It is worth noticing that VPoser is trained on

full human motion trajectories and a large dataset of 1M datapoints. Therefore, it is natural that it can retrieve realistic

human motions. This is also the case for other models such as TEACH (Athanasiou et al., 2022) and text-conditioned human

3https://smpl-x.is.tue.mpg.de/
4https://github.com/nghorbani/human_body_prior (vposer.ipynb).
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motion diffusion models (Shafir et al., 2023), which are trained on full human motion trajectories and conditioned on textual

prompts to generate sequences of human motions. In contrast, the GPHLVM is not trained on full trajectories, but only

on 100 single human poses. Instead, GPLHVM leverages the robotic taxonomy and geodesic interpolation as a motion

generation mechanism. Notice that the latent space of the GPHLVM is of low dimension compared to the 32-dimensional

latent space of VPoser.

Table 12: Poses used when comparing with VPoser (Pavlakos et al., 2019). In our notation, the files inside the KIT subset of
AMASS (Mahmood et al., 2019) are structured into subfolders of name entry id; each .npz file contains an array of body poses, and
the exact pose used in the comparison is specified by the index t.

TRAJECTORY FILE FOR SOURCE (entry id, t =index) FILE FOR TARGET (entry id, t =index)

LFRH to K2RH (Fig. 17) Walk w. handrail table beam, left, Nr. 01 (675, t = 250) Kneel up w. right hand, Nr. 01 (3, t = 185)

RF to RFH2 (Fig. 18a) Walk w. handrail table beam, left, Nr. 01 (675, t = 100) Walk w. handrail table beam, left, Nr. 01 (675, t = 300)

LF to F2H2 (Fig. 18b) Walk at medium speed Nr. 01 (450, t = 320) Walk w. handrail table beam, left, Nr. 01 (675, t = 250)

LF to LFRK (Fig. 19a) Walk at medium speed Nr. 01 (450, t = 320) Kneel up w. right hand Nr. 09 (3, t = 150)

F2 to K2 (Fig. 19b) Walk at medium speed Nr. 01 (450, t = 10) Kneel up w. left hand Nr. 01 (3, t = 50)

It is important to emphasize that augmenting the support pose taxonomy to explicitly distinguish between left and right

contact is crucial for generating realistic motions with the GPHLVM. With the original taxonomy, poses with very different

feet and hands positions may belong to the same class. For instance, a right foot contact with a left hand contact on the

handrail or a left foot contact with a right hand contact on the table both belong to the same FH node in the original

taxonomy. In contrast, differentiating between left and right contacts allows very different poses to be placed far apart in the

latent space. For instance, the two aforementioned poses are identified with the nodes LFRH and RFLH in the augmented

taxonomy.

H. Additional comparisons

H.1. Comparison against Variational Autoencoders

In this section, we compare the trained GPHLVMs of Figs. 2, 3, and 11 with two additional baselines: a vanilla variational

autoencoder (VAE) and a hyperbolic variant of this VAE in which the latent space is the Lorentz model of hyperbolic

geometry (akin to (Mathieu et al., 2019)). Both VAEs are designed with 12 input nodes, 6 hidden nodes, a 2-dimensional

latent space, and a symmetric decoder. Their encoder specifies the mean and standard deviation of a normal distribution

(resp. wrapped normal for the hyperbolic VAE), and their decoder specifies the mean and standard deviation of the normal

distribution that governs the reconstructions. Both models are trained by maximizing an Evidence Lower Bound (ELBO)

under similar regimes as the GPHLVMs, i.e., 1000 epochs with a learning rate of 0.05. The KL divergence for the hyperbolic

VAE is computed using Monte Carlo estimates.

Figs. 20, 21, and 22 show the learned embeddings of the Euclidean and hyperbolic VAE with 2 and 3-dimensional latent

spaces alongside the corresponding error matrices between geodesic and taxonomy graph distances for the bimanual

manipulation, hand grasps and support pose taxonomies. Although adding a stress regularization as for the GPHLVM helps

preserve the graph distance structure, the embeddings of different classes are not as well separated as in our GPHLVM

models (see Fig. 20 vs 2, Fig. 21 vs 3, and Fig. 22 vs 11). Moreover, when compared to our proposed GPHLVM, all VAE

models provide a subpar uncertainty modeling in their latent spaces.

Table 13 shows that the VAE baselines result in higher average stress than the GPLVMs. In other words, our proposed

GPHLVM consistently outperforms all VAEs to encode meaningful taxonomy information in the latent space. Moreover, the

GPLVMs consistently achieve a lower reconstruction error than the VAE baseline. We argue that VAEs are not the right tool

for our target applications. When training VAEs, the Kullback-Leibler term in the ELBO tries to regularize the latent space

to match a unit Gaussian. This regularization is in stark contrast with our goal of separating the embeddings to preserve the

taxonomy graph distances.

H.2. Comparison against learned manifolds

We compare the proposed GPHLVM to a GPLVM that learns a Riemannian manifold from data (Tosi et al., 2014). Fig. 23

shows the learned latent space including the embeddings and the volume of the Riemannian metric of the learned manifold,
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Table 13: Average stress and reconstruction error per model, geometry, and regularization.

STRESS RECONSTRUCTION ERROR

NO REG. STRESS BC + STRESS NO REG. STRESS BC + STRESS

BIMANUAL

MANIPULATION

CATEGORIES

GPLVM, R2 2.03± 2.15 0.13± 0.33 0.15± 0.31 0.01± 0.02 0.01± 0.01 0.02± 0.02

VAE, R2 1.70± 1.97 0.12± 0.20 0.11± 0.18 0.12± 0.17

VAE, L2 1.89± 1.85 0.10± 0.15 0.12± 0.18 0.12± 0.17

GPHLVM, L2
0.98± 1.26 0.11± 0.33 0.09± 0.12 0.04± 0.04 0.03± 0.04 0.04± 0.04

GPLVM, R3 2.39± 2.36 0.01± 0.01 0.20± 0.38 0.01± 0.01 0.01± 0.01 0.01± 0.01

VAE, R3 2.58± 2.76 0.05± 0.09 0.08± 0.15 0.12± 0.18

VAE, L3 1.76± 1.84 0.11± 0.17 0.03± 0.04 0.12± 0.18

GPHLVM, L3
1.18± 1.35 0.01± 0.03 0.04± 0.08 0.00± 0.01 0.01± 0.01 0.00± 0.01

GRASPS

GPLVM, R2 7.25± 5.40 0.39± 0.41 0.40± 0.44 0.04± 0.04 0.03± 0.03 0.03± 0.03

VAE, R2 3.52± 4.31 0.48± 0.55 0.11± 0.12 0.13± 0.15

VAE, L2 8.99± 6.20 0.70± 1.28 0.13± 0.16 0.14± 0.15

GPHLVM, L2
5.47± 4.07 0.14± 0.16 0.18± 0.29 0.05± 0.05 0.08± 0.07 0.09± 0.09

GPLVM, R3
8.15± 5.85 0.14± 0.18 0.15± 0.19 0.03± 0.03 0.14± 0.18 0.15± 0.19

VAE, R3 2.71± 3.47 0.25± 0.32 0.10± 0.13 0.14± 0.16

VAE, L3 8.28± 5.94 0.33± 0.59 0.11± 0.14 0.12± 0.14

GPHLVM, L3 8.37± 5.71 0.04± 0.08 0.07± 0.18 0.03± 0.02 0.01± 0.01 0.02± 0.02

SUPPORT

POSES

GPLVM, R2 3.93± 3.97 0.58± 0.94 0.63± 0.94 0.05± 0.05 0.17± 0.18 0.11± 0.12

VAE, R2 1.75± 2.29 0.54± 0.80 0.15± 0.18 0.18± 0.20

VAE, L2 4.81± 4.29 0.57± 0.85 0.18± 0.21 0.18± 0.20

GPHLVM, L2
2.05± 2.50 0.51± 0.82 0.53± 0.83 0.07± 0.07 0.16± 0.17 0.15± 0.16

GPLVM, R3
3.76± 3.74 0.24± 0.40 0.29± 0.39 0.03± 0.03 0.17± 0.18 0.08± 0.09

VAE, R3 2.10± 2.64 0.31± 0.40 0.38± 0.47 0.16± 0.19

VAE, L3 4.53± 4.23 0.38± 0.55 0.17± 0.21 0.17± 0.20

GPHLVM, L3 3.78± 3.71 0.30± 0.38 0.35± 0.45 0.03± 0.03 0.16± 0.17 0.08± 0.09

alongside distance matrices for the three considered robotics taxonomies. Overall, the model is unable to capture the local

and global taxonomy structure. This is due to the fact that the learned Riemannian metric is designed to be high in regions

with high uncertainty, thus leading to shortest paths, i.e., geodesics, avoiding these regions. As such, this model was not

designed for hierarchical discrete data and does not embed any knowledge about the taxonomy. This is further reflected by

the resulting high stress values (see Fig. 23d).
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(a) RF to RFH2

(b) LF to F2H2

Figure 18: Generated motions for support poses. Top: Motions obtained via geodesic interpolation in the latent space of the back-
constrained GPHLVM trained on the support pose taxonomy (Fig. 11c). Middle: Motions obtained via linear interpolation in the latent
space of the corresponding back-constrained GPLVM. Bottom: Motions obtained via linear interpolation in the latent space of VPoser.
Contacts are depicted by gray circles.
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(a) LF to LFRK

(b) F2 to K2

Figure 19: Generated motions for support poses. Top: Motions obtained via geodesic interpolation in the latent space of the back-
constrained GPHLVM trained on the support pose taxonomy (Fig. 11c). Middle: Motions obtained via linear interpolation in the latent
space of the corresponding back-constrained GPLVM. Bottom: Motions obtained via linear interpolation in the latent space of VPoser.
Contacts are depicted by gray circles.
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(a) Vanilla (2d) (b) Stress (2d) (c) Vanilla (3d) (d) Stress (3d)

Figure 20: Embeddings of bimanual manipulation categories with VAEs: The first and last two rows show the latent embeddings of the
hyperbolic and Euclidean VAE in PQ and R

Q, followed by pairwise error matrices between geodesic and taxonomy graph distances.

(a) Vanilla (2d) (b) Stress (2d) (c) Vanilla (3d) (d) Stress (3d)

Figure 21: Embeddings of grasps with VAEs: The first and last two rows show the latent embeddings of the hyperbolic and Euclidean
VAE in PQ and R

Q, followed by pairwise error matrices.
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(a) Vanilla (2d) (b) Stress (2d) (c) Vanilla (3d) (d) Stress (3d)

Figure 22: Embeddings of support poses with VAEs: The first and last two rows respectively show the latent embeddings of the hyperbolic
and Euclidean VAE in PQ and R

Q, followed by pairwise error matrices.

(a) Bimanual categories (b) Grasps (c) Support poses

Taxonomy Stress

Bimanual

manipulation

categories

395.90± 366.01

Grasps 108.56± 106.11

Support

poses
277.59± 240.37

(d) Average stress

Figure 23: Embeddings of taxonomy data on learned manifolds: The first row shows the latent spaces of the GPLVM. The background
color is proportional to volume of the learned Riemannian metric. The second row displays the error matrix between the geodesic and
taxonomy graph distances.
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