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Abstract
Domain incremental learning (DIL) poses a signif-
icant challenge in real-world scenarios, as models
need to be sequentially trained on diverse domains
over time, all the while avoiding catastrophic for-
getting. Mitigating representation drift, which
refers to the phenomenon of learned representa-
tions undergoing changes as the model adapts
to new tasks, can help alleviate catastrophic for-
getting. In this study, we propose a novel DIL
method named DARE, featuring a three-stage
training process: Divergence, Adaptation, and
REfinement. This process gradually adapts the
representations associated with new tasks into the
feature space spanned by samples from previous
tasks, simultaneously integrating task-specific de-
cision boundaries. Additionally, we introduce a
novel strategy for buffer sampling and demon-
strate the effectiveness of our proposed method,
combined with this sampling strategy, in reduc-
ing representation drift within the feature en-
coder. This contribution effectively alleviates
catastrophic forgetting across multiple DIL bench-
marks. Furthermore, our approach prevents sud-
den representation drift at task boundaries, result-
ing in a well-calibrated DIL model that maintains
the performance on previous tasks. 1

1. Introduction
Domain incremental learning (DIL) is a subset of contin-
ual learning (CL) that addresses the challenge of acquiring
knowledge from new domains or tasks in an incremental
manner without forgetting previously acquired knowledge.
DIL holds significance in real-world applications like au-
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Figure 1. Relationship between representation drift and task 1 accu-
racy on DN4IL dataset with buffer size 50. The representations of
buffered samples, mainly belonging to the first domain, experience
an abrupt drift at the task boundary, which is directly associated
with the decrease in accuracy.

tonomous driving and robotics, where data distribution can
shift due to factors like changing weather condition and lo-
cation (Mirza et al., 2022). Deep neural networks (DNNs)
suffer from the problem of catastrophic forgetting, where
the weights of the network associated with old tasks are
overwritten by new information, resulting in a decline in
performance for previously learned tasks.

Various approaches have been proposed to alleviate catas-
trophic forgetting, which can be grouped into three main
categories: interleaving past task samples during new task
learning (Experience Replay) (Ratcliff, 1990; Rebuffi et al.,
2017), constraining the change in weights of DNNs perti-
nent to past tasks (Regularization) (Kirkpatrick et al., 2017;
Li & Hoiem, 2017), or expanding the architecture with new
branches for learning new tasks without overwriting exist-
ing task parameters (Architecture Expansion) (Rusu et al.,
2016; Fernando et al., 2017). Although experience replay
has been shown to effectively mitigate catastrophic forget-
ting, it does not explicitly address drift in representations at
task boundaries caused by the disruption of clustered repre-
sentations corresponding to previously learned tasks (Caccia
et al., 2022). Representation drift is directly correlated with
performance drop on old tasks and contributes significantly
to catastrophic forgetting (see Figure 1).

DNNs aim to acquire clustering representations for similar
classes in each task. However, the clusters formed by previ-
ous tasks may shift when learning new classes, resulting in
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a decline in accuracy for old tasks, as observed in new do-
main learning in DIL (Figure 1). The issue of representation
drift is addressed in CL literature through various methods.
Caccia et al. (2022) proposed isolating new samples from
the old buffer samples and employing distinct loss functions
to mitigate drift. This approach hinges on separating old
and new classes and the quality of negative samples for the
proposed semisupervised loss, limiting its applicability in
DIL scenarios. Furthermore, representation drift in DIL re-
mains unexplored in the existing literature. To address this,
we suggest a three-stage training process to gradually adapt
the learning model to new domain sample representations.

Concretely, we propose a novel approach for mitigating
abrupt representation drift and catastrophic forgetting in
DIL by adapting the representations of new domain samples
into the feature space spanned by the old domains. The
proposed method employs a three-stage training process
(Divergence, Adaptation, REfinement) while learning new
domains. During the Divergence and Adaptation stages, the
model clusters the representations of new domain samples
into the feature space spanned by the first domain, while
the Refinement stage helps the model learn the new domain
samples. Our method, DARE, helps to mitigate changes to
the representations of old domains, resulting in better over-
all accuracy. Furthermore, we propose an effective buffer
sampling strategy to integrate the proposed algorithm into
the CL framework. By using this strategy, we can store
important samples in the buffer that capture the maximum
information about the “dark knowledge” between data sam-
ples. Specifically, our contributions are as follows:

• We propose a novel domain incremental learning
method to effectively adapt the representations of the
new domain into the feature space spanned by the prior
domains.

• We, through extensive analyses, demonstrate the effec-
tiveness of our method in mitigating forgetting, task
recency bias, and suppressing detrimental representa-
tion drifts at task boundaries in DIL.

• We propose and employ an effective buffer sampling
strategy that maximizes the information stored in the
buffer without significant memory overhead.

2. Related Works
Domain Incremental Learning. DIL studies the ability
of DNNs to continually adapt to new domain data while
preserving performance on prior domains, such as adapting
to different weather conditions (Mirza et al., 2022). Many
approaches in DIL rely on learning task-specific information
and plugging it during inference. DISC (Mirza et al., 2022)
stores domain-specific batch norm statistics and uses them
during inference to detect objects under different weather
conditions. Garg et al. (2022) use a dynamic architecture for

domain incremental segmentation by learning both domain-
invariant and domain-specific parameters. However, these
approaches require task-id during inference, which violates
the CL desiderata (Farquhar & Gal, 2018).

Approaches to address catastrophic forgetting in CL can
be broadly divided into three categories: regularization-
based (Kirkpatrick et al., 2017; Li & Hoiem, 2017), param-
eter isolation (Rusu et al., 2016; Fernando et al., 2017), and
rehearsal-based (Ratcliff, 1990; Rebuffi et al., 2017) meth-
ods. Regularization-based methods can be viewed as a way
to shield the weights and therefore the learned representa-
tions for previous tasks from interference while learning
new tasks. However, these methods are often overly focused
on previous tasks, and the limited capacity of Deep Neural
Networks (DNNs) makes them inflexible for learning new
tasks (Parisi et al., 2019). Rehearsal-based methods are
more popular in the literature due to their simplicity and su-
perior performance (Buzzega et al., 2021; Cha et al., 2021).
However, they lack a mechanism to explicitly tackle rep-
resentation drift (Caccia et al., 2022). Parameter-isolation
methods allocate a distinct set of parameters for new tasks,
but they become memory-intensive as the number of tasks
increases. Overall, while each category of methods has
its own advantages and disadvantages, none of them fully
address representation drift efficiently. Therefore, novel
strategies are required to effectively tackle this challenge,
upholding performance across new and old tasks.

Representation Drift. In the context of CL, representation
drift is a phenomenon in which previously learned repre-
sentation clusters tend to drift while learning new tasks.
Murata et al. (2020) propose a representation-based evalua-
tion framework to evaluate the impact of representation drift
by freezing different layers after CL and retraining the re-
maining layers on all tasks. Caccia et al. (2022) propose two
loss functions to mitigate representation drift in online class
incremental learning (CIL) by learning new task samples
separate from the buffered task samples. However, these
methods are not directly applicable to DIL, where there is no
separation between the seen and the new classes. To address
this issue, Yu et al. (2020) use metric learning to mitigate
feature drift in CIL, while Zhang et al. (2022) propose a
framework to quantify feature forgetting in CL and learn
separate task-wise adapters to combat feature forgetting.
However, these approaches entail memory overhead, which
grows with the number of tasks.

Domain Adaptation. Domain Adaptation (DA) aims to
transfer knowledge learned from a source dataset to a target
dataset with a related domain. Saito et al. (2018) propose a
dual classifier setup for DA. The training process alternates
between maximizing the discrepancy between classifiers
for out-of-domain samples and minimizing the discrepancy
for in-domain samples by freezing the classifiers and learn-
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Figure 2. Our proposed method, DARE, assimilates the knowledge about the new task while preserving the representations from earlier
tasks by adopting a three-stage learning process in DIL. In the first two stages, Divergence and Adaptation, the model learns the
representations of new domains within the cluster of old ones (rather than the other way around, which can exacerbate catastrophic
forgetting). The final stage, Refinement, helps the model learn the new domain samples.

ing the feature encoder to predict the same logits in both
classifiers. In this way, the model adapts the representation
of new domains in the space of old ones. Subsequently,
Yang et al. (2021) proposed an extension with more than
two classifiers to improve accuracy. Following the dual clas-
sifier approach, Lv et al. (2022) propose a causally inspired
framework with dual classifiers for DA. This framework
aims to learn domain-independent representations in the
encoder and to learn dual classifiers on complementary fea-
tures using an adversarial mask. While DA focuses on the
forward transfer of knowledge from old tasks to new tasks,
DIL focuses on both forward and backward transfers, where
the model must retain the knowledge of old tasks.

3. Methodology
Domain incremental learning (DIL) involves a sequence of
T tasks that become progressively available over time, with
each task representing a shift in the input data distribution
while the classes remain constant across tasks. During each
task t ∈ {1, 2, .., T}, samples and their corresponding labels
{(xi, yi)}Ni=1 are drawn from the task-specific distribution
Dt (Van de Ven & Tolias, 2019). The CL model is optimized
sequentially on each domain, and inference is carried out on
all domains seen so far. An optimal CL model would learn
to predict new distributions of input samples while retaining
its knowledge of the initial tasks.

3.1. Proposed Method - DARE

Our method aims to enable efficient DIL by mitigating the
abrupt representation drift at the task boundaries and adapt-
ing the learned representations to consolidate new informa-
tion in a manner that reduces interference. To this end, we
propose DARE which employs a three-stage (Divergence,
Adaptation, and REfinement) learning mechanism that en-
courages the model to learn the representations of the sam-

ples belonging to the new task in the subspace spanned by
the representations of the old tasks. This allows the model
to consolidate new information without considerably dis-
rupting the representations of the old tasks and adapt the
decision boundary for the consolidated representations.

DARE utilizes an encoder g to extract semantically meaning-
ful representations from the input image, and dual classifiers
f1 and f2 to project these representations to the class dis-
tribution (as depicted in Figure 2). To learn more general
and robust representations, and enforce the two classifiers to
have different decision mechanisms, we employ the cross-
entropy loss in the first classifier f1 and the supervised
contrastive loss (Khosla et al., 2020) in the second classifier,
f2. This equips our method with multiple viewpoints of the
input data and ensures that the two classifiers sufficiently
diverge. Furthermore, supervised contrastive loss provides
the benefit of learning generalizable features across differ-
ent domains while facilitating the learning of discriminative
features across different classes (Cha et al., 2021). Hence,
the two learning objectives complement each other.

In addition, we employ a buffer with bounded memory in
which we store a portion of the learning task samples, labels,
and logits from both classifiers. To this end, we propose
an effective buffer sampling strategy, called “Intermediary
Reservoir Sampling” strategy (see Section 3.2) throughout
the training process to sample from the current task data and
store them in a buffer. This way, the memory buffer contains
samples from past tasks that are replayed later during the
training process.

Concretely, the first task is learned with the combination of
cross-entropy loss on f1 and supervised contrastive loss on
f2 on shared representations, where zi = g(xi):

L1 ≜ E
(xi,yi)∼Dt

[ Lce(f1(zi), yi) + Lsup(f2(zi), yi)] (1)

For subsequent tasks, learning unfolds in three stages that
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enable CL by helping the model effectively adapt to new
tasks while preserving prior knowledge.

3.1.1. DIVERGENCE

The divergence stage aims to tighten the decision bound-
aries of the two classifiers around the representation space
spanned by the samples of already learned tasks. This in-
volves maximizing the divergence between the two classi-
fiers so that they can identify incoming samples from the
new tasks whose representations do not lie in the space
spanned by the learned representations.

Specifically, we fix the parameters of the encoder, g, and
maximize the distance between the ℓ2-normalized logits
predicted by f1 and f2. The discrepancy loss (Tan et al.,
2022) measures the disparity in the distributions of pairwise
distances of the classifier outputs f1(z) and f2(z). Let d1
be the pairwise distance between the ℓ2-normalized logits
predicted by classifier f1 for a batch of input samples X :

d1 = ∥f1(zi)− f1(zj)∥ (2)

where ∥.∥ denotes Euclidean distance. The similarity met-
rics p(.) can then be modeled as a normal distribution:

p(d1) = C1
1

σ1

√
2π

exp

[
−1

2

(d1 − µ1)
2

σ2
1

]
(3)

where C1 is a constant and µ1, and σ2
1 are set to 0 and 1

2
following (Tan et al., 2022). Letting d2 be the pairwise
distance between the ℓ2-normalized logits predicted by the
classifier f2 and q(.) be the corresponding similarity metrics,
the discrepancy loss defined as:

L2 ≜ E
X∼Dt

[p(d1)logq(d2) + (1− p(d1))log(1− q(d2))]

(4)

Intuitively, as illustrated in Figure 2, the divergence stage
tightens the decision boundaries around the previous task
samples by forcing the classifiers to maximize the distance
in the predictions for the samples from the new task, while
maintaining correct predictions on the previous tasks. This
is achieved by minimizing the cross-entropy loss (f1), su-
pervised contrastive loss (f2), and a consistency loss on the
buffer samples in addition to maximizing the discrepancy
loss on the new task samples:

L3 ≜ E
(x′

i,y
′
i,ζ

′
1,2)∼Dm

[
α∥ζ ′1,2 − f1,2(z

′
i)∥2

+ Lce(f1(z
′
i), yi) + Lsup(f2(z

′
i), yi)

] (5)

where ζ1 and ζ2 are f1 and f2’s saved logits in the buffer,
and α is a weighting parameter. The consistency loss en-
courages the classifiers to adapt their decision boundaries
while maintaining the semantic relationships between the

classes and enforces them to remain close to the optimal
solution found for previous task samples in the memory
buffer. Hence, the overall loss for the divergence stage is
given by LD = L2 + L3.

3.1.2. ADAPTATION

The Divergence stage is followed by the Adaptation stage,
which aims to adapt the encoder g so that the representations
of the new task samples are adapted within the subspace
spanned by the already learned representations of previous
tasks. Hence, the goal is to learn a consolidated repre-
sentation space that supports the samples of the new tasks
while remaining close to the optimal representations for
the previously learned tasks. This is achieved by freezing
the classifiers f1 and f2, and minimizing the discrepancy
between their predictions. This enforces the encoder g to
adapt the representations so that the two classifiers agree on
their predictions. The corresponding minimization loss for
the discrepancy between f1 and f2 is given by;

L4 ≜ − E
X∼Dt

[p(d1)logq(d2) + (1− p(d1))log(1− q(d2))]

(6)

Divergence and Adaptation can also be interpreted as a form
of adversarial learning in which, first, the discriminators f1
and f2 are trained to discriminate the samples of the new
task from those belonging to the old tasks by maximizing
the discrepancy between the classifiers. Consequently, the
generator, g, is trained to deceive the discriminators by
extracting features that minimize the discrepancy between
the two classifiers. Thus, during the course of learning the
new task, the representations of the new task samples are
gradually adapted to lie within the support spanned by the
representations of previously learned tasks, rather than the
other way around, which effectively reduces the drift in
representation, and hence mitigates forgetting. The total
loss for this stage is given by LA = L3 + L4.

3.1.3. REFINEMENT

Finally, the Refinement stage aims to refine the encoder
and classifiers to effectively consolidate the new task in-
formation with the previously learned knowledge such that
a learned consolidated representation space and decision
boundary perform well for all the tasks seen so far. This
involves training the encoder g, and the classifiers f1 and
f2 to predict the correct classes for new task samples, while
also minimizing a consistency loss with respect to the stored
samples in the buffer. This encourages the model to learn the
new task while maintaining previously acquired knowledge.
The loss used at this stage is LR = L1 + L3.

Note that we iterate through the three stages multiple times
while learning each task. This enables the model to gradu-
ally adapt the representations and decision boundary to ac-
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quire and consolidate information from the new task while
mitigating the drift in representations and hence forgetting.
Our proposed method is detailed in Algorithm 1.

3.2. Intermediary Reservoir Sampling

The proposed method to populate the replay buffer in DER
utilizes Reservoir Sampling (Vitter, 1985). However, this
uniform distribution throughout the learning trajectory does
not optimize the storage of the exemplars. There is a nontriv-
ial probability that logits are stored in the buffer at the very
beginning or end of learning a task, leading to suboptimal
performance. To improve this, we propose the “Interme-
diary Reservoir Sampling (IRS)” strategy, which employs
a normal distribution over the learning trajectory of each
task. The mean of the distribution is set to the intermediate
stages, and the buffer is populated accordingly. This incen-
tivizes the storage of logits with more ”dark knowledge”
about the current task, which in turn propagates the knowl-
edge across future tasks through distillation. This approach
aligns with recent research in knowledge distillation (Wang
et al., 2022), which suggests distilling with respect to an
intermediate teacher model to capture maximum informa-
tion on the “dark knowledge” between data samples. We
defer Algorithm 2 and ablation studies for IRS (Table 3) to
Appendix.

4. Experimental Setup
We address the issue of sudden changes in data representa-
tion that occur with the introduction of new domains. To
tackle this problem, we propose a novel approach to miti-
gate drift, and our results demonstrate that addressing this
issue leads to improved performance on standard DIL bench-
marks. To perform our experiments, we use the mammoth
framework (Buzzega et al., 2020) to emulate DIL scenarios
and implement our approach on top of the ResNet-18 archi-
tecture (He et al., 2016), following previous works (Buzzega
et al., 2020; Rebuffi et al., 2017). We modify the network
to include our proposed approach, in which the encoder g
retains the default ResNet-18 structure, and the classifica-
tion heads f1 and f2 are linear layers projecting the encoded
representations from g to a number of classes C, such that
f1,2 : Rd → RC , where d is the dimension of flattened
representations from the encoder. We train our method with
a batch size of 32, for 50 epochs per task on all datasets.

We evaluate our proposed method in DIL setting (Van de
Ven & Tolias, 2019) on two diverse datasets. DN4IL (Do-
mainNet for Domain-IL) is a challenging dataset consisting
of six vastly diverse domains and samples belonging to 100
classes (Gowda et al., 2023). On the other hand, iCIFAR-
20 (Xie et al., 2022) is the DIL setup of the CIFAR-100
dataset (Krizhevsky et al., 2009), where the 20 supercate-
gories are considered actual classes and the five subcate-

Algorithm 1 Learning Algorithm for DARE
input: Data streams Dt, model with backbone g and
two classifiers f1, f2 parameterized by θ, memory buffer
M = {}
for all tasks t ∈ {1, 2, .., T} do

for epochs e ∈ {1, 2, .., E} do
if t = 1 then

for batch (xt, yt) ∈ Dt do
Compute L1

Update the model based on∇θL1

end for
else

if e%3 == 0 then
▷ Divergence

for batch (xt, yt) ∈ Dt do
Freeze the encoder g(.)
ζ1, ζ2 = f1(xt), f2(xt)
Sample batch (x′, y′, ζ ′1,2) ∈M
Compute LD = L3 + L2

Update classifiers based on∇θLD
end for

else if e%3 == 1 then
▷ Adaptation

Unfreeze the model
for batch (xt, yt) ∈ Dt do

Freeze the classifiers f1, f2
ζ1, ζ2 = f1(xt), f2(xt)
Sample batch (x′, y′, ζ ′1,2) ∈M
Compute LA = L3 + L4

Update the backbone based on∇θLA
end for

else if e%3 == 2 then
▷ Refinement

Unfreeze the model
for batch (xt, yt) ∈ Dt do
ζ1, ζ2 = f1(xt), f2(xt)
Sample batch (x′, y′, ζ ′1,2) ∈M
Compute LR = L1 + L3

Update the model based on∇θLR
end for

end if
end if
UpdateM← IRS(x, y, ζ1,2) ▷ Algorithm 2

end for
end for
return: model θ

gories are considered new domains. We focus on evaluating
models on datasets that closely mimic real-world domain
shifts, as opposed to the transformed versions of MNIST
commonly used in the literature. More information about
the datasets and training is deferred to Appendix.
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Table 1. Results on DIL benchmarks learned with varying buffer sizes, averaged over 3 runs. Accuracy determines the performance on all
tasks learned by the model, and backward transfer (BWT) quantifies the degree to which learning a new task improves performance on
previously learned tasks. #P denotes the total count of trainable parameters (expressed in millions). 3

Buffer
Size Method iCIFAR-20 DN4IL

#P ↓ BWT ↑ Last Accuracy ↑ #P ↓ BWT ↑ Last Accuracy ↑

- Joint 11.18 - 79.61±0.13 11.22 - 59.93±1.07

SGD 11.18 -43.72±1.07 49.40±0.53 11.22 -42.42±0.00 21.63±0.42

50

ER 11.18 -42.03±0.27 50.23±0.94 11.22 -36.11±0.26 24.24±0.34

DER++ 11.18 -40.63±0.49 52.68±1.10 11.22 -29.05±1.35 28.08±0.99

DARE 11.19 -34.98±1.52 53.66±0.59 11.27 -22.98±0.62 32.32±0.53

CLS-ER 33.57 - 63.01±0.80 33.81 - 37.90±1.15

DUCA 33.57 - 61.48±0.25 33.81 - 38.91±2.12

DARE++ 22.38 - 62.43±0.37 22.54 - 40.51±0.17

100

ER 11.18 -41.88±0.59 50.85±0.73 11.22 -35.28±1.20 24.67±0.86

DER++ 11.18 -37.33±1.47 55.32±0.69 11.22 -27.78±0.90 32.06±1.05

DARE 11.19 -33.20±0.09 56.01±0.22 11.27 -19.37±0.43 37.16±0.62

CLS-ER 33.57 - 64.31±0.43 33.81 - 39.30±0.74

DUCA 33.57 - 62.59±0.27 33.81 - 43.09±0.14

DARE++ 22.38 - 64.59±0.24 22.54 - 43.27±0.37

200

ER 11.18 -38.98±0.74 52.57±0.79 11.22 -32.35±0.51 27.45±0.94

DER++ 11.18 -33.61±0.64 58.39±0.38 11.22 -23.99±0.74 35.74±0.67

DARE 11.19 -30.22±1.84 58.53±1.25 11.27 -14.69±0.19 40.59±0.73

CLS-ER 33.57 - 66.40±0.81 33.81 - 41.70±1.41

DUCA 33.57 - 66.04±0.36 33.81 - 44.45±0.18

DARE++ 22.38 - 65.79±0.92 22.54 - 44.11±0.98

5. Empirical Results
We compare our approach with state-of-the-art rehearsal-
based methods in CL literature under uniform experimental
settings, focusing on the challenging low buffer regime
where representation drift is most pronounced (Caccia
et al., 2022). For a comprehensive study, we selected stan-
dard methods such as ER (Riemer et al., 2018), DER++
(Buzzega et al., 2020), CLS-ER (Arani et al., 2022), and
DUCA (Gowda et al., 2023). CLS-ER uses slow and fast
learners to distill knowledge from past tasks, while DUCA
is a multimemory system that integrates shape cognitive
bias. To consolidate learned knowledge, we employed a se-
mantic memory, an exponential moving average (EMA) of
the learning model, comparing it with CLS-ER and DUCA.
Our proposed method is ’DARE,’ and ’DARE++’ represents
the results of the EMA model in an extended dual-memory
version. We also report both the upper bound, denoted Joint,
where training uses the entire dataset, and the lower bound,
denoted SGD, where training progresses through new do-
mains without an additional buffer.

Table 1 presents the performance of DARE and other base-
lines on DIL benchmarks. The results indicate consistent
improvements in final accuracy (over all seen tasks) and
backward transfer (BWT) when using a single learning
model (DARE) with different buffer sizes. Additionally,

DARE++ achieves comparable or even better results than
other multi-memory based approaches. Notably, CLS-ER
and DUCA require storing all multi-memory models in the
device, leading to high memory requirements reflected in
the number of parameters in the framework. The efficacy of
DARE++ is evident from its performance on par with other
multi-memory systems with significantly lower parameters.

In the challenging scenario where the buffer size is limited
to 50 in DN4IL, our proposed method, DARE, demonstrates
significant improvements of 33.3% and 15.1% in accuracy
over ER and DER++, respectively. Additionally, DARE
trained with a smaller buffer outperforms the DER++ coun-
terparts trained on larger buffer sizes. Similarly, DARE++
trained with a smaller buffer size outperforms CLS-ER
trained with a larger buffer size. DN4IL is a highly challeng-
ing DIL dataset with significant domain shifts, and these
improvements demonstrate the effectiveness of DARE.

Our results clearly indicate that DARE can effectively learn
new domains while maintaining high performance on old
tasks, even under complex and memory-restrictive settings.
This can be attributed to our learning algorithm preserving
representations of old tasks while acquiring new ones.

3BWT numbers for methods that include an EMA model are
not mentioned due to the stochastic nature of the EMA update.
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Figure 3. Task-wise accuracy of different CL models while learning new tasks with buffer size 50. DARE retains more performance on
seen domains compared to ER and DER++.
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Figure 4. Representation drift analysis. Left: Epoch-wise accuracy on Task 1 samples, while learning future tasks (shaded regions
indicate new tasks). Right: Iteration-wise drifts for buffered samples for CL methods trained with a buffer size of 50. It is evident that
DARE effectively reduces representation drift compared to other methods.

6. Model Analysis
We evaluate the effectiveness of our proposed approach in
challenging scenarios through various analysis experiments,
comparing its performance to single-model approaches.

6.1. Task-wise Performance

The extreme difference between the domains in every task
warrants the study of the model’s knowledge about the seen
tasks while learning new tasks. Figure 3 shows the task-
wise accuracy of different CL approaches while learning
new tasks. DARE retains the accuracy of old tasks better
compared to ER and DER++. Furthermore, learning task
4 helps improve performance on task 1 across all CL algo-
rithms, and this can be attributed to the similar nature of task
4 (painting) to task 1 (real). It is worth noting that DARE
achieves higher performance in task 1 compared to DER++
which employs almost a similar learning algorithm except
for the proposed IRS strategy. The consistency loss with
respect to intermediate-stage checkpoints helps to learn the
first task better than other approaches.

6.2. Study of Representation Drift

The representations learned for previous tasks in the back-
bone denote the knowledge of the model about the relation-
ship between the input samples and the labels drawn from
the data distribution of previous tasks. Modification to im-
portant weights in the network for the previous task while
learning the new task is deemed to contribute to catastrophic
forgetting in CL (McCloskey & Cohen, 1989). Thus, ana-
lyzing the change in the representations of past tasks would
shed some light on the amount of catastrophic forgetting.

We analyze the representation drift of early task samples in
two ways. First, we plot the accuracy of the task 1 validation
set over the course of training in the other domains in Figure
4 (left). This represents the disruptive nature of representa-
tion drift at task boundaries and their detrimental effect on
the accuracy of seen tasks. It can be seen that both ER and
DER++ undergo a significant decrease in performance for
task 1 samples at the beginning of learning task 2. The same
behavior is observed at the beginning of tasks 3, 5, and 6.
However, DARE prevents such loss inaccuracy for task 1

7
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Figure 5. Model calibration and task recency bias analyses of different CL approaches learned with buffer size 200. Left: Logit norm
analysis shows that DARE predicts logits with magnitudes smaller than DER++ (less overconfident) for recent task samples. Right:
DARE has a lower calibration error compared to DER++ on samples belonging to different tasks.

samples while learning new tasks, as it inhibits disruptive
updates to learned representation by design. We observe
an increase in task 1 accuracy at the beginning of task 4 in
all methods. This is explained by the backward transfer of
task 4 (painting), which has features similar to task 1 (real)
compared to other domains. DARE is flexible enough to
allow for such a backward transfer of knowledge.

Second, we examine the iteration-wise representation drift
of the buffered samples in Figure 4 (right). The plot reveals
that buffered sample representations experience a sudden
shift at task boundaries (indicated by alternating shaded
regions). However, DARE, with and without IRS, doesn’t
exhibit a comparable representation change. As we adjust
future task representations into the initial task’s representa-
tion space, the drift is minimal and gradual, contributing to
reduced forgetting. Preventing harmful alterations in repre-
sentations for samples from the same class set but different
domains supports accurate sample classification.

6.3. Task Recency and Model Calibration

Task recency bias is an important concern in CL, wherein
model predictions are biased more towards recent tasks
and result in more forgetting for earlier task samples (Wu
et al., 2019). In DIL, task recency bias can have severe
consequences, particularly in safety-critical applications
such as autonomous driving, where forgetting knowledge
about old tasks can lead to misclassifications. Therefore, it
is imperative to develop effective strategies to evaluate and
address task recency bias in DIL, especially to ensure the
reliability and safety of deployed models.

Although task recency bias has been extensively studied
in CIL (Wu et al., 2019; Masana et al., 2022; Hou et al.,
2019; Arani et al., 2022) and is straightforward to analyze as
classes are distinct between different tasks, it has not been
widely studied in the DIL scenario due to its inherent aspect
where all tasks share the same set of classes. As a step

Table 2. Ablation study on the effect of loss components on the
last accuracy of DARE, averaged over 3 runs.

Buffer
size DARE - L1 - L2 - L3 - L4

50 32.32±0.53 11.22±2.32 31.11±1.09 24.69±0.34 31.63±0.98

200 40.59±0.73 22.26±0.46 38.69±0.29 24.55±0.83 38.92±0.48

forward in studying this bias in DIL, we analyze the logit
norms of different CL approaches. DNNs that predict logits
with a larger magnitude or norm directly translate into over-
confident predictions (Chrysakis & Moens, 2023), which
in turn can indicate the bias of a model toward samples be-
longing to a certain task. Figure 5 (left) illustrates the logit
norms predicted by different CL models on the first and last
domain samples. While ER and DER++ are more confident
on the last task samples compared to the samples belonging
to the first task, DARE achieves more uniformly distributed
confidence over old and new task samples. Additionally,
Figure 5 (right) illustrates the calibration error (Guo et al.,
2017) of the model on the initial, last, and all task samples.
It is further evident that training with DARE achieves a
lower calibration error compared to other CL methods.

6.4. Effectiveness of Individual Components

The effectiveness of our method is demonstrated through
an ablation study (Table 2), where three interconnected
loss functions are crucial. Removing any loss function
results in performance decline, especially after removing
L1 and L3, impacting accuracies for both current and pre-
vious tasks. In particular, L2 and L4 contribute to gains
of 3.89% and 2.18% for buffer size 50, maximizing Di-
vergence and minimizing Adaptation steps. The synergy
among the three stages—Divergence, Adaptation, and Re-
finement—optimizes the representation space for new tasks,
ensuring optimal learning. Their interdependence is crucial;
isolated analysis risks divergence, and the absence of L3

8
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during Divergence leads to catastrophic forgetting. This
approach also minimizes representation drift (see Figure 4).

7. Conclusion
We proposed a novel method to address representation drift
in domain-incremental learning. Our proposed method,
DARE, mitigates representation drift at task boundaries
and effectively assimilates new domain information into
the feature space of old task samples. The inclusion of an
effective buffer sampling strategy allows the preservation of
the dark knowledge learned on old tasks when learning new
ones. Our empirical evaluation demonstrated that DARE
outperforms existing methods across different DIL bench-
marks, with less forgetting and improved performance on
seen domains. Furthermore, DARE exhibits efficient mem-
ory and computational usage, reduces bias towards recent
task samples, and inhibits abrupt representation drift at task
boundaries. These results demonstrate DARE’s efficacy and
the potential for practical applications in continual learning.

Limitations and Future Work
One particular area of focus for enhancement that we en-
deavor to tackle pertains to the enhancement of our method-
ology to lessen the reliance on task-id, which is presently
vital for the IRS buffer sampling strategy. Nevertheless, we
can integrate mechanisms for independently identifying task
transitions, such as monitoring variations in loss metrics.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix
A.1. Evaluation Metrics

To evaluate the performance of different models under different settings, we selected two main metrics widely used in the
CL literature. We formalize each metric below.

1. Last Accuracy defines the final performance of the CL model on the validation set of all the tasks seen so far.
Concretely, given that tasks are sampled from a set t ∈ 1, 2..., T , where T is the total number of tasks and ak,j is the
accuracy of a CL model on the validation set of the task k after learning task j, last accuracy Alast is as follows:

Alast =
1

T

T∑
k=1

ak,T (7)

2. Backward Transfer (BWT) defines the influence of the learning task t on previously seen tasks k < t. Positive BWT
implies that the learning task t increased performance on previous tasks, while negative BWT indicates that the learning
task t affected the performance of the model on previous tasks. Formally, BWT is as follows:

BWT =
1

T − 1

T−1∑
j=1

aT,j − aj,j (8)

A.2. Datasets

DN4IL (Gowda et al., 2023) is a subset of the standard DomainNet dataset (Peng et al., 2019) proposed for large-scale
unsupervised domain adaptation composed of 345 categories. DN4IL is a class-balanced dataset with 20 supercategories
and five classes under each supercategory. In total, the dataset consists of 100 categories spanning over 6 different domains
namely, ‘sketch’, ‘real’, ‘quickdraw’, ‘painting’, ‘infograph’, and ‘clipart’ with approximately 67k training images and 19k
test images of shape 64× 64. Domain-incremental learning (DIL) scenario on DN4IL is more challenging compared to
other datasets conventionally used for DIL as the distribution shift is more prominent. Figure 6 shows some examples of
different domains in the dataset.

iCIFAR-20 (Xie et al., 2022) is the DIL version of CIFAR-100 (Krizhevsky et al., 2009) dataset. iCIFAR-20 is a class-
balanced dataset with 20 supercategories and five classes under each supercategory. The 20 supercategories are considered as
real labels, and the five subcategories under each label is considered as a new domain. The dataset consists of approximately
50k training images and 10k test images of size 32× 32.

A.3. IRS - Intermediary Reservoir Sampling

Motivated by its effectiveness in Reinforcement Learning (Rolnick et al., 2019), rehearsal-based methods in continual
learning settings store a subset of input samples/exemplars and their corresponding labels in the replay buffer and interleave
them while learning new tasks. Ideally, the replay buffer is expected to model the data distribution of all previous tasks, and
the training algorithm samples exemplars from the buffer and interleaves them with the current task samples while learning
a new task, thus mitigating forgetting the knowledge of old tasks. Rehearsal-based methods are widely used in CL and
different approaches have been proposed to populate the buffer (Rebuffi et al., 2017; Chaudhry et al., 2018).

Dark Experience Replay (DER) (Buzzega et al., 2020) proposes to store logits along with exemplars and to learn the model
on new tasks while emulating their earlier responses to old task samples. Analogous to logit replay, many works have tried
distilling logits from a teacher model, typically a snapshot of the model at task boundaries (Douillard et al., 2022; Li &
Hoiem, 2017; Michieli & Zanuttigh, 2019) or exponential moving average of the model (Arani et al., 2022) to mitigate
forgetting. Concretely, the regularization loss on the logits distills the ‘dark knowledge’ (Hinton et al., 2014) learned
by the model in the previous tasks into the weights of the model being trained. This dark knowledge constitutes more
information about the relationships among different classes of input, thus guiding the learning model better discriminate
among samples belonging to different tasks and different classes as well. Thus, the information contained in the logits
contributes significantly to the accuracy of the learning model on all the seen tasks.

We propose the “Intermediary Reservoir Sampling (IRS)” strategy, which employs a normal distribution on the learning
trajectory of each task. The mean of the distribution is set to the intermediate stages, and the buffer is populated accordingly.
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Figure 6. Visualization of domain shifts in the DN4IL dataset.

This incentivizes the storage of logits with more ”dark knowledge” about the current task, which in turn propagates the
knowledge across future tasks through distillation. Algorithm 2 describes the IRS strategy.

Furthermore, we probe the improvements brought about by the proposed approach over DARE and DER++ in Table 3. It is
evident that the proposed IRS strategy improves both DER++ and DARE in the most challenging learning setting with a
buffer size of 50. IRS improves DER++ by ∼5% and DARE by ∼12%.

A.4. Task-wise Performance for Multi-Memory Methods

We analyzed the task-wise accuracies of the single-model versions in the main text, and here we compare DARE++ with
other multi-memory methods like CLS-ER and DUCA. Figure 7 shows the task-wise accuracy of different CL approaches
while learning new tasks. It can be seen that DARE++ retains accuracy on the initial tasks much better than CLS-ER and

Table 3. Comparison of the reservoir sampling and the proposed IRS buffer sampling strategy. Results are on DN4IL dataset trained with
buffer size 50 for six tasks.

Metric Method Reservoir
Sampling IRS

BWT DER++ -23.99±0.74 -22.69±3.71

DARE -15.77±0.69 -14.69±0.19

Last Accuracy DER++ 35.74±0.67 37.60±1.21

DARE 36.17±0.38 40.59±0.73
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Algorithm 2 Intermediary Reservoir Sampling (IRS)
input: Data streams Dt∀{t = 1, ..., T}, model fθ , memory bufferM , number of seen examples N , input sample x, label y, logit z.
for all tasks t ∈ {1, 2, .., T} do

for epochs ep ∈ {1, 2, .., E} do
for minibatch B → (xt, yt) ∈ Dt of size |B| do

zt = fθ(xt)

if uniform [0, 1] < 1

σ
√
2π

e−(ep−
E
2 )

2/2σ2

then
if |M| < N then
M[N ]← (xt, yt, zt)

else
i ∼ [0, N ] ▷ Random index
if i < |M| then
M[i]← (xt, yt, zt)

end if
end if

end ifN += |B| ▷ Increment number of seen samples with minibatch size
end for

end for
end for
return: updated memory bufferM

T1 T2 T3 T4 T5 T6
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48.8 48.4
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T1 T2 T3 T4 T5 T6

60.2

57.2 61.7

49.1 54.3 26.8
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52.4 52.0 15.6 36.0 47.8 40.4
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Figure 7. Task-wise accuracy of different multi-memory CL models while learning new tasks with buffer size 50 on DN4IL. DARE++
performs on par with the Stable Model of CLS-ER and the Semantic Memory of DUCA, which require more training memory and
computations.

DUCA. DARE++ effectively consolidates the knowledge about the past tasks from the working model compared to other
memory-intensive approaches, and this can be attributed to DARE inhibiting the excessive representation of past tasks, and
thus retaining the performance on them. It should be noted that DARE++ performs well despite requiring less memory and
training computations, as evident from the number of parameters in Table 1. This makes it more efficient and effective in
real-time applications.

A.5. Extended Results with Conventional CL Methods

In addition to the comparisons in the main text, we compare DARE with conventional regularization- and replay-based
methods. Online EWC (Schwarz et al., 2018) and Synaptic Intelligence (Zenke et al., 2017) fall under regularization-based
methods, where changes to important parameters in the network for old tasks are penalized. Averaged-Gradient Episodic
Memory (A-GEM) (Hu et al., 2020) and Function Distance Regularization (FDR) (Benjamin et al., 2018) fall into replay-
based methods. A-GEM learns new tasks with an optimization constraint such that the gradients for new tasks are projected
to the orthogonal subspace of the gradients for old task samples, thus retaining the performance on old tasks. FDR applies
distillation loss with respect to network outputs stored in the buffer for past task samples.

Table 4 compares DARE with various baselines on different datasets and buffer sizes. Regularization-based methods (oEWC
and SI) face challenges in the DIL scenario, while A-GEM and FDR demonstrate performance comparable to ER. It is
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Table 4. Results on DIL benchmarks with varying buffer sizes averaged over three runs. DARE achieves a consistent improvement over
the other methods across different metrics, i.e., accuracy and BWT. Accuracy determines the performance on all tasks learned by the
model, and backward transfer quantifies the degree to which learning a new task improves performance on previously learned tasks.

Buffer Size Method iCIFAR-20 DN4IL
#P ↓ BWT ↑ Last Accuracy ↑ #P ↓ BWT ↑ Last Accuracy ↑

-

Joint 11.18 - 79.61±0.13 11.22 - 59.93±1.07

SGD 11.18 -43.72±1.07 49.40±0.53 11.22 -42.42±0.00 21.63±0.42

oEWC 11.18 -41.35±2.01 47.39±2.00 11.22 -38.42±0.57 19.56±1.05

SI 11.18 -41.44±2.75 45.94±2.48 11.22 -25.20±2.75 21.67±1.47

50

ER 11.18 -42.03±0.27 50.23±0.94 11.22 -36.11±0.26 24.24±0.34

A-GEM 11.18 -43.02±0.88 50.02±0.14 11.22 -35.38±0.35 27.06±0.35

FDR 11.18 -42.05±1.57 51.07±0.58 11.22 -38.48±1.02 25.09±0.66

DER++ 11.18 -40.63±0.49 52.68±1.10 11.22 -29.05±1.35 28.08±0.99

DARE 11.19 -35.64±0.00 53.18±1.00 11.27 -22.98±0.62 32.32±0.53

100

ER 11.18 -41.88±0.59 50.85±0.73 11.22 -35.28±1.20 24.67±0.86

A-GEM 11.18 -42.98±0.80 50.43±0.57 11.22 -35.78±0.08 27.15±0.33

FDR 11.18 -41.22±0.58 52.37±0.39 11.22 -37.26±0.56 26.08±0.65

DER++ 11.18 -37.33±1.47 55.32±0.69 11.22 -27.78±0.90 32.06±1.05

DARE 11.19 -33.20±0.09 56.01±0.22 11.27 -19.37±0.43 37.16±0.62

200

ER 11.18 -38.98±0.74 52.57±0.79 11.22 -32.35±0.51 27.45±0.94

A-GEM 11.18 -41.49±0.75 51.12±0.76 11.22 -35.65±0.05 27.44±0.39

FDR 11.18 -38.82±0.85 54.06±0.61 11.22 -36.26±0.55 27.21±0.53

DER++ 11.18 -33.61±0.64 58.39±0.38 11.22 -23.99±0.74 35.74±0.67

DARE 11.19 -30.22±1.84 58.53±1.25 11.27 -14.69±0.19 40.59±0.73

Table 5. Selected hyperparameters for DARE and DARE++.
Dataset Method Buffer Size lr α β sw st r α

iCIFAR-20

DARE
50 0.04 0.3 0.1 0.05 1.2 - -
100 0.03 0.5 0.1 0.08 1.0 - -
200 0.06 0.5 0.1 0.08 0.99 - -

DARE++
50 0.04 0.3 0.1 0.05 1.2 0.055 0.999
100 0.03 0.5 0.1 0.08 1.1 0.058 0.999
200 0.06 0.5 0.2 0.08 1.1 0.045 0.999

DN4IL

DARE
50 0.04 0.1 0.2 0.05 0.8 - -
100 0.04 0.1 1.0 0.05 0.8 - -
200 0.04 0.1 1.0 0.05 0.8 - -

DARE++
50 0.04 0.1 0.2 0.05 0.8 0.050 0.999
100 0.04 0.1 1.0 0.05 0.8 0.050 0.999
200 0.04 0.1 1.0 0.05 0.8 0.090 0.999

evident that DARE surpasses all other baselines in all settings.

A.6. Hyperparameters

We enumerate the best hyperparameters chosen for the evaluation of different methods in the main paper and Table 4. lr
denotes the learning rate for the entire learning trajectory in each task. We fixed the batch size to 32 for both the current task
and old task samples (in buffer memory). We used grid search to find the best hyperparameters and took reference from
mammoth (Buzzega et al., 2020) repository for the search for experiments on iCIFAR-20 dataset and DUCA (Gowda et al.,
2023) for the search for experiments on DN4IL dataset, respectively. We trained all methods using SGD optimizer for 50
epochs per task.

Table 5 outlines the hyperparameters chosen for DARE and DARE++, while Table 6 lists the hyperparameters selected for
various CL baselines in our study. r denotes the frequency of updating the semantic model from the working model, and d
denotes the rate at which the weights of the EMA model are updated. rp and rs stand for the update frequency for the plastic
and stable model, respectively, in CLS-ER. λ refers to the weighting parameter for the knowledge distillation from the
semantic model to the working model in DUCA and CLS-ER. Furthermore, sw and st denote the weight and temperature
used in the supervised contrastive loss.

The losses corresponding to Divergence and Adaptation steps in DARE/DARE++ were weighted by 0.1 and 1, respectively,
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Table 6. Selected hyperparameters for all baselines.
Dataset Buffer Size Method Hyperparameters

iCIFAR-20

- oEWC lr=0.03, λ=10, γ=1
SI lr=0.03, c=1, ξ=0.9

50

ER lr=0.1
A-GEM lr=0.05
FDR lr=0.03, α=0.1
DER++ lr=0.03, α=0.1, β=0.2
CLS-ER lr=0.05, λ=0.1, rp=0.06, rs=0.02, dp=0.999, ds=0.999
DUCA lr=0.05, λ=0.1, r=0.08, d=0.999

100

ER lr=0.1
A-GEM lr=0.06
FDR lr=0.03, α=0.2
DER++ lr=0.05, α=0.1, β=0.1
CLS-ER lr=0.03, λ=0.1, rp=0.08, rs=0.04, dp=0.999, ds=0.999
DUCA lr=0.04, λ=0.1, r=0.09, d=0.999

200

ER lr=0.1
A-GEM lr=0.04
FDR lr=0.03, α=0.5
DER++ lr=0.03, α=0.2, β=0.1
CLS-ER lr=0.05, λ=0.1, rp=0.12, rs=0.04, dp=0.999, ds=0.999
DUCA lr=0.04, λ=0.1, r=0.08, d=0.999

DN4IL

- oEWC lr=0.05, λ=50, γ=1
SI lr=0.05, c=0.5, ξ=0.5

50

ER lr=0.1
A-GEM lr=0.05
FDR lr=0.03, α=0.5
DER++ lr=0.01, α=0.1, β=0.1
CLS-ER lr=0.05, λ=0.1, rp=0.06, rs=0.04, dp=0.999, ds=0.999
DUCA lr=0.04, λ=0.1, r=0.06, d=0.999

100

ER lr=0.1
A-GEM lr=0.04
FDR lr=0.05, α=0.5
DER++ lr=0.03, α=0.2, β=0.5
CLS-ER lr=0.05, λ=0.1, rp=0.14, rs=0.04, dp=0.999, ds=0.999
DUCA lr=0.05, λ=0.1, r=0.06, d=0.999

200

ER lr=0.1
A-GEM lr=0.04
FDR lr=0.05, α=0.1
DER++ lr=0.03, α=0.1, β=1.0
CLS-ER lr=0.05, λ=0.1, rp=0.08, rs=0.04, dp=0.999, ds=0.999
DUCA lr=0.03, λ=0.1, r=0.06, d=0.999

in all datasets and buffer sizes. It is also evident from Table 5 that DARE and DARE++ do not need extensive finetuning,
except for the dataset-specific learning rates. The other hyperparameters are mostly stable across different settings.
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