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Abstract

Computational fluid dynamics (CFD) simulation
is an irreplaceable modelling step in many engi-
neering designs, but it is often computationally
expensive. Some graph neural network (GNN)-
based CFD methods have been proposed. How-
ever, the current methods inherit the weakness
of traditional numerical simulators, as well as ig-
nore the cell characteristics in the mesh used in
the finite volume method, a common method in
practical CFD applications. Specifically, the input
nodes in these GNN methods have very limited
information about any object immersed in the sim-
ulation domain and its surrounding environment.
Also, the cell characteristics of the mesh such as
cell volume, face surface area, and face centroid
are not included in the message-passing opera-
tions in the GNN methods. To address these weak-
nesses, this work proposes two novel geometric
representations: Shortest Vector (SV) and Direc-
tional Integrated Distance (DID). Extracted from
the mesh, the SV and DID provide global geom-
etry perspective to each input node, thus remov-
ing the need to collect this information through
message-passing. This work also introduces the
use of Finite Volume Features (FVF) in the graph
convolutions as node and edge attributes, enabling
its message-passing operations to adjust to dif-
ferent nodes. Finally, this work extends the use
of residual training to improve flow field predic-
tion for a GNN scenario with immersed object,
when low resolution data is available. Experi-
mental results on two datasets with five differ-
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ent state-of-the-art GNN methods for CFD in-
dicate that SV, DID, FVF and residual training
can effectively reduce the predictive error of cur-
rent GNN-based methods by as much as 41%.
Our codes and datasets are available at https:
//github.com/toggled/FvFGeo

1. Introduction
Computational fluid dynamics (CFD) is a branch of fluid
dynamics in which physical phenomena involving fluid flow
are modelled mathematically as partial differential equa-
tions (PDEs), like the Navier–Stokes (NS) equations, and
solved computationally via numerical analysis. CFD is
applied to a wide range of scientific and engineering prob-
lems that requires the flow of the fluid and its interaction
with surfaces to be simulated, including aircraft aerody-
namic optimisation (Martins, 2022), combustion engine
design (Vijayashree & Ganesan, 2018), marine hydrody-
namics prediction (Demirel, 2021), microfluidic device eval-
uation (Chaves et al., 2020), and urban planning (Zhang
et al., 2021). Despite its versatility, CFD simulation is gen-
erally slow and/or costly due to the need for both high spa-
tial and temporal resolutions to solve the governing PDEs
accurately.

Researchers have exploited deep learning to accelerate CFD
simulation. Multilayer perceptron (MLPs) and convolu-
tional neural networks (CNNs) have been considered. How-
ever, they both do not fit industrial requirements in many
cases because of their restrictions in the input fields and
architectures. MLPs cannot handle high dimensional input,
which would increase the number of training parameters
dramatically and cause overlearning. Thus, the current MLP
methods such as PINN consider each spatial location sepa-
rately and ignore their relationship (Raissi et al., 2019). In
other words, they do not have an explicit scheme for infor-
mation exchange between nodes. It should be emphasised
that flow of a fluid in a particular location would influence
that of a neighbour region. Although CNNs allow this in-
formation exchange, they can apply only to the flow field
represented on a fixed, regular grid. In many industrial simu-
lations, the computational domain may contain objects with
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a complex geometry, such as a turbine blade, and hence
may have an irregular mesh, so CNNs are not suitable. To
fit the industrial requirements and bypass the limitations,
researchers have recently employed graph neural networks
(GNN) for CFD problems, such as laminar and turbulent
flow prediction and geometry optimisation (Liu et al., 2020;
Baque et al., 2018). Some of these studies have considered
physical properties or constraints in their GNN. For exam-
ple, Horie & Mitsume (2022) designed boundary encoders
to impose Dirichlet boundary conditions and Bonnet et al.
(2022a) separated the nodes on airfoils and other nodes in
their objective for computing drag and lift coefficients.

The current GNN methods neglect the cell characteristics
in the mesh, such as cell volume, face surface area, and
face centroid, which are core components of the finite
volume method, a widely adopted CFD method in indus-
try (Moukalled et al., 2016). CFD simulators based on the
finite volume method in general take three steps to compute
the flow of the fluid. First, the simulation domain will be
discretised into a finite number of small volumes known as
cells. Next, the fluid properties, flow models, boundary con-
ditions of the domain, and initial conditions for the flow will
be prescribed. Finally, through Gauss’s divergence theorem
and assuming a constant solution in each cell, the governing
PDEs can be written in an integral form, discretised by nu-
merical approximation, and solved as a system of algebraic
equations through numerical methods. The cell characteris-
tics play a critical role in the discretisation process because
they are used to model the flux between a certain cell and
its neighbours for the purpose of conservation of mass, mo-
mentum, and energy. However, the current GNN methods
do not consider this information.

Another weakness of the current GNN methods is that their
input node features, such as signed distance function (SDF),
spatial coordinates, and inlet velocity, only provide very
limited information about any embedded object and its sur-
rounding environment to the nodes (Bonnet et al., 2022a;
Belbute-Peres et al., 2020). Thus, the nodes need to collect
this information through message-passing between neigh-
bouring nodes. In fact, this weakness also appears in the
traditional finite volume simulators, which propagate object
boundary conditions only locally.

To address these weaknesses, in this paper, we make the fol-
lowing three contributions regarding three aspects of graph
neural network training for CFD:

• Input layer. We propose Shortest Vector (SV) and Di-
rectional Integrated Distance (DID) for enhancing the
performance of GNN-based methods. The SV and DID
extracted from the mesh provide a global geometry per-
spective to each input node, thus easing the learning by
removing the need to collect this information through
message-passing.

• Graph convolution. We propose the Finite Volume
Features (FVF), including cell volume, face area nor-
mal vector, and face centroid, to be used as node and
edge attributes in graph convolution, such that the con-
volution filters can be adjusted based on the cell char-
acteristics. A theorem is presented to show that the
input mesh can be reconstructed from the FVF.

• Training scheme. While existing GNN meth-
ods (Belbute-Peres et al., 2020) exploit low-resolution
data as prior knowledge, and the “learned correction”
approach (Kochkov et al., 2021) corrects the error of
very low-resolution simulations without an immersed
object using a CNN, we demonstrate that residual train-
ing reduces the prediction error of a GNN by helping
the model focus more on regions around and down-
stream from the geometries, where the low-resolution
data tends to be less accurate.

The experimental results show that the (i) combined effect of
the proposed geometric features and finite volume features
reduces predictive errors of MeshGraphNet (Pfaff et al.,
2021), BSMS-GNN (Cao et al., 2023), Chen-GCNN (Chen
et al., 2021) and Graph U-Net (Bonnet et al., 2022a) by
as much as 41%, as well as reduces the predictive error of
CFDGCN (Belbute-Peres et al., 2020) by about 24%, and (ii)
additional usage of residual training increases the reduction
of the error of CFDGCN to 41%. Further investigation of
Chen-GCNN and MeshgraphNet models reveals that the
residual training reduces the models’ predictive errors by
25% and 45%, respectively.

2. Preliminaries and Related Work
Finite volume method. Consider the integral form of
the steady state, incompressible turbulent Navier–Stokes
equation for x direction over a control volume, which is
given by∫
∇ ·

(
ūxU − (ν + νt)∇ūx

)
+

∂p̄

∂x
dV

=

∮ (
ūxU − (ν + νt)∇ūx

)
· dS +

∫
∂p̄

∂x
dV = 0 ,

(1)

where U = [ūx, ūy]
T is the velocity vector, ν and νt are

the dynamic and turbulent viscosities respectively, and p̄ is
the normalised pressure. The second expression of Equa-
tion 1 is obtained from Gauss’s theorem, where S denotes
the area normal vector on the surface of the control volume
and points outwards by convention (Moukalled et al., 2016).
The finite volume method discretises the control volume into
cells, as shown in Figure 1(a). For sufficiently small cell vol-
ume V like in Figure 1(b), all variables within a cell or along
each of its faces are approximately constant (Moukalled
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et al., 2016), so Equation 1 becomes

∑
f

(
ūxU − (ν + νt)∇ūx

)
f
· Sf +

(
∂p̄

∂x

)
V

=
∑
f

Φf · Sf +ΩV = 0 ,
(2)

where f is a counter for the discrete faces of the cell. The
first and second terms of the first expression of Equation 2
are known as the flux (Φ) and source (Ω) terms, respec-
tively (Moukalled et al., 2016), thus constituting the second
expression.

In typical finite volume simulators, variables like U and p̄
are solved at the cell centroids such as xi and xj in Fig-
ure 1(b). However, from Equation 2, the flux term needs face
centroid values, which can be approximately interpolated
from the cell centroids by (Tasri & Susilawati, 2021)

Φf ≈
(
Φi
||cf,ij − xi||
||xj − xi||

+Φj
||cf,ij − xj ||
||xj − xi||

)
. (3)

The interpolated flux term will then be projected to its re-
spective face area normal vector, Sf,ij . Note that Equation 3
implies that the face centroid at cf,ij lies along the line con-
necting xi and xj , which is not necessarily true because
cells in a CFD simulation need not be regular and can have
different sizes and shapes, as shown in Figure 1(b). In gen-
eral, cells with small volumes are used in sensitive regions,
for instance, the close vicinity of an object or wake region
where flow variables may change drastically due to bound-
ary conditions. Therefore, Equation 3 will incur an error that
corresponds to the deviation from the face centroid, though
a spatial correction scheme can be implemented as mitiga-
tion (Tasri & Susilawati, 2021). Also, the error will reduce
with smaller cell volume, which is the main reason for the
high computational cost of CFD. On the other hand, the
source term weighted by the cell volume will be represented
exactly by ΩjVj .

Graph construction. In GNN-based CFD methods, both
the inputs and outputs of the model are often graphs. The
CFD simulation mesh M is represented as a graph G =
(V,E), where V and E represent a set of nodes and edges,
respectively. There are two methods to do so.

Using a 2D CFD mesh for illustration, the first method, as
shown in Figure 2(a), is to directly represent the mesh nodes
as graph nodes i ∈ V , and the faces between them as edges
(i, j), (j, i) ∈ E. We refer to this as the mesh node-based
method, and it has been used by other researchers (Bonnet
et al., 2022a; Belbute-Peres et al., 2020; Chen et al., 2021;
Pfaff et al., 2021). An alternate approach proposed by the
authors is the following: the graph node i ∈ V represents
the mesh cell centroid mi ∈M , and the bi-directional edge

Figure 1. (a) CFD mesh with an airfoil body surrounded by differ-
ent sizes of cells. (b) Illustration of cell characteristics, namely
cell centroids, xi and xj , face centroid, cf,ij , face area normal
vector, Sf,ij , and cell volumes, Vi and Vj .

Figure 2. Two graph construction methods: (a) Mesh node-based:
Graph nodes represent mesh nodes and graph edges represent mesh
faces. (b) Cell centroid-based: Graph nodes represent either cell
centroids (white) or boundary face centroids (black), and graph
edges represent the adjacency of the cell centroids with one another
or with boundary faces.

(i, j), (j, i) ∈ E indicates that cells i and j are adjacent, i.e.,
share a face. We refer to this approach as the cell centroid-
based method, which is illustrated in Figure 2(b). This
method is key to the use of FVF as described in § 3.

Note that in this method, the centroids of the boundary faces
are represented as graph nodes as well, despite not being
shared by two cells, to capture flow characteristics at the
boundary. This representation allows message-passing from
and towards boundary faces to be captured by the edges
between these nodes and that of the cell adjacent to the
boundary face.

Global geometry representations. In a steady simulation,
a GNN is trained to predict the velocity vector and pressure
for each node. To train a GNN to predict target flow char-
acteristics at each node, the current methods encode some
features into the input nodes. The most common approaches
include variants of the binary representation (Chen et al.,
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Figure 3. Illustration of three geometry representations: (a) SDF
value only indicates presence of the closest boundary point some-
where along the circle’s circumference. (b) SV provides both
distance and direction from the nearest boundary point. (c) DID
gives the average distance of all boundary within several difference
angle ranges.

2021) and the Signed Distance Function (SDF) (Bonnet
et al., 2022a; Belbute-Peres et al., 2020; Guo et al., 2016).
In binary representations, nodes are given discrete values
such as 0 and 1, depending on whether they are on the ge-
ometry boundary or not. The SDF, proposed by Guo et al.
(2016) for CNNs, is defined as

SDF (xi) = min
xb∈B

||xi − xb||h(xi), (4)

where xi and xb denote an internal node and its closest
boundary node, respectively. h(xi) is equal to 1, −1, and
0 if xi is outside, inside, and on the object boundary, re-
spectively. The SDF representation was shown to be more
effective than the simple binary representations in the CNN
case (Guo et al., 2016). Since graphs generated from meshes
do not have nodes on the inside of the object, the SDF for
GNNs is in fact just the shortest Euclidean distance between
xi and the object, estimated in a discrete case. However, it
provides each node with very limited information about the
object. The SDF value only indicates the existence of an ob-
ject at the distance of SDF (xi). No information about the
object’s size, shape, or direction from the node is given by
the SDF, even though all these factors will affect the flow at
the node. The boundary of the circle in Figure 3(a) indicates
the uncertainty due to incomplete information of SDF (xi).
Although some other properties about the nodes and the
flow, such as the spatial location of the nodes, inlet, angle of
attack, and Mach number (Belbute-Peres et al., 2020), can
also be provided as input node features, they cannot substi-
tute the missing geometric information, which remains to be
acquired by the nodes through message-passing. Note that
this weakness is also true of typical CFD simulators where
each mesh cell carries no global geometry information and
the object boundary condition is transmitted only locally.

Prior studies. The GNN-based CFD methods employ
on-shell GNNs and exploit the physical knowledge in dif-
ferent ways. Some of them embed physical constraints and
properties into the architectures and objective functions and

some others directly use numerical simulators as a part of
their methods. Belbute-Peres et al. (2020) combined a dif-
ferentiable CFD simulator and graph convolution network
(GCN) for fluid flow prediction. Liu et al. (2020) exploited
graph attention network (GAT) for turbulent flow predic-
tion without any physics prior. Ogoke et al. (2020) applied
GraphSAGE (Hamilton et al., 2017) to predict drag forces
around airfoils of different shapes and angles of attack under
laminar flow. They demonstrated that GraphSAGE outper-
forms non-graph based MLP and CNN methods. Battaglia
et al. (2018) proposed a general method called graph net-
work (GN) blocks that can handle graphs with local features
such as node features, edge features, and global graph-level
features. A GN block first passes messages from nodes to
edges through an edge convolution kernel before updating
the edge features. The updated edge features are then aggre-
gated to the nodes through sum or other permutation invari-
ant operations as the edge messages. A node convolution
kernel then takes the old node features and edge messages to
obtain the updated node features. Finally, the updated node
features and edge features are aggregated to compute global
graph-level features. Sanchez-Gonzalez et al. (2020) used
GN blocks to predict the future roll-out of physical systems
of particles, including fluids, rigid solids, and deformable
materials. Pfaff et al. (2021) used a GNN to predict future
roll-outs of unsteady flow and showed better performance
than CNN on various simulation scenarios in their proposed
MeshGraphNet. More recently, their method was built upon
by Libao et al. (2023) to include an RNN-based state encod-
ing and physics loss terms. Bonnet et al. (2022a) released a
large-scale high-resolution two-dimensional (2D) Reynolds-
averaged Navier-Stokes (RANS) simulation datasets on air-
foils and demonstrated good generalisation capabilities of
GraphSAGE (Hamilton et al., 2017) and Graph U-Net (Gao
& Ji, 2019) to different physical conditions and airfoil ge-
ometries. DiscretizationNet (Ranade et al., 2021) used finite
volume discretisation to approximate spatio-temporal par-
tial derivatives in its CNN encoder-decoder training. It is
a non-data driven method that cannot generalise to new
scenarios, requiring it to be trained on every new instance
to obtain a solution. Also, its convolutions did not lever-
age cell characteristics as the finite volume method does.
Chen et al. (2021) proposed their own permutation-invariant
edge-convolution layer and smoothing layer to predict lam-
inar flow on obstacles of different shapes. Their proposed
architecture, which is referred to as Chen-GCNN in this
paper, showed better performance than the standard U-net
model (Ronneberger et al., 2015). Finally, similar concepts
behind the MeshGraphNet and Chen-GCNN were further
enhanced with multi-scalability in the MS-MGN by Fortu-
nato et al. (2022), MultiScaleGNN by Lino et al. (2021),
and BSMS-GNN by Cao et al. (2023), with the latter two
using a GU-Net style processor for faster information prop-
agation performance. All these GNN works neglect the cell
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Figure 4. Illustration of the computation of DID. Each angle range is represented by the weighted average of the distance to the boundary
(shown by the darker segments) and the ∞ value for the directions where there is no boundary (shown by the lighter segments). Note that
∞ is a predefined number in the implementation.

characteristics, which, in the finite volume method, are used
to discretise the governing equations and model the flow
among the cells.

3. Proposed Features and Training Scheme
3.1. Global Geometry Perspective

To give each node global geometric perspective about the
object and its surrounding environment, we propose two
features: Shortest Vector (SV), and Directional Integrated
Distance (DID). SV is the vector formed by an internal
cell centroid node xi and its closest boundary face node xb

(Figure 3(b)), and is defined as

ϕ(xi) = xi − xb s.t. min
xb∈B

||xi − xb|| . (5)

SV is related to SDF in that the length of SV,
||ϕ (xi)|| = SDF (xi). However, SV has more discrimi-
native power than SDF because two nodes, xi and xj , can
have the same SDF values (i.e., SDF (xi) = SDF (xj))
despite the vectors ϕ(xi) and ϕ(xj) not being the same.

One limitation of SV is that only the closest node on the
object’s boundary is represented. Information in other direc-
tions is still missing. DID defined on an angular range is a
generalisation of SV. DID has different angular segments to
handle different directions. Figure 4 shows four overlapping
angular segments, each with a range of 2π/3. To clearly
present the concept of DID in the following description, we
consider a continuous object boundary. For the jth segment
of DID, θj and θ′j represent the starting and ending angles of
the segment, respectively, where θj ≤ θ′j . The continuous
version of DID is defined as

DID(xi, θj , θ
′
j , Bc) =

∫ θ′
j

θj

wj(θ)g(xi, Bc, θ)dθ , (6)

where wj(θ) is a suitable weightage function such as a Gaus-
sian function centred at (θj + θ′j)/2, Bc is the continuous
boundary of the object, and g(xi, Bc, θ) is the distance be-
tween the object and a node xi in the direction θ. If there

is no object boundary at the direction θ, an appropriately
large constant, as denoted in Figure 3(c) as ∞, is given
to g(xi, Bc, θ). In this continuous version of DID, Bc is
represented by a parametric equation rather than a set of
nodes. Each DID value provides a weighted average dis-
tance between the object and the node in a particular angle
range. While shorter angular segments make a more accu-
rate description of the object, it increases the number of
input features to train the network with. In this work, we
use SV and DID to provide relative global geometry infor-
mation of the object and its environment to the input nodes.
Hence, this information will not have to be collected during
propagation, easing the learning process. The algorithmic
details of our discrete, non-parametric DID implementation
can be found in the appendix.

As stated in the implementation details of DID in Ap-
pendix B.1, the weight function used is a uniform distri-
bution over segment range (θj , θ

′
j). This is better suited for

our choice of angle segments, where each segment overlaps
with half of the segment preceding it. As a result, every
point on the mesh is represented by two successive overlap-
ping segments. In this case, the exact selection of regions is
unlikely to significantly change the results, as every point
on the boundary is represented the same number of times
and with the same weight. On the other hand, if the chosen
angle segments meant that some points (in highly overlap-
ping regions) were represented more times than other points
(in less overlapping regions), the user may choose to put
more weight on the points that are represented fewer times.

3.2. Finite Volume Graph Convolution

As discussed in Section 2 with Equations 2–3 and the accom-
panying figure 1, the finite volume method uses cell charac-
teristics, such as the cell (xi, xj) and face centroids (cf,ij),
face area normal vector (Sf ), and cell volume (Vi,Vj), ex-
tensively. Motivated by the finite volume method, we hence
embed these characteristics in GNN. To ease the following
discussion, we will take the spatial graph convolution net-
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work (SGCN) as an example. First introduced and evaluated
on graphs from chemical compounds (Danel et al., 2020),
the SGCN has two key features: (i) use of the spatial loca-
tion of graph nodes as node attributes and (ii) use of multiple
filters. One limitation is that the node attributes only con-
sider node positions and ignore other useful information.
Hence, we generalise the convolution to be able to take in
node attributes, pj , and edge attributes, qij . Given node
feature hi ∈ Rdin at the ith node and its spatial location
xi ∈ Rt, a convolution using FVF is defined as

h̄i(U, b,Ni) =
∑
j∈Ni

ReLU(UT (qij)+b)⊙(hj⊕pj) , (7)

where U ∈ R3t×(din+1) and b ∈ Rdin+1 are trainable
parameters, t is the spatial dimension of the CFD simu-
lation, and Ni is an index set indicating the neighbour-
hood of the node i, ⊙ is the element-wise multiplica-
tion, and ⊕ is concatenation (Danel et al., 2020). In our
model, the node attributes are its associated cell volume,
denoted as pj = Vj ∈ R1, and the edge attributes are
its associated face area normal vector and the relative spa-
tial location of its face centroid to the nodes, denoted as
qij = Sf,ij ⊕ (cf,ij − xi)⊕ (cf,ij − xj) ∈ R3t. Note that
cell centroids xi and xj are used as reference points when
we use face centroid, cf,ij , as with the finite volume method.
Finally, as with CNN operations, multiple filters are used
and their outputs are concatenated such as

ĥi(θ,Ni, k) = h̄i(U1, b1, Ni)⊕· · ·⊕ h̄i(Uk, bk, Ni) , (8)

where θ = {U1, · · · , Uk, b1, · · · , bk} are trainable parame-
ters. Finally, an MLP is applied on ĥi and the final output
of node i is obtained, whose dimension is the same as the
output dimension of the MLP.

When used directly, we refer to this method as Finite Vol-
ume Graph Convolution (FVGC) and Vi, Sf,ij , (cf,ij−xi),
(cf,ij −xj) as Finite Volume Features (FVF). Alternatively,
the same principles can be incorporated into other graph
convolution types indirectly, for instance by using the FVGC
as the aggregation function of the SAGE convolution. In
convolutions like the invariant edge convolution (Chen et al.,
2021), which already employ multiple filters and edge fea-
tures, just the use of FVF as node and edge attributes in each
convolution has to be implemented.

Any common 2D mesh typically used for CFD simulations,
such as those with triangular or quadrilateral cells, can be
reconstructed from its prescribed FVF. More specifically,

Theorem 3.1 (The Completeness of FVF). Let M be a 2D
mesh such that the cells along its farfield have no more than
2 boundary faces each, and the faces of each of its cells
enclose a singular volume. If a graph G = (V,E) is the
cell centroid-based graph representation of M , the relative
positions of all the nodes and faces of M can be uniquely

deduced given Vi, ∀i ∈ V , and Sf,ij , (cf,ij − xi) and
(cf,ij − xj), ∀(i, j) ∈ E.

The implementation details of the FVF and proof of this
theorem are provided in the appendix.

3.3. Residual Training

In the previous subsections, we propose geometric fea-
tures and FVF to improve the learning performance. In
this subsection, we exploit low-resolution data and resid-
ual learning further improving the learning performance.
Residual training is a well-known approach in image super-
resolution (Zhang et al., 2018; Yang et al., 2019). The
general idea is to train the network to predict the resid-
ual field F − Upsample(FLR), where FLR is the low-
resolution field, instead of the original field F itself. How-
ever, the most common way of utilizing low-resolution
data as reference in CFD–AI literature is to concatenate
Upsample(FLR) to one of the intermediate convolution
layers (Belbute-Peres et al., 2020). The prior knowledge
from the low-resolution flow field could be further utilised
through the residual training scheme. Instead of min-
imising the loss L

(
FGT , F̂

)
, where F̂ is the predicted

flow variable, FGT is the corresponding ground truth, and
L is an arbitrary loss criterion, the network minimises
the residual loss L

(
FGT , F̂r + Upsample(FLR)

)
. Here,

F̂r is the predicted residual and the prediction is F̂ =
F̂r +Upsample(FLR). Since the low-resolution field is an
approximation of the ground truth, much of the residual field
will be close to zero. Thus, training the model to predict
the residual field eases the learning, and helps the model to
focus on the more nuanced areas where the low-resolution
fields tend to be inaccurate. For instance, the areas around
and downstream from internal geometries.

Kochkov et al. (2021) utilised a similar training scheme
in the method of “learned correction”, aimed at correcting
a very low-resolution field using a CNN, without internal
geometries, to an output of the same resolution. In the next
section, this work intends to support the use of residual
training to improve GNN performance for flows around
immersed objects on a much finer mesh.

4. Experiments
We evaluate our proposed geometric and finite volume fea-
tures on two databases, 2DSHAPES (Viquerat & Hachem,
2020; Chen et al., 2022) and AirfRANS (Bonnet et al.,
2022a), and five state-of-the-art GNN methods and their
respective training schemes in the CFD–AI literature, Mesh-
GraphNet (Pfaff et al., 2021), BSMS-GCNN (Cao et al.,
2023), Chen-GCNN (Chen et al., 2021), Graph U-Net (Bon-
net et al., 2022a), and CFDGCN (Belbute-Peres et al., 2020).
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While all state-of-the-art methods utilise mesh node-based
graphs, we adapt both datasets to cell centroid-based graphs
to train the models with FVF. Models that do not use FVF
are trained on mesh node-based graphs to maintain con-
sistency with the baselines. The effectiveness of residual
training is demonstrated only on CFDGCN with the Air-
fRANS dataset because CFDGCN is the only method that
takes in low-resolution data.

2DSHAPES is a collection of 2000 random shapes where
each shape is generated by connected Bézier curves along
with their steady-state velocity vector [ūx, ūy]

T and pres-
sure p̄, at Reynolds number = 10. The training set, validation
set, and test set consist of 1600, 200, and 200 shapes, respec-
tively. We use this dataset to demonstrate the effectiveness
of our features applied to the Chen-GCNN model.

AirfRANS is a high fidelity aerodynamics dataset of air-
foil shapes. Their (RANS) solutions range from Reynolds
numbers 2 to 6 million and angle-of-attacks−5◦ to +15◦ de-
grees. In their scarce data regime, the training set, validation
set, and test set consist of respectively 180, 20, and 200 air-
foils along with their steady-state velocity vector [ūx, ūy]

T ,
pressure p̄, and turbulent viscosity νt. This dataset is used
as-is to demonstrate the effectiveness of our features applied
to the Graph U-Net. An amended dataset, which excludes
the turbulent viscosity field, is likewise used for comparing
BSMS-GNN and CFDGCN with and without the proposed
features. Similarly, the dataset is amended to further exclude
the pressure fields for the MeshGraphNet models. These
fields are excluded to more closely match those predicted
by the original methods. Additionally, we use the authors’
codebase (Bonnet et al., 2022b) to generate RANS solu-
tions of the same set of airfoils on coarser meshes (∼ 20
times fewer nodes than the original), which we refer to as
coarse-AirfRANS and utilise as a database of low-resolution
reference flow fields to evaluate the effectiveness of residual
training on CFDGCN.

Performance metrics. Our objective is to determine if
incorporating the proposed features and residual training
into the state-of-the-art methods significantly improves per-
formance. We evaluate different methods with different
measures to correspond with the metrics in their respective
studies. To compare Chen-GCNN with our models derived
from it, we use the MAE loss function, which is the sum-
mation of mean-absolute error of flow variables averaged
over the test set. For Graph U-Net from Bonnet et al. (Bon-
net et al., 2022a), the following three types of metrics are
employed:

1. Test loss: Loss function by equation 3 in Bonnet et al.
(2022a) evaluated on and averaged over the test set.

2. Volume MSE: Mean-squared errors of normalised flow
field ([ūx, ūy]

T , p̄, νt) predictions at internal nodes.

3. Surface MSE: Mean-squared error of normalised flow
field predictions at boundary nodes. Due to boundary
constraints, only pressure (p̄) is non-zero at airfoil
surfaces.

Finally, we evaluate the models derived from MeshGraph-
Net and CFDGCN using the MSE loss function, which is
the mean-squared error of flow field prediction averaged
over the test set, and the models derived from BSMS-GNN
with the RMSE or root mean-squared error.

4.1. Results

MeshGraphNet (Pfaff et al., 2021). The MeshGraphNet
model uses an encoder-processor-decoder architecture. The
original convolution types were maintained in the experi-
ments. Table 1 shows that the adoption of the geometric
features (Geo) and the Finite Volume Features (FVF) re-
duced the MSE by ∼41% from the baseline.

Chen-GCNN (Chen et al., 2021). On the Chen-GCNN
model using invariant edge convolutions, Table 2 shows that
the adoption of the geometric features and finite volume
features reduces MAE by ∼27% from the baseline. We also
tested GCNN with SAGE convolution and obtained ∼82%
reduction in MAE with respect to the baseline.

Table 1. Performance evaluation using MeshGraphNet on the Air-
fRANS dataset.

MODELS MSE ×10−2

MESHGRAPHNET (BASELINE) 5.7571
MESHGRAPHNET W/ GEO 3.4683

MESHGRAPHNET W/ FVF W/ GEO 3.3811

Table 2. Performance evaluation using Chen-GCNN on the
2DSHAPES dataset.

MODELS CONV TYPE
MAE
×10−2

CHEN-GCNN (BASELINE) INVARIANT
EDGE

CONVOLUTION

1.1590
CHEN-GCNN W/ GEO 0.9727

CHEN-GCNN W/ FVF W/ GEO 0.8491

CHEN-GCNN (BASELINE) SAGE
CONVOLUTION

6.7103
CHEN-GCNN W/ GEO 3.8041

CHEN-GCNN W/ FVF W/ GEO 1.1982

Table 3. Performance evaluation using BSMS-GNN on the Air-
fRANS dataset.

MODELS RMSE ×10−2

BSMS-GNN (BASELINE) 7.7589
BSMS-GNN W/ GEO 6.7498

BSMS-GNN W/ FVF W/ GEO 6.1919
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Table 4. Performance evaluation using Graph U-Net on the AirfRANS dataset.

MODELS
CONV
TYPE

TEST
LOSS
×10−2

VOLUME MSE
×10−2

SURFACE
MSE
×10−1

ūx ūy p̄ νt p̄

GRAPH U-NET (BASELINE) SAGE
CONVOLUTION

1.816 1.140 1.429 2.190 2.492 0.932
GRAPH U-NET W/ GEO 1.786 1.224 0.599 2.028 3.286 0.828

GRAPH U-NET W/ FVF W/ GEO 1.441 1.061 0.515 1.368 2.724 0.549

GRAPH U-NET (BASELINE) VANILLA
GRAPH

CONVOLUTION

15.310 19.249 12.845 14.041 15.190 4.633
GRAPH U-NET W/ GEO 12.709 17.408 11.256 10.106 12.146 3.631

GRAPH U-NET W/ FVF W/ GEO 4.544 2.968 2.286 4.546 8.287 1.505

BSMS-GNN (Cao et al., 2023). The Bi-Stride Multi-
Scale GNN (BSMS-GNN) model also has an encoder-
processor-decoder architecture, similar to the MeshGraph-
Net. Likewise, only the original convolution types were
used in the experiment. The BSMS-GNN is a multi-scale
model, and hence the FVF implementations were only ap-
plied to the encoder, decoder, and first and last convolutions
of the processor, where the graph is at full resolution. As
can be seen in Table 3, the adoption of our methods results
in a ∼20% reduction in the RMSE.

Graph U-Net (Bonnet et al., 2022a). We trained Graph
U-Net architecture (baseline) with the same experimental
set-up described in Appendix L of Bonnet et al. (Bonnet
et al., 2022a). The reason for choosing Graph U-Net is that
it is the best-performing model reported. We evaluated this
baseline with two convolution types: SAGE convolution
and vanilla graph convolution. In Table 4, we observe that,
on SAGE convolution, the adoption of the geometric and
finite volume features reduces the loss on the test set by
about 21% as indicated by the baseline method’s loss on the
test set (1.816 × 10−2) and that of Graph U-Net w/ FVF
w/ Geo (1.441× 10−2). We also observe that our features
improve the volume MSE of three out of four flow variables
as well as the surface MSE of pressure. Do note that each
flow variable was not handled separately by the training loss,
but rather the MSE of all four as a whole. We also tested
Graph U-Net with vanilla graph convolution and obtained
71% reduction in the loss on the test set w.r.t the baseline.

CFDGCN (Belbute-Peres et al., 2020). CFDGCN uses
a CFD simulator in the training and testing scheme to gen-
erate low-resolution data and vanilla graph convolution to
enhance learning on a high-resolution mesh with varying
initial physical conditions, e.g., angle of attack and Mach
number. Although CFDGCN generalises well to unknown
physical conditions, it requires the geometry to remain fixed
for the purpose of optimising the coarse mesh. This makes
the model unable to generalise to different geometries and
limits the method’s practical functionality. Hence, in our

Table 5. Performance evaluation using CFDGCN on the AirfRANS
dataset.

MODELS CONV TYPE
MSE
×10−2

CFDGCNN (BASELINE) VANILLA
GRAPH

CONVOLUTION

0.1211
CFDGCN W/ GEO 0.1093

CFDGCN W/ FVF W/ GEO 0.0918
CFDGCN W/ RESIDUAL TRAINING W/ FVF W/ GEO 0.0719

CFDGCN (BASELINE)
SAGE

CONVOLUTION

0.1342
CFDGCNN W/ GEO 0.1092

CFDGCNN W/ FVF W/ GEO 0.0631
CFDGCNN W/ RESIDUAL TRAINING W/ FVF W/ GEO 0.0628

Table 6. Computational time of SV, DID and FVF for two mesh
resolutions.

AVERAGE COMPUTATION TIME (S)

COARSE-AIRFRANS AIRFRANS

SV 0.001 0.018
DID 0.031 4.276
FVF 0.001 0.032

adaption, we removed their differentiable CFD simulator
component from the training and testing loop and directly
passed the coarse-AirfRANS solutions for upsampling. As
the experimental set-up assumed that a low-resolution flow
field is available, we adopted and evaluated the proposed
residual training scheme in addition to Geo and FVF. In
Table 5, we observe that the predictive error reduces by
about 41%, as indicated by the baseline method’s MSE
(0.1211× 10−2) and that of CFDGCN w/ residual training
w/ FVF w/ Geo (0.0719 × 10−2). Incorporating our pro-
posed features and residual training scheme one by one con-
sistently reduces the error, suggesting that they are generally
effective. We also tested CFDGCN with SAGE convolution
and obtained a 53% reduction in MSE w.r.t the baseline.

4.2. Computation Time of the Geometric Features

We present the running time of computing the proposed fea-
tures on Coarse-AirfRANS and (Fine) AirfRANS datasets,
shown in Table 6. The average computation times of SV and
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Table 7. Impact of Residual training on Chen-GCNN (IVE convo-
lution) and MeshGraphNet using AirfRANS dataset.

MODELS
MSE
×10−2

CHEN-GCNN W/ FVF W/ GEO 5.6104
CHEN-GCNN W/ RESIDUAL TRAINING W/ FVF W/ GEO 4.2166

MESHGRAPHNET W/ FVF W/ GEO 3.3811
MESHGRAPHNET W/ RESIDUAL TRAINING W/ FVF W/ GEO 1.8855

FVF on coarse and fine meshes are quite reasonable. The
reason the computational time of DID is relatively higher
than that of other features is because the values of each angle
segment are calculated consecutively rather than in parallel
due to memory constraints. Note that the computational
time can be reduced by calculating them in parallel or by
using fewer angle segments.

4.3. Effectiveness of Residual Training

In order to evaluate the effectiveness of residual training
more thoroughly, we have conducted experiments using the
AirfRANS dataset with MeshGraphNet and Chen-GCNN
with IVE convolution. The results are shown in Table 7. We
observe that the mean-squared error reduces significantly
due to the incorporation of residual training in both mod-
els. To be precise, we observe a 25% and 45% reduction in
error of Chen-GCNN and MeshGraphNet models, respec-
tively. These observations suggest that the residual training
generally improves the learning performance.

5. Conclusion
This work presents two novel geometric representations, SV
and DID, and the use of FVF in graph convolutions. The
SV and DID provide a more complete representation of
the geometry to each node. Moreover, the FVF enable the
graph convolutions to more closely model the finite volume
simulation method. Their effectiveness at reducing predic-
tion error has been shown across two datasets, as well as
five different state-of-the-art methods and training scenarios
using various types of graph convolution. Additionally, this
paper demonstrates the ability of residual training to further
improve accuracy in scenarios with low-resolution data.

Limitations. The experiments assumed the availability
of sufficient but not overwhelming data to an extent. The
benefits of the proposed features over the baseline are likely
to decrease as the amount of training data increases. This
is because, with a large dataset, the networks can learn all
necessary information from the data and thus rely less on
the prior knowledge given in the proposed features. How-
ever, it should be emphasized that such a database would
be extremely costly to simulate. Generalising the geometric

features to a 3D case and testing our methods on models
designed to predict turbulent flows have been left for future
work. Finally, the effectiveness of residual training assumes
the availability of additional data from low-resolution simu-
lations as an approximate solution.
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Technical Appendix

A. Relation Between a CFD Mesh and its FVF
In this section, we show that any common 2D mesh can be reconstructed from the FVF. Specifically, assuming that in a 2D
mesh,

1. the cells along the farfield have no more than two boundary faces each, and

2. the faces of each cell enclose a singular volume,

the relative positions of all the nodes and the faces of a mesh can be uniquely deduced given

1. the volumes of all cells Vi,

2. the face area normal vector Sf,ij of all internal and geometry boundary faces, and

3. the vector from the cell centroids to the face centroids (cf,ij − xi) and (cf,ij − xj) of all internal and geometry
boundary faces.

By the “relative positions” a′
i of mesh nodes that have the absolute positions ai, we mean that there exists some constant

α such that ai = (a′
i − α),∀i. By the principle of translational invariance, the absolute positions of the mesh points are

inconsequential to the flowfield as long as their relative positions remain the same. We make no further notational distinction
between the two in this section.

Lemma A.1. Given the (relative) position of the face centroid cf,ij and face area normal vector Sf,ij = (Sx, Sy) of a
face in a 2D mesh, the unique (relative) positions of the mesh nodes a, b of the face, and the existence of the face, can be
deduced.

Proof. From the (relative) position of the face centroid cf,ij , we know that (a + b)/2 = cf,ij . Likewise, we can
assume without loss of generality that (b− a) is the face area normal vector Sf,ij rotated by a right angle clockwise, or
(b− a) = (Sy,−Sx). The unique (relative) positions of the mesh nodes a, b can be solved from this system of two linear
equations. The existence of a face shared by them is obvious.

Lemma A.2. Given the (relative) position of a cell’s centroid xi and the (relative) positions of all but one of its mesh nodes
b1, . . . , bn−1, the unknown (relative) position of its remaining mesh node a can be found to be nxi −

∑n−1
j=1 bj .

Proof. From the (relative) position of the cell centroid xi, we know that 1
n

(
a+

∑n−1
j=1 bj

)
= xi. The rest is obvious.

Lemma A.3. If and only if xi is the (relative) position of a cell centroid with the mesh nodes of (relative) positions
b1, . . . , bn−1, then xi = nxi −

∑n−1
j=1 bj .

Proof.

1

n− 1

n−1∑
j=1

bj = xi ⇔
n−1∑
j=1

bj = (n− 1)xi

⇔
n−1∑
j=1

bj = nxi − xi ⇔ xi = nxi −
n−1∑
j=1

bj

Theorem A.4 (The Completeness of FVF). Let M be a 2D mesh such that the cells along its farfield have no more than
2 boundary faces each, and the faces of each of its cells enclose a singular volume. If a graph G = (V,E) is the cell
centroid-based graph representation of M , the relative positions of all the nodes and faces of M can be uniquely deduced
given Vi, ∀i ∈ V , and Sf,ij , (cf,ij − xi) and (cf,ij − xj), ∀(i, j) ∈ E.
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Proof. By the cell-centroid based graph construction method, each cell of the input mesh corresponds to a node i ∈ V , and
each internal face and geometry boundary face of the input mesh corresponds to an edge (i, j) ∈ E.

The vectors (cf,ij − xi) and (cf,ij − xj) are given in the edge attributes of the FVF. It is obvious that the positions of
all face centroids cf,ij and cell centres xi,xj relative to one another in a connected mesh can be deduced from this. The
face area vector Sf,ij is also included as an edge attribute. Hence, from Lemma A.1, all internal faces, geometry adjacent
boundary faces, and their respective mesh nodes can be found, shown in Figure 5. This already accounts for the significant
majority of the original mesh. All that remains are the edges along the farfield boundary, as well as the relative position of
any mesh nodes that did not abut an internal face (such as those at corners).

As mentioned before, the relative positions of the cell centroids xi can be deduced by the edge attributes. Assuming
that these cells do not have more than 2 boundary faces along the farfield each, they will have at most 1 mesh node not
associated with an internal edge. This is a fair assumption, considering the typical meshes with triangular or quadrilateral
cells, commonly used for 2D CFD simulations. If there is a node with an unknown relative position, by Lemma A.2, it can
be found as nxi −

∑n−1
j=1 bj where b1, . . . , bn−1 are the known mesh positions. Alternatively, if nxi −

∑n−1
j=1 bj is equal to

the cell centroid as in Lemma A.3, it can be concluded that {b1, . . . , bn−1} is the complete set of mesh nodes. Finally, the
unique faces connecting these mesh nodes along the farfield can be deduced from the assumption that the faces of each cell
along the farfield should enclose a singular volume. This is illustrated in Figure 6.

Figure 5. Obtaining the mesh nodes and faces of all internal and geometry boundary faces.

Figure 6. Obtaining corner mesh nodes and farfield boundary faces.

B. Implementation Details
B.1. Numerical DID Implementation

While the continuous DID has already been defined, the geometry boundary had to be represented as a parametric equation,
which may not always be available. Instead, we calculate a discrete DID using numerical integration, described in detail in
Algorithm 1. Alternatively, the numerical DID calculation of an angle range can be simplified as:

1. Obtain the mean distance to the node from every unobstructed boundary point: d.

2. Find the weighted proportion of the angle segment which faces the object boundary: wθ.

3. The DID value is calculated to be the weighted average of the mean distance to the boundary and the∞ parameter:
wθ · d+ (1− wθ) · ∞.

It can be seen from Algorithm 1 that the process runs in O(|K| ∗ |V |) time, where K is the set of boundary nodes and V is
the set of all nodes. However, as |K| << |V | in most practical CFD scenarios, the computation cost is almost linear to |V |.
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Also note that a singular geometry was assumed. For multiple-geometry scenarios, it has to be considered that wθ may not
be represented by a single continuous angle range like (θmin, θmax). The rest of the algorithm may remain unchanged.

In all experiments, the starting and ending angles of the DID segments were
(
θj , θ

′
j

)
=

(
−π

4 ,
π
4

)
,
(
0, π

2

)
,
(
π
4 ,

3π
4

)
,
(
π
2 , π

)
,(

3π
4 , 5π

4

)
,
(
π, 3π

2

)
,
(
5π
4 , 7π

4

)
,
(
3π
2 , 2π

)
. These were chosen to give 8 overlapping arcs each spanning π

2 degrees, centred at
π
4 intervals. The respective weight functions wj(θ) were uniform distributions over the

(
θj , θ

′
j

)
range. Finally, 4 was used

as the large number∞, as this was larger than any finite distance from a point in the mesh to the geometry boundary in any
direction.

Algorithm 1 Calculation of the DID of a field
1: Input: Set of nodes V , positions of each node pos = [(xi, yi) : i ∈ V ] and boundary indices bd = [k ∈ V :

k is on the geometry boundary], starting and ending angles
[(
θj , θ

′
j

)
: 0 ≤ j < J

]
, weight functions [wj : 0 ≤ j < J ],

and large value∞.
2: Initialise DID ← [ ]
3: for j ∈ [0, ..., J − 1] do
4: Initialise DIDj ← [ ]
5: for i ∈ V do
6: Initialise θmin, θmax ← θ′j , θj
7: Initialise DIDi ← 0
8: Initialise w ← 0
9: for k ∈ bd do

10: Initialise θi,k ← tanh ((yj − yi)/(xk − xi))
11: if (θj < θi,k < θ′j) and (k is unobstructed from i) then
12: DIDi ← DIDi + wj(θi,k) ∗min(||(xi, yi)− (xk, yk)||,∞)
13: w ← w + wj(θi,k)
14: θmin ← θi,k if θi,k < θmin

15: θmax ← θi,k if θi,k > θmax

16: end if
17: end for
18: wθ ←

(∫ θmax

θmin
wj(θ) dθ

)
/
(∫ θ′

j

θj
wj(θ) dθ

)
19: DIDi ← DIDi/w
20: DIDi ← wθ ∗DIDi + (1− wθ) ∗∞
21: end for
22: DIDj .append(DIDi)
23: end for
24: DID.append(DIDj)
25: Return: DID

B.2. FVF implementation

Vanilla Graph Convolution and SAGE Convolution For models using vanilla graph convolutions, the convolutions
were entirely replaced by the FVGC earlier described when FVF was used. For models using SAGE convolutions, FVF was
used by implementing the FVGC as the aggregation function of the SAGE convolution. In both cases, the hidden dimension,
or the number of filters, used in each convolution was always 3 for all convolutions in all experiments.

Invariant Edge Convolution Following the notation of the original paper, the Invariant Edge (IVE) convolutions used by
Chen et al. (2021) update the edge features xe and node features xv into x′

e and x′
v respectively, according to the following

rules

x′
e = fe

(
xv1 + xv2

2
,
|xv1 − xv2 |

2
,xe

)
, (9)

x′
v = fv

xv,
∑

ei∈N(v)

x′
ei

 , (10)
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where v1 and v2 are the two nodes connected by edge e, N(v) is the set of neighbouring edges around node v, and fe and fv
are both MLPs with 1 hidden layer of 128 neurons. The number of neurons in the output layer, and hence output dimension
of the kernel, can be customised. This is similar to the use of multiple filters in FVGC. Hence, when using FVF with IVE
convolutions, only the node and edge attributes have to be implemented, resulting in the following rules

x∗
e = qe ⊕ xe , x∗

v = xv ⊕ p , (11)

x′
e = fe

(
x∗
v1 + x∗

v2

2
,
|x∗

v1 − x∗
v2 |

2
,x∗

e

)
, (12)

x′
v = fv

x∗
v,

∑
ei∈N(v)

x′
ei

 , (13)

where p is the node attributes and qe is the edge attributes of the edge e. Note that the new edge and node features are still
x′
e and x′

v , while x∗
e and x∗

v are just intermediate calculations.

Unlike in vanilla graph convolutions or SAGE convolutions, the hidden dimension is not fixed at 3, but will instead follow
the number of intermediate edge features used in the original work as described in the next section.

MeshGraphNet Convolution Still following the notation of the original paper, the MeshGraphNet processor designed by
Pfaff et al. (2021) used convolutions that updated the edge features eM and node features v into e′M and v′ according to the
following

e′Mij = fM (eMij ,vi,vj) ,

v′
i = fV (vi,

∑
j

e′Mij ) . (14)

Where vi and vj are the features of two nodes connected by an edge with edge features eMij , and fM and fV are MLPs with
2 hidden layers of size 128 each. In all MeshGraphNet implementations, they have an output of size 128 as well. When
using FVF, it was changed to the following

e∗Mij = eMij ⊕ qij , v∗
i = vi ⊕ pi ,

e′Mij = fM (e∗Mij ,v∗
i ,v

∗
j ) ,

v′
i = fV (v∗

i ,
∑
j

e′Mij ) .
(15)

We also appended the FV node attributes and FV edge attributes to the inputs of the encoder and decoder convolutions
accordingly.

BSMS-GNN Convolution Likewise, the original BSMS-GNN processor designed by Cao et al. (2023) used convolutions
to update the edge features esl and node features vl at level l for a problem involving S edge sets like so

esl,ij = fs
l (∆xl,ij ,vl,i,vl,j), s = 1, . . . , S ,

v′
l,i = vl,i + fV

l (vl,i,
∑
j

e1l,ij , . . . ,
∑
j

eSl,ij) .
(16)

Where ∆xl,ij = xi − xj is the relative positions of the nodes i and j, and fs
l and fV

l are MLPs with 2 hidden layers of a
hidden dimension of 128. For all BSMS-GNN implementations, an output of size 128 was used as well. With the FVF, it
was changed into

v∗
l,i = vl,i ⊕ pi ,

esl,ij = fs
l (∆xl,ij ,v

∗
l,i,v

∗
l,j , qij), s = 1, . . . , S,

v′
l,i = v∗

l,i + fV
l (v∗

l,i,
∑
j

e1l,ij , . . . ,
∑
j

eSl,ij)
(17)

As mentioned before, this was only done for the first and last convolutions of the processor where the graph is at full
resolution. Similar to the MeshGraphNet convolution implementation, the FV node attributes were appended to the inputs
of the encoder and decoder convolutions as well.
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Table 8. Sizes of the MeshGraphNet models compared.

MODELS NUMBER OF TRAINABLE PARAMETERS

MESHGRAPHNET (BASELINE) 2282370
MESHGRAPHNET W/ GEO 2283650

MESHGRAPHNET W/ FVF W/ GEO 2302470
MESHGRAPHNET W/ RESIDUAL TRAINING W/ FVF W/ GEO 2302470

Table 9. Sizes of the BSMS-GNN models compared.

MODELS NUMBER OF TRAINABLE PARAMETERS

BSMS-GNN (BASELINE) 2578947
BSMS-GNN W/ GEO 2580227

BSMS-GNN W/ FVF W/ GEO 2582787

B.3. Model Architectures and Hyperparameter Choices

MeshGraphNet The MeshGraphNet used an encoder-processor-decoder structure. The encoder consisted of two MLPs,
for encoding node and edge features respectively. The input node and edge dimensions were both 3 for the baseline model.
The number of input node channels increased to 13 if SV and DID were being used. Likewise, the input node channels
increased again to 14, and the input edge features to 9, if FVF was implemented. It had a hidden and output size of 128. The
decoder consisted of just one MLP to decode the node features only, with an input and hidden size of 128. If FVF was being
used, the input size increased to 129. The ouput size was 2, for the velocity fields.

The processor had 15 layers of the MeshGraphNet convolutions as earlier described. The input node and edge sizes were
128 unless FVF was implemented when the number of node channels increased to 129, and likewise, the edge channels
increased to 134. The number of output nodes and edge channels was consistently 128. All activations used in the model
were ReLU. The resulting number of trainable parameters in each model is shown in Table 8.

Each model was trained for 250 epochs on half-precision, using a mean squared error (MSE) training loss with a learning
rate of 0.0001 and a batch size of 1.

BSMS-GNN The BSMS-GNN also had an encoder-processor-decoder structure. The encoder only consisted of one MLP
of input size 1 that represented the node type. When SV and DID were used, this increased to 11. Likewise, when FVF was
implemented, it increased again to 12. It had two hidden layers with a hidden size of 128 and an output of size 128 as well.
The decoder was similarly an MLP with an input of size 128, or 129 if FV was used, and had 2 hidden layers with hidden
size 128 and an output size of 3 for the velocity and pressure fields.

The processor had an architecture similar to that of the Graph U-Net, with 9 different scales or levels and only 1 convolution
per level. The number of nodes would decrease progressively from the bi-stride pooling method explained in the original
paper. The input and output node and edge feature dimensions were 128 each, except when FVF was implemented, and the
input node and edge features increased to 129 and 134, respectively. All activations used in the model were ReLU. The
resulting number of trainable parameters in each model is shown in Table 9.

Each model was trained on half-precision, using a mean squared error (MSE) training loss with a starting learning rate
of 0.0001 that decayed exponentially at a decay rate of 0.7943 until the learning rate hit a minimum of 0.000001. All
BSMS-GNN models were trained for 200 epochs with a batch size of 1.

Chen-GCNN The input node features to the baseline model consisted of a boolean representation of the geometry and the
spatial coordinates. For models using IVE convolution, there were also input edge features, which were simply the average
of the node features of each node in the edge. Thus, the input node features and input edge features both have a size of 3.
When geometry features were used, SV and DID replaced the boolean representation, making the feature sizes 12 instead.

The model itself had eight convolution and smoothing layers, and finally a 1 × 1 convolution output layer. When IVE
convolutions were used, the intermediate edge and node feature dimensions in each layer were (4, 8, 16, 32, 64, 64, 32, 16)
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Table 10. Sizes of the Chen-GCNN models compared.

MODELS CONV TYPE NUMBER OF TRAINABLE PARAMETERS

CHEN-GCNN (BASELINE) INVARIANT
EDGE

CONVOLUTION

217853
CHEN-GCNN W/ GEO 222461

CHEN-GCNN W/ FVF W/ GEO 227185

CHEN-GCNN (BASELINE) SAGE
CONVOLUTION

20193
CHEN-GCNN W/ GEO 20337

CHEN-GCNN W/ FVF W/ GEO 58067

Table 11. Sizes of the Graph U-Net models compared.

MODELS CONV TYPE NUMBER OF TRAINABLE PARAMETERS

GRAPH U-NET (BASELINE) SAGE
CONVOLUTION

65820
GRAPH U-NET W/ GEO 66396

GRAPH U-NET W/ FVF W/ GEO 160465

GRAPH U-NET (BASELINE) VANILLA
GRAPH

CONVOLUTION

107667
GRAPH U-NET W/ GEO 108243

GRAPH U-NET W/ FVF W/ GEO 105201

and (8, 16, 32, 64, 64, 32, 16, 8) respectively, as they were in the original work. When SAGE convolutions were used, there
were no intermediate edge feature dimensions. Instead, the number of filters used in the convolutions was fixed at 3, and the
node feature dimensions remained (8, 16, 32, 64, 64, 32, 16, 8) as in the IVE convolutions. The final output layer produced
3 node features representing predicted velocity and pressure. There are also skip connections from the input graph to the
output of every convolutional and smoothing block, where the spatial coordinates of the nodes were concatenated to the node
features. This is similar to the node attributes concatenated to the node features in the convolutions using FVF, although the
cell volume was not used as a node attribute in the original work.

Table 10 shows the number of trainable parameters in each model. The model depth and width were kept the same as the
original Chen-GCNN model (Chen et al., 2021) as it was already relatively small.

In training, the loss function chosen was the mean absolute error (MAE). We implemented early stopping, where training
terminated if the MAE on the validation set did not improve after 60 epochs, or if it reached the maximum of 1000 epochs.
A batch size of 64 was used, and the initial learning rate and decay rate were both 0.002 to match the original work, with the
decay schedule also following the same formula. Further details can be found in the original codebase1. The only difference
in our training scheme implementation would be that we used half-precision training, and clipped the gradients to 5.

Graph U-Net Our implementation of the Graph U-Net was adapted from the original codebase2. The baseline model
started and ended with an MLP encoder and decoder of layer sizes [7, 64, 64, 8] and [8, 64, 64, 4] respectively. The models
that used geometry features had an encoder with layer sizes [16, 64, 64, 8] instead, as the SDF input feature was replaced
with SV and DID.

For the U-Net itself, the models that did not use FVF both followed the original Graph U-Net architecture exactly. The
downward and upward passes had five scales each. At each scale of the downward pass, the number of node features
doubled, while the graph nodes were down-sampled by half to create radius graphs of radii 5 cm, 20 cm, 50 cm, 1 m and
10 m respectively. In the upward pass, skip connections concatenated the node feautures of the respective scale in the
downward pass to that of the previous scale. In models that used FVF, however, no down-sampling or up-sampling was
done to preserve the mesh structure and its corresponding mesh characteristics. Nevertheless, the depth of the model and the
presence of skip-links remained the same.

Table 11 shows the number of trainable parameters in each model. Models that used SAGE convolutions kept the original

1https://github.com/cfl-minds/gnn_laminar_flow
2https://github.com/Extrality/AirfRANS
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Table 12. Sizes of the CFDGCN models compared.

MODELS CONV TYPE MODEL WIDTH #TRAINABLE PARAMETERS

CFDGCN (BASELINE) VANILLA
GRAPH

CONVOLUTION

512 1057283
CFDGCN W/ GEO 512 1061891

CFDGCN W/ FVF W/ GEO 284 1021780
CFDGCN W/ RESIDUAL TRAINING W/ FVF W/ GEO 284 1021780

CFDGCN (BASELINE)
SAGE

CONVOLUTION

512 2112003
CFDGCN W/ GEO 512 2121219

CFDGCN W/ FVF W/ GEO 315 2153241
CFDGCN W/ RESIDUAL TRAINING W/ FVF W/ GEO 315 2153241

Graph U-Net model width of 8 (Bonnet et al., 2022a), causing the model sizes to increase from the use of SV, DID, and FVF.
This is to be consistent with the experimental practices of Bonnet et al. (2022a), who allowed their model sizes to vary.
On the other hand, when vanilla graph convolutions were used, the width of the models without FVF was increased to 15
to make the model sizes similar to the model with FVF. This is because the models with only vanilla graph convolution
without FVF were too small to train effectively when using the original model parameters.

The learning rate for the experiments was set with a one-cycle cosine rate capped at 0.001, with the number of epochs fixed
at 1600 as in the scarce data regime of the original work (Bonnet et al., 2022a). Half precision was used, and gradients
clipped to 5.

For models that did not use FVF, mesh node-based graphs were used. However, the total number of nodes was fixed at
32000 via random subsampling of the input. Edges were formed between nodes within 5 cm of each other, with each node
having a maximum of 64 neighbours. In training, each input graph was only subsampled once, and the training loss found
against the subsampled ground-truth. In testing, subsampling was done repeatedly till a value was found for all the nodes
in the original graph, and nodes with multiple values were assigned the average, before the test losses found against the
unsampled ground-truth. On the other hand, on FVF models, an unsampled cell centroid-based graph was used in both
training and testing. As before, this was to maintain the mesh’s structure and characteristics represented in the FVF.

CFDGCN As explained earlier, to adapt the CFDGCN model to become generalisable to different geometries, we used
the coarse mesh of each flow scenario in the data as a fixed input to the model, rather than as a trainable feature of the model.
On all other aspects, however, the architecture of the CFDGCN was largely preserved.

The coarse mesh was upsampled once using squared distance-weighted, k-nearest neighbours interpolation to size of the fine
mesh. The input node features of the baseline model were the spatial coordinates, angle of attack, mach number and SDF. If
geometry features were used, the SDF was replaced by SV and DID. The graph was passed through 3 graph convolutions
before the upsampled coarse mesh was appended to the output of the 3rd layer, and another 3 convolutions was performed to
generate the final prediction.

All convolutions in models that did not use FVF had 512 hidden channels, just as the original CFDGCN did (Belbute-Peres
et al., 2020). However, the number of hidden channels was adjusted for the FV and residual models to keep model size
similar for comparability. Table 12 shows the number of trainable parameters in each model. A batch size of 1 was used on
all experiments, and half precision was used. All other training parameters were kept the same as the original work. More
details can be found from the codebase3.

C. Coarse AirfRANS Dataset
AirfRANS (Bonnet et al., 2022a) provides 1000 simulated airfoil cases but with a consistent mesh resolution. Having
simulations of the same airfoil geometry but from a lower resolution is important for learning tasks such as super-resolution,
which is needed for CFDGCN (Belbute-Peres et al., 2020). Since the residual training scheme is intended, albeit not limited,
to demonstrate superior performance on super-resolution task, a lower-resolution variant of the AirfRANS cases were
needed. The AirfRANS authors released the mesh generation script, which made it possible.

3https://github.com/locuslab/cfd-gcn

18

https://github.com/locuslab/cfd-gcn


Finite Volume Features, Global Geometry Representations, and Residual Training for Deep Learning-based CFD Simulation

Table 13. The new values of different cell grading for coarse AirfRANS dataset.

CELL GRADING NEW VALUES

YGRADING 1000
YUGRADING 1000
YDGRADING 1000
XUUGRADING 10
XDUGRADING 10
XUMAEROGRADING 2
XDMAEROGRADING 2
XMGRADING 1
XDTRAILGRADING 0.0001
XUDGRADING 0.5
XDDGRADING 0.5
LEADUGRADING 0.05
LEADDGRADING 0.05

Table 14. Extrapolation and full data results of the CFDGCN models with vanilla graph convolution

MODELS
DATA

REGIME
MSE
×10−2

CFDGCN (BASELINE)
REYNOLD’S

NUMBER

0.3210
CFDGCN W/ GEO 0.0889

CFDGCN W/ FVF W/ GEO 0.0678
CFDGCN W/ RESIDUAL TRAINING W/ FVF W/ GEO 0.0661

CFDGCN (BASELINE)

AOA

0.9098
CFDGCN W/ GEO 0.1846

CFDGCN W/ FVF W/ GEO 0.1772
CFDGCN W/ RESIDUAL TRAINING W/ FVF W/ GEO 0.1595

CFDGCN (BASELINE)

FULL

0.0737
CFDGCN W/ GEO 0.0668

CFDGCN W/ FVF W/ GEO 0.0655
CFDGCN W/ RESIDUAL TRAINING W/ FVF W/ GEO 0.0499

The majority of settings in the original AirfRANS dataset remain unchanged, except for the mesh resolution. In this modified
dataset, the number of cells in all directions has been reduced to one-quarter of the original settings. Additionally, the
gradings of the cell expansion have been reset to ensure a smooth transition of the cell thickness as listed in Table 13.

D. Computational Environment
All experiments are run on a server with 32 Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz processors, 256 GB RAM, and
3 dedicated Nvidia V100 GPU cards each with 32GB memory. All models are trained on a single GPU.

E. Additional Results
E.1. Extrapolation and Full Data Regimes

While the experiments using the AirfRANS dataset were done using the scarce data regime, more CFDGCN models were
trained using the Reynold’s Number and AoA extrapolation regimes and the full data regime. The results are shown in
Table 14. They demonstrate that the proposed methods remain effective under a variety of scenarios with different data
availability.
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Figure 7. Velocity x-component (u)

Figure 8. Velocity y-component (v).

E.2. Rationale for residual training

As mentioned earlier, the residual field helps the model to focus on the more nuanced areas where the low-resolution fields
tend to be inaccurate. In Figures 7 and 8, we illustrate this phenomenon to emphasise the importance of residual training.
We show ground truth velocity components (u,v) and pressure (p) corresponding to the ground truth flow field on the left,
while the corresponding residual fields are on the right. In most of the regions, the residual is close to zero. Hence, the
model has less difficulty learning flow field values in these regions, which are coloured in darker shades.

F. Predictive Error Visualisation
Figure 10 shows a comparison between the predicted velocity x-component flow fields, u, of the baseline method Chen-
GCNN and Chen-GCNN w/ FVF w/ Geo. Both models used invariant edge convolutions. We observe that the predictions of
both methods capture the flow features present in the Ground truth, GT(u). A close inspection of the absolute error of the
predicted flow field in figure 11 reveals that Chen-GCNN w/ FVF w/ Geo produces relatively small regions with high error,
whereas there are many regions with high error in the flow field predicted by Chen-GCNN. This observation indicates that
incorporating our proposed features reduces the predictive error across different regions in the domain.
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Figure 9. Pressure (p).

Figure 10. Velocity x-component (u) visualisation.

G. Boundary Layer Profile
We analyse the velocity profile at the boundary layer in Figure 12. We plot the normalised distance from the airfoil boundary
(y/c) vs the normalised velocity x-component u/U∞. Figure 12 shows that GUNet w/ Geo predicts velocity x-component
near the airfoil boundary more accurately compared to the baseline GUNet.
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Figure 11. Absolute error of predictions.

Figure 12. Comparison of the predicted boundary layers profiles on two random test airfoils at four different abscissas in the scarce data
regime with respect to the true ones. Each row of plots represents a different airfoil, and each column of plots represents a different
abscissa. The x component of the velocity is denoted by u, and the inlet velocity is denoted by U∞.
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