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Abstract
This paper proposes a step toward approximate
Bayesian inference in on-policy actor-critic deep
reinforcement learning. It is implemented through
three changes to the Asynchronous Advantage
Actor-Critic (A3C) algorithm: (1) applying a
ReLU function to advantage estimates, (2) spec-
tral normalization of actor-critic weights, and (3)
incorporating dropout as a Bayesian approxima-
tion. We prove under standard assumptions that
restricting policy updates to positive advantages
optimizes for value by maximizing a lower bound
on the value function plus an additive term. We
show that the additive term is bounded propor-
tional to the Lipschitz constant of the value func-
tion, which offers theoretical grounding for spec-
tral normalization of critic weights. Finally, our
application of dropout corresponds to approxi-
mate Bayesian inference over both the actor and
critic parameters, which enables adaptive state-
aware exploration around the modes of the actor
via Thompson sampling. We demonstrate signifi-
cant improvements for median and interquartile
mean metrics over A3C, PPO, SAC, and TD3 on
the MuJoCo continuous control benchmark and
improvement over PPO in the challenging Proc-
Gen generalization benchmark.

1. Introduction
Deep Reinforcement Learning (DRL) finds approximate
solutions to complex sequential decision-making problems
in domains such as robotics (Ibarz et al., 2021), autonomous
driving (Kiran et al., 2021), strategy games (Mnih et al.,
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2015; Silver et al., 2017; Arulkumaran et al., 2019), and
human-computer interaction (Ziegler et al., 2019). DRL
algorithms achieve state-of-the-art performance on many
challenging benchmarks (Young & Tian, 2019; Lange, 2022;
Todorov et al., 2012; Brockman et al., 2016). However, their
use in real-world applications depends on their capacity to
execute tasks while making policy updates in the face of
finite observations of a changing world. On-policy algo-
rithms, such as Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) or Asynchronous Advantage Actor-Critic
(A3C) (Mnih et al., 2016), update differentiable policies
based on recent interactions with the environment. This
recency bias and the capacity to actively sample informative
observations make on-policy approaches compelling candi-
dates for applications in dynamic real-world environments.

Exploration is a component of active sampling. On-
policy actor-critic methods typically incorporate exploration
through entropy regularization or by learning a homoge-
neous variance parameter for continuous action spaces
(Schulman et al., 2015a; Mnih et al., 2016; Schulman et al.,
2017). While effective, these exploration methods are
state-agnostic, promoting exploration equally regardless
of the novelty or familiarity of a given state. Alternatively,
the paradigm of maximum entropy reinforcement learning
(Ziebart et al., 2008; Haarnoja et al., 2018; Levine, 2018)
promotes state-aware exploration through the inclusion of
an actor entropy term in the optimization objective. How-
ever, this term is not adaptive in that it promotes higher
actor entropy (more exploration) regardless of the number
of state visits, and thus may be agnostic to the knowledge
already gained about the system.

This work incorporates adaptive state-aware exploration into
the on-policy actor-critic framework to improve the perfor-
mance and efficiency of on-policy actor-critic algorithms.
Approximate Bayesian inference over actor weights would
satisfy this goal, but its implementation is not straightfor-
ward due to the policy-gradient objective for optimizing
the actor, as we will show. Thus, we ask, “What is the
minimal step we can take toward approximate Bayesian
inference?” and answer with VSOP (standing for Varia-
tional [b]ayes, Spectral-normalized, On-Policy reinforce-
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ment learning). VSOP consists of three simple modifica-
tions to the A3C algorithm: (1) applying a ReLU function
to advantage estimates, (2) spectral normalization of actor-
critic weights, and (3) incorporating dropout as a Bayesian
approximation (Gal & Ghahramani, 2016). Under standard
assumptions, we prove that restricting policy updates to pos-
itive advantages maximizes value by maximizing a lower
bound on the value function plus an additive term. We show
that the additive term is bounded proportional to the Lip-
schitz constant of the value function, grounding spectral
normalization use as a Lipschitz constant regularizer. Fi-
nally, we show that approximate Bayesian inference over
the actor and critic parameters enables adaptive state-aware
exploration via Thompson sampling.

Through our thorough empirical assessments on the Gymna-
sium and Brax MuJoCo benchmarks for continuous control
(Brockman et al., 2016; Freeman et al., 2021), we show that
VSOP can significantly outperform existing DRL algorithms
such as A3C, PPO, SAC, and TD3 for median and interquar-
tile mean (IQM) metrics (Agarwal et al., 2021). We further
show through ablation studies that the union of our pro-
posed improvements contributes significantly to increased
performance and efficiency. Finally, we show that VSOP
significantly outperforms PPO on the challenging ProcGen
generalization benchmark, demonstrating improved perfor-
mance when deployed under distribution shift.

2. Background
Notation. We consider a discounted, T-horizon Markov De-
cision Process (MDP) defined by the tuple (S,A,P, r, γ),
where S is the state space, A is the action space, P is the
state transition probability, r is the immediate reward upon
transitioning from state s to state s′ under action a, and
γ ∈ [0, 1] is the discount factor. MDPs provide a frame-
work for modeling sequential decision-making problems,
where an agent interacts with an environment over discrete
time steps to achieve a goal (Puterman, 2014). Following
the notation of Sutton & Barto (2018), we define states
at time t ∈ T by the d-dimensional, real-valued, random
variable, St : Ω → S ⊆ Rd, with observable instances
st = St(ωt) : ∀ωt ∈ Ω. We define actions by the m-
dimensional random variable At : Ω→ A, with observable
instances, at = At(ωt) : ∀ωt ∈ Ω. Rewards are defined by
the continuous-valued random variable, Rt : Ω→ R ⊆ R,
with observable instances, rt = Rt(ωt) : ∀ωt ∈ Ω.
Let the random variable, Gt :=

∑T
k=t+1 γ

k−1−tRk, de-
note the discounted return. We use the standard defini-
tions for the conditional action distribution/density (pol-
icy), π(a | s), the state value function under the policy,
vπ(s) := Eπ [Gt | St = s], and state-action value function
under the policy, qπ(s,a) := Eπ [Gt | St = s,At = a].

On-Policy Actor-Critic Reinforcement Learning. On-

policy, Actor-critic approaches to reinforcement learning
are called policy-gradient methods. They directly optimize
a policy function, π(a | s,θ), differentiable with respect to
parameters, θ, to maximize the expected discounted return
under the policy, vπ(s). On-policy approaches differ from
off-policy approaches in that they only use recent samples
from the current policy to achieve this objective. Actor-critic
methods differ from other policy-gradient methods because
they fit an approximate value function (critic), v(s,w), to
the data collected under the policy, in addition to optimizing
the policy function (actor). The critic is typically used in
actor optimization but not generally for decision-making.

Deep reinforcement learning implements the actor and critic
using neural network architectures, where the function pa-
rameters correspond to network weights. We denote the
parameters of the actor and critic networks as θ and w, re-
spectively. The output likelihood of the actor makes distribu-
tional assumptions informed by characteristics of the action
space, A. A common choice for continuous action spaces
is an independent multivariate normally distributed likeli-
hood with homogeneous noise variance, π(at | st,θ) ∼
N (a | µ(s,θ), Iσ2(θ)), where σ2(θ) = (σ2

1 , . . . , σ
2
m) is

the vector of inferred action noise variances. For discrete
action spaces, the likelihood is often a categorical distribu-
tion, π(a | s,θ) ∼ Categorical(a | µ(s,θ)). In both cases,
the mean parameter of the likelihood, µ(s,θ), is the m-
dimensional, vector-valued output of a neural network archi-
tecture with parameters, θ. Critic networks are commonly
fit using a mean squared error objective, which implies a
univariate normally distributed output likelihood with unit
variance, G | s,w ∼ N (g | v(s,w), 1), where the mean
parameter is the approximate value function, v(s,w), and
is given by the scalar-valued output of any neural network
architecture with parameters, w.

The baseline on-policy, actor-critic policy gradient algo-
rithm performs gradient ascent with respect to the “per-
formance” function, J(θ) := vπ(s0,θ), where vπ(s0,θ)
is the value function with respect to the parameters θ
(Williams, 1992). By the policy gradient theorem (Sut-
ton et al., 1999), we have: ∇θJ(θ) = ∇θvπ(s0) ∝∫
S ρ(s)

∫
A qπ(s,a)∇θπ(a | s,θ)da ds. Sutton & Barto

(2018) show that a generalization of this result includes a
comparison of the state-action value function, qπ(s,a), to
an arbitrary baseline that does not vary with the action, a.

When the baseline is the state value function, vπ(s), we
have an objective in terms of the advantage function (Baird,
1993; Schulman et al., 2015b), hπ(s,a) := qπ(s,a) −
vπ(s), namely: ∇θJ(θ) ∝

∫
S ρ(s)

∫
A hπ(s,a)∇θπ(a |

s,θ)da ds. This formulation in terms of all actions can be
further simplified in terms of sampled actions and states as
∇θJ(θ) ∝ Eπ [hπ(St,At)∇θ log π(At | St,θ)]. We use
Eπ to denote an expectation over states St and actions At
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collected under the policy π(a | s).

In general, because neither the state-action, qπ(s,a), nor
the state value, vπ(s), functions are known, we need an
estimator for the advantage function. For compactness, we
will focus on the generalized advantage estimator (GAE)
proposed by Schulman et al. (2015b): h(st, rt,w) =∑T

k=t+1(γλ)
k−1−tδwt−k+1, where 0 < λ ≤ 1, and δwt =

rt + γv(st+1;w) − v(st;w) is the temporal difference
(TD) residual of the value function with discount, γ (Sut-
ton & Barto, 2018). The GAE then yields a low-variance
gradient estimator for the policy function: ∇̂θJ(θ) :=
Eπ [h(St,Rt,w)∇θ log π(At | St,θ)]. Finally, the actor
and critic networks are generally optimized by using mini-
batch stochastic gradient descent (Robbins & Monro, 1951)
to fit the functions induced by the network weights to a
batch of data collected under the current policy, Db

π =
{si,ai, ri}bi=1. The parameter updates are given by,

θ ← θ − η
1

b

b∑
i=1

h(si, ri,w)∇θ log π(ai | si,θ), (1a)

w← w − η
1

b

b∑
i=1

∇w log p(g(si, ri, w̃) | si,w), (1b)

where, η, is the learning rate, g(si, ri, w̃) = h(si, ri, w̃) +
v(si, w̃), and w̃ are previous parameters.

3. Methods
This work takes a top-down approach to state-aware explo-
ration for on-policy actor-critic DRL. To employ principled
exploration strategies, we would like to have approximate
posteriors, q(Θ | Dn−1) and q(W | Dn−1), for the weights
of the actor and critic given data, Dn−1 = {si,ai, ri}|Tn−1|

i=1 ,
collected under the policy, π(a | s,Θn−1), over a set of
horizons, Tn−1 = Tn−1

1 ∪ Tn−1
2 ∪ . . . . However, fastidi-

ously Bayesian, bottom-up approaches often yield strategies
less effective than the state-of-the-art. Leaving debates on
evaluation aside, we start from the A3C algorithm and ask,
“what minimum changes can we make to get close to an
approximate posterior?"

Starting with the critic, v(s,w), this task seems straight-
forward because we train the critic with mean squared
error loss. Hence, we can use the implied likelihood,
N (g | v(s,w), 1), and use the dropout as a Bayesian ap-
proximation (Gal & Ghahramani, 2016) framework to in-
fer an approximate posterior density over critic weights,
q(w | ŵ, pd), where ŵ is the variational parameter for
the network weights, and pd is the dropout rate. We out-
line the resulting optimization procedure in lines 16-17 of
Algorithm 1 for a unit Normal prior over critic weights,
p(w) = N (w | 0, I).

The inference task is less straightforward for the

actor because the A3C objective, ∇θJ(θ) ∝
Eπ [hπ(St,At)∇θ log π(At | St,θ)], is not merely
maximization of the log-likelihood. Instead, the log-
likelihoods, log π(a | s,θ), are scaled by the advantage
function, hπ(s,a). The dropout as Bayesian approximation
framework estimates the integral over the log evidence
lower bound objective using Monte-Carlo integration. For
a single sample from the approximate posterior density,
θ ∼ q(θ | θ̂, pd), the integrand is of the general form:

L =

|D|∑
i=1

log p(· | si,θ)−KL(q(θ)||p(θ)). (2)

We make the same prior assumption, p(θ) = N (θ | 0, I),
for the actor as for the critic, so we only need to focus on
the first r.h.s., log-likelihood term. Here we introduce a
normal-gamma distribution over the actions r.v., At, and a
random variable Ht:

p(At,Ht | s,θ, τ, α, β)

:=

{
At | Ht, s,θ, τ ∼ N

(
a | µ(s,θ), (τHt)

−1
)

Ht | α, β ∼ Gamma(α, β).

Given a dataset, D = {Ai,Si,Hi}Ni=1, and differentiating
the log-likelihood with respect to θ, we have:

∇θ log p(At,Ht | St,θ, . . . )

=

N∑
i=1

∇θ log

(
βα
√
τ

Γ(α)
√
2π

h
α− 1

2
i exp (−βhi)

exp

(
−1

2
hiτ(ai − µ(si,θ))

2

))

= −1

2

N∑
i=1

hi∇θτ (ai − µ(si,θ))
2

= −1

2

N∑
i=1

hi∇θ log π(at | st,θ).

(3)

Thus, the normal-gamma assumption allows us to recover
the form of the A3C gradient estimator in Equation (1a)
while enabling approximate Bayesian inference over the ac-
tor parameters. However, the advantage function, hπ(s,a),
is not gamma distributed, as it can take on values in the
range (−∞, 0], so we cannot plug it directly into Equa-
tion (3). This discrepancy motivates our second, though
not strictly valid due to the introduction of zeros, minimal
step of passing the advantages through a ReLU function, en-
abling approximate Bayesian inference over the parameters
of the actor to obtain the approximate posterior of the actor
parameters, q(θ | θ̂, pd).

Sampling a policy from this approximate posterior involves
sampling a dropout mask and running a forward pass of the
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Algorithm 1 VSOP for Dropout Bayesian Neural Networks

Input: initial state, s′, environment, p(s′, r | s,a), rollout buffer, D, initial actor parameters, θ̂, initial critic parameters,
ŵ, dopout rate, pd, learning rate, η, minibatch size, b.
repeat
D ← ∅ ▷ reset rollout buffer
repeat
s← s′ ▷ update current state
θ ∼ q(θ | θ̂, pd) if TS else θ ← θ̂ ▷ sample actor params if Thompson sampling (TS)
a ∼ π(a | s,θ) ▷ sample action from policy
s′, r ∼ p(s′, r | s,a) ▷ sample next state and reward from environment
D ← D ∪ {(s,a, r)} ▷ update rollout buffer

until rollout ends
w∗ ← ŵ ▷ freeze critic weights for advantage estimates
β ← (1− pd)/ (2|D|) ▷ set parameter precision
repeat
{si,ai, ri}bi=1 ∼ D ▷ sample minibatch from rollout buffer
w̃ ∼ q(w | w∗, p) if TS else w̃← w∗ ▷ sample advantage params if TS
θ ∼ q(θ | θ̂, pd) ▷ sample actor parameters
θ̂ ← θ̂ − η 1

b

∑b
i=1 h

+(si, ri, w̃)∇θ log π(ai | si,θ) + 2βθ ▷ update actor
w ∼ q(w | ŵ, pd) ▷ sample critic parameters
ŵ← ŵ − η 1

b

∑b
i=1∇w log p(g(si, ri, w̃) | si,w) + 2βw ▷ update critic

until actor and critic update complete
until finished

network, yielding the policy, π(a | s,θ). Then, sampling
an action is done by sampling an action from the sampled
policy, a ∼ π(a | s,θ). We outline this Thompson sampling
(Thompson, 1933) procedure in lines 5-6 of Algorithm 1.

We hypothesize that this is a better state-aware exploration
method for two reasons. First, it is adaptive: for less fre-
quently visited states the diversity of the sampled parameters
of the policy will be greater, promoting more exploration.
As a state is visited more often under actions that yield posi-
tive advantages, the diversity of samples will concentrate,
promoting less exploration. Thus, we get more exploration
for states where the actor has less experience of good actions
and less exploration in states where the actor’s decisions
have led to good expected returns. Second, this exploration
is done around the mode of the policy distribution, resulting
in more conservative exploration.

We outline an optimization step of the actor in lines 14-15 of
Algorithm 1, where h+(si, ri, w̃) := max

(
0, h(si, ri, w̃)

)
.

Note that the clipped advantages as an actor precision mod-
ifier have a very intuitive interpretation. When advantage
estimates are low (no evidence of past good actions), the
variance of the policy will be high, indicating that the ac-
tor should explore more. Conversely, when the advantage
estimates are high (evidence of past good actions), the vari-
ance of the policy will be low, indicating that the actor
should explore less. We provide further commentary in
Appendix C.2.

What Function Does VSOP Optimize? Clipping the ad-
vantage estimates to be non-negative has been explored in
many policy-gradient contexts (Srinivasan et al., 2018; Oh
et al., 2018; Petersen et al., 2019; Ferret et al., 2020). Here,
we examine how this augmentation affects the optimization
procedure in the context of on-policy actor-critic RL and
offer a theoretical hypothesis to ground both our method
and the Regret Matching Policy Gradient (RMPG) method
of Srinivasan et al. (2018).
Theorem 3.1. Let, Gt :=

∑T
k=t+1 γ

k−1−tRk,
denote the discounted return. Let qπ(s,a) =
Eπ [Gt | St = s,At = a], denote the state-action
value function, and vπ(s) = Eπ [Gt | St = s], denote the
state value function, under policy π(a | s,θ). Define
the ReLU function as

(
x
)+

:= max(0, x). Assume that
rewards, Rt, are non-negative and the gradient of the
policy, ∇π(a | s,θ), is a conservative vector field. Then,
performing gradient ascent with respect to,

∇θJ(θ) :=

Eπ

[(
qπ(St,At)− vπ(St)

)+
∇θ log π(At | St,θ)

]
,

maximizes a lower-bound, v∗π(s), on the state value function,
vπ(s), plus an additive term:

v∗π(s) ≤ vπ(s) + Cπ(s). (4)

Where, Cπ(s) =
∫∫ (

γvπ(s
′) − vπ(s)

)+
dP(s′ | St =
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s,At = a)dΠ(a | St = s), is the expected, clipped differ-
ence in the state value function, γvπ(s′)− vπ(s), over all
actions, a, and next states, s′, under the policy given state,
s. Here, we use

∫
. . . dΠ(a | s) to denote

∑
a . . . π(a | s)

for discrete action spaces and
∫
. . . π(a | s)da for contin-

uous action spaces. Similarly, we use
∫
. . . dP(s′ | s,a)

to denote
∑

s′ . . . p(s
′ | s,a) for discrete state spaces and∫

. . . p(s′ | s,a)ds′ for continuous state spaces. We provide
the proof in Appendix B.1.

Bounding Cπ(s). For a Kπ-Lipschitz value function and
γ = 1, the additive term is bounded proportional to the
expected absolute difference between states:

Cπ(s) =

∫∫ (
vπ(s

′)− vπ(s)
)+

dP(s′ | s,a)dΠ(a | s)

≤= 1

2

∫∫ ∣∣vπ(s′)− vπ(s)
∣∣dP(s′ | s,a)dΠ(a | s)

≤ 1

2

∫∫
Kπ

∣∣∣∣s′ − s
∣∣∣∣dP(s′ | s,a)dΠ(a | s),

where the second line follows from Lemma B.4. This
interpretation motivates using spectral normalization (Miy-
ato et al., 2018) of the value function estimator weights,
v(s,w), which regulates the Lipschitz constant, Kπ , of the
estimator and can improve off-policy DRL performance
(Bjorck et al., 2021; Gogianu et al., 2021). Moreover,
this bound is not vacuous for the continuous (nor the dis-
crete) action setting. Under weak assumptions, f(a, s) :=∫
Kπ

∣∣∣∣s′ − s
∣∣∣∣dP(s′ | St = s,At = a), is finite for all a.

Therefore, f∗(s) = maxa(
∫
f(a, s)dΠ(a | St = s)), ex-

ists and is finite, and Cπ(s) ≤ 1
2f

∗(s). We provide further
commentary concerning the constant Cπ(s) and Lipschitz
continuity in Appendix C.1.

We term this method VSOP for Variational [b]ayes, Spectral-
normalized, On-Policy reinforcement learning. Algorithm 1
details VSOP for dropout BNNs.

4. Related Works
VSOP is an on-policy RL algorithm. Table 1 in Appendix A
compares the gradient of the performance function, ∇J(θ),
for VSOP with those for relevant on-policy algorithms.

Maximum Entropy RL. Levine (2018) establishes the the-
oretical connection between maximum entropy RL and pa-
rameter agnostic probabilistic inference of policies over
optimal trajectories. Further, in Section 4.1 of that work, he
shows how approximate inference in maximum entropy pol-
icy gradients setting corresponds precisely to the gradient
estimator of the advantage actor-critic algorithm (A2C or
A3C). It is clear from Theorem 3.1 that our gradient estima-
tor is distinct from the advantage actor-critic estimator and
that we optimize a fundamentally different objective than
the maximum entropy objective. Therefore, we maintain

that our step towards approximate inference over policy pa-
rameters represents a distinct alternative to the maximum
entropy paradigm.

Mirror Learning. Proximal Policy Optimization (PPO)
(Schulman et al., 2017), improves upon the baseline pol-
icy gradient method by constraining the maximum size of
policy updates. PPO employs a clipped surrogate objective
function to limit the size of policy updates. PPO simplifies
the optimization procedure compared to TRPO (Schulman
et al., 2015a), making it more computationally efficient and
easier to implement. While PPO constrains policy updates
based on the ratio between the new and old policies, VSOP
constrains policy updates according to the sign of the esti-
mated advantage function. As such, PPO is an instance of
the mirror learning framework (Kuba et al., 2022), whereas
VSOP does not inherit the same theoretical guarantees. Lu
et al. (2022) explores the Mirror Learning space by meta-
learning a “drift” function. They term their immediate result
Learned Policy Optimization (LPO). Through its analysis,
they arrive at Discovered Policy Optimisation (DPO), a
novel, closed-form RL algorithm.

Regret Matching Policy Gradient (RMPG). Srinivasan
et al. (2018) present a method inspired by their regret policy
gradient (RPG) objective, which maximizes a lower-bound
on the advantages: (h(s,a))+ ≤ h(s,a). RPG directly
optimizes the policy for an estimator of the advantage lower-
bound, denoted as ∇θJ

RPG(θ). RMPG, being inspired by
RPG, has a different objective,∇θJ

RMPG(θ). In both cases,
q(s,a,w) is a parametric estimator of the state-action value
function, qπ(s,a). RMPG has demonstrated improved sam-
ple efficiency and stability in learning compared to standard
policy gradient methods. VSOP is closely related to RMPG;
however, we provide the missing theoretical foundations to
ground RMPG (Appendix B.1), extend RMPG from the all
actions formulation making it more suitable for continuous
control (Appendix B.2), and employ the GAE rather than
the state-action value function estimator, q(s,a,w).

Thompson Sampling in Deep Reinforcement Learning.
Thompson sampling has been extensively explored in con-
ventional and Deep Q-Learning (Strens, 2000; Wang et al.,
2005; Osband et al., 2016; Moerland et al., 2017; Aziz-
zadenesheli et al., 2018) to improve exploration and sample
efficiency. Clements et al. (2019) and Nikolov et al. (2018)
propose similar sampling-based exploration strategies for
Deep Q-Learning. Jiang et al. (2023) propose a Thompson
sampling strategy based on an ensemble of quantile estima-
tors of the state-action value distribution. In the context of
policy gradient methods, related Upper Confidence Bound
(UCB) (Ciosek et al., 2019) and Hamiltonian Monte-Carlo
(HMC) (Xu & Fekri, 2022) approaches are proposed for
off-policy Soft Actor-Critic (SAC) (Haarnoja et al., 2018),
and Henaff et al. (2022) proposes an elliptical episodic re-
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(a) Episodic return (b) Prob. Improve

(c) Area Under Return Curve (d) Prob. Improve

Figure 1: MuJoCo. Ablating the effect of the proposed mechanisms. Here, we compare VSOP to VSOP without spectral
normalization (no-spectral), VSOP without Thompson sampling (no-Thompson), VSOP without advantage clipping (no-
ReLU Adv.), and VSOP using all-actions policy optimization (all actions). We see that no single mechanism contributes
greater than the sum of all changes, lending credence to the validity of our theory. The overall performance (a-b) and sample
efficiency (c-d) metrics illustrate this result. Metrics are computed wrt to the average episodic return of the last 100 episodes
and the area under the episodic return curve over ten random seeds

ward for general use. Hausknecht & Wagener (2022) and Igl
et al. (2019) use fixed dropout masks to sample policies and
actions but stopped short of formalizing this as Thompson
sampling. Our work formalizes and shows the benefit of
Thompson sampling for on-policy actor-critic methods.

5. Experiments
We evaluate VSOP against on-policy RL methods across
various domains, including continuous and discrete action
spaces and diverse dimensionalities in both the action and
observation spaces. In Section 5.1, we evaluate VSOP on
continuous control tasks using the Gymnasium (Brockman
et al., 2016) and Gymnax (Lange, 2022) implementations of
MuJoCo (Todorov et al., 2012). In Section 5.2, we assess the
capacity of VSOP to learn policies that generalize to unseen
environments at test time using the ProcGen benchmark
(Cobbe et al., 2020). We use the rliable package to evalu-
ate robust normalized median (Median), interquartile mean
(IQM), mean (Mean), optimality gap (OG), and probability
of improvement (Prob. Improve) metrics (Agarwal et al.,
2021). We provide additional results in Appendix E and
make code available at https://github.com/anndvision/vsop.

5.1. MuJoCo

For this evaluation, we build off of Huang et al. (2022)’s
CleanRL package which provides reproducible, user-
friendly implementations of state-of-the-art reinforcement
learning algorithms using PyTorch (Paszke et al., 2019),
Gymnasium (Brockman et al., 2016; Todorov et al., 2012),
and Weights & (Biases, 2018). We give full implementation

details in Appendix D.1.

Ablation of Mechanisms. First, we investigate the influ-
ence of our four proposed mechanisms on the performance
of VSOP. For reference, the mechanisms are positive ad-
vantages, single-action setting, spectral normalization, and
Thompson sampling. To ablate each mechanism, we com-
pare VSOP to four variants: VSOP without advantage clip-
ping (no-ReLU Adv.), VSOP in the all-actions setting (all-
actions), VSOP without spectral normalization (no-spectral),
and VSOP without Thompson sampling (no-Thompson).
We hyperparameter tune each variant by the same procedure
used for VSOP (see Table 2 for details). Figure 1 summa-
rizes these results, and we see clearly that no single mecha-
nism contributes greater than the sum of all changes, lending
credence to our theoretical analysis. We see that positive
advantages and operating in the single-action regime impact
performance on MuJoCo significantly. Spectral normaliza-
tion and Thompson sampling also influence performance
on MuJoCo positively, especially in high-dimensional ac-
tion and observation space settings such as Humanoid, Hu-
manoid Stand-Up, and Ant, as shown in Figure 2. The
performance gains for spectral normalization align with re-
sults given by Bjorck et al. (2021) and Gogianu et al. (2021)
for DDPG (Lillicrap et al., 2015), DRQ (Kostrikov et al.,
2020), Dreamer (Hafner et al., 2019), DQN (Mnih et al.,
2015; Wang et al., 2016) and C51 (Bellemare et al., 2017).

Comparison to Baselines. Next, we compare VSOP to
baseline implementations: PPO, A3C, SAC, and TD3. We
use the CleanRL (Huang et al., 2022) implementation of
PPO, SAC, and TD3; the StableBaselines3 (Raffin et al.,
2021) hyper-parameter settings for A3C. We also include
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(a) Ant (b) HalfCheetah (c) Hopper (d) Humanoid (e) HumanoidStandup

(f) DoublePendulum (g) Pusher (h) Reacher (i) Swimmer (j) Walker2d

Figure 2: Comparing the effect of VSOP mechanisms on Mujoco continuous control performance. Using the single action
framework and updating the policy only on positive advantage estimates have the largest effects, followed by spectral
normalization, and finally Thompson sampling. Blue lines (VSOP) show the optimized proposed method. Orange lines (no-
Thompson) show VSOP without Thompson sampling. Green lines (no-Spectral) show VSOP without spectral normalization.
Pink lines (all actions) show VSOP with “all actions”. Red lines (no ReLU Adv.) show VSOP without restricting policy
updates to positive advantages.

comparisons to RMPG (adapted for continuous control) and
VSPPO (PPO with spectral normalization, and Thompson
sampling via dropout). We tune RMPG and VSPPO using
the same Bayesian optimization (Snoek et al., 2012) proto-
col as VSOP. Figure 3 summarizes our results, where we see
that VSOP shows significant improvement over each base-
line concerning each metric, except for the SAC and TD3’s
mean scores. See Figure 9 in Appendix E.1 for training
curves of these results.

Figure 3: MuJoCo. Comparison to baselines. We see that
VSOP (blue) shows significant improvement over each base-
line concerning the Median and IQM metrics. VSOP only
trails SAC and TD3 for the mean metric. Metrics are com-
puted wrt to the average episodic return of the last 100
episodes over 10 random seeds

Effect of Asynchronous Parallelization. Following Lu
et al. (2022), we build on PureJaxRL to evaluate VSOP on
the Brax implementation of MuJoCo in a massively parallel
setting. Where in the above experiments we set the number
of asynchronous threads to 1 and the number of steps per
rollout to 2048, here we set the number of asynchronous

threads to 2048 and the number of steps to 10. We see in Fig-
ure 4 that while VSOP still outperforms A3C significantly,
it trails PPO. Full training curves are shown in Figure 13 of
Appendix E.3.

Figure 4: MuJoCo. Comparison to on-policy baselines with
extreme parallelization. We compare VSOP to on-policy
baselines on MuJoCo with 2048 threads and 10 steps per
rollout. Metrics are computed wrt to the average episodic
return of the last 100 episodes over 20 random seeds

Interestingly, hyper-parameter tuning showed spectral nor-
malization to be detrimental to the performance of VSOP
in this massively parallel setting. We investigate the effect
of parallelization on VSOP effectiveness and efficiency in
Figure 5. Here we set the rollout size to 2048 environ-
ment interactions and sweep the number of threads and
number of steps. For each configuration, we do a hyper-
parameter sweep in MuJoCo Brax using the reacher, hopper,
and humanoid environments over 1 million environment
interactions. We then evaluate 10 MuJoCo environments
over 3 million environment interactions. The blue bars show
metrics for VSOP with spectral normalization. We see that
VSOP is most effective and efficient with spectral normal-
ization with a low thread count and that for a fixed rollout

7
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(a) Episodic return (b) Area under the curve

Figure 5: MuJoCo: effect of parallelization on VSOP. Naming convention: #threads/#steps/spectral norm. We see that
VSOP is most effective 5a and most efficient 5b in lower thread settings for a fixed rollout size of 2048 steps when using
spectral normalization. Metrics are computed wrt to the average episodic return or area under the curve for the last 100
episodes over 5 random seeds

Figure 6: ProcGen comparison to PPO. In the top pane, we see significant improvement over PPO concerning all metrics for
the PPO normalized scores. In the middle pane, we see significant improvement over PPO in terms of the IQM, mean, and
optimality gap metrics for the Min-Max normalized scores. In the bottom pane, we include results reported by Jiang et al.
(2023). It appears as though we improved over EDE with respect to the IQM, mean, and optimality gap metrics. Metrics are
computed wrt to the average episodic return of the last 100 episodes over 5 random seeds

size, these measures fall with increasing parallelization. For
VSOP without spectral normalization, the trend is less clear
but appears to be generally the opposite for a fixed rollout
size. This indicates that spectral normalization will be ben-
eficial in applications where it is not feasible to run many
parallel agents.

5.2. ProcGen

In lieu of finding a suitable benchmark for continuous con-
trol, we assess the capacity of VSOP to generalize to unseen
environments using ProcGen (Cobbe et al., 2020). ProcGen
is a set of 16 environments where game levels are procedu-
rally generated, creating a virtually unlimited set of unique
levels. We follow the “easy” generalization protocol where,
for a given environment, models are trained on 200 levels
for 25 million time steps and evaluated on the full distri-
bution of environments. We use the same architecture as
PPO in the CleanRL library, and do a Bayesian optimiza-

tion hyper-parameter search using the bossfight environ-
ment. We search over the learning rate, GAE λ, number
of minibatches per epoch, number of epochs per rollout,
the dropout rate, and the entropy regularization coefficient.
Full implementation details are given in Appendix D.3. Fig-
ure 6 summarizes our results. We see broad significant
improvement over PPO across both the PPO and Min-Max
normalized metrics. Furthermore, we see improvement over
EDE (Jiang et al., 2023) with respect to the IQM, mean,
and optimality gap metrics. Figure Figure 7 shows training
and test curves for the average episodic return against the
number of environment interactions for each environment.
These results present strong evidence for the suitability of
VSOP for deployment in non-stationary environments and
lend further evidence for the hypothesis of Jiang et al. (2023)
that exploration plays a significant positive role in general-
ization.
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Figure 7: ProcGen training and test curves. We see significant improvement in test set performance on 8 environments,
statistical equivalence on 5 environments, and VSOP trails PPO on just 3 environments.

6. Conclusion
This work represents a step towards principled approximate
Bayesian inference in the on-policy actor-critic setting. Our
method is realized through simple modifications to the A3C
algorithm, optimizes a lower bound on value plus an addi-
tive term and integrates adaptive state-aware exploration via
Thompson sampling. Our empirical evaluations across sev-
eral diverse benchmarks confirm our approach’s improved
performance compared to existing on-policy algorithms.

Establishing convergence rates, especially compared to
other algorithms (Shen et al., 2023), remains an important
next step. Incorporating theory related to asynchronous set-
tings (Shen et al., 2023) could improve our results, seeing
as our most significant efficiency gains are in the single-
threaded setting. Finally, since VSOP does not have sig-
nificant computational overhead when compared to PPO,
it would be interesting to evaluate whether our observed
performance gains translate to contemporary large-scale
settings where PPO is deployed, such as RLHF (Ziegler
et al., 2019), online gaming (Berner et al., 2019), or robotics
(Andrychowicz et al., 2020).
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A. Supplementary Related Works

Table 1: Comparison of performance functions for on-policy methods

Method ∇J(θ)
A3C Eπ [hπ(St,At)∇ log π(At | St,θ)] ; hπ(St,At) = qπ(St,At)− vπ(St)
VSOP Eπ [h

+
π (St,At)∇ log π(At | St,θ)] ; h+

π (St,At) = max
(
0, hπ(St,At)

)
RMPG Eπ

[∫
h+
π (St,a)∇dΠ(a | St,θ)

]
TRPO Eπ [hπ(St,At)∇ρ(St,At,θ)] ; ρ(St,At,θ) =

π(At|St,θ)
π(At|St,θold)

PPO Eπ

[
min

(
hπ(St,At)∇ρ(St,At,θ), clip

(
hπ(St,At)∇ρ(St,At,θ), 1− ϵ, 1 + ϵ

))]
DPO Eπ

[
∇

{(
hπ(ρ(θ)− 1)− a tanh(hπ(ρ(θ)− 1)/a)

)+
hπ(St,At) ≥ 0(

hπ log(ρ(θ))− b tanh(hπ log(ρ(θ)/b)
)+

hπ(St,At) < 0

]
CVaR Eπ

[(
να −Gt

)+∇ log π(At | St,θ)
]
; να := α-quantile of return, Gt

RSPG Eπ

[(
Gt − να

)+∇ log π(At | St,θ)
]
; Gt :=

∑T
k=t+1 γ

k−1−tRk

EPOpt Eπ

[
1
(
Gt ≤ να

)
∇J(θ,St,At)

]
; J(θ,St,At) on-policy perf. function

Off-policy Methods with Clipped Advantages. Self Imitation Learning (SIL) (Oh et al., 2018) is a hybrid method that uses
clipped advantage estimates to improve the performance of on-policy algorithms such as PPO and A2C by learning from
its successful off-policy trajectories. By leveraging experience replay, SIL encourages the agent to imitate its high-reward
actions. Self Imitation Advantage Learning (SIAL) (Ferret et al., 2020) extends SIL to the off-policy domain. SIAL uses
the clipped advantage function to weigh the importance of different actions during self-imitation, enabling the agent to
focus on actions that yield higher long-term rewards. Importantly, even though SIL and SIAL only update policies when
advantage estimates are positive, they differ from VSOP in that they are off-policy algorithms that learn from successful past
trajectories and optimize different objectives based on max-entropy reinforcement learning (Aghasadeghi & Bretl, 2011;
Haarnoja et al., 2018).

Mirror Learning. Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a) is an on-policy, actor-critic method
that improves upon the baseline policy gradient method by incorporating a constraint on the maximum size of policy
updates. TRPO takes small steps toward improvement and limits the step size to ensure that the new policy does not deviate
significantly from the old policy. TRPO achieves this by optimizing a surrogate objective function that approximates the
expected reward under the new policy while imposing a constraint on the KL divergence between the new and old policies.
TRPO is effective in various high-dimensional and continuous control tasks.

Risk Sensitive Reinforcement Learning. Instead of optimizing expected value, risk-sensitive RL methods optimize a risk
measure. Tamar et al. (2015) propose the risk-averse CVaR-PG which seeks to minimize the Conditional Value at Risk
(CVaR), Φ(θ) := Eπ [Gt | Gt ≤ να], where να is the α-quantile of the return, Gt, distribution under the policy, π(a | s,θ).
Relatedly, Tang et al. (2020) have used the CVaR as a baseline function for standard policy updates. By focusing only
on the worse case trajectories, CVaR-PG is susceptible to “blindness to success,” thus Greenberg et al. (2022) propose
a Cross-entropy Soft-Risk algorithm (CeSoR) to address this. Kenton et al. (2019) and Filos et al. (2022) also propose
uncertainty aware, risk-averse methods. For model-based policy gradient methods, Rajeswaran et al. (2016) propose
Ensemble Policy Optimization (EPOpt), which incorporates restricting policy updates to be risk-averse based on the CVaR
and uses ensembles to sample hypothesized models. In contrast to the above risk-averse methods, Petersen et al. (2019)
present Risk Seeking Policy Gradient (RSPG) which focuses on maximizing best-case performance by only performing
gradient updates when rewards exceed a specified quantile of the reward distribution. Prashanth et al. (2022) provide a
comprehensive discussion on risk-sensitive RL.

B. Theoretical Results
B.1. Proof of Theorem 3.1

Theorem B.1. Let, Gt :=
∑T

k=t+1 γ
k−1−tRk, denote the discounted return. Let qπ(s,a) = Eπ [Gt | St = s,At = a],

denote the state-action value function, and vπ(s) = Eπ [Gt | St = s], denote the state value function, under policy
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π(a | s,θ). Define the ReLU function as
(
x
)+

:= max(0, x). Assume that rewards, Rt, are non-negative and the gradient
of the policy,∇π(a | s,θ), is a conservative vector field. Then, performing gradient ascent with respect to,

∇θJ(θ) = Eπ

[(
qπ(St,At)− vπ(St)

)+
∇θ log π(At | St,θ)

]
, (6)

maximizes a lower-bound, v∗π(s), on the state value function, vπ(s), plus an additive term:

v∗π(s) ≤ vπ(s) + Cπ(s), (7)

where, Cπ(s) =
∫∫ (

γvπ(s
′) − vπ(s)

)+
dP(s′ | St = s,At = a)dΠ(a | St = s), is the expected, clipped difference in

the state value function, γvπ(s′) − vπ(s), over all actions, a, and next states, s′, under the policy given state, s. Here,
we use

∫
. . . dΠ(a | s) to denote

∑
a . . . π(a | s) for discrete action spaces and

∫
. . . π(a | s)da for continuous action

spaces. Similarly, we use
∫
. . . dP(s′ | s,a) to denote

∑
s′ . . . p(s

′ | s,a) for discrete state spaces and
∫
. . . p(s′ | s,a)ds′

for continuous state spaces.

Proof. Lemma B.1 shows that the policy-gradient theorem (Sutton et al., 1999) can be expressed in terms of the clipped
advantage function,

h+
π (s,a) =

(
qπ(s,a)− vπ(s)

)+
:= max(0, qπ(s,a)− vπ(s)),

as,

∇vπ(s) =
∫
S

∞∑
k=0

[
γk

∫
A
h+
π (x,a)∇dΠ(a | x)

]
dP(s→ x; k, π)

+

∫
S

∞∑
k=0

[
γk

∫
A
1
(
qπ(x,a) > vπ(x)

)
vπ(x)∇dΠ(a | x)

]
dP(s→ x; k, π)

+

∫
S

∞∑
k=0

[
γk

∫
A
1
(
qπ(x,a) ≤ vπ(x)

)
qπ(x,a)∇dΠ(a | x)

]
dP(s→ x; k, π),

(8)

where, P(s→ x; k, π), is the probability of transitioning from state s to state x in k steps under policy π.

The first right hand side term above defines the gradient of the lower-bound, v∗π(s), with respect to θ:

∇v∗π(s) :=
∫
S

∞∑
k=0

[
γk

∫
A
h+
π (x,a)∇dΠ(a | x)

]
dP(s→ x; k, π). (9)

Letting, ∇v∗π(s0) =
∫
S
∑∞

k=0 γ
k
∫
A h+

π (s,a)∇dΠ(a | s)dP(s0 → s; k, π), a straightforward continuation of the policy
gradient theorem (Sutton et al., 1999) will show that

∇J(θ) := ∇v∗π(s0) ∝
∫∫

h+
π (s,a)∇θdΠ(a | s,θ)dP(s).

We then arrive at Equation (6) by moving from the all states/actions to single state/action formulation:

∇J(θ) := ∇v∗π(s0), by definition

∝
∫∫ (

qπ(s,a)− vπ(s)
)+
∇θdΠ(a | s,θ)dP(s), Sutton et al. (1999)

= Eπ

[∫ (
qπ(St,a)− vπ(St)

)+
∇θdΠ(a | St,θ)

]
,

= Eπ

[∫ (
qπ(St,a)− vπ(St)

)+∇θdΠ(a | St,θ)

dΠ(a | St,θ
dΠ(a | St,θ

]
,

= Eπ

[∫ (
qπ(St,At)− vπ(St)

)+
∇θ log π(At | St,θ)

]
.
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Now we need to show that,

v∗π(s) ≤ vπ(s) +

∫∫ (
γvπ(s

′)− vπ(s)
)+

dP(s′ | St = s,At)dΠ(a | St = s).

To do so, we will first prove that it holds for episodes, T, of length 1, then that it holds for episodes of length 2. These two
proofs will then prove Equation (7) for episodes of arbitrary length by mathematical induction and conclude the proof.

For episodes of length 1, |T | = 1, we have

∇vπ(s) =
∫

qπ(s,a)∇dΠ(a | s) +
∫
∇qπ(s,a)dΠ(a | s),

=

∫
qπ(s,a)∇dΠ(a | s) +

∫ (
∇
∫

rdP(r | s,a)
)
dΠ(a | s),

=

∫
qπ(s,a)∇dΠ(a | s),

=

∫
h+
π (s,a)∇dΠ(a | s) +

∫ (
1
(
qπ > vπ

)
vπ(s) + 1

(
qπ ≤ vπ

)
qπ(s,a)

)
∇dΠ(a | s).

(11)

Therefore, for |T | = 1,

∇v∗π(s) =
∫

h+
π (s,a)∇dΠ(a | s)

In order to recover v∗π(s), we need to use the work of Willse (2019) to define an inverse function for the gradient. Assume
that the policy, π(a | s,θ), is a smooth, infinitely differentiable function with respect to θ. Further, let the gradient of the
policy,

∇π(a | s,θ) =


∂

∂θ1
π(a | s, θ1),

...
∂

∂θk
π(a | s, θk)

 , (12)

be a conservative vector field. We call β̃
(
∇π(a | s,θ)

)
the inverse of the gradient operation,∇π(a | s,θ). Assuming that

π(a | s,θ) is a representative of β̃, we have that,

π(a | s,θ) = β̃
(
∇π(a | s,θ)

)
,

=

∫
γ

∇π(a | s,θ)dx,

=

∫
γ

∂

∂θ1
π(a | s, θ1)dθ1 + · · ·+

∂

∂θk
π(a | s, θk)dθk,

(13)

where γ is a path from the fixed reference point, θ0, to θ. The conservativeness of∇π(a | s,θ) guarantees that the integrals
are path independent.

Now we have,

v∗π(s) = β̃

(∫
h+
π (s,a)∇dΠ(a | s)

)
,

=

∫
h+
π (s,a)β̃

(
∇dΠ(a | s)

)
, linearity

=

∫
h+
π (s,a)dΠ(a | s), Equation (13)

≤
∫∫ (

r +
(
γvπ(s

′)− vπ(s)
)+)

dP(s′, r | s,a)dΠ(a | s), Lemma B.2

= vπ(s) +

∫∫ (
γvπ(s

′)− vπ(s)
)+

dP(s′ | s,a)dΠ(a | s), |T | = 1

16



ReLU to the Rescue: Improve Your On-Policy Actor-Critic with Positive Advantages

which concludes the proof for episodes of length 1.

For episodes of length 2, |T | = 2, we have

∇vπ(s) =
∫

qπ(s,a)∇dΠ(a | s) +
∫
∇qπ(s,a)dΠ(a | s),

=

∫
qπ(s,a)∇dΠ(a | s) +

∫∫∫
qπ(s

′,a′)∇dΠ(a′ | s′)dP(s′ | a, s)dΠ(a | s)

+

∫∫∫ (
∇
∫

r′dP(r′ | s′,a′)
)
dΠ(a′ | s′),

=

∫
qπ(s,a)∇dΠ(a | s) +

∫∫∫
qπ(s

′,a′)∇dΠ(a′ | s′)dP(s′ | a, s)dΠ(a | s),

=

∫
h+
π (s,a)∇dΠ(a | s) +

∫∫∫
h+
π (s

′,a′)∇dΠ(a′ | s′)dP(s′ | a, s)dΠ(a | s)

+

∫ (
1
(
qπ > vπ

)
vπ(s) + 1

(
qπ ≤ vπ

)
qπ(s,a)

)
∇dΠ(a | s)

+

∫∫∫ (
1
(
qπ > vπ

)
vπ(s

′) + 1
(
qπ ≤ vπ

)
qπ(s

′,a′)
)
∇dΠ(a′ | s′)dP(s′ | a, s)dΠ(a | s).

Therefore, for |T | = 2,

∇v∗π(s) =
∫

h+
π (s,a)∇dΠ(a | s) +

∫∫∫
h+
π (s

′,a′)∇dΠ(a′ | s′)dP(s′ | a, s)dΠ(a | s).

Finally, we apply the β̃ operator:

v∗π(s) = β̃

(∫
h+
π (s,a)∇dΠ(a | s) +

∫∫∫
h+
π (s

′,a′)∇dΠ(a′ | s′)dP(s′ | a, s)dΠ(a | s)
)
,

=

∫
h+
π (s,a)β̃

(
∇dΠ(a | s)

)
+

∫∫∫
h+
π (s

′,a′)β̃
(
∇dΠ(a′ | s′)

)
dP(s′ | a, s)dΠ(a | s), linearity

=

∫
h+
π (s,a)dΠ(a | s) +

∫∫∫
h+
π (s

′,a′)dΠ(a′ | s′)dP(s′ | a, s)dΠ(a | s), Equation (13)

≤
∫∫

rdP(r | s,a)dΠ(a | s) +
∫∫ (

γvπ(s
′)− vπ(s)

)+
dP(s′ | s,a)dΠ(a | s)

+

∫∫∫
h+
π (s

′,a′)dΠ(a′ | s′)dP(s′ | a, s)dΠ(a | s),
Lemma B.2

≤
∫∫

rdP(r | s,a)dΠ(a | s) +
∫∫ (

γvπ(s
′)− vπ(s)

)+
dP(s′ | s,a)dΠ(a | s)

+

∫∫
γvπ(s

′)dP(s′ | a, s)dΠ(a | s),
Lemma B.3

= vπ(s) +

∫∫ (
γvπ(s

′)− vπ(s)
)+

dP(s′ | s,a)dΠ(a | s). rearranging terms

Negative Rewards Add a Known Constant to the Lower Bound, but Do Not Impact Optimization. Consider the
scenario where rewards can be negative (rmin ≤ 0), and we adjust observed rewards by subtracting rmin. This adjustment
leads to the following expressions for the state-value and action-value functions, respectively:

vrmin
π (s) := Eπ

[
T∑

k=t+1

γk−t−1(Rk − rmin) | St = s

]
= vπ(s)−

T∑
k=t+1

γk−t−1rmin

17
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qrmin
π (s, a) := Eπ

[
T∑

k=t+1

γk−t−1(Rk − rmin) | St = s,At = a

]
= qπ(s, a)−

T∑
k=t+1

γk−t−1rmin

In both episodic (0 < T <∞) and continuing (T →∞) cases, the transformations yield:

vrmin
π (s) ≤ vπ(s)−

γ

1− γ
rmin, qrmin

π (s, a) ≤ qπ(s, a)−
γ

1− γ
rmin.

Crucially, the advantage function remains invariant under this transformation:

hrmin
π (s, a) = qrmin

π (s, a)− vrmin
π (s)

= qπ(s, a)−
T∑

k=t+1

γk−t−1rmin −

(
vπ(s)−

T∑
k=t+1

γk−t−1rmin

)
= qπ(s, a)− vπ(s)

= hπ(s, a)

(17)

Imagine now that we use the transformed advantage function hrmin
π (s, a) to ensure non-negativity in our proof for Theorem

3.1. Then, our objective maximizes:

v∗,rmin
π (s) = vrmin

π (s) + Crmin
π (s)

= vrmin
π (s) +

∫∫ (
γvrmin

π (s′)− vrmin
π (s)

)+
dP (s′ | s, a)dΠ(a | s)

(18)

Let’s focus on the integrand of the Crmin
π (s) term:

(
γvrmin

π (s′)− vrmin
π (s)

)+
=

(
γvπ(s

′)− vπ(s) +

T∑
k=t+1

γk−1−trmin − γ

T∑
k=t+2

γk−1−trmin

)+

=
(
γvπ(s

′)− vπ(s) + rmin + γrmin − γT−trmin

)+
=
(
γvπ(s

′)− vπ(s) + ct

)+
: ct < 0

=
1

2

(
γvπ(s

′)− vπ(s) + ct + |γvπ(s′)− vπ(s) + ct|
)

≤
(
γvπ(s

′)− vπ(s)
)+

+
1

2
(ct + |ct|)

=
(
γvπ(s

′)− vπ(s)
)+

(19)

Therefore, Crmin
π (s) <= Cπ(s), which maintains the direction of the lower bound. So, should the rewards be negative, we

optimize
v∗,rmin
π (s) ≤ vπ(s)−

γ

1− γ
rmin + Cπ(s).

This expression has an extra non-negative (yet fully determined) constant − γ
1−γ rmin. Importantly, this result has no bearing

on the optimization procedure. The invariance of the advantage function ensures that the performance function is also
invariant to a shift in rewards:

∇θJ(θ) := Eπ

[(
qπ(St, At)−vπ(St)

)+
∇θ log π(At | St, θ)

]
= Eπ

[(
qrmin
π (St, At)−vrmin

π (St)
)+
∇θ log π(At | St, θ)

]
,

which entails that no special measures need to be taken when rewards can take negative values.
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Lemma B.1. ∇vπ(s) can be written in terms of h+
π (s,a).

Proof.

∇vπ(s) = ∇
[ ∫

qπ(s,a)dΠ(a | s)
]
, (20a)

=

∫
qπ(s,a)∇dΠ(a | s) +

∫
∇qπ(s,a)dΠ(a | s), (20b)

=

∫ (
h+
π (s,a) + 1

(
qπ > vπ

)
vπ(s) + 1

(
qπ ≤ vπ

)
qπ(s,a)

)
∇dΠ(a | s)

+

∫
∇qπ(s,a)dΠ(a | s),

(20c)

=

∫ (
h+
π (s,a) + 1

(
qπ > vπ

)
vπ(s) + 1

(
qπ ≤ vπ

)
qπ(s,a)

)
∇dΠ(a | s)

+

∫
∇
[ ∫ (

r + γvπ(s
′)
)
dP(s′, r | s,a)

]
dΠ(a | s),

(20d)

=

∫ (
h+
π (s,a) + 1

(
qπ > vπ

)
vπ(s) + 1

(
qπ ≤ vπ

)
qπ(s,a)

)
∇dΠ(a | s)

+ γ

∫∫
∇vπ(s′)dP(s′ | s,a)dΠ(a | s),

(20e)

=

∫ (
h+
π (s,a) + 1

(
qπ > vπ

)
vπ(s) + 1

(
qπ ≤ vπ

)
qπ(s,a)

)
∇dΠ(a | s)

+ γ

∫∫ [∫
qπ(s

′,a′)∇dΠ(a′ | s′)

+ γ

∫
∇vπ(s′′)dP(s′′ | s′,a′)dΠ(a′ | s′)

]
dP(s′ | s,a)dΠ(a | s),

(20f)

=

∫ (
h+
π (s,a) + 1

(
qπ > vπ

)
vπ(s) + 1

(
qπ ≤ vπ

)
qπ(s,a)

)
∇dΠ(a | s)

+ γ

∫∫ [∫ (
h+
π (s

′,a′) + 1
(
qπ > vπ

)
vπ(s

′) + 1
(
qπ ≤ vπ

)
qπ(s

′,a′)
)
∇dΠ(a′ | s′)

+ γ

∫
∇vπ(s′′)dP(s′′ | s′,a′)dΠ(a′ | s′)

]
dP(s′ | s,a)dΠ(a | s),

(20g)

=

∫
S

∞∑
k=0

[
γk

∫
A
h+
π (x,a)∇dΠ(a | x)

]
dP(s→ x; k, π)

+

∫
S

∞∑
k=0

[
γk

∫
A
1
(
qπ(x,a) > vπ(x)

)
vπ(x)∇dΠ(a | x)

]
dP(s→ x; k, π)

+

∫
S

∞∑
k=0

[
γk

∫
A
1
(
qπ(x,a) ≤ vπ(x)

)
qπ(x,a)∇dΠ(a | x)

]
dP(s→ x; k, π)

(20h)

Lemma B.2.

vvππ (s) ≤
∫∫

rdP(r | s,a)dΠ(a | s) +
∫∫ (

γvπ(s
′)− vπ(s)

)+
dP(s′ | s,a)dΠ(a | s)
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Proof.

vvππ (s) :=

∫
h+
π (s,a)dΠ(a | s)

=
1

2

∫ (
qπ(s,a)− vπ +

∣∣qπ(s,a)− vπ
∣∣)dΠ(a | s) (2max(0, a) = a+ |a|)

=
1

2

∫ (∫ (
r + γvπ(s

′)− vπ(s)
)
dP(s′, r | s,a)

+
∣∣∣ ∫ (r + γvπ(s

′)− vπ(s)
)
dP(s′, r | s,a)

∣∣∣)dΠ(a | s)

≤ 1

2

∫∫ (
r + γvπ(s

′)− vπ(s) +
∣∣r + γvπ(s

′)− vπ(s)
∣∣)

dP(s′, r | s,a)dΠ(a | s)
(Jensen’s inequality)

≤ 1

2

∫∫ (
2r + γvπ(s

′)− vπ(s) +
∣∣γvπ(s′)− vπ(s)

∣∣)
dP(s′, r | s,a)dΠ(a | s)

(triangle inequality)

=

∫∫ (
r +

(
γvπ(s

′)− vπ(s)
)+)

dP(s′, r | s,a)dΠ(a | s) (2max(0, a) = a+ |a|)

Lemma B.3. When, without loss of generality, rewards, Rt, are assumed to be non-negative:

vvππ (s) :=

∫
h+
π (s,a)dΠ(a | s) ≤ vπ(s)

Proof. ∫
h+
π (s,a)dΠ(a | s) = 1

2

∫ (
qπ(s,a)− vπ +

∣∣qπ(s,a)− vπ
∣∣)dΠ(a | s) ( 2max(0, a) = a+ |a| )

≤
∫

qπ(s,a)dΠ(a | s) (triangle inequality)

= vπ(s)

B.2. Relation to Regret Matching Policy Gradient (RMPG)

Here we provide a derivation starting from RMPG and arriving at our method.

∇J(θ) = Eπ

[∫
A

(
qπ(St,a)−

∫
A
π(a′ | St,θ)qπ(St,a

′)da′
)+

∇θπ(a | St,θ)da

]

= Eπ

[∫
A
(qπ(St,a)− vπ(St))

+∇θπ(a | St,θ)da

]
= Eπ

[∫
A
h+
π (St,a)∇θπ(a | St,θ)da

]
= Eπ

[∫
A
π(a | St,θ)h

+
π (St,a)

∇θπ(a | St,θ)

π(a | St,θ)
da

]
= Eπ

[
h+
π (St,At)

∇θπ(At | St,θ)

π(At | St,θ)

]
= Eπ

[
h+
π (St,At)∇θ log π(At | St,θ)

]
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Lemma B.4.
ReLU(a) <= |a|

Proof.

ReLU(a) = max(0, a)

=
1

2
a+

1

2
|a|

=

{
a a ≥ 0

0 a < 0

≤

{
a a ≥ 0

−a a < 0 (−a > 0)

= |a|

C. Commentary
The derivation in Equation (3) assumes access to the policy precision parameter, τ = 1/σ2, and samples of Ht. In practice,
we fit τ using maximum likelihood estimation and use clipped GAEs to obtain samples of Ht. Moreover, it is only valid for
continuous action spaces. We evaluate discrete action spaces below but leave theoretical grounding for future work.

Note that while we show in Equation (3) that approximate Bayesian inference of θ under an assumed policy that scales
actor precision, τ , by clipped advantages, h+, yields an equivalent likelihood objective, we do not implement a policy,
π(a | s,θ), that includes this scaling. We leave this exploration to future work as it requires joint inference over τ and θ and
an appropriate state conditional advantage estimator.

Finally, the conservative vector field assumption of Theorem 3.1 assumes that the actor implements a smooth function. This
assumption is often broken in practice as non-smooth ReLU activation functions see use in the baselines we compare to. We
leave the investigation of using smooth activation functions to future work.

C.1. Concerning Cπ(s), Kπ-Lipschitz Continuity, and Spectral Normalization

In light of the dependence of the Lipschitz constant, Kπ , on the policy, π(a | s,θ), we offer insight into the roles played by
the Lipschitz assumption and the use of critic weight spectral normalization. When we do gradient ascent according to,

Eπ

[
(qπ(St,At)− vπ(St))

+∇θ log π(At | St, θ),
]

we show that we maximize
v∗π(s) ≤ vπ(s) + Cπ(s).

We want this optimization to lead to a policy π that maximizes value, vπ , but perhaps it could lead to an undesirable policy
that instead maximizes Cπ . We show that,

Cπ(s) ≤
1

2

∫∫
|vπ(s′)− vπ(s)| dP (s′ | St = s,At = a)dΠ(a | St = s).

In theory, a policy that leads to large fluctuations in value, vπ, as the agent transitions from state, s, to state, s′, could
maximize this objective.

Assuming that the value function, vπ(s), is Kπ-Lipschitz continuous allows us to express this bound as

Cπ(s) ≤
1

2

∫∫
Kπ ||s′ − s|| dP (s′ | St = s,At = a)dΠ(a | St = s),

but this does not solve the problem in itself: it could still be possible to learn a policy that merely maximizes Kπ instead of
vπ(s).

21



ReLU to the Rescue: Improve Your On-Policy Actor-Critic with Positive Advantages

Hence, when we use spectral normalization of the critic weights, we regularize Kπ to be 1. We find this regularization
provides increased performance in most experiments run thus far. But empirically, it does not seem like the pathological
behavior of maximizing Cπ(s) is happening to a significant extent even when we do not use spectral normalization. For
example, we can see in Figure 1 that the performance of VSOP without spectral normalization is about equal to that of PPO
on MuJoCo.

Next, we believe this analysis gives us further insight into understanding how we observe spectral normalization detrimental
in highly parallel settings. In the single-threaded setting, a single agent collects data. This specific experience from a
single initialization, coupled with the flexibility of Neural Networks, could result in the objective maximizing a policy that
encourages spuriously high-frequency (rather than high-value) value functions when the data is sparse early in training.
In this case, regularization from spectral normalization would be beneficial. Conversely, the algorithm collects data from
many agents with unique initializations in the highly parallel setting. Thus, with more diverse and less sparse data, we can
expect more robust value function estimates, less likely to be spuriously high-frequency between state transitions. Then, the
Kπ = 1 assumption induced by spectral normalization may be too strong and lead to over-regularization.

C.2. Concerning the Normal-Gamma Assumption

Is the Normal-Gamma Assumption Necessary? The gamma-normal assumption allows us to interpret adding dropout and
weight-decay regularization as sensible approximate Bayesian inference without adding complex computational overhead to
the original A3C optimization algorithm. As such, this assumption primarily serves to ground Thompson sampling through
approximate Bayesian inference and is not requisite for Theorem 3.1. As with the original result of the policy gradient
theorem, the results in Equations (5-6) do not make any distributional assumptions on π and should hold for all policies with
differentiable probability densities/distributions.

Are the Clipped Advantages Gamma Distributed? The intuition behind assuming a gamma distribution for the clipped
advantages is that advantages ideally have zero mean by construction (we subtract the state-action value by its expected
state value over actions), so clipping at zero will result in a heavy-tailed distribution. Gamma distributions are sensible
hypotheses for heavy-tailed distributions. In Figure 8 we plot the marginal histograms for the advantages (left) and the
clipped advantages (right) over each training update for a training run of Humanoid-v4.

Figure 8: Comparing the histograms of estimated advantages (left) and ReLU’ed advantages (right).

The clipped advantage histogram on the right lends evidence to the gamma assumption (at least for the marginal distribution).
We may expect multi-modality at the state-action level, which integration over actions may marginalize out at the state level;
however, we would still expect a heavy tail in both cases.

D. Implementation Details
We have attached the code that replicates the reported results in the folder “vsop-main” and will release a public github repo
after the review process.
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D.1. Gymansium

We build off of Huang et al. (2022)’s CleanRL package which provides reproducible, user-friendly implementations of
state-of-the-art reinforcement learning algorithms using PyTorch (Paszke et al., 2019), Gymnasium (Brockman et al., 2016;
Todorov et al., 2012), and Weights & Biases (Biases, 2018). Several code-level optimizations (Engstrom et al., 2020;
Andrychowicz et al., 2021) key to PPO reproducibility are superfluous for our method. We omit advantage normalization,
value loss clipping (Schulman et al., 2017), gradient clipping, and modification of the default Adam (Kingma & Ba, 2014)
epsilon parameter as they either do not lead to an appreciable difference in performance or have a slightly negative effect.
However, we find that orthogonal weight initialization, learning rate annealing, reward scaling/clipping, and observation
normalization/clipping remain to have non-negligible positive effects on performance (Engstrom et al., 2020; Andrychowicz
et al., 2021). In addition to adding dropout, weight decay regularization, and spectral normalization, we also look at model
architecture modifications not present in the CleanRL implementation: layer width, number of hidden layers, layer activation,
layer normalization (Ba et al., 2016), and residual connections. We find that ReLU activation functions (Nair & Hinton,
2010), increasing layer width to 256, and a dropout rate of 0.01-0.04 are beneficial. We find that network depth and residual
connections are benign overall. In contrast to recent findings in the context of offline data for off-policy reinforcement
learning (Ball et al., 2023), layer normalization — whether applied to the actor, the critic, or both — is detrimental to
performance.

Table 2: Hyper-parameters for ablation of mechinism study. VSOP, no-spectral, no-Thompson, all-actions, and no ReLU
Advantage variants across Gymnasium MuJoCo environments

Gymnasium MuJoCo
Parameter VSOP no-Spectral all-actions no-ReLU Adv. no-Thompson

timesteps 3e6 3e6 3e6 3e6 3e6
num. envs 1 1 1 1 1
num. steps 2048 2048 2048 2048 2048
learning rate 2e-4 5.5e-4 2e-4 7.5e-4 2.5e-4
anneal lr True True True True True
optim. ϵ. 1e-8 1e-8 1e-8 1e-8 1e-8
GAE γ 0.99 0.99 0.99 0.99 0.99
GAE λ 0.61 0.93 0.60 0.99 0.76
num. minibatch 32 2 4 1 32
update epochs 9 6 10 5 8
clip v-loss False False False False False
v-loss coef. 0.5 0.5 0.5 0.5 0.5
max grad. norm. 7.1 8.5 6.4 8.5 7.2
norm. obs. True True True True True
norm. reward True True True True True
width 256 256 256 256 256
activation relu relu relu relu relu
weight decay 2.4e-4 2.4e-4 2.4e-4 2.4e-4 2.4e-4
dropout 0.025 0.005 0.0 0.025 0.05

In Table 2 we present the hyperparameters used in the ablation of mechanisms study. In Table 3, we present the hyperparam-
eters used for the VSOP, VSPPO, RMPG, A3C, and PPO algorithms when trained on Gymnasium MuJoCo environments.
The table lists hyperparameters such as the number of timesteps, thread number, and learning rate, among others. Each
algorithm may have a unique set of optimal hyperparameters. Please note that some hyperparameters: ’clip ϵ’, ’norm. adv.’,
and ’clip v-loss’ may not apply to all algorithms, as these are specific to certain policy optimization methods. The ’width’
and ’activation’ fields correspond to the architecture of the neural network used by the policy, and the ’weight decay’ and
’dropout’ fields pertain to the regularization techniques applied during training. In general, tuning these hyperparameters is
crucial to achieving optimal performance. Note that Adam optimization (Kingma & Ba, 2014) is used for all algorithms
except for A3C where RMSProp (Hinton et al., 2012) is used.

We report mean values and 95% confidence intervals over ten random seeds.
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Table 3: Hyper-parameters for PPO, VSOP, RMPG, A3C, and VSPPO algorithms across Gymnasium MuJoCo environments

Gymnasium MuJoCo
Parameter VSOP VSPPO RMPG A3C PPO

timesteps 3e6 3e6 3e6 3e6 3e6
num. envs 1 1 1 1 1
num. steps 2048 2048 2048 5 2048
learning rate 2e-4 2.5e-4 2e-4 7e-4 3e-4
anneal lr True True True True True
optim. ϵ. 1e-8 1e-8 1e-8 3e-6 1e-5
GAE γ 0.99 0.99 0.99 0.99 0.99
GAE λ 0.61 0.89 0.60 1.0 0.95
num. minibatch 32 64 4 1 32
update epochs 9 9 10 1 10
norm. adv. False False False False True
clip ϵ N/A N/A N/A N/A 0.2
clip v-loss False False False False True
ent. coef. 0.0 0.0 0.0 0.0 0.0
v-loss coef. 0.5 0.5 0.5 0.5 0.5
max grad. norm. 7.1 2.1 6.4 0.5 0.5
norm. obs. True True True True True
norm. reward True True True True True
width 256 256 256 64 64
activation relu relu relu tanh tanh
weight decay 2.4e-4 2.4e-4 2.4e-4 0.0 0.0
dropout 0.025 0.035 0.0 0.0 0.0

D.2. Gymnax

Hyperparameter Range Transformation Transformed Range
num. envs [2, 8] 2x where x is int {4, 8, 16, 32, 64, 128, 256}
num. steps [2, 8] 2x where x is int {4, 8, 16, 32, 64, 128, 256}

λ [0.0, 1.0] round to multiple of 0.002 {0.0, 0.002, . . . , 1.0}
learning rate [1e-4, 1e-3] round to multiple of 0.00005 {1e-4, 1.5e-5, . . . , 1e-3}

max grad. norm. [0.2, 5.0] round to multiple of 0.1 {0.2, 0.3, . . . , 5.0}
num. minibatch [0, 6] 2x where x is int {1, 2, 4, 8, 16, 32, 64}
update epochs [1, 10] round to int {1, 2, 3, ..., 10}

width [6, 10] 2x where x is int {64, 128, 256, 512, 1024}

Table 4: Hyperparameter search space with transformations

We optimize the hyper-parameters for each algorithm for each set of environments using a Bayesian optimization search
strategy (Snoek et al., 2012). Each algorithm has a budget of 100 search steps. We use NVIDIA A100 GPUs. The
hyperparameters we search over include learning rate, number of steps, number of environments, GAE λ, update epochs,
number of minibatches, and the maximum gradient norm. We also search over the hidden layer width for Brax-MuJoCo and
MinAtar environments. Each hyperparameter has a specific search space and transformation applied during the search. We
summarize the search sapce in Table 4.

For the MinAtar environments, the hyper-parameters search spaces are: the number of steps in [2, 8] (transformed to 2x

where x is the integer part of the sample), GAE λ in [0.0, 1.0] (rounded to the nearest multiple of 0.002), learning rate in
[1e − 4, 1e − 3] (rounded to the nearest multiple of 0.00005), update epochs in [1, 10] (rounded to the nearest integer),
maximum gradient norm in [0.0, 5.0] (rounded to the nearest multiple of 0.1), number of minibatches in [0, 6] (transformed
to 2x), update epochs in [1, 10] (rounded to the nearest integer), and number of minibatches in [0, 7] (transformed to 2x),
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and hidden layer width in [6, 10] (transformed to 2x). We set the γ and number of environments to fixed values at 0.99 and
64, respectively.

For MuJoCo-Brax, we do not search over the number of environments or steps. Instead we set them to fixed values at 0.99,
2048, and either 10 or 5, respectively. The search space for the remaining hyper-parameters the same ranges as for the
MinAtar environments. Further, we only optimize over the Humanoid, Hopper, and Reacher environments for 20 million
steps. We test for each environment for 50 million steps.

Finally, for Classic Control environments, we employ the same hyperparameter search as for MinAtar, except that we search
over the number of environments in [2, 8] (transformed to 2x where x is the integer part of the sample) and we do not search
over the hidden layer width, instead setting it to a fixed value of 64.

This strategy allows us to thoroughly explore the hyperparameter space and find values that generalize well across a variety
of different tasks. Further it allows us to fairly compare each algorithm. Tables 5 to 7 report the final hyper-parameter values
for PPO, VSOP, and A3C.

Table 5: PPO, VSOP, A3C, and DPO Hyper-parameters for MinAtar environments.

Parameter PPO VSOP A3C DPO

learning rate 9e-4 7.5e-4 7e-4 1e-3
num. envs 128 128 128 128
num. steps 64 32 4 16
GAE γ 0.99 0.99 0.99 0.99
GAE λ 0.70 0.82 0.87 0.70
num. minibatch 8 16 2 8
update epochs 10 9 1 6
max grad. norm. 1.9 2.8 1.3 0.4
width 512 512 512 256
activation relu relu relu relu
clip ϵ 0.2 N/A N/A 0.2
ent. coef. 0.01 0.01 0.01 0.01

Table 6: Hyper-parameters for PPO, VSOP, A3C, and DPO algorithms across Brax-MuJoCo environments

Parameter PPO VSOP A3C DPO

learning rate 4.5e-4 1e-4 7e-4 2e-4
num. envs 2048 2048 2048 2048
num. steps 10 10 5 10
GAE γ 0.99 0.99 0.99 0.99
GAE λ 0.714 1.0 0.97 0.942
num. minibatch 32 64 2 32
update epochs 3 2 1 6
max grad. norm. 3.3 3.7 1.0 0.4
width 512 512 128 512
activation relu relu relu relu
clip ϵ 0.2 N/A N/A 0.2
ent. coef. 0.0 0.0 0.0 0.0

All reported results for MinAtar, Classic Control, and MuJoCo-Brax respectively are given by mean values and 68%
confidence intervals over 20 random seeds. During tuning we use 2 random seeds and for testing we use a different set of 20
random seeds, as per the guidance of Eimer et al. (2023).
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Table 7: Hyper-parameters for PPO, VSOP, A3C, and DPO algorithms across Classic Control environments

Parameter PPO VSOP A3C DPO

learning rate 1e-3 8.5e-4 5.5e-4 1e-3
num. envs 8 16 8 4
num. steps 8 64 4 4
GAE γ 0.99 0.99 0.99 0.99
GAE λ 0.54 0.58 0.13 1.0
num. minibatch 8 16 8 1
update epochs 3 8 1 10
max grad. norm. 3.4 1.9 3.8 5.0
width 64 64 64 64
activation tanh tanh tanh tanh
clip ϵ 0.2 N/A N/A 0.2
ent. coef. 0.01 0.01 0.01 0.01

Method lr GAE λ num. minibatch update epochs dropout ent. coef.

VSOP 4.5e-4 0.88 8 3 0.075 1e-5
PPO 5.0e-4 0.95 8 3 0.000 1e-2

Table 8: Final ProcGen hyperparameters for VSOP

D.3. ProcGen

ProcGen (Cobbe et al., 2020) is a set of 16 environments where game levels are procedurally generated, creating a virually
unlimited set of unique levels. We follow the “easy” generalization protocol where, for a given environment, models are
trained on 200 levels for 25 million time steps and evaluated on the full distribution of environments. We use the same
architecture as PPO in the CleanRL library (Huang et al., 2022), and do a Bayesian optimization hyper-parameter search
(Snoek et al., 2012) using the bossfight environment. We search over the learning rate, GAE λ, number of minibatches per
epoch, number of epochs per rollout, the dropout rate, and the entropy regularization coefficient. We report the final VSOP
hyperparamters in Table 8 and include the relevant PPO hyperparameters for comparison. Note also that, VSOP does not
make use of advantage normalization or value loss clipping.

E. Additional Results
E.1. Comparison to Baselines

Figure 9 compares VSOP training curves to baseline algorithms.

E.2. Spectral Normalization and Thompson Sampling May Improve PPO

Interestingly, we see this same trend when applying spectral normalization and dropout to PPO. In Figure 10 we compare
how Thompson sampling and spectral norm effect PPO.

E.3. Gymnax Environments

PureJaxRL (Lu et al., 2022) uses Gymnax (Lange, 2022) and Jax (Bradbury et al., 2018) to enable vectorization, which
facilitates principled hyper-parameter tuning. Using it, we explore several environments and compare VSOP, PPO, A3C,
and DPO. We use Bayesian hyper-parameter optimization (Snoek et al., 2012) and give each algorithm a search budget of
100 steps. We search over hyper-parameters such as the learning rate, number of update epochs, number of mini-batches in
an update epoch, the GAE λ parameter, the max gradient norm, and the width of the network. We give full implementation
details in Appendix D.2. Table 9 shows the overall ranking of each method. VSOP is competitive with DPO and improves
over PPO and A3C.
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Figure 9: Gymnasium-MuJoCo. Comparing VSOP to baseline algorithms.

Figure 10: MuJoCo continuous control benchmark examining the effect of Thompson sampling and spectral normalization
on PPO.

Figure 11 summarize the results for Classic Control. Performance of each method is in general statistically equal, but
VSOP shows significant gain on MountainCar Continuous.

Figure 12 summarize the results for MinAtar (Bellemare et al., 2013; Young & Tian, 2019). VSOP shows significant
improvement over PPO and A3C in Space Invaders. We see marginal improvement over PPO and DPO in Breakout, with
significant improvement over A3C. VSOP trails the baselines significantly in Asterix and Freeway.

Figure 13 summarize the results for Brax MuJoCo (Todorov et al., 2012; Freeman et al., 2021). We perform paired t-tests
for the last episode between each method and VSOP. We threshold at a p-value of 0.1 to indicate significance. VSOP
significantly outperforms A3C in all environments. VSOP significantly outperforms PPO in four of nine environments
(InvertedDoublePendulum, Pusher, Reacher, and Walker2d), is statistically equivalent in two environments (Hopper and
HumanoidStandUp), and is significantly less effective in three environments (Ant, HalfCheetah, and Humanoid). VSOP out-
performs DPO on Ant, is statistically equivalent in four environments (HumanoidStandUp, Pusher, Reacher, and Walker2d),
but is significantly less effective in four environments (HalfCheetah, Hopper, Humanoid, and InvertedDoublePendulum).
Overall, VSOP outperforms A3C and PPO and is competitive with DPO.
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Table 9: Rank scores (lower is better) for VSOP, DPO, PPO, and A3C on Brax-MuJoCo, MinAtar, and Classic Control.
Methods are ranked from 1 to 4 based on statistically significant differences (paired t-test with p-value 0.1) between mean
last episode returns. Ties are given the same rank, and the proceeding score will be the last rank plus the number of additional
methods.

Method Brax-MuJoCo MinAtar Classic Control Avg. Rank

DPO 1.33 1.75 1.25 1.44
VSOP (Ours) 1.78 2.50 1.00 1.76
PPO 2.00 2.25 1.25 1.83
A3C 4.00 2.25 1.25 2.50

(a) Acrobot (b) CartPole (c) MountainCar Cont. (d) Pendulum

Figure 11: Classic Control Environments (Lange, 2022). Mean episodic return and 68% CI over 20 random seeds are
shown for VSOP (Blue), PPO (Orange), A3C (Green), and DPO (Red). Each method is hyper-parameter tuned using
Bayesian Optimization with 100 search steps. Paired t-test p-values for last episode with respect to VSOP shown in brackets.
Significant improvement is seen for VSOP compared to all other methods on MountainCar Continuous.

(a) Asterix (b) Breakout (c) Freeway (d) SpaceInvaders

Figure 12: MinAtar Environments (Young & Tian, 2019). Mean episodic return and 68% CI over 20 random seeds are
shown for VSOP (Blue), PPO (Orange), A3C (Green), and DPO (Red). Methods are hyper-parameter tuned using Bayesian
Optimization with 100 search steps. p-values for last episode with respect to VSOP shown in brackets. VSOP performs well
on Breakout and SpaceInvaders.
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(a) Brax-ant (b) Brax-halfcheetah (c) Brax-hopper

(d) Brax-humanoid (e) Brax-humanoidstandup (f) Brax-doublependulum

(g) Brax-pusher (h) Brax-reacher (i) Brax-walker2d

Figure 13: Brax-MuJoCo Environments (Freeman et al., 2021; Todorov et al., 2012). Mean episodic return and 68% CI over
20 random seeds are shown for VSOP (Blue), PPO (Orange), A3C (Green), and DPO (red). Each method is hyper-parameter
tuned using Bayesian Optimization (Snoek et al., 2012) with a budget of 100 search steps. Paired t-test p-values for last
episode with respect to VSOP shown in brackets. VSOP generally out performs PPO and A3C and is competitive with DPO.
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