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Abstract
The varying significance of distinct primitive be-
haviors during the policy learning process has
been overlooked by prior model-free RL algo-
rithms. Leveraging this insight, we explore the
causal relationship between different action di-
mensions and rewards to evaluate the signifi-
cance of various primitive behaviors during train-
ing. We introduce a causality-aware entropy term
that effectively identifies and prioritizes actions
with high potential impacts for efficient explo-
ration. Furthermore, to prevent excessive focus
on specific primitive behaviors, we analyze the
gradient dormancy phenomenon and introduce a
dormancy-guided reset mechanism to further en-
hance the efficacy of our method. Our proposed
algorithm, ACE: Off-policy Actor-critic with
Causality-aware Entropy regularization, demon-
strates a substantial performance advantage across
29 diverse continuous control tasks spanning 7
domains compared to model-free RL baselines,
which underscores the effectiveness, versatility,
and efficient sample efficiency of our approach.
Benchmark results and videos are available at
https://ace-rl.github.io/.

1. Introduction
Reinforcement Learning (RL) has made remarkable strides
in addressing complex decision-making problems, ranging
from video games (Mnih et al., 2013; Silver et al., 2016)
to robot control (Schulman et al., 2015; 2017b; Lee et al.,
2020). Despite this, a persistent challenge in RL is high
sample complexity, which poses a formidable impediment
to the practical application of deep RL in real-world scenar-
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Figure 1: (Top): Learning process of a manipulator. A robotic
arm learns to manipulate objects in a manner akin to human learn-
ing. This arm would be programmed with four primitive behaviors
for its end-effector: vertical movements along the z-axis (up and
down), horizontal movements along the x-axis (left and right),
depth movements along the y-axis (forward and backward), and
grasping (apply torque). (Bottom): Comparison of normalized
score. Our ACE demonstrates a significant superiority over the
widely used model-free RL baselines SAC and TD3 with a single
set of hyperparameters.

ios. Effective exploration lies in the core of reinforcement
learning (RL) for optimal decision-making as well as sample
efficiency (Lopes et al., 2012; Sutton & Barto, 2018; Ladosz
et al., 2022). Ineffective exploration would lead to unsatis-
factory sample efficiency, as the agent may spend excessive
interactions in low-value or irrelevant areas that do not con-
tribute to performance improvement. In order to enhance
sample efficiency, previous works have proposed various ex-
ploration strategies, such as upper-confidence bounds (UCB)
based exploration (Chen et al., 2017), curiosity-driven explo-
ration for sparse reward tasks (Pathak et al., 2017), random
network distillation (Burda et al., 2018), maximum entropy
RL (Haarnoja et al., 2018), etc.

Intriguingly, existing exploration methods typically simply
aggregate uncertainty across all action dimensions, failing
to account for the varying significance of each primitive
behavior in the policy optimization process over the course
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of training. These methods may neglect a fundamental as-
pect: mastering a motor task often involves multiple stages,
each requiring proficiency in different primitive behaviors,
similar to how humans learn (Roy et al., 2022). Consider a
simple example, as shown in Figure 1: a manipulator should
initially learn to lower its arm and grasp the object, then
shift attention to learning the movement direction of the arm
towards the final goal. Therefore, it is crucial to emphasize
the exploration of the most significant primitive behaviors
at distinct stages of policy learning. The deliberate focus on
various primitive behaviors during exploration can acceler-
ate the agent’s learning of essential primitive behaviors at
each stage, thus improving the efficiency of mastering the
complete motor task.

How can we identify the most crucial primitive behaviors at
each stage of policy learning? To answer this question, we
evaluate the significance of individual primitive behaviors
by quantifying their impact on rewards through the anal-
ysis of causal relationships. Within each task, the action
spaces of RL agents comprise dimensions representing indi-
vidual primitive behaviors—such as the 3D positioning of
the end-effector and manipulation of gripper fingers. When
a particular action dimension demonstrates a larger influ-
ence on rewards, it indicates its higher importance in the
ongoing learning stage, and vice versa. We introduce a
causal policy-reward structural model to compute the causal
weights on action spaces and provide theoretical analyses to
ensure the identifiability of the causal structure. In Figure 2,
we illustrate the changes in causal weights on four action
dimensions in a manipulator task, contrasting them with the
agent’s behaviors at different time points. This effectively
elucidates how the agent’s focus on different primitive be-
haviors changes during the learning process, as reflected in
the causal weights.

Therefore, causal weights naturally guide agents to con-
duct more efficient exploration, encouraging exploration
for action dimensions with larger causal weights, indicating
greater significance on rewards, and reducing exploration
for those with smaller causal weights. Our methodology
builds on the maximum entropy framework (Haarnoja et al.,
2018; Ziebart et al., 2008; Zhao et al., 2019), incorporat-
ing a regularization term for policy entropy in the objective
function. The general maximum entropy objective lacks
awareness of the importance of distinctions between prim-
itive behaviors at different learning stages, potentially re-
sulting in inefficient exploration. To address this limitation,
we introduce a policy entropy weighted by causal weights
as a causality-aware entropy maximization objective, effec-
tively strengthening the exploration of significant primitive
behaviors and leading to more efficient exploration.

To mitigate the risk of overfitting due to excessive focus
on certain behaviors, we introduce a gradient-dormancy-

based reset mechanism based on our analysis of the gradient
dormancy phenomenon. This mechanism intermittently
perturbs the agent’s neural networks with a factor deter-
mined by the gradient dormancy degree. The integration of
causality-aware exploration with this novel reset mechanism
aims to facilitate more efficient and effective exploration,
ultimately enhancing the agent’s overall performance.

We conduct a comprehensive evaluation of our method
across 28 diverse continuous control tasks, spanning 7 do-
mains, including tabletop manipulation (Yu et al., 2019a;
Gallouédec et al., 2021b), locomotion control (Todorov
et al., 2012a; Tassa et al., 2018a; Ahn et al., 2020c), and
dexterous hand manipulation tasks (Rajeswaran et al., 2018;
Plappert et al., 2018), covering a broad spectrum of task
difficulties including sparse reward tasks. In comparison
with popular model-free RL algorithms - TD3 (Fujimoto
et al., 2018) and SAC (Haarnoja et al., 2018) and explo-
ration method RND (Burda et al., 2018), our results consis-
tently demonstrate that ACE outperforms all the baselines
across various task types. Specifically, our method achieves
performance improvements of 2.1x on highly challenging
manipulator tasks, 1.1x on locomotion tasks, 2.2x on dex-
terous hand tasks, and 3.7x on tasks with sparse rewards as
shown in Figure 1. Our work introduces a novel perspective
to RL by deconstructing the learning process and analyz-
ing the varying significance of primitive behaviors over the
course of policy optimization. Our method leverages these
insights to enhance sample efficiency via efficient explo-
ration, and we empirically validate its effectiveness through
an extensive set of experiments.

Our contributions can be summarized as follows:

• We propose a causal policy-reward structural model to
calculate the impact on rewards from different primitive
behaviors. This provides insight that agents purposefully
focus on various primitive behaviors during RL training.

• We introduce a technology that employs causal weights
on policy entropy as a causality-aware entropy objective
to enhance exploration efficiency.

• Additionally, we analyze the gradient dormancy phe-
nomenon and propose a gradient-dormancy-guided reset
mechanism to prevent agents from excessively overfitting
to certain behaviors.

• Extensive experiments across a wide range of tasks
and domains consistently achieve superior performance
against model-free RL baselines with a single set of hy-
perparameters, showing the effectiveness of our method.
Our work offers valuable insights into enhancing sam-
ple efficiency more systematically by focusing on the
efficient exploration of significant primitive behaviors.
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Figure 2: Motivating example. This task involves a robotic arm hammering a screw into a wall. • Initially, the robotic arm approaches
the desk moving on the z-axis and struggles with torque grasping, making z-axis positioning ↑ and torque exploration ↑ a priority. ▲
As the training advances, the agent’s focus shifts to optimizing movement, prioritizing end-effector position (x-axis ↑ and y-axis ↑). ⋆
Finally, potential improvements lie in the stable and swift hammering, shifting focus back to torque ↑ and placing down the object ↑. The
evolving causal weights, depicted on the left, reflect these changing priorities. See more examples in Appendix D.

2. Preliminary
Reinforcement Learning (RL). Within the standard
framework of the Markov decision process (MDP), RL
can be formulated as M = ⟨S,A,P,R, γ⟩. Here, S de-
notes the state space, A the action space, r : S ×A ∈
[−Rmax, Rmax] the reward function, and γ ∈ (0, 1) the dis-
count factor, and P (· | s, a) stands for transition dynamics.
The objective of an RL agent is to learn an optimal policy
π that maximizes the expected discounted sum of rewards,
formulated as Eπ[

∑∞
t=0 γ

trt]. For any s ∈ S and action
a ∈ A, the value of action a under state s is given by the
action-value function Qπ(s, a) = E[

∑∞
t=0 γ

tR(st, at)]. In
deep RL, the policy π and the value function Q are repre-
sented by neural network function approximations.

Soft Actor-Critic (SAC). Soft actor-critic (SAC) is a pop-
ular off-policy maximum entropy deep reinforcement learn-
ing algorithm based on soft policy iteration that maximizes
the entropy-augmented policy objective function. Its ob-
jective includes a policy entropy regularization term in the
objective function with the aim of performing more diverse
actions for each given state and visiting states with higher
entropy for better exploration, stated as below,

J(π) =

∞∑
t=0

E(st,at)∼ρ(π)

[
γt(r(st,at) + αH(π(·|st)))

]
3. Off-policy Actor-critic with Causality-aware

Entropy regularization
Overview. Our approach builds upon maximum entropy
RL (Haarnoja et al., 2018), with the primary aim of en-
hancing the sample efficiency of off-policy RL algorithms.
Initially, we construct a causal policy-reward structural
model, providing a theoretical guarantee for its identifiabil-
ity. Subsequently, based on this causal model, we introduce
causality-aware entropy to present a causality-aware variant

of SAC named CausalSAC. To address potential overfitting
and further enhance exploration efficiency, we analyze the
gradient dormancy phenomenon and propose a gradient-
dormancy-guided reset mechanism. The integration of this
reset mechanism with CausalSAC constitutes our proposed
ACE: Off-policy Actor-critic with Causality-aware Entropy
regularization algorithm.

3.1. Causal Discovery on Policy-Reward Relationship

To explore the causal relationships between each action
dimension ai and its potential impact on reward gains r, we
first establish a causal policy-reward structural model and
provide theoretical analyses to ensure the identifiability of
the causal structure.

Causal policy-reward structural modeling. Suppose
we have sequences of observations {st,at, rt}Tt=1, where
st = (s1,t, ..., sdimS,t)

T ⊆ S denote the perceived dimS-
dimensional states at time t, at = (a1,t, ..., adimA,t)

T ⊆ A
are the executed dimA-dimensional actions and rt is the
reward. Note that the reward variable rt may not be influ-
enced by every dimension of st or at, and there are causal
structural relationships between st, at and rt (Huang et al.,
2022b). To integrate such relationships in MDP, we ex-
plicitly encode the causal structures over variables into the
reward function

rt = rM
(
Bs→r|a ⊙ st,Ba→r|s ⊙ at, ϵt

)
, (1)

where Bs→r|a ∈ RdimS×1 and Ba→r|s ∈ RdimA×1 are
vectors that represent the graph structure 1 from st to rt
given at and from at to rt given st, respectively. Here ⊙
denotes the element-wise product while ϵt are i.i.d. noise

1Please note that B·→· encodes information of both causal
directions and causal effects. For example, Bi

a→r = 0 means
there is no edge between ai,t and rt; and Bi

a→r = c implies that
ai,t causally influences rt with effects c. Causal effects are called
causal weights as well in this paper.
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terms.

Specifically, under the causal Markov condition and faith-
fulness assumption (Pearl, 2009), we establish conditions
for the causal relationship existence in Proposition 3.3, then
the true causal graph Ba→r|s could be identified from ob-
servational data alone, as guaranteed in Theorem 3.4.

Assumption 3.1 (Global Markov Condition (Spirtes et al.,
2000; Pearl, 2009)). The distribution p over a set of vari-
ables V = (s1,t, ..., sdimS,t, a1,t, ..., adimA,t, rt)

T satisfies
the global Markov condition on the graph if for any partition
(S,A,R) in V such that if A d-separates S from R, then
p(S,R|A) = p(S|A)p(R|A).

Assumption 3.2 (Faithfulness Assumption (Spirtes et al.,
2000; Pearl, 2009)). For a set of variables V =
(s1,t, ..., sdimS,t, a1,t, ..., adimA,t, rt)

T , there are no inde-
pendencies between variables that are not entailed by the
Markovian Condition.

With these two assumptions, we provide the following
proposition to characterize the condition of the causal rela-
tionship existence so that we are able to uncover those key
actions from conditional independence relationships.

Proposition 3.3. Under the assumptions that the causal
graph is Markov and faithful to the observations, there
exists an edge from ai,t to rt if and only if ai,t ⊥̸⊥ rt|st,a−i,t,
where a−i,t are states of at except ai,t.

We next provide the theorem to guarantee the identifiability
of the proposed causal structure.

Theorem 3.4. Suppose st, at, and rt follow the MDP model
with no unobserved confounders, as in Eq.(1). Under the
Markov condition and faithfulness assumption, the struc-
tural vectors Ba→r|s are identifiable.

Note that such a theorem guarantees the identifiability of
the correct graph in an asymptotic manner. Additionally,
by imposing further assumptions on the data generation
mechanism, we could uniquely identify the causal effects.
See the proof in Appendix A.1 for details.

3.2. Causality-aware Bellman Operator

By infusing the explainable causal weights Ba→r|s into
policy entropy, we propose the causality-aware entropy Hc

for enhanced exploration. Hc is defined as

Hc(π(·|s)) = −Ea∈A

[
dimA∑
i=1

Bai→r|sπ(ai|s) log π(ai|s)

]
,

a = (a1, . . . , adimA).
(2)

Based on the causality-aware entropy, then the Q-value for
a fixed policy π could be computed iteratively by applying

a modified Bellman operator T π
c with Hc(π(·|s)) term as

stated below,

T π
c Q(st,at) ≜r(st,at) + γEst+1∼P [Eat∼π[Q(st+1,at+1)

+ αHc(π(at+1|st+1))]].
(3)

For a better understanding of our operator, we conduct a the-
oretical analysis of its dynamic programming properties in
the tabular MDP setting, covering policy evaluation, policy
improvement, and policy iteration. All proofs are included
in Appendix A.2.

Proposition 3.5 (Policy evaluation). Consider an initial
Q0 : S × A → R with |A| < ∞, and Q-vlaue iterates by
Qk+1 = T π

c Qk. Then the sequence {Qk} converges to a
fixed point Qπ as k → ∞.

Proposition 3.6 (Policy improvement). Let πk be the policy
at iteration k, and πk+1 be the updated policy ( maximize
of the Q-value). Then for all (s, a) ∈ S ×A, |A| < ∞, we
have Qπk+1(s,a) ≥ Qπk(s,a).

Proposition 3.7 (Policy iteration). Assume |A| < ∞, by
repeating iterations of the policy evaluation and policy im-
provement, any initial policy converge to the optimal policy
π∗, s.t. Qπ∗

(st,at) ≥ Qπ(st,at),∀π ∈ Π,∀(st,at).

Causality-aware off-policy actor-critic (CausalSAC).
Our causality-aware entropy provides a flexible solution
that can be seamlessly incorporated into any Max-Entropy
RL framework. For example, as a plug-and-play compo-
nent, an algorithm instantiation CausalSAC can be imple-
mented within SAC (Haarnoja et al., 2018) by integrat-
ing our Hc into the policy optimization objective, J(π) =∑∞

t=0 E(st,at)∼ρ(π) [γ
t(r(st,at) + αHc(π(·|st))].

3.3. Gradient-dormancy-guided Reset

Guided by causality-aware entropy, the agent efficiently ex-
plores and masters primitive behaviors for different learning
stages. However, causality-aware exploration introduces
the risk of getting stuck in local optima and overfitting to
specific primitive behaviors. To address this challenge, we
analyze the gradient dormancy phenomenon during RL train-
ing and introduce a soft reset mechanism. This mechanism,
guided by gradient dormancy, regularly perturbs the agents’
neural networks to maintain network expressivity, thereby
improving the agent’s performance.

The dormancy phenomenon of neural networks in RL, sig-
nifying a loss of expressive capacity, has been previously
discussed in existing works (Sokar et al., 2023; Xu et al.,
2023). However, the dormant phenomenon defined in these
works is not evident in state-based RL, and it cannot effec-
tively enhance our algorithm in exploration scheduling. We
are the first to investigate dormancy from the perspective
of gradients. Here, we introduce definitions for gradient-
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dormant neurons and the gradient dormancy degree of a
neural network.

Definition 3.8 (Gradient-dormant Neurons). For a fully
connected layer in a neural network, where N l represents
the number of neurons in layer l, the L2 norm of gradients
of the weights for neuron i is denoted as nl

i. Neuron i is
classified as a gradient-dormant neuron if it satisfies

nl
i(x)

1
N l

∑
k∈l n

l
k

≤ τ, (4)

where τ is a constant serving as a threshold to determine the
gradient dormancy of neurons in each layer.

Definition 3.9 (τ -Dormancy Degree ατ ). Denote the num-
ber of all neurons in the neural network identified as
gradient-dormant neurons as N l

τ . The ατ for the neural
network is defined as:

ατ =

∑
l∈ϕ N

l
τ∑

l∈ϕ N
l
. (5)

The τ -dormancy degree ατ indicates the percentage of
gradient-dormant neurons with the τ threshold in the fully-
connected neural network.

In Figure 3, we depict the occurrence of the gradient dor-
mancy phenomenon at the initial learning stages of SAC.
However, in algorithms with superior sample efficiency like
CausalSAC and ACE , there is a notable reduction in the dor-
mancy degree during training. In tasks that CausalSAC can
effectively solve, the gradient dormancy degree can decrease
to near-zero levels, as shown in Figure 3. Particularly, when
addressing challenging tasks such as pick place walls, which
were previously unsolved by existing baselines, dormancy
degrees persist at high levels without reset interventions in
SAC and CausalSAC. Hence, we speculate that this may
represent a potential local optimum for causal-aware ex-
ploration. We consider that dormancy degrees may impact
sample efficiency and employ a soft reset method (Xu et al.,
2023; Ash & Adams, 2020) to further decrease dormancy de-
gree by periodically perturbing the policy network and critic
network with a reset factor η, representing the magnitude of
weight resetting:

θt = (1− η)θt−1 + ηϕi, ϕi ∼ initializer. (6)

Intuitively, a higher dormancy degree should correspond
to a more substantial degree of weight refresh. The value
of η is determined by the gradient-dormancy degree ατ

and regulated as η = clip(ατ , 0, ηmax), with ηmax ≤ 1 as a
constant. Compared with prior works (Sokar et al., 2023; Xu
et al., 2023), our gradient-dormancy-guided reset method
employs minimal hyperparameters and is highly adaptable
in different RL settings, as analyzed in Appendix J.

3.4. Algorithm instantiation

Combining the causality-aware entropy regularization and
gradient-dormancy-guided reset mechanism, we propose
our algorithm ACE : off-policy Actor-critic with Causality-
aware Entropy regularization. The pseudocode and further
implementation details are provided in Appendix E.

Instantiating ACE involves specifying three main compo-
nents: 1) effectively recognizing the causal weights of
a → r|s; 2) incorporating causal weights and the corre-
sponding causality-aware entropy term into policy optimiza-
tion. 3) periodically resetting the network based on our
gradient dormancy degree.

To effectively compute Bai→r|s, we adopt the well-regarded
DirectLiNGAM (Shimizu et al., 2011) method. The main
implementation idea of training DirectLiNGAM is as fol-
lows. In the first phase, it estimates a causal ordering for
all variables of interest (i.e., state, action, and reward vari-
ables) based on the independence and non-Gaussianity char-
acteristics of the root variable. The causal ordering is a
sequence that implies the latter variable cannot cause the
former one. In the second phase, DirectLiNGAM estimates
the causal effects between variables using some conven-
tional covariance-based methods. Besides, we formulate
a training regime wherein we iteratively adjust the causal
weights for the policy at regular intervals I on a local buffer
Dc with fresh transitions to reduce computation cost.

Given the causal weight matrix Ba→r|s, we could obtain the
causality-aware entropy Hc(π(·|s)) through Eq.(2). Based
on the causality-aware entropy, then the Q-value for a fixed
policy π could be computed iteratively by applying T π

c .
Based on the policy evaluation, we can adopt many off-
the-shelf policy optimization oracles; we chose SAC as
the backbone technique primarily for its simplicity in our
primary implementation of CausalSAC and ACE.

For each reset interval, we calculate the gradient dormancy
degree, initialize a random network with weights ϕi, and
soft reset the policy network πθ and the Q network Qϕ.

In the next section, we empirically substantiate the effec-
tiveness and efficiency of our proposed causality-aware
actor-critic, coupled with the gradient-dormancy-guided re-
set mechanism, through an extensive array of experiments.

4. Experiments
Our experiments aim to investigate the following questions:
1) How effective is the proposed ACE in diverse continu-
ous control tasks, spanning locomotion and manipulation
skills and covering both sparse and dense reward settings,
compared to model-free RL baselines? 2) What role does
each component of our method play in achieving the final
performance? 3) How do hyperparameters and the use of
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(a) In simpler tasks, CausalSAC performs adequately, with observed
gradient dormancy degrees decreasing to near-zero. This indicates
that in less complex environments, the issue of gradient dormancy
becomes negligible.
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(b) In challenging tasks, both SAC and CausalSAC exhibit high
dormancy degrees without achieving expected performance. The
gradient dormancy-guided reset mechanism in ACE, however, ef-
fectively lowers the gradient dormancy degree.

Figure 3: Dormancy degree curves for SAC, CausalSAC, and ACE in MetaWorld tasks, which indicates that the gradient-dormancy-
guided reset mechanism effectively reduces gradient dormancy degrees, contributing to the best performance of ACE .

different causal inference methods impact our results?

4.1. Evaluation on various benchmark suites

We evaluate ACE across 29 diverse continuous control
tasks spanning 7 task domains using a single set of hy-
perparameters: MuJoCo (Todorov et al., 2012a), Meta-
World (Yu et al., 2019a), Deepmind Control Suite (Tassa
et al., 2018a), Adroit (Rajeswaran et al., 2018), Shadow
Dexterous Hand (Plappert et al., 2018), Panda-gym (Gal-
louédec et al., 2021b), and ROBEL (Ahn et al., 2020b).Our
experimental tasks include high-dimensional state and ac-
tion spaces, sparse rewards, multi-object manipulation, and
locomotion for diverse embodiments, and cover a broad
spectrum of task difficulties. ACE can be applied to a vari-
ety continuous control problems covering high-dimensional
state and action spaces, sparse rewards, multi-object manip-
ulation, and locomotion for diverse embodiments, without
any need for hyperparameter-tuning.

Baselines. We compare our method with three popular
data-efficient model-free RL baselines on all the tasks and
an efficient exploration method on tasks with sparse rewards:
1) Soft Actor-Critic (SAC) (Haarnoja et al., 2018), a model-
free off-policy actor-critic algorithm with maximum entropy
regularization. 2) Twin Delayed DDPG (TD3) (Fujimoto
et al., 2018): An advanced version of DDPG, which trains
a deterministic policy in an off-policy way, incorporating
Double Q-learning tricks. 3) Random Network Distillation
(RND) (Burda et al., 2018), an efficient exploration bonus
based on the error of predicting features of observations,
which is particularly effective for sparse reward tasks.

We also provide a comparison with BAC (Ji et al., 2023a),
which leverages the value of past successes to enhance Q-
value estimation and policy learning, in Appendix F.1. Addi-
tionally, we integrate our causality-aware entropy and reset
mechanism into the BAC algorithm and find that the ad-hoc
ACE-BAC also outperforms the original BAC, as shown in
Appendix F.4, which further showcases the generalizability

of our method. Detailed performance curves on different
benchmark suites are provided in Appendix F.

Tabletop Manipulation. We conducted experiments on
tabletop manipulation tasks in MetaWorld, tackling 14 tasks
with dense rewards, spanning 4 very hard, 7 hard, and 3
medium tasks, including all types of tasks and all levels of
task difficulties, as shown in Figure 4. Notably, ACE exhib-
ited a substantial lead of over 70% in very hard tasks, cou-
pled with noteworthy performance improvements exceeding
30% in hard and medium tasks. Traditional model-free RL
baselines often struggle to accomplish very hard tasks like
pick-place-wall, stick push and disassemble. In contrast, our
approach not only demonstrates superior learning efficiency
but also achieves a flawless 100% success rate in these chal-
lenging tasks. These results prominently highlight the high
sample efficiency of ACE in tabletop manipulation tasks,
underscoring the crucial role of causality-aware entropy in
improving sample efficiency, along with the positive impact
of our reset mechanism on effective exploration, particularly
in challenging exploration tasks.

Locomotion. Another important task category involves lo-
comotion. We conducted experiments on four MuJoCo tasks
and five DeepMind Control Suite tasks, encompassing di-
verse embodiments as presented in Figure 5. Our algorithm
achieves state-of-the-art performance and demonstrates im-
provements across all locomotion tasks, with particularly
notable advancements in the Walker2d and HalfCheetah
tasks. It is noteworthy to observe that, due to the relatively
smaller total number of training steps required for loco-
motion tasks, the gradient dormancy phenomenon is less
pronounced compared to manipulation tasks. Consequently,
our reset mechanism may not exhibit its optimal effect. To
provide further evaluation, we include a detailed comparison
between our ACE CausalSAC and baselines in Figure 26.
The results underscore the significant performance enhance-
ment that causality-aware entropy brings to off-policy RL
in locomotion tasks.
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Figure 4: Manipulation tasks. Success rate of ACE, SAC, TD3 on manipulation tasks from the MetaWorld benchmark suite. Solid
curves depict the mean of six trials, and shaded regions correspond to the one standard deviation. More results are in Appendix Figure 22.
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Figure 5: Locomotion tasks. Average return of ACE SAC, TD3 on locomotion tasks provided by MuJoCo and DMControl benchmark
suites. Solid curves depict the mean of six trials, and shaded regions correspond to the one standard deviation. See Figure 23 and 24 in the
Appendix for an overall comparison of locomotion tasks.

Dexterous hand manipulation. To evaluate our method
on high-dimensional tasks, we compare ACE with base-
lines on three dexterous hand manipulation tasks, including
Adroit (Rajeswaran et al., 2018), which involves controlling
a robotic hand with up to 30 actuated degrees of freedom
(A ∈ R28), and Shadow Dexterous Hand (Plappert et al.,
2018), a robotic hand with 24 degrees of freedom (A ∈ R20).
Notably, tasks with Shadow Dexterous Hand include multi-
goal manipulation, and we train all the algorithms without
goal information on these tasks. As shown in Figure 6,
ACE consistently outperforms baselines by a significant
margin on all the dexterous hand manipulation tasks. This
outstanding performance underscores the effectiveness of
our causal model in computing meaningful causal weights
in high-dimensional action spaces, leading to a substantial
improvement in exploration efficiency for these tasks.

Hard exploration tasks with sparse rewards. To better
illustrate the effectiveness of our proposed method in im-
proving exploration efficiency, we evaluate our approach
against baselines and the efficient exploration method
RND (Burda et al., 2018) on tasks with sparse rewards.
These tasks pose significant challenges for online RL ex-
ploration, covering both complex robot locomotion (Panda-
gym (Gallouédec et al., 2021b) and ROBEL (Ahn et al.,
2020b)) and manipulation (MetaWorld (Yu et al., 2019a)),
as illustrated in Figure 7. Across 6 sparse reward tasks,

ACE outperforms the efficient exploration method RND
and surpasses all other baselines by a significant margin, par-
ticularly excelling in tasks where the baselines completely
fail to learn. These results showcase the superior sample
efficiency of our method and further support the versatility
of ACE in various challenging exploration tasks.

4.2. Ablation Studies

To substantiate the efficacy of the design decisions in our
algorithm, we conduct extensive ablation experiments.

Effects of each mechanism. We conduct ablation studies
on the MetaWorld tasks with dense and sparse rewards to
evaluate the contribution of each component to our method,
including causality-aware entropy and gradient-dormancy-
guided reset. Our ablation results are shown in Figure 9.

We observe that all components of our proposed method-
ology significantly contribute to the final performance of
ACE . Even without the reset mechanism, CausalSAC
(vanilla ACE) demonstrates superior performance. Further,
results on sparse reward tasks show that CausalSAC outper-
forms other SOTA exploration techniques. This highlights
its potential in challenging environments.

Simultaneously, our reset mechanism also plays a crucial
role in further improving performance, especially in sparse
reward tasks. Interestingly, applying the gradient-dormancy-
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Figure 6: Shadow hand manipulation tasks. Success
rate of ACE , SAC, TD3 on challenging shadow hand
manipulation tasks from Adroit and Shadow Dexterous
Hand suites. 6 seeds. All the results are in Figure 25.
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Figure 7: Sparse reward tasks. Success rate of ACE, SAC, TD3, SAC+RND
on sparse reward tasks from ROBEL, Panda-gym and Metaworld benchmark
suites. 6 seeds. Full performance on sparse reward tasks is in Figure 27.
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Figure 8: Ablation experiments. We ablate each component
of ACE and show that each mechanism effectively combines to
contribute to the overall effectiveness of ACE .
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Figure 9: Ablation studies on SOTA exploration techniques.
Learning curves of ACE, CausalSAC, SAC, and SOTA exploration
technique RND on three sparse reward tasks.
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Figure 10: Different causal inference methods. Performance
curves of CausalSAC employing DirectLiNGAM or Dagma. Runs
over 6 random seeds.

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0.00

0.25

0.50

0.75

1.00

su
cc

es
s 

ra
te

drawer open

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0.00

0.25

0.50

0.75

1.00

su
cc

es
s 

ra
te

soccer

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0.00

0.25

0.50

0.75

1.00

su
cc

es
s 

ra
te

window open (sparse)

ACE ACE w/ fixed factor ACE w/ fixed initializer SAC

Figure 11: Ablation on reset mechanism factors. Learning
curves of ACE w/wo fixed reset factor η and fixed initializer Φ.

guided reset solely to SAC demonstrates improved perfor-
mance and sample efficiency, suggesting that the gradient
dormant phenomenon might indeed be one of the factors
contributing to SAC’s suboptimal performance in hard tasks.

Different causal inference methods. We initially opted
for DirectLiNGAM due to its simplicity and efficacy in
learning causal effects. However, to explore the adaptabil-
ity of our framework with other score-based causal infer-
ence methods, we conducted additional experiments using
Dagma (Bello et al., 2022). These experiments were aimed
at assessing whether different causal inference techniques
could yield comparable results within our framework. The
results in Figure 10 indicate that the integration of Dagma
into our method produces outcomes that are on par with
those obtained using DirectLiNGAM. This suggests that
our framework is versatile and can effectively work with
various causal inference methods. Notably, to eliminate the
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Figure 12: Hyperparameter study. Performance curves of ACE
with different hyperparameters for calculating causal weights.

possible influence from other factors except the underlying
causal inference method, we deactivate the reset mechanism
in ACE, thus excluding its impact. We employ CausalSAC
for ablations related to the causal inference method.

Ablation studies on reset mechanism factors. We conduct
ablation studies on the fixed reset factor η and the fixed
network initializer ϕ across three tasks. As shown in Fig-
ure 11, fixing the reset factor (i.e., no longer guiding it by
the dormancy degree) results in a significant performance
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drop. This highlights the importance of the proposed dor-
mancy degree in our method. On the other hand, fixing the
network initializer ϕ does not affect the performance of the
dormancy-guided reset mechanism in ACE.

Hyperparameter study. The extra hyperparameters intro-
duced by ACE are sample size for causality Nc and causality
computation interval I . The primary choices for both hy-
perparameters are guided by the objective of achieving a
balanced trade-off between computational efficiency and
algorithmic performance. And they are sufficient to achieve
strong performance throughout all our experiments.

We conduct experiments on these two hyperparameters;
refer to Figure 12. We see that reducing the causality com-
putation interval may increase the performance yet cause
more computation cost. And the performance of ACE is not
highly sensitive to the hyperparameters.

5. Related Works
Causal Reinforcement Learning. In the past decades,
causality and reinforcement learning have independently un-
dergone significant theoretical and technical advancements,
yet the potential for a synergistic integration between the
two has been underexplored (Zeng et al., 2023). Recently,
recognizing the substantial capabilities of causality in ad-
dressing data inefficiency and interpretability challenges
within RL, there has been a surge of research in the domain
of causal reinforcement learning (Gershman, 2017; Bannon
et al., 2020; Zeng et al., 2023; Deng et al., 2023).

While existing methods in this area can be categorized based
on whether causal information is explicitly given or not, our
work falls into the more challenging, practical, and real-
istic category where the causal structure and effects are
not explicitly provided. In causal reinforcement learning,
one of the challenges lies in the characterization of shift-
ing structures and effects from data, which might affect the
performances of policy learning. To this end, alternatives
may involve incorporating the changing structures between
states (Luczkow, 2021) into policy learning or modeling the
changes using some dynamic factors (Huang et al., 2022a;
Feng et al., 2022). Our approach, however, focuses on cap-
turing changing causal effects, a nuanced facet that improves
policy exploration.

Exploration in RL. Efficient exploration in online RL,
especially in high-dimensional environments with sparse
rewards, remains a significant challenge. Exploration strate-
gies can be broadly categorized into two major groups based
on key ideas and principles. One category is uncertainty-
oriented exploration (Jin et al., 2020; Ménard et al., 2021;
Kaufmann et al., 2021), utilizing techniques like the upper
confidence bound (UCB) (Chen et al., 2017) to incorpo-
rate value estimate uncertainty for guiding exploration. The

other category is intrinsic motivation-oriented exploration,
incentivizing agents to explore by maximizing intrinsic re-
wards (Pathak et al., 2017; Burda et al., 2018; Sekar et al.,
2020; Badia et al., 2020), count-based state novelty (Belle-
mare et al., 2016; Tang et al., 2017; Ostrovski et al., 2017),
or maximizing state entropy as an intrinsic reward (Lee
et al., 2019; Hazan et al., 2019b; Mutti et al., 2022; Yang
& Spaan, 2023). In contrast to exploration methods that
focus on sampling data, the concept of resetting the neural
network has gained attention in RL as a unique approach
to mitigate the loss of network expressivity. Nikishin et al.
(2022) address the primacy bias by periodically reinitializ-
ing the parameters, and Nikishin et al. (2023) propose to
temporarily freeze the current network and leverage newly
initialized weights. The dormant neuron phenomenon, as
discussed by Sokar et al. (2023), suggests resetting dormant
neurons to preserve network expressivity during training.
For visual RL, Xu et al. (2023) propose a perturbation tech-
nique and exploration strategy based on the dormant neuron
ratio. In contrast to these prior exploration methods, our
approach combines causality-aware max-entropy RL with
a reset mechanism, adjusting exploration through causality
between rewards and policy, and employs a novel gradient
dormancy degree for resetting. We also discuss extensive
related works about maximum-entropy RL in Appendix B.

6. Conclusions and Discussion
This paper introduces insights into the consideration of the
significance of various primitive behaviors throughout the
policy learning process. Building upon this understanding,
we propose a causal policy-reward structural model to quan-
tify the impact of each action dimension on rewards. We
introduce a causality-aware off-policy actor-critic algorithm
with a novel gradient-dormancy-guided reset mechanism,
achieving efficient and effective exploration and establishing
a substantial lead across various domains and tasks.

Looking ahead, there are several directions for further explo-
ration stemming from this work. First, despite our analysis
of computing causal weights in the latent space and their
application to DrM (Xu et al., 2023) in Appendix J, there
is untapped potential for exploring additional applications
of causality-aware exploration to enhance the sample ef-
ficiency of visual RL. Second, it is worth discussing the
prospect of leveraging dynamic models in model-based RL
to facilitate more efficient computation of causality between
rewards and policy. Concerning time efficiency, a detailed
analysis is provided in Appendix L, confirming the high ef-
ficiency and cost-effectiveness of our algorithm. We believe
that the implications of causality-aware exploration extend
beyond our current work, offering more effective solutions
to enhance the sample efficiency of online RL.
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Impact Statement
This research advances both cognition and application of
Reinforcement Learning, particularly in the domain of off-
policy actor-critic. Our exploration uncovers a fascinating
insight: by harnessing the causal influences of each ac-
tion dimension on potential rewards, we can dramatically
boost the efficiency of exploration. Moreover, the resetting
technique we devised is not just innovative; it echoes the
renewal mechanism found in the human brain, empowering
RL agents to escape the confines of local optima with re-
markable agility. This breakthrough not only deepens our
understanding of the agent’s decision-making process but
also mirrors the dynamic and adaptive learning capabilities
akin to human cognition.

The introduction of causality entropy and the resetting mech-
anism as flexible enhancements to existing models introduce
an exhilarating possibility for the evolution of RL. However,
it is worth noting that venturing into real-world environ-
ments with these RL agents brings to light a significant
challenge: navigating the need for stringent safety measures
to curb any risky behaviors during exploration.
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A. Theoretical Analyses
A.1. Causal identifiability

We first give definitions of the Markov condition and faithfulness assumption, which will be used in our theoretical analyses.

Assumption A.1 (Global Markov Condition (Spirtes et al., 2000; Pearl, 2009)). The distribution p over a set of variables
V = (s1,t, ..., sdimS,t, a1,t, ..., adimA,t, rt)

T satisfies the global Markov condition on the graph if for any partition (S,A,R)
in V such that if A d-separates S from R, then p(S,R|A) = p(S|A)p(R|A).

Assumption A.2 (Faithfulness Assumption (Spirtes et al., 2000; Pearl, 2009)). For a set of variables V =
(s1,t, ..., sdimS,t, a1,t, ..., adimA,t, rt)

T , there are no independencies between variables that are not entailed by the Markovian
Condition.

With these two assumptions, we provide the following proposition to characterize the condition of the causal relationship
existence so that we are able to uncover those key actions from conditional independence relationships.

Proposition A.3. Under the assumptions that the causal graph is Markov and faithful to the observations, there exists an
edge from ai,t to rt if and only if ai,t ⊥̸⊥ rt|st,a−i,t, where a−i,t are states of at except ai,t.

Proof. (i) We first prove that if there exists an edge from ai,t to rt, then ai,t ⊥̸⊥ rt|st,a−i,t. We prove it by contradiction.
Suppose that ai,t is independent of rt given st,a−i,t. According to the faithfulness assumption, we get that from the graph,
ai,t does not have a directed path to rt, i.e., there is no edge between ai,t and rt. It contradicts our statement about the
existence of the edge.

(ii) We next prove that if ai,t ⊥̸⊥ rt|st,a−i,t, then there exists an edge from ai,t to rt. Similarly, by contradiction, we suppose
that ai,t does not have a directed path to rt. From the definition of our MDP, we see in the graph that the path from ai,t to rt
could be blocked by st and a−i,t. According to the global Markov condition, ai,t is independent of rt given st and a−i,t,
which contradicts the assumption about the dependence between ai,t and rt.

We next provide the theorem to guarantee the identifiability of the proposed causal structure.

Theorem A.4. Suppose st, at, and rt follow the MDP model with Eq.(1). Under the Markov condition, and faithfulness
assumption, the structural vectors Bs→r|a and Ba→r|s are identifiable.

Proof. We prove it motivated by (Huang et al., 2022a). Denote all variable dimensions in the MDP by V, with V =
{s1,t, ...sdimS,t, a1,t, ..., adimA,t, rt}, and these variables form a dynamic Bayesian network (Murphy, 2002). Note that our
theorem only involves possible edges from state dimensions si,t ∈ st to the reward rt or from action dimensions aj,t ∈ at
to the reward rt. (Huang et al., 2020) showed that under the Markov condition and faithfulness assumption, even with
non-stationary data, for every Vi, Vj ∈ V, Vi and Vj are not adjacent in the graph if and only if they are independent
conditional on some subset of other variables in V, i.e., {Vl|l ̸= i, l ̸= j}. Based on this, we can asymptotically identify
the correct graph skeleton over V. Besides, due to the property of dynamic Bayesian networks that future variables can
not affect past ones, we can determine the directions as ai,t → rt if ai,t and rt are adjacent. So does sj,t and rt. Thus,
the structural vectors Bs→r|a and Ba→r|s, which are parts of the graph in V, are identifiable. Note that, following results
of (Shimizu et al., 2011), if we further assume the linearity of observations as well as the non-Gaussianity of the noise terms,
we can uniquely identify Bs→r|a and Ba→r|s, including both causal directions and causal effects.

A.2. Approximate dynamic programming properties

Proposition A.5 (Policy evaluation). Consider an initial Q0 : S × A → R with |A| < ∞, and define Qk+1 = T π
c Qk.

Then the sequence {Qk} converges to a fixed point Qπ as k → ∞.

Proof. First, let us show that our causal policy-reward Bellman operator B is a γ-contraction operator in the L∞ norm.
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Let Q1 and Q2 be two arbitrary Q functions, for the Bellman operator Tc, we have,

∥T π
c Q1 − T π

c Q2∥∞ =max
s,a

|γEs′
[
Ea′∼πQ1(s

′,a′)− γEa′∼πQ2(s
′,a′)

]
|

≤γmax
s,a

Es′ |Ea′∼πQ1(s
′,a′)− Ea′∼πQ2(s

′,a′)|

≤γmax
s,a

Es′Ea′∼π|Q1(s
′,a′)−Q2(s

′,a′)|

≤γmax
s,a

∥Q1 −Q2∥∞ = γ∥Q1 −Q2∥∞

we conclude that the Bellman operator Tc satisfies γ -contraction property, which naturally leads to the conclusion that any
initial Q function will converge to a unique fixed point by repeatedly applying T π

c .

Proposition A.6 (Policy improvement). Let πk be the policy at iteration k, and πk+1 be the updated policies, where πk+1

is the greedy policy of the Q-value. Then for all (s,a) ∈ S ×A, |A| < ∞, we have Qπk+1(s,a) ≥ Qπk(s,a).

Proof. At iteration k, πk denotes the policy, and the corresponding value function is Q{µ,π}. We update the policy from πk

to πk+1, where πk+1 is the greedy policy w.r.t Jπk
(π), i.e., πk+1 = argmaxπ Ea∼π[Q

πk(s,a) + αHc(π(a|s))].

Since πk+1 = argmaxπ Jπk
(π), we have that Jπk

(πk+1) ≥ Jπk
(πk). Expressing Jπk

(πk+1) and Jπk
(πk) by their

definition, we have Ea∼πk+1
[Qπk(s,a) + αHc(πk+1(a|s))] ≥ Ea∼πk

[Qπk(s,a) + αHc(πk(a|s))].

In a similar way to the proof of the soft policy improvement (Haarnoja et al., 2017), we come to the following inequality:

Qπk(st,at) =r(st,at) + γEst+1

{
Eat+1∼πk

[Qπk(st+1,at+1) + αHc(πk(at+1|st+1)]
}

≤r(st,at) + γEst+1
{Eat+1∼πk+1

[Qπk(st+1,at+1) + αHc(πk+1(at+1|st+1)]}
...

≤Qπk+1(st,at)

Here, the inequality is obtained by repeatedly expanding Qπk on the RHS through Qπk(s,a) = r(s,a) +
γEs′ [Ea′∼πk

[Qπk(s′,a′) + αHc(πk(a
′|s′)]] and applying the inequality Ea∼πk+1

[Qπk(s,a) − ω(s,a|πk+1)] ≥
Ea∼πk

[Qπk(s,a) +Hc(πk(a|s)]. Finally, we arrive at convergence to Qπk+1(st,at) and finish the proof.

Proposition A.7 (Policy iteration). Assume |A| < ∞, repeated application of the policy evaluation and policy improvement
to any initial policy converges to a policy π∗, s.t. Qπ∗

(st,at) ≥ Qπ′
(st,at),∀π′ ∈ Π,∀(st,at) ∈ S ×A.

Proof. Let Π be the space of policy distributions and let πi be the policies at iteration i. By the policy improvement property
in Proposition 3.6, the sequence Qπi is monotonically increasing. Also, for any state-action pair (st,at) ∈ S ×A, each Qπi

is bounded due to the discount factor γ. Thus, the sequence of πi converges to some π∗ that are local optimum. We will still
need to show that π∗ are indeed optimal; we assume finite MDP, as typically assumed for convergence proof in usual policy
iteration (Sutton, 1988). At convergence, we get Jπ∗(π∗)[s] ≥ Jπ∗(π′)[s],∀π′ ∈ Π. Using the same iterative augument as
in the proof of Proposition 3.6, we get Qπ∗

(s,a) ≥ Qπ′
(s,a) for all (s,a) ∈ S ×A. Hence, π∗ are optimal in Π.

B. Extensive Related Works
Maximum-Entropy Reinforcement Learning. Maximizing entropy in Reinforcement Learning (RL) aims to optimize
policies for both maximizing the expected return and the expected entropy of the policy. This approach has found application
in various RL contexts, ranging from inverse RL (Ziebart et al., 2008) to multi-goal RL (Zhao et al., 2019). Guided policy
search (Levine & Koltun, 2013) utilizes maximum entropy to guide policy learning towards high-reward regions. The
incorporation of entropy regularization establishes a connection between value-based and policy-based RL (O’Donoghue
et al., 2016; Schulman et al., 2017a).

In the domain of off-policy RL, soft Q-learning (Haarnoja et al., 2017) and its variants (Schulman et al., 2017a; Grau-Moya
et al., 2018) learn a softened value function by replacing the hard maximum operator in the Q-learning update with a
softmax operator. Soft actor-critic (SAC) (Haarnoja et al., 2017) introduces a maximum entropy actor-critic algorithm,
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offering a balance between sample efficiency and stability. Moreover, Han & Sung (2021b) propose a max-min entropy
framework to encourage visiting states with low entropy and maximize the entropy of these low-entropy states to enhance
exploration (Han & Sung, 2021b). Another direction is maximum state entropy exploration. (Hazan et al., 2019a) present
an efficient algorithm for optimizing intrinsically state entropy objectives, and Seo et al. (2021) use state entropy as an
intrinsic reward to improve exploration. Our proposed approach, falling within the spectrum of SAC variants, introduces
causality-aware weighted entropy to selectively enhance exploration for different primitive behaviors, showcasing superior
efficiency and effectiveness.

RL in multi-stage learning. Inspired by human cognition, dividing the original task into multiple stages for policy learning
has been explored in RL through heuristic methods tailored to specific tasks (Jinnai et al., 2019; Liu et al., 2023). For instance,
hierarchical RL (Sutton et al., 1999; Pateria et al., 2021) has implemented this idea by introducing additional subgoal spaces
or leveraging the semi-Markov assumption. This allows the agent to segment tasks into different subtasks (Nachum et al.,
2018), options (Machado et al., 2023), or skills (Guan et al., 2022) as multiple stages, enabling policies to possess distinct
exploration capabilities across various stages, ultimately enhancing the success of agents in complex continuous control
tasks. Further, an interesting work is Human-AI shared control via Policy Dissection (Li et al., 2022). While both ACE
and Policy Dissection draw inspiration from neuroscience, particularly in the realm of motion primitives, they operate in
different paradigms. Policy Dissection fosters human-AI shared control, enabling human collaboration with RL agents in
intricate environments. It establishes an interpretable interface on the agent, allowing humans to directly influence agent
behavior and facilitate shared control.

In contrast to explicit multi-stage approaches or human-guided task stage division, our proposed method ACE does not
necessitate a clear task stage division. Instead, it can identify and prioritize actions with a high potential for reward through
causal discovery dynamically, emphasizing the various importance of each action dimension in different stages for enhanced
exploration and performance.

C. Environment Setup
We evaluate ACE across diverse continuous control tasks, spanning MuJoCo (Todorov et al., 2012b), ROBEL (Ahn
et al., 2020a), DMControl (Tassa et al., 2018b), Meta-World (Yu et al., 2019b), Adroit (Rajeswaran et al., 2018), panda-
gym (Gallouédec et al., 2021b), Shadow Dexterous Hand (Plappert et al., 2018). It excels in both locomotion and
manipulation tasks, both sparse reward and dense reward settings. Visualizations of these tasks are provided in Figure 13,
Figure 14, Figure 15, Figure 16, and Figure 17.

Figure 13: Meta-World benchmark tasks.
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Hopper-v2 HalfCheetah-v2 Ant-v2 Walker2d-v2

Figure 14: MuJoCo benchmark tasks.

CheetahRun-v0 WalkerRun-v0 QuadrupedWalk-v0 ReacherHard-v0 HopperStand-v0

Figure 15: DMControl benchmark tasks.

Figure 16: Adroit and Shadow Dexterous Hand benchmark tasks.

(d) MetaWorld benchmark tasks (sparse reward)

PandaReachJoints-v3

(d) ROBEL benchmark tasks (sparse reward) (e) panda-gym benchmark tasks (sparse reward)

Figure 17: ROBEL and pand-gym benchmark tasks (sparse reward).

D. More Examples of Causal Weights
Causal weight facilitates understanding of the agent’s actions, reflecting the adaptive learning mechanisms akin to human
cognition. Here, we provide more examples for illustration.
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Learns to lower its arm and grasp the objective (pos(z) ↑, torque ↑)

Learns to move and locate the final goal (pos(x) ↑ , pos(y) ↑, pos(z) ↑ , torque ↓ )

Learns to place the objective in the goal (torque ↑ , pos(z) ↑ )

Success

Start

Pick Place Wall

Figure 18: Visualization of causal weights. We visualize the varying causal weights on the pick-place-wall task during the training
stages.

Learns to grasp the basketball (torque ↑)

Learns to move and find the basketball hoop  (pos(x) ↑ , pos(y) ↑, torque ↓ )

Learns to move down and take a shot (pos(z) ↑ , pos(y) ↓)

Success

Start

Basketball

Figure 19: Visualization of causal weights. We visualize the varying causal weights on the basketball task during the training stages.

Learns to move down and grasp the tool (pos(z) ↑ , torque ↑)

Learns to keep the tool and move in y-axis direction (pos(x) ↓, pos(y) ↑, torque ↑ )

Learns to move in x-axis direction to push the kettle (pos(x) ↑ ,  pos(y) ↓)

Success

Start

stick push

Figure 20: Visualization of causal weights. We visualize the varying causal weights on the stick-push task during the training stages.
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DIP

PIP

MCP

• Full arm: Roll movement is paramount for opening the door via full arm motion, while lateral movement is less 
significant due to the door's placement in front of the robot arm rather than in lateral directions.

• Fingers: Control over PIP joints is prioritized for all fingers, followed by DIP joints, aiding in rotating the door handle 
to open it, with MCP control holding relatively lower causal weights.

Adroit 
Door

• Pen spinning requires coordination among multiple fingers, resulting in varying changes in causal weights across 
different fingers.

• For the more critical forefinger, middle finger, and ring finger, control of DIP joints is the most significant dimension, 
as pen spinning demands finer hand movements compared to door opening.

Adroit 
Pen

Figure 21: Visualizations of causal weights in Adroit Door and Pen tasks (29 action dimensions). These curves demonstrate how
causal weights control individual finger joints alongside the entire arm, with detailed explanations provided. Notably, the crucial finger
joints differ across tasks. This clearly highlights the effectiveness of our causal graph calculation in high-dimensional settings involving
multi-object control.
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E. Implementation Details
E.1. Algorithm instantiation

Instantiating ACE involves specifying three main components: 1) effectively recognizing the causal weights of a → r|s; 2)
incorporating causal weights and the corresponding causality-aware entropy term into policy optimization. 3) periodically
resetting the network based on our gradient dormancy degree.

• The pseudocode of our proposed ACE is provided in Algorithm 1.

• The variant named CausalSAC simplifies ACE by removing the reset mechanism.

• By incorporating the causality entropy term and the reset mechanism into the BAC backbone algorithm, we created the
variant ACE-BAC.

Causal discovery on a → r|s. To effectively compute Ba→r|s, we adopt the well-regarded DirectLiNGAM
method (Shimizu et al., 2011). While alternative score-based methods that simultaneously learn causal effects can also be
employed, we opt for DirectLiNGAM for two main reasons: 1) Empirical validation confirms its remarkably exceptional
performance, prioritizing actions with higher reward potential and aligning with human cognition in executing complex tasks.
2) Under the linearity assumption, one can straightforwardly and practically learn coefficients as causal effects. Moreover,
the non-Gaussianity assumption facilitates the unique identification of the causal structure. The main implementation idea
of DirectLiNGAM is as follows. In the first phase, it estimates a causal ordering for all variables of interest (i.e., state,
action, and reward variables), based on the independence and non-Gaussianity characteristics of the root variable. The causal
ordering is a sequence that implies the latter variable cannot cause the former one. In the second phase, DirectLiNGAM
estimates the causal effects between variables using some conventional covariance-based methods such as least squares
and maximum likelihood approaches. Its convergence is guaranteed theoretically under some assumptions. Besides, we
formulate a training regime wherein we iteratively adjust the causal weights for the policy at regular intervals I on a local
buffer Dc with fresh transitions to reduce computation cost.

Policy optimization. Given the causal weight matrix Ba→r|s, we could obtain the causality-aware entropy Hc(π(·|s))
through Eq.(2). Note that to ease the computation burden of updating the causal weight matrix, we opt to conduct causal
discovery with a fixed interval.

Based on the causality-aware entropy, then the Q-value for a fixed policy π could be computed iteratively by applying a
modified Bellman operator T π

c with Hc(π(·|s)) term as stated below,

T π
c Q(st,at) ≜ r(st,at) + γEst+1∼P [Eat∼π[Q(st+1,at+1) + αHc(π(at+1|st+1))]] . (7)

In particular, we parameterize two Q-networks and train them independently, and then adopt the commonly used double-Q-
techniques (Van Hasselt et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018; Han & Sung, 2021a; Sun et al., 2022; Ji
et al., 2023b) to obtain the minimum of the Q-functions for policy optimization. Based on the policy evaluation, we can
adopt many off-the-shelf policy optimization oracles; we chose SAC as the backbone technique primarily for its simplicity
in our primary implementation of CausalSAC and ACE.

Gradient-dormancy-guided reset mechanism. For each reset interval, we calculate the gradient dormancy degree,
initialize a random network with weights ϕi and soft reset the policy network πθ and the Q network Qϕ.

E.2. Hyperparameters

The hyperparameters used for training ACE are outlined in Table 2. We conduct all experiments with this single set of
hyperparameters.

The hyperparameters used for training ACE are outlined in Table 2. We conduct all experiments with this single set of
hyperparameters.

20



ACE : Off-Policy Actor-critic with Causality-Aware Entropy Regularization

Algorithm 1 off-policy Actor-critic with Causality-aware Entropy (ACE )

initialize: Q network Qϕ, policy network πθ, replay buffer D; local buffer Dc with size Nc, causal weight matrix Ba→r|s,
perturb factor f ;
for each environment step t do

Collect data with πθ from real environment
Add to replay buffer D and local buffer Dc

end for

// Causal discovery
if every I environment step then

Sample all Nc transitions from local buffer Dc

Update causal weight matrix Ba→r|s
end if

// Policy optimization
for each gradient step do

Sample N transitions (s,a, r, s′) from D
Compute causality-aware entropy Hc(π(·|s))
Calculate the target Q value
Update Qϕ by minϕ (TcQϕ −Qϕ)

2

Update πθ by maxθ Qϕ(s, a)
end for

// Reset mechanism
if every reset interval then

Calculate the gradient dormant degree βγ

Initialize a random network with weights ϕi

Soft reset πθ by θt = (1− η)θt−1 + ηϕi

Soft reset Qϕ by ϕt = (1− η)ϕt−1 + ηϕi

Reset the state of the policy optimizer and Q optimizer
end if
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Table 1: Hyperparameter settings for ACE.

Hyper-parameter Value

Q-value network MLP with hidden size 512

V -value network MLP with hidden size 512

policy network Gaussian MLP with the hidden size 512

discounted factor γ 0.99

soft update factor τ 0.005

learning rate α 0.0003

batch size N 512

policy updates per step 1

value target updates interval 2

sample size for causality Nc 10000

causality computation interval I 10000

max reset factor αmax 0.8

reset interval 200000

dormancy threshold τ 0.025

Table 2: Hyperparameter settings for ACE.

Hyper-parameter Value

Q-value network MLP with hidden size 512

V -value network MLP with hidden size 512

policy network Gaussian MLP with the hidden size 512

discounted factor γ 0.99

soft update factor τ 0.005

learning rate α 0.0003

batch size N 512

policy updates per step 1

value target updates interval 2

sample size for causality Nc 10000

causality computation interval I 10000

max reset factor αmax 0.8

reset interval 200000

dormancy threshold τ 0.025
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F. More Benchmark Results
We conduct experiments on the more complex locomotion and manipulation tasks from MuJoCo (Todorov et al., 2012a),
DMControl (Tassa et al., 2018a), Meta-World (Yu et al., 2019b), Adroit (Rajeswaran et al., 2018), Shadow Dexterous
Hand (Plappert et al., 2018) for further evaluation of ACEand the baselines. Currently, several tasks in these benchmarks
pose a formidable challenge that stumps most model-free methods. Notably, ACE has demonstrated its effectiveness by
successfully solving many of these challenging tasks.

F.1. Evaluation on MetaWorld benchmark tasks
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Figure 22: MetaWorld tasks. Success rate of ACE, BAC, SAC, TD3 in MetaWorld tasks. Solid curves depict the mean of 6
trials, and shaded regions correspond to the one standard deviation.

F.2. Evaluation on MuJoCo benchmark tasks
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Figure 23: MuJoCo benchmark tasks. Training curves of ACE, SAC, TD3 in MuJoCo benchmark tasks. Solid curves
depict the mean of 6 trials and shaded regions correspond to the one standard deviation.

23



ACE : Off-Policy Actor-critic with Causality-Aware Entropy Regularization

0.0 0.8 1.6 2.4 3.2 4.0
Environment steps (×105)

0

250

500

750

1000

av
er

ag
e 

re
tu

rn

CheetahRun

0.0 0.8 1.6 2.4 3.2 4.0
Environment steps (×105)

0

250

500

750

1000 WalkerRun

ACE SAC TD3 CausalSAC

Figure 26: Ablation of reset mechanism on locomotion tasks. Average return of ACE, CausalSAC, SAC, TD3 in two
locomotion tasks. CausalSAC is a reduced form of ACE by eliminating the reset mechanism of ACE.

F.3. Evaluation on DMControl benchmark tasks
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Figure 24: DMControl benchmark tasks. Training curves of ACE , SAC, TD3 in DMControl benchmark tasks. Solid
curves depict the mean of 6 trials and shaded regions correspond to the one standard deviation.

F.4. Evaluation on Adroit and Shadow Dexterous Hand benchmark tasks
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Figure 25: Dexterous hand tasks. Training curves of ACE , SAC, TD3 in dexterous hand tasks. Solid curves depict the
mean of 6 trials, and shaded regions correspond to the one standard deviation.

G. Extensive Ablation Studies on Locomotion Tasks
We present the results of CausalSAC on a subset of locomotion tasks, demonstrating comparable or even superior performance
compared to ACE . Due to the fact that the total number of steps in these tasks is only 40% of that in manipulation tasks, the
policy converges faster. We attribute this to the key reason for the less pronounced impact of our reset mechanism in these
tasks. Nevertheless, it is worth noting that the causal weighted entropy we propose still exhibits significant significance in
improving sample efficiency in locomotion tasks.
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Figure 27: Sparse reward tasks. Training curves of ACE, SAC, TD3 and SAC+RND in sparse reward tasks. Solid curves
depict the mean of 6 trials, and shaded regions correspond to the one standard deviation.

H. Effectiveness in Sparse Reward Settings
We conduct experiments in sparse reward tasks to showcase the efficiency of ACE. We evaluate both robot locomotion and
manipulation tasks based on the sparse reward version of benchmark tasks from MetaWorld (Yu et al., 2019a), ROBEL (Ahn
et al., 2020a) and panda-gym (Gallouédec et al., 2021a). MetaWorld manipulation tasks are based on a Shawyer robot arm
with end-effector control. Panda-gym manipulation tasks are based on a Franka Emika Panda robot with joint angle control.
ROBEL quadruped locomotion tasks are based on a D’Kitty robot with 12 joint positions control. As shown in Figure 27,
our ACE surpasses the baselines by a large margin.

I. Generalizability of ACE
The proposed causality-aware entropy and gradient-dormancy-guided reset mechanism are versatile and effective plug-ins,
thus they could be integrated into various RL backbone algorithms and techniques.
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Figure 28: Performance of ad-hoc ACE-BAC. Training curves of ACE-BAC, BAC, SAC, and TD3 in challenging dexterous
hand manipulation reward tasks. Solid curves depict the mean of 6 trials, and shaded regions correspond to the one standard
deviation.
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Figure 29: Performance of ACE with higher-UTD methods. We applied ACE to REDQ by integrating causality-aware
entropy and a dormancy-guided reset mechanism. The results show that our method significantly improves REDQ’s sample
efficiency and performance in multiple tasks. Solid curves depict the mean of 6 trials, and shaded regions correspond to the
one standard deviation.

halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2 maze2d-medium-v1

CQL 47.04 ± 0.22 59.08 ± 3.77 80.75 ± 3.28 86.11 ± 9.68
CQL+ACE 50.23 ± 0.43 60.62 ± 3.97 85.27 ± 3.68 89.61 ± 18.72

Table 3: Performance comparison of CQL and CQL+ACE across various tasks.

Compatibility with Max-Entropy algorithms. We integrate ACE into a recent BAC algorithm, which is effective
in challenging failure-prone tasks. Results on the challenging dexterous hand manipulation tasks show that the ad-hoc
ACE-BAC algorithm could outperform the BAC algorithm, refer to Figure 28.

Compatibility with high-UTD techniques. Higher-UTD (Update-to-Data) methods are popular and effective in improving
the sample efficiency and performance of reinforcement learning algorithms. We integrate ACE into the popular REDQ (Chen
et al., 2020) algorithm, which is known for its efficiency in continuous control tasks. Results on the Walker2d and CheetahRun
benchmark tasks, shown in Figure 29 demonstrate that ACE significantly enhances REDQ’s sample efficiency and overall
performance across a range of tasks.

Compatibility with offline RL setting. Excitingly, we observed that CQL with an ACE backbone outperforms CQL. This
not only underscores the effectiveness and versatility of ACE but also highlights a promising direction for future exploration.

These observations demonstrate the effectiveness and generalizability of our proposed mechanisms and also shed light on
the further applications of our mechanisms in enhancing existing RL algorithms.

J. ACE for Visual RL Application
We extend our method to facilitate visual RL learning with image inputs. The challenges we address in visual RL include: 1)
determining how to compute causality between rewards and policy using image inputs, as our causal model cannot directly
handle high-dimensional observations. 2) applying our methodology to existing visual RL baselines that do not utilize
entropy regularization.

Our proposed solutions are as follows: 1) Utilizing the features extracted from the encoder output for causality computation.
Since these features have only 50 dimensions, they can be effectively processed by our causal model. Our experiments
demonstrate that causal weights calculated in this manner also provide effective guidance for exploration. 2) Using causal
weights to guide action sampling, applying more significant noise to action dimensions with larger causal weights to
encourage exploration, and vice versa. Simultaneously, we incorporate our proposed gradient dormancy degree into the
exploration schedule. Leveraging these, we make the following improvements to the state-of-the-art visual RL algorithm
DrM (Xu et al., 2023): 1. Replacing the dormant ratio in DrM, which guides perturbation and exploration schedule, with our
proposed gradient dormancy degree. 2. Utilizing causal weights to guide action sampling in DrM.

Figure 30 depicts the dormancy curves using two distinct dormancy definitions, applied to state-based and visual-based

26



ACE : Off-Policy Actor-critic with Causality-Aware Entropy Regularization

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0.00

0.20

0.40

0.60
state RL

0.0 0.4 0.8 1.2 1.6 2.0
Environment steps (×106)

0.00

0.20

0.40

0.60
visual RL

Gradient Dormancy DrM Dormancy

Figure 30: Comparison between curves of different dormancy
degrees in state-based and visual-based RL. In state-based RL,
the dormant ratio proposed by (Xu et al., 2023) consistently ap-
proaches zero, while our gradient dormancy degree undergoes
notable variations.
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Figure 31: Performance comparison of ACE + DrM and DrM.

soccer task in MetaWorld, respectively, during training with ACE and DrM algorithms. It is apparent that in state-based RL,
our proposed gradient dormancy degree effectively reflects the network’s capacity. In contrast, DrM’s dormant ratio, as
defined by Sokar et al. (2023), consistently remains close to zero in state-input tasks and fails to provide effective guidance
for state-based RL exploration. In visual RL, the two dormancy curves are closely aligned, effectively guiding exploration
and improving the sample efficiency of visual RL. This underscores the adaptability of our proposed gradient dormancy,
suitable for any RL scenario.

As shown in Figure 31, our refinements to DrM, leveraging causal weights and the gradient dormancy degree, effectively
enhance its performance and learning efficiency. Moving forward, we will continue exploring the potential applications of
causality-aware exploration in image-based RL.

K. The effectiveness of ACE in solving hard exploration problems.
The effectiveness of ACE is particularly evident in scenarios where the causal relationship between action and reward,
conditioned on the state, can be misleading and hurt performance.

Addressing Dummy Actions with the Reset Mechanism. For scenarios involving dummy actions, the resetting mecha-
nism helps to solve it. To be specific, such dummy actions would trap the exploration in local optima and hence the gradient
dormant would be high (i.e., low policy gradients, high gradient dormancy degree). Then our reset mechanism intervenes by
perturbing the network, encouraging unbiased exploration.

A concrete example is the pick-and-place-wall task, where the wall initially biases the agents’ exploration towards vertical
and grasping actions. In contrast to the high dormancy degree and poor performance observed with all other baselines,
ACE overcomes this challenge with its dormancy-guided reset mechanism, as evidenced by the dormancy degree curves in
Figure 3 (y-axis=dormancy degree) and the performance data in Figure 4.

Handling Misleading or Imperfect Rewards. For scenarios with misleading or imperfect rewards, we could simply turn
it into a sparse reward setting. Our experiments, as shown in Figures 7 and 27, reveal ACE’s effectiveness in sparse reward
environments. This advantage primarily arises from ACE’s causal-aware entropy, which discerns the implicit action-reward
relationship based on the state.

Furthermore, ACE’s versatility also allows it to be combined with alternative intrinsic reward approaches, enhancing its
applicability across various scenarios. This adaptability ensures that specific challenges, such as those involving misleading
rewards.

L. Computing Infrastructure and Computational Time
Our experiments were conducted on a server equipped with an AMD EPYC 7763 64-Core Processor (256
threads) and four NVIDIA GeForce RTX 3090 GPUs.
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Figure 32 presents the computational time comparison between our algorithm ACE and SAC on 12 MetaWorld benchmark
tasks. Compared to SAC, the total training time of ACE only increased by an average of 0.69 hours, hence, the additional
costs are acceptable. Further, for practical use, ACE requires fewer interactions for similar performance, which may lower
the needed computation time in practice.
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Figure 32: Computation time comparison. Computation time comparison between ACE and SAC in ten MetaWorld tasks,
each averaged on 6 trials.
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