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Abstract
Instrumental variables (IVs) are widely used for
estimating causal effects. There are two main
challenges when using instrumental variables.
First of all, using IV without additional assump-
tions such as linearity, the causal effect may still
not be identifiable. Second, when selecting an
IV, the validity of the selected IV is typically not
testable since the causal graph is not identifiable
from observational data. In this paper, we pro-
pose a method for bounding the causal effect with
instrumental variables under weak confounding.
In addition, we present a novel criterion to falsify
the IV with side information about the confounder.
We demonstrate the utility of the proposed method
with simulated and real-world datasets.

1. Introduction
Instrumental variable is a popular approach for estimat-
ing causal effect in various domains, such as education
(Card, 1993), economy (Rosenzweig & Wolpin, 2000), pub-
lic health (Hirano et al., 2000), public policy (Abadie, 2003)
and, marketing (Blundell et al., 2012). The earliest known
work related to instrumental variables was published by
Virtue (1929). The goal was to study butter’s price elasticity
of supply. The local rainfall condition was chosen as the
instrumental variable because it affects the butter supply
through grass and milk production while not directly related
to the demand and price of butter.

Another common scenario for instrumental variables in-
volves natural experiments when a randomized control trial
is infeasible. An example of such a scenario is imperfect
compliance in the randomized experiment (Balke & Pearl,
1994; Imbens & Angrist, 1994). Specifically, in a random-
ized controlled trial for the treatment effects, there may be
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Figure 1. (a) shows an invalid IV graph where Z is affected by the
unobserved confounder. (b) shows an invalid IV graph, with direct
effect from Z to Y .

instances where patients do not adhere to their assigned
treatments perfectly, influenced by factors that also affect
the outcome. In this case, the assigned treatment serves as
the instrumental variable for estimating treatment effects.
In epidemiology, Mendelian Randomization (MR) uses ge-
netic variants to identify the causal effects between some
risk factors and disease. Similarly, the public or market
policy can often be used to study the causal effect (Leigh
& Schembri, 2004; Davies et al., 2018). Next, we describe
some challenges of applying IV to estimate the causal effect.

Formally, a variable Z is said to be an instrumental variable
if it satisfies three assumptions. (1) Z is not independent
of treatment variable X (relevence), (2) Z affects outcome
variable Y only through X (exclusion), and (3) Z is inde-
pendent of the unobserved confounder (exchangeability).
The last two assumptions are in general untestable since
there is no conditional independence condition between Z
and Y in the observational data. Pearl (1995) introduced a
testable condition for IV graphs: instrumental inequality, a
necessary condition for the instrumental variable. Most of
the existing methods provide testable conditions to reject
invalid IV. Selecting suitable instrumental variables remains
a challenging problem. In this paper, we introduce the con-
ditional common entropy and apply it to establish a new
testable condition for valid instrumental variables under the
assumption that unobserved confounders are weak.

Another challenge of using instrumental variables (IV) lies
in addressing non-identifiable causal queries. One type of
approach using regression by making assumptions about
the underlying generating model (Bowden & Turkington,
1990; Hartford et al., 2017; Singh et al., 2019; Puli & Ran-
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ganath, 2020; Muandet et al., 2020; Xu et al., 2020; Wang
et al., 2021; Frauen & Feuerriegel, 2022; Ailer et al., 2023).
Another type of approach estimates the upper and lower
bounds of causal effect using observational data, which is
also known as partial identification. Alternative definitions
of exclusion and exchangeability have been used in existing
works. (Swanson et al., 2018) thoroughly reviews various
definitions used in partial identification. In this paper, we
focus on the least stringent assumption set, i.e., marginal
stochastic exclusion and marginal exchangeability, and in-
troduce a novel approach for estimating bounds of causal
effect under weak confounder assumption.

An interesting question is how to use invalid instrumental
variables in causal inference. Most existing works focus
on synthesis IV with multiple candidates or consistent es-
timators given the majority of the instruments are valid
(Windmeijer et al., 2018). Not many works study the partial
identification of causal effects with weakly invalid instru-
mental variables. We provide a brief review of the related
works in Section 5. The work that is most relevant to ours
was proposed by Cinelli & Hazlett (2022), which introduced
a sensitivity analysis framework that quantifies the degree
of the IV assumption violation in terms of partial R2. With
a similar spirit, we propose a framework to quantify the
degree of IV violation with information-theoretic quantity
and incorporate it with our approach for estimating bounds
of causal effect with weakly invalid instruments.

The main contributions of our paper can be summarized as
follows:

• We introduce the graph-specific conditional common
entropy to quantify the strength of unobserved con-
founder (Section 3) and provide an algorithm to ap-
proximate conditional common entropy for variables
in high-dimension.

• We propose a method for bounding causal effects with
instrumental variables under weak confounding as-
sumptions. For the invalid instrumental variable, we
quantify the strength of violation in terms of condi-
tional common entropy. Our approach can incorporate
the strength of IV assumption violation as a sensitivity
parameter and get tight bounds when the violation is
weak.

• Under the weak confounding assumption, we propose
conditional common entropy as a new testable criterion
for valid instrumental variables. We show that when
the entropy of the unobserved confounder is upper
bounded, we can reject invalid instrumental variables
effectively. We proposed a heuristic approach for se-
lecting IV from a set of covariates when we cannot
make the weak confounding assumption. We demon-
strate the effectiveness of the proposed bounds and IV

selection method with synthetic and real-world data.

2. Backgrounds
Notations Throughout this paper, we denote random vari-
ables with uppercase letters, e.g., X,Y, Z, and their corre-
sponding states are represented by lowercase letters xi, yi,
and zi. The cardinality of the variable is denoted as |X|.
We use P (y, x) as the abbreviation for P (Y = y,X = x).
The uppercase letter with lowercase subscript denotes an
interventional distribution, e.g., P (Yx = y) is defined as the
probability of observing y under the intervention on x.

Single World Intervention Graph Richardson & Robins
(2013) introduced Single World Intervention Graph (SWIG),
a graphical representation that establishes a connection be-
tween interventional and counterfactual distributions with
the DAG. The interventional distribution Yx is represented
by a node in the SWIG, and the treatment variable is split
into the observed variable X and intervention target X = x.
An example of SWIG corresponding to the IV graph is
shown in Figure 2(b).

Z X Y

(a) IV Graph

Z X x Yx

(b) Corresponding SWIG

Figure 2. The IV graph and the corresponding Single world inter-
vention graph.

Common Entropy Various approaches for measuring
common information between two variables have been stud-
ied, such as the mutual information, Gács and Körner’s com-
mon randomness (Gács et al., 1973), and Wyner common
information (Wyner, 1975). The exact common informa-
tion was proposed by Kumar et al. (2014) to measure the
common part of two random variables. Unlike mutual infor-
mation, the exact common information measures the entropy
of the simplest variable that explains the dependency be-
tween variables X and Y . This has also been referred to as
the common entropy.

Formally, the common entropy is defined as

CE(X;Y ) := min
q(x,y,w)

H(W )

s.t. I(X;Y |W ) = 0;

q(x, y, w) compatible with the obs.
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q(x, y, w) compatible with observed distribution means∑
w

q(x, y, w) = p(x, y),∀x, y;

0 ≤ q(x, y, w) ≤ 1,∀x, y, w∑
x,y,w

q(x, y, w) = 1.

For random variables X,Y that are generated by a common
source U , we have the inequality I(X;Y ) ≤ CE(X;Y ) ≤
H(U) by the data processing inequality.

The common entropy has been used in the entropic causal
inference framework by Kocaoglu et al. (2020) to learn the
causal graph. In this paper, we extend this idea to finding the
minimum entropy variable when conditioned on another set
of variables and demonstrate the application of conditional
common entropy under the following assumption.

Assumption 2.1 (Weak Confoundedness). Consider a
causal model with a set of endogenous variables V and
exogenous variables U . For any latent confounder U ∈ U ,
we have H(U) ≤ θ.

In practice, the above assumption might be obtained by
expert knowledge of the partial information of the latent
confounder, such as marginal distribution or cardinality. For
example, if we know the observed variables V describe most
of the variables in the system except for some protected
attribute S, which we cannot measure from individuals. The
strength of the confounder can be bounded by H(S) or
log2(|S|).

Partial Identification of Causal Effect The average
causal effect is defined by the expectation of difference
between the outcome from the treated and nontreated group,

ACE(X → Y ) = E[Yx1 − Yx0 ].

Robins (1989) and Manski (1990) derive bounds of average
causal effect in the IV graph, which is known as the “natu-
ral bounds”. These bounds are sharp under the following
assumptions of IV (Swanson et al., 2018).

Assumption 2.2 (Marginal stochastic exclusion).

E[Yz,x] = E[Yz′,x],∀z, z′, x

Assumption 2.3 (Marginal exchangeability of counterfactu-
als).

Z ⊥⊥ Yz,x,∀z, x

This set assumption requires the average directed effects of
instrument Z on the outcome Y to be zero at the population
level when the treatment X is holding constant.

Recently, some research works have derived tighter bounds
with some side information. For example, Li et al. (2023) de-
rives a closed-form expression for tighter bounds given the
marginal distribution of confounders. Jiang et al. (2023) pro-
posed the entropic partial identification to obtain the tighter
bounds of causal effect given the entropy of confounders.
In this paper, we extend the entropic partial identification to
the IV setting.

In the next section, we first introduce the conditional com-
mon entropy and show the application of common entropy
in IV verification and partial identification under Assump-
tion 2.1.

3. Conditional Common Entropy
3.1. Definition and Properties

Definition 3.1. Conditional common entropy of two random
variables Z, Y given X with the joint probability distribu-
tion P (X,Y, Z) is defined as follows:

CCE(Z;Y |X) := min
q(x,y,z,w)

H(W ) (1)

s.t. I(Z;Y |X,W ) = 0;

q(x, y, z, w) compatible with the obs

We first show some general properties of conditional com-
mon entropy.

Lemma 3.2 (Bounded by conditional mutual information).
For a pair of random variables Z, Y and a set of variables
X, the following inequality holds:

CCE(Z;Y |X) ≥ I(Z;Y |X) (2)

Note that the proposition above also holds when X is an
empty set, which shows the common entropy between Z
and Y is bounded by the mutual information between them.

An interesting question about conditional common entropy
is how it compares to the common entropy. For example,
how does CE(Z;Y ) compares to CCE(Z;Y |X). The fol-
lowing lemma characterizes this relationship.

Lemma 3.3. For a pair of random variables Z, Y and two
sets of variables X,U, the following inequality holds:

CCE(Z;Y |X) ≤ CCE(Z;Y |X,U) +H(U) (3)

The inequality simplifies to CE(Z;Y ) ≤ CCE(Z;Y |U) +
H(U) when X is an empty set, which provides a clue to the
question above.

By the Lemma 3.3, we can relate the conditional common
entropy with the latent variable in the causal graph.
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3.2. Conditional Common Entropy in Causal Graph

Corollary 3.4. For a pair of random variables Z, Y and
two sets of variables X,U, if Z ⊥⊥ Y |X,U, then we have

CCE(Z;Y |X) ≤ H(U)

This directly follows from Lemma 3.3, since we have
CCE(Z;Y |X,U) = 0 from the conditional independence.

In the IV graph, the entropy of latent confounders is lower
bounded by CCE(Z;Y |X). This bound is not tight since it
does not enforce the independence between variable Z and
W which attains the conditional common entropy. There-
fore, the derived distribution P (X,Y, Z,W ) does not nec-
essarily satisfy the causal Markov assumption. Next, we
define the graph-specific conditional common entropy.

Definition 3.5 (Graph-specific CCE). Let P (V) be the
joint distribution over variables V and Markov relative to
the graph G. Let Z, Y ∈ V and a set of variables X ⊂ V
satisfies (Z ̸⊥⊥d Y |X) in G. Let (v ↔ v′) or (v → v′)
be an edge in G such that (Z ⊥⊥d Y |X) upon its deletion.
Define the graph-specific conditional common entropy
CCEG,(v→v′) to be the minimum entropy of W for some
P (V ∪ {W}) that compatible with the graph G′, where G′

is the graph that replace (v → v′) with (v → W → v′).
Similarly define CCEG,(v↔v′) for (v ↔ v′).

The above definition ensures that the distribution P (V ∪
{W}) which attains the graph-specific conditional common
entropy satisfies the Markov condition regarding G′. For
the IV graph G with observed variables (X,Y, Z) as shown
in Figure 2(a), G′ is the graph that includes the latent con-
founder and marginalizes to G. For the marginalized graphs,
Evans (2012) derives the inequality constraints on the ob-
served variables. The Definition 3.5 provides the constraint
on the complexity of the latent variable.

In the rest of this paper, We use CCEIV(Z;Y |X) as ab-
breviation for CCEIV,(X↔Y )(Z;Y |X) in the IV graph
(Figure 2(a)). Similarly, we use CCED(Z;Y |X,U) to de-
note CCED,(Z→Y )(Z;Y |X,U) in the invalid IV graph (Fig-
ure 1(b)).

Theorem 3.6. Given variables X,Y, Z in a causal graph G
with distribution P (Z,X, Y ), and latent confounder U . If
we have Z ⊥⊥ Y |X,U , then the following inequality holds

CCE(Z;Y |X) ≤ CCEG,↔(Z;Y |X) ≤ H(U) (4)

The above theorem enables us to derive a testable condition
for the valid instrumental variable under Assumption 2.1,
which we discuss in Section 4.2.

The CCED(Z;Y |X,U) quantifies strength of the edge
Z → Y in the graph D (Figure 1(a)). Although this cannot
be computed from the observational data if U is a latent

variable, we can incorporate it as a sensitivity parameter in
our partial identification algorithm with the IV.

3.3. Approximating Conditional Common Entropy

In this section, we first show that the conditional common
entropy CCE(Z;Y |X) can be computed in terms of the
common entropy.

Proposition 3.7. Given P (X,Y, Z) with |X| = n. Let Wi

be the random variable that attains the common entropy
for P (Z, Y |xi). The conditional common entropy can be
computed by H(W ) =

∑
i H(W ′

i )P (xi) where W ′
i is some

permutation of Wi.

Proposition 3.7 shows that the conditional common entropy
can be computed from the variables that attain the common
entropy of conditional distributions. The exact conditional
common entropy can be computed for binary Z, Y since
there exists a closed-form solution for the common entropy.

Computing the exact value of common entropy is a challeng-
ing task since it involves solving a non-convex optimization
problem. Another problem is how to apply the additional
conditional independence constraint for graph-specific CCE.
To address these issues, we propose an iterative algorithm
inspired by (Kocaoglu et al., 2020) to approximate the graph-
specific conditional common entropy 1.

First, we introduce the relaxed objective function by in-
corporating the conditional independence constraint as a
regularization term in the loss function.

L = I(Z;Y |X,W )+(β0+β1)H(W )−β1H(W |Z) (5)

The loss function consists of three terms: I(Z;Y |X,W ),
β0H(W ), and β1I(Z;W ). The first two terms correspond
to finding the minimum entropy variable that separates
Z and Y . The third term β1I(Z;W ) = β1(H(W ) −
H(W |Z)) corresponds to the additional independence con-
straint for W in the IV graph. The relaxation of the loss
function allows us to search for the latent variable with the
following IV LatentSearch algorithm.

The algorithm takes the joint distribution P (X,Y, Z), a ran-
dom initialization of q(W |X,Y, Z), the number of search
iterations, and a pair of parameters β0, β1. At each itera-
tion i, we obtain the conditional distributions qi(W |·) and
update the joint qi+1(X,Y, Z,W ). The updated terms are
found through the partial derivative of the loss function in
Equation (5). We also show that the output from Algorithm 1
is also a stationary point of Equation (5), and therefore a
necessary condition for the original problem in Equation (1)
to be optimal.

1Our code is available at https://github.com/
ziwei-jiang/Conditional-Common-Entropy
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Algorithm 1 IV LatentSearch
Input: Joint distribution P (X,Y, Z); Number of iterations N ;
initialization q(W |X,Y, Z); β0, β1 ≥ 0.
for i← 1 to N do

Form the joint:
qi(X,Y, Z,W )← qi(W |X,Y, Z)P (X,Y, Z).
Get posteriors:
qi(W )←

∑
x,y,z qi(X,Y, Z,W )

qi(W |X)←
∑

y,z qi(X,Y,Z,W )∑
y,z,w qi(X,Y,Z,W )

qi(W |X,Z)←
∑

y qi(X,Y,Z,W )∑
y,w qi(X,Y,Z,W )

qi(W |X,Y )←
∑

z qi(X,Y,Z,W )∑
z,w qi(X,Y,Z,W )

Update:
qi+1(X,Y, Z,W )← qi(W |X,Z)qi(W |X,Y )qi(U)β0+β1

f(X,Y,Z)qi(W |X)q(W |Z)β1

where f(X,Y, Z) =
∑

u
qi(W |X,Z)qi(W |X,Y )qi(U)β0+β1

qi(W |X)q(W |Z)β1

end for
Return: qN (W |X,Y, Z)P (X,Y, Z)

(a) (b)

Figure 3. After running Algorithm 1 with β0 and β1 range from
0.5 to 0, the conditional common entropy can be estimated as the
minimum value of H(W ) when I(Z;W ) and I(Y ;Z|X,W ) are
sufficiently close to zero.

Theorem 3.8. The output from Algorithm 1 after conver-
gence is also a stationary point of Equation (5).

As the value of β0, β1 decreases, greater emphasis is placed
on conditional independence constraints. Therefore, the
mutual information I(Z;W ) and I(Z;Y |X,W ) decreases
as H(W ) increases. An example of the plot of these three
terms is in Figure 3.

4. Application of Conditional Common
Entropy in IV graph

4.1. Bounding Causal Effect with IV under weak
confounding

We first provide a motivational example of the problem.

Suppose we want to test the effect of a new drug that devel-
oped in the lab. Among 1,000 patients, 512 were randomly
selected to take the new drug, and the placebo was assigned
to the rest. The selected patients were asked to take the drug
every day at home, but only 282 of them properly followed

the instructions. Of the 230 patients who did not properly
follow the instructions, 99 did not recover after the trial, and
of the patients who followed the instructions, 196 recovered.
Of the 488 patients who were not assigned treatment, 341 of
them did not recover. The data is summarized in the Table 1.

Assigned Not Assigned

Took Drug 196 out of 282 0are recovered
Did Not 131 out of 230 147 out of 488

Take Drug are recovered are recovered

Table 1. Drug Effect Example

If the study was conducted with double-blind trials with
the placebo assigned to the non-treatment groups, the drug
assignment could be taken as an instrumental variable for
the treatment effect, which is bounded by the natural bounds.
However, if we cannot rule out the possibility that the drug
assignment may have a placebo effect, the variable Z may
become an invalid instrumental variable as shown in Fig-
ure 1(b). In such cases, the bounds of causal effect can only
be reliably estimated by Tian-Pearl bounds:

0.278 ≤ P (y1|do(x0)) ≤ 0.560

0.196 ≤ P (y1|do(x1)) ≤ 0.914

− 0.364 ≤ ACE(X → Y ) ≤ 0.636

This result is not informative since the average causal effect
could be either positive or negative. It would be helpful to
know how the bounds are affected by the strength of the
direct effect from Z to Y , e.g., the placebo effect.

We can use ϕ := CCED(Z;Y |X,U) as a sensitivity param-
eter to quantify the strength of direct effect from Z to Y .
As depicted by Figure 4, ϕ = 0 if and only if there is no
directed or bidirected path between Z and Y . Moreover, we
have the following result to connect this parameter to the
interventional distribution.

Theorem 4.1. Given variables Z,X, Y, U in an invalid
IV graph as shown in Figure 1(a) with distribution
P (Z,X, Y, U), we have the following inequality

I(Yx;Z) ≤ CCED(Z;Y |X,U).

We propose the following method to estimate the bounds of
causal effect under Assumption 2.1 and take consideration
of possible IV violation by using CCED(Z;Y |X,U) as a
sensitivity parameter.

Theorem 4.2. Under Assumption 2.1, for variables
(X,Y, Z) with |X| = n, |Y | = m, and |Z| = l and
the compatible joint distribution P (X,Y, Z), assumes
CCEIV(Z;Y |X,U) = ϕ. The causal effect of xt on yo
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is bounded by LB ≤ P (yo|do(xt)) ≤ UB, where

LB/UB = min /max

∑
jl

bojlP (zl)


subject to

P (zk)bitk = P (yi, xt, zk) ∀i, k;
∑
ij

bijk = 1 ∀k

∑
i

bijk = P (xj |zk) ∀j, k; 0 ≤ bijk ≤ 1 ∀i, j, k

∑
ijk

log

(
bijkP (zk)

(
∑

j′k′ bij′k′P (zk′))(
∑

i′ bi′jkP (zk))

)
bijkP (zk) ≤ θ + ϕ.

If the Assumption 2.3 holds, we can replace the last inequal-
ity constraint with the following two:∑

ij

bijk log

(
bijk

(
∑

j′ bij′k)(
∑

i′ bi′jk)

)
≤ θ ∀k,

∑
ijk

bijkP (zk) log

( ∑
j′ bij′k

(
∑

j′k bij′kP (zk))

)
≤ ϕ.

Theorem 4.2 is a relaxation of the natural bounds by relax-
ing the conditional independence constraint to conditional
mutual information constraint on the interventional distri-
butions. Our method incorporates different cases of IV
violation with the mutual information constraint as shown
in Figure 4.

A lower bound of sensitivity parameter directly follows from
Theorem 3.6 and Lemma 3.3.
Corollary 4.3. Under the setting of Theorem 4.2, the sensi-
tivity parameter is lower bounded by

ϕ ≥ CCE(Z;Y |X)− θ

Apply the Theorem 4.2 to the drug effect example, we obtain
the plot shown in Figure 5, as the strength of the edge ϕ → 0,
our bounds converge to the natural bounds.

4.2. Instrumental Variable Verification

A testable condition for a variable Z to be a valid instrument
follows directly from Theorem 3.6,
Corollary 4.4. Under the Assumption 2.1, a covariate Z is
a valid instrumental variable only if

CCEIV(Z;Y |X) ≤ θ.

Similar to many existing IV verification approaches, the
test with conditional common entropy can only falsify the

invalid instrument since it is a necessary condition for IV.
In Section 6, we show that our proposed method effectively
rejects invalid instrumental variables.

5. Related Work
Bounding the Causal Effect Given a causal graph with
latent confounders, the causal effect might not be uniquely
identifiable. The instrumental variables can be used to de-
rive tight bounds of causal effects in those cases. Balke &
Pearl (1997) discussed bounding causal effects for discrete
treatment and outcome with instrumental variables and the
canonical partition method. Richardson & Robins (2014)
obtained sharp bounds on the average causal effect under the
assumption X ⊥⊥ Yx, Yx′ . Zhang et al. (2022) introduce the
canonical SCM to derive bounds of counterfactual queries
with discrete variables. Duarte et al. (2023) propose an auto-
mated method to determine the feasible region of the causal
effect that can be applied to any causal graph with discrete
variables. More recently, this method has been extended to
continuous variables setting (Kilbertus et al., 2020; Zhang
& Bareinboim, 2021; Hu et al., 2021; Padh et al., 2023).

On the other hand, when the causal graph is unknown, a
Partial Ancestral Graph (PAG) can be learned with causal
discovery algorithms (Spirtes et al., 2001). A PAG describes
the Markov equivalence class of the Maximal Ancestral
Graph (MAG) that represents the projection of the true DAG
on the observed variables. Since multiple DAGs correspond
to a PAG, the causal effect may not be uniquely identifiable.
Malinsky & Spirtes (2016) presents a method to determine
possible causal effects by enumerating the MAG in the
Markov equivalence class. Wang et al. (2023) proposed an
insightful method with super-exponentially less complexity
that outputs the same set of possible causal effects without
enumerating causal graphs.

Instrumental Variables Veritification Pearl (1995) de-
rived the instrumental inequality to falsify the instrumental
variables and conjectured there’s no testable condition when
X is continuous. This has been shown by Bonet (2001)
and Gunsilius (2021). Furthermore, Bonet (2001) showed
that instrumental inequality is not sufficient when the instru-
ment has a cardinality of 3. Richardson & Robins (2010)
derived geometric characterization of instrumental inequal-
ity. Evans (2012) generalized instrumental inequality with
e-separation. Wang et al. (2017) proposed simple statisti-
cal tests to validate the binary instrumental variable model.
Sharma (2018) proposed a necessary and probably sufficient
test for instrumental variables. Kédagni & Mourifié (2020)
generalized instrumental inequality to discrete treatment un-
restricted outcome and instrument. Xie et al. (2022) derived
a necessary condition for a variable to be a valid instrument
for the linear non-Gaussian acyclic causal model.
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Z

U

X x Yx

I(Yx;Z,X) ≤ θ + ϕ

Z

U

X x Yx

I(Yx;X|z) ≤ θ, I(Yx;Z) = 0

Z

U

X x Yx

I(Yx;Z,X) ≤ θ

Z

U

X x Yx

I(Yx;X|z) ≤ θ, I(Yx;Z) ≤ ϕ

Z ⊥⊥ Yx|U

Z ⊥⊥ U Z ⊥⊥ Yx

Z ⊥⊥ U

Figure 4. Single world intervention graphs corresponding to violations of IV assumptions. The left graph with Z violates both Assump-
tion 2.2 and Assumption 2.3. The top graph with Z violates Assumption 2.3. The bottom graph with Z violates Assumption 2.2. The
constraints are more stringent from left to right.

Figure 5. Bounds of the drug effect example in Table 1. The green
curve shows the bounds as ϕ goes to zero. Since the IV is invalid,
the natural bounds overestimate the average causal effect.

Incorporate Invalid IV The invalid instrumental variable
may cause a larger bias than the correlated noise. Bound
et al. (1995) shows that the bias of causal effect estimation
could be exacerbated if the instrumental variable is weakly
associated with treatment. In epidemiology, the allele scores
can be used as instrumental variables (Burgess & Thomp-
son, 2013) for Mendelian randomization. The allele score
summarizes multiple genetic variants that are associated
with risk factors. It requires each variant used to compute
the allele score to be a valid instrumental variable. Kuang
et al. (2020) relaxed this assumption and proposed a new
method to synthesize summarized IV that can handle invalid
IV candidates. Hartford et al. (2021) proposed a machine
learning-based method of instrumental variable estimation
with multiple candidate IV when the majority of them are
valid through an ensemble model of IV estimators. Cinelli
& Hazlett (2022) developed a sensitivity analysis framework
using omitted variable bias to handle the violation of ex-
clusion restriction and exchangeability assumption. They
provided bounds on the bias if the maximum explanatory
power of omitted variables is not stronger than a multiple of
the explanatory power of observed variables.

Information Theoretic Causal Inference Many works in
causality have been done with the information-theoretic ap-
proach. Relative entropy (Janzing et al., 2013) and directed
information (Etesami & Kiyavash, 2014; Quinn et al., 2015)
have been used to study the strength of the causal effect.
Researchers have used entropy (Kocaoglu et al., 2017) and
minimum description length (Budhathoki & Vreeken, 2018)
for learning causal structure. A closely related work by
Finkelstein et al. (2021), introduced entropic inequality con-
straints that are implied by e-separation relations in hidden
variable DAGs. They derive a measure of causal influence
called minimal media entropy that can be used to measure
the strength of an edge. The author also provides a lower
bound for the latent variable in the IV graph in terms of
mutual information. By Lemma 3.2, their lower bound is
smaller than the conditional common entropy. Therefore,
our result offers a tighter lower bound for the minimum
entropy confounder in the IV graph.

6. Experiment
In this section, we first demonstrate the proposed method
with simulated data and then provide some case studies with
real-world data with instrumental variables.

6.1. Examing Conditional Common Entropy with
Synthetic Data

We sample the conditional probability distributions accord-
ing to the factorization in the IV graph. We discuss more
details of the experiment setting in Appendix A.

The results are shown in Figure 6. In most cases, our algo-
rithm outputs a good approximation of the CCEIV .
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(a) |X| = |Y | = |Z| = 2 (b) |X| = 2|, |Y | = |Z| = 4 (c) |X| = |Y | = |Z| = 4

Figure 6. Plots for comparing conditional common entropy with entropy of latent confounder in IV. Note that the value of conditional
common entropy does not monotonically change with the entropy of the latent confounder. This is because the connection induced by the
large entropy latent confounder could be small.

6.2. Testing Instrumental Variables with Conditional
Common Entropy

In this section, we demonstrate the application of condi-
tional common entropy in the IV setting. Similar to the
other IV verification method, we can only falsify the invalid
instrument. We simulate data with a similar setting as the
previous section but from an invalid IV graph as shown in
Figure 1(b). For each sample distribution, we use Algo-
rithm 1 to approximate the conditional common entropy and
compare it with the entropy of the confounder. Similar to
the instrumental inequality, which rejects the distributions
that cannot generated by the IV graph, our approach utilizes
the side information, the entropy of the unobserved con-
founder, to check if a distribution cannot be generated by
an IV graph confounded by a small entropy variable. The
results are shown in Figure 11.

When the side information is not available, i.e., when As-
sumption 2.1 does not hold, we show that the conditional
common entropy can still provide a signal for choosing the
instrumental variable.

We generate distributions with a procedure as described in
Appendix A. Given two candidate IVs: Z and V , where
Z is a valid instrument and V has a direct effect on
Y . We compares the value of CCEIV(Z;Y |X,V ) and
CCEIV(V ;Y |X,Z). As shown in Figure 7, for high-
dimension variables, the valid IV almost always attains
smaller CCEIV compared to the invalid IV. Intuitively, this
is because when computing the CCEIV with valid IV Z,
all other paths between Z and Y are blocked and thus it is
easier to separate those two variables. We demonstrate our
method for selecting IV from more than two candidates in
Appendix J.

6.3. Bounding the Causal Effect with IV and Weakly
Invalid IV

Next, we demonstrate the partial identification of causal
effects with both valid and weakly invalid instrumental vari-
ables. The data are generated as described in Appendix A.

To visualize the results, we measure the gaps between
bounds and group the samples by the entropy of con-
founders. We plot the average value of the gaps within
each group. As shown in Figure 10, for the invalid IV graph
D, we can apply our algorithm to get tighter bounds, while
the natural bounds may not be valid. For the IV graph, we
get bounds in general better than natural bounds when the
entropy of the confounder is small.

6.4. Case Study: Lung Cancer Dataset

In this section, we demonstrate our result in a more realistic
setting with a synthetic dataset introduced by Lauritzen &
Spiegelhalter (1988). We take a subset of variables and
treat others as unobserved variables. Given we have three
variables in the dataset: “Shortness-of-breath (dyspnoea)”,
“bronchitis”, and “smoking”. The goal is to study the causal
effect of bronchitis on dyspnoea. Suppose lung cancer is the
only unobserved variable that might correlated with both
bronchitis and dyspnoea. From the marginal distribution,
we know it has a small entropy H(U) = 0.31. Denote
X = bronchitis , Y = dyspnoea, Z = Smoking, and U =
Lung cancer. We want to use smoking as an instrument
because it does not have a direct effect on dyspnea. However,
we are unsure if it correlated with other variables in the
confounding path, such as lung cancer. In this case, we can
use conditional common entropy to check the validity of the
candidate instrumental variable.

By Proposition 3.7, the conditional common entropy can
be computed exactly. We find the common entropy value,
CCE = 0.104. In this case, the conditional common entropy
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(a) |X| = |Y | = |Z| = 2 (b) |X| = |Y | = |Z| = 3 (c) |X| = |Y | = |Z| = 4

Figure 7. Select an IV from two covariates. For each sample distribution, we plot the conditional common entropy of the outcome Y ,
valid instrument Z (blue), and invalid instrument V (orange). The experimental results show that for high dimensional variables, invalid
instruments almost always yield higher conditional common entropy.

is smaller than the entropy H(U), and we cannot reject
the invalid instrument with CCE. Apply Algorithm 1, we
can find the graph-specific conditional common entropy
CCEIV = 0.393, which allows us to reject the invalid IV.

Since we know θ = 0.31 and ϕ = 0, we can apply
Theorem 4.2 to get bounds of causal effect. With the
entropy constraint, we obtain the average causal effect
bounded by [−0.078, 0.828]. Comparing the bounds with-
out entropy constraint [−0.272, 0.828], our lower bound is
close to zero, which suggests that a negative causal effect
between the two variables is unlikely. Note that the bounds
we obtained are the same as using entropy constraint (Jiang
et al., 2023). However, in this example, the relationship
between smoking and other variables is unknown. Simply
ignoring the variable smoking and using θ might not give
the correct result.

6.5. Case Study: PimaIndiansDiabetes Dataset

We provide another example with the PimaIndiansDiabetes
dataset (Smith & Dickson, 1988) for studying the causal
effect of glucose levels on blood pressure. The dataset
contains 768 entries of measurements of various health con-
ditions such as glucose, insulin, and BMI. Due to the dataset
size and the high dimensionality of the variables, we con-
vert the data to binary variables. For glucose, we group the
data to samples with a threshold of 125 mg/dL, which is a
threshold of abnormal results in fasting blood glucose tests.
Similarly, we binarize the blood pressure with a threshold of
80. Then, for insulin and BMI, we find 85 and 30 as suitable
thresholds that maintain relatively high mutual information
of joint distribution.

In this example, we do not have access to the entropy of
confounders. Therefore, we can compare the CCEIV of the
two candidates: insulin and BMI. We compute the CCEIV
for each candidate as described in Section 6.2. We find

CCEIV for insulin and BMI are 0.66 and 0.91 respectively.
The result suggests that insulin is likely to be an instrument
variable for the causal effect of glucose on blood pressure.

In this example, we discretize the continuous variables with
some critical threshold, e.g., with a glucose level above 125
mg/dL as an indicator of diabetes. Our method is demon-
strated in this example which represents a higher level of
abstraction compared to the original problem.

7. Discussion
In this paper, we propose conditional common entropy
to quantify the strength of the latent confounder and the
strength of a path. We provide an algorithm for approximat-
ing conditional common entropy.

The proposed method in this paper relies on the weak con-
founding assumption, which requires additional knowledge
of the latent confounder. Our method is sound for any
valid upper bound of entropy. In practice, our method
could be used with expert knowledge or other sources of
information. For example, in the case study described
by Pearl et al. (2016) about “Exercise” and “Cholesterol
level” with the “Age” as a confounder. If age information
is not collected during the survey, the joint distribution of
P (Exercise, Cholesterol, Age) is not available and the
causal effect might not be identifiable. In this case, it is
cumbersome to recollect the data, but the marginal distri-
bution over the appropriate population might be easier to
obtain. In the case when some sensitive attributes such as
race, ethnicity, or financial status, are not available per indi-
vidual. One may apply our method with other data sources
to obtain a marginal distribution or only the cardinality of
these variables.
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A. Data Generation in the Synthetic Experiments
For the synthetic experiment, we sample the data according to the graph Figure 2(a) and Figure 1(b). We follow the
procedure described by Chickering & Meek (2012) to sample the conditional distributions.

For the IV graph, we sample P (Z) ∼ Dir(1) and P (U) ∼ Dir(0.1). Similarly, for each z and u, we sample P (X|z, u) ∼
Dir(1). For the variable Y , we sample P (Y |x, u) ∼ Dir(Vi) where Vi is a rolling shifting vector as described by Chickering
& Meek (2012). For the Invalid IV graph, the data generating process is similar to the previous case, except the conditional
distribution P (Y |x, u, z) ∼ Dir(Vi). To control the degree of IV violation, we replace the edge Z → Y with a Markov
chain Z −M − Y where M is a small entropy variable sampled from Dirichlet.

In the IV selection experiment, we sample P (Z), P (V ) ∼ Dir(1) and P (U) ∼ Dir(0.1). Then P (X|z, v, u) ∼ Dir(1) and
P (Y |u, v, x) ∼ Dir(Vi). In each case, we first form the joint distribution according to the DAG, then marginalize over the
latent variable U .

The algorithm converges around 200 iterations. To approximate the CCE, we iteratively search with 100 values of β0 ∈ [0, 1]
and β1 ∈ [0, 0.5]. The result is shown in Figure 8. Then we take the CCE as the minimum entropy H(W ) such that both
I(Y ;Z|X,W ) and I(Z;W ) are smaller than the threshold 1e− 5.

B. Proof of Lemma 3.2
Let the variable W note the variable achieves conditional common entropy with joint distribution P (X,Y, Z,W ). By the
definition of conditional common entropy, when condition on X = x, the variables Z → W → Y form a Markov chain. By
the data processing inequality, we have

I(Z;Y |x) ≤ H(W |x),∀x.

Take the expectation of X on both sides we get

I(Z;Y |X) ≤ H(W |X) ≤ H(W )

C. Proof of Lemma 3.3
Let Z, Y denote a pair of variables and X,U be two sets of variables. Let W1 be the variable that attains CCE(Z;Y |X), i.e.
Z ⊥⊥ Y |X,W1. Let W2 be the variable that attains CCE(Z;Y |X,U), i.e. Z ⊥⊥ Y |X,U,W2.

Suppose for the sake of contradiction that H(W1) > H(W2) +H(U). Let W3 be the Cartesian of the set {W2} ∪U. Then
H(W3) = H(W2,U) ≤ H(W2)+H(U). By the construction, we can find a distribution with W3 such that Z ⊥⊥ Y |X,W3

and H(W3) < H(W1) which contradicts that W1 attains the conditional common entropy.

D. Proof of Theorem 3.6
For W that achieves graph-specific conditional common entropy, it also attains the conditional common entropy for the
distribution P (X,Y, Z). So the first inequality CCE(Z;Y |X) ≤ CCEG ≤ H(U) holds.

For a latent confounder U that is represented by a directed edge in the graph G. Since U is a variable generated by the
underlying causal model and the distribution P (V ∪ {U} satisfies the Causal Markov condition. So, the distribution
P (V ∪ {U} satisfies all the independence constraints from the graph. Therefore we have H(U) ≥ CCEG,↔.

E. Proof of Proposition 3.7
Let P (X,Y, Z) be the joint probability with discrete variables: |Y | = m, |Z| = n. For each X = x, let W be the variable
that attains common entropy for the conditional distribution with

∑
w P (y|w, z, x)P (w|z, x) = P (x, y, z). Without

loss of generality, assumes W has l states. Then P (W |Z, x) is an l by n matrix, and P (W |Z, x)P (Z|x) = P (W |x)
attains the minimum entropy. Any row permutation P̂ (W |Z, x) does not change the value of H(W |x), and we have
P̂ (P |W,x)P̂P (W |Z, x) = P (Y |Z, x) with P̂ (Y |W,x).

Now we show that a W constructed by combining permutation of the common entropy variable is the smaller entropy
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variable such that (Z ⊥⊥ Y |X,W ).

Suppose for the sake of contradiction that there exists another variable U that attains smaller entropy and (Z ⊥⊥ Y |X,U).
Then it holds that (Z ⊥⊥ Y |U, x)∀x. Clearly, this implies at least for some x, we have H(U |x) < H(W |x), which
contradicts that W attains minimum entropy for x.

F. Proof of Theorem 3.8
To show that Algorithm 1 converges to a stationary point, we first write the loss functions that incorporate the constraints.

L(q(W |x, y, z)) = I(Z;Y |X,U) + β0H(W ) + β1I(Z;W ) +
∑
xyz

δxyz

(∑
w

q(w|x, y, z)− 1

)

= I(Z;Y |X,W ) + β0H(W ) + β1H(W )− β1H(W |Z)
∑
xyz

δxyz

(∑
w

q(w|x, y, z)− 1

)

=
∑
xyzw

P (x, y, z)P (w|x, y, z) log P (w|x, y, z)P (w|x)
P (w|x, z)P (w|x, y) + I(Y ;Z|X) + (β0 + β1)H(W )− β1H(W |Z)

The stationary point is where the derivative of the loss function equals zero. The partial derivative with respect to the
parameter is given as

∂P (w|x)
∂P (w|x, y, z)

= P (y, z|x)

∂P (w|x, z)
∂P (w|x, y, z)

= P (y|x, z)

∂P (w|x, y)
∂P (w|x, y, z)

= P (z|x, y)

∂P (w)

∂P (w|x, y, z)
= P (x, y, z)

So the partial derivative with respect to the loss function L is given by

∂L
∂P (w|x, y, z)

= P (x, y, z) [logP (w|x, y, z) + 1) + (logP (w|x) + 1)− (logP (w|x, z) + 1)− (logP (w|x, y) + 1)]

− β0P (x, y, z)(logP (w) + 1) + β1P (x, y, z)(logP (w|z) + 1) + P (x, y, z)δ

= P (x, y, z)

[
log

P (w|x, y, z)P (w|x)P (w|z)β1

P (w|x, z)P (w|x, y)P (w)β0+β1
− β0 + β1 + δxyz

]
.

Settting ∂L
∂P (w|x,y,z) = 0, we get

1

2δxyz−β0+β1
=

P (w|x, y, z)P (w|x)P (w|z)β1

P (w|x, z)P (w|x, y)P (w)β0+β1

P (w|x, y, z) = P (w|x, z)P (w|x, y)P (w)β0+β1

P (w|x)P (w|z)β1

1

2δxyz−β0+β1

14



Conditional Common Entropy for Instrumental Variable Testing and Partial Identification

So, any stationary point should satisfy the equation above. In addition, we want to enforce
∑

w P (w|x, y, z) = 1.

∑
xyz

P (w|x, z)P (w|x, y)P (w)β0+β1

P (w|x)P (w|z)β1

1

2δxyz−β0+β1
= 1

1

2δxyz−β0+β1

∑
xyz

P (w|x, z)P (w|x, y)P (w)β0+β1

P (w|x)P (w|z)β1
= 1

1

2δxyz−β0+β1
=

1∑
xyz

P (w|x,z)P (w|x,y)P (w)β0+β1

P (w|x)P (w|z)β1

So, the normalization condition is satisfied if

P (w|x, y, z) = F (x, y, z)
P (w|x, z)P (w|x, y)P (w)β0+β1

P (w|x)P (w|z)β1

where F (x, y, z) = 1∑
xyz

P (w|x,z)P (w|x,y)P (w)β0+β1

P (w|x)P (w|z)β1

.

This is the same term in the Algorithm 1, which means a stationary point of Algorithm 1 is equivalence to the stationary
point for Equation (5).

G. Proof of Theorem 4.1
For an invalid IV graph G with a direct edge from Z to Y (as shown in Figure 1(b)), Let W denote the variable that
attains the graph-specific conditional common entropy CCEG with joint distribution P̂ (W,X, Y, Z, U). We use P̂ to
denote the distribution output from the algorithm. By the definition of graph-specific conditional common entropy, the
joint distribution should satisfy (1)

∑
w P̂ (w, x, y, z, u) = P̂ (x, y, z, u)∀x, y, z, u and (2) the conditional independence

constraints, including (Z ⊥⊥ Y |X,W,U), (U ⊥⊥ Z|W ), and (W ⊥⊥ X|Z,U).

We first defined the interventional distributions of P̂ (W,X, Y, Z, U) as follows.

P̂ (Yx = y) =
∑
u,w,z

P̂ (y|x, u, w)P̂ (w, u)

P̂ (Yx = y|z) =
∑
u,w

P̂ (y|x, u, w, z)P̂ (w, u|z)

P̂ (Yx = y|z, w) =
∑
u

P̂ (y|x, u, w, z)P̂ (u|z, w)

P̂ (Yx = y|w) =
∑
u

P̂ (y|x, u, w)P̂ (u|w)

Then, we show that the first two distributions are the same as the interventional distribution from the original distribution.

15
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P (Yx = y) =
∑
u,z

P (y|x, u, z)P (u, z) (backdoor adjustment)

=
∑
u,z

(∑
w

P̂ (y|x, u, w)P̂ (w|x, u, z)

)
P (u, z) (Z ⊥⊥ Y |X,W,U)

=
∑
u,z

(∑
w

P̂ (y|x, u, w)P̂ (w|u, z)

)
P (u, z) (W ⊥⊥ X|Z,U)

=
∑
u,z,w

P̂ (y|x, u, w)P̂ (w, u, z)

=
∑
u,w

P̂ (y|x, u, w)P̂ (w, u) (marginalize out z)

= P̂ (Yx = y)

P (Yx = y|z) =
∑
u

P (y|x, u, z)P (u|z) (backdoor adjustment)

=
∑
u

(∑
w

P̂ (y|x, u, w, z)P̂ (w|x, u, z)

)
P (u|z)

=
∑
u

(∑
w

P̂ (y|x, u, w, z)P̂ (w|u, z)

)
P (u|z) (W ⊥⊥ X|Z,U)

=
∑
u,w

P̂ (y|x, u, w, z)P̂ (w, u|z)

= P̂ (Yx = y|z)

For the last two, it is clear that it is compatible with the original interventional distribution after marginalizing out w.∑
w

P̂ (Yx = y|z, w)P̂ (w|z)

=
∑
w,u

P̂ (y|x, u, w, z)P̂ (u|z, w)P̂ (w|z)

=
∑
w,u

P̂ (y|x, u, w, z)P̂ (u,w|z)

= P̂ (Yx = y|z) = P (Yx = y|z)

∑
w

P̂ (Yx = y|w)P̂ (w)

=
∑
w,u

P̂ (y|x, u, w)P̂ (u|w)P̂ (w)

=
∑
w,u

P̂ (y|x, u, w)P̂ (u,w)

= P̂ (Yx = y) = P (Yx = y)

Next, we want to show that in the distribution of P̂ (W,X, Y, Z, U), the variables (Z,W, Yx) forms a Markov chain.
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P (Yx|w, z) =
∑
u

P̂ (y|x, u, w, z)P̂ (u|z, w)

=
∑
u

P̂ (y|x, u, w)P̂ (u|z, w) (Z ⊥⊥ Y |X,W,U)

=
∑
u

P̂ (y|x, u, w)P̂ (u|w) (U ⊥⊥ Z|W )

= P̂ (Yx = y|w)

Since the interventional distributions are equal, we have I(Yx;Z) = Î(Yx;Z). Then by the data processing inequality, we
have I(Yx;Z) = Î(Yx;Z) ≤ H(W ).

H. Proof of Theorem 4.2
To show the LB and UB are bounds of the causal effect, we need to show that in the IV and invalid IV graphs, the causal
effect lies in the feasible region of the optimization problem.

Let P (Yxt , X|Z) be the counterfactual distribution when intervening on xt. Then the causal effect P (yo|do(xt)) =∑
jk P (Yxt = yo, xj |zk) and the follow equalities hold.

bitkP (zk) = P (Yxt
= yi, xt, zk) = P (Yxt

= yi, xt|zk)P (zk)∑
ij

bijk = 1 =
∑
ij

P (Yxt
= yi, xj |Z)

∑
i

bijk = P (xj |zk) =
∑
i

P (Yxt
= i, xj |zk)

So, there exists some bijk that satisfies the equality constraints for the causal effect.

Then, we only have to show that for each graph, there is a solution under our mutual information constraints.

First, consider case 1 if a variable Z violates both Assumption 2.2 and Assumption 2.3. Let W be the variable that achieves
the conditional common entropy CCEG . By the definition, we have Z ⊥⊥ Y |X,U,W . Similar to the proof of Theorem 4.1,
we have that

I(Yx;Z) ≤ ϕ. (6)

Furthermore, since Z and U blocks all the backdoor path from X to Y , we have X ⊥⊥ Yx |Z,U and by the data processing
inequality,

I(Yx;X|Z) ≤ H(U |Z) ≤ θ (7)

So we have I(Yx;Z,X) =
∑

ijk bijkP (zk) log
(

bijkP (zk)
(
∑

j′,k′ bij′k′P (zk))(
∑

i′ bi′jkP (zk))

)
≤ θ + ϕ in this case.

The same inequality holds for case 2, where the Assumption 2.2 holds. In that case, we have ϕ = 0 since there is no direct
path between Z and Y . So we have I(Yx;Z,X) ≤ θ

For case 3, where the Assumption 2.3 holds, we have Z ⊥⊥ U . So the inequality in Equation (7) becomes

I(Yx;X|z) ≤ H(U |z) = H(U) ≤ θ ∀z.

If in addition, the Assumption 2.2 hold, we have 0 ≤ I(Yx;Z) ≤ ϕ = 0. So, we have shown in each case of the IV graph
that there exists a solution to our optimization problem in the feasible space, so the bounds are valid.

I. Additional Case Study Experiment
To examine the performance of our IV selection method in real-world data, we take the two datasets that have been widely
used for IV literature and select IV using our method.
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For the Return of Schooling dataset (Angrist & Krueger, 1991), researchers interested in the causal effect of years of
schooling (X) on the wage level (Y ). We select the IV from two candidates: quarter of birth (Z) and year of birth
(V ). We discretize the variables and estimate the graph-specific conditional common entropy CCEIV(Z;Y |X,V ) and
CCEIV(V ;Y |X,Z).

Similarly, for the Colonial Origins of Economic Development dataset (Acemoglu et al., 2001), for the causal effect of
colonial institutions (X) to the GDP level (Y ), we compare two IV candidates: mortality (Z) and latitude (V ). The result is
summarized in Table 2. For both datasets, our results conform with the studies in the IV literature. We apply a rather trivial
procedure to discretize the data. In practice, one could use more sophisticated methods such as entropy-based discretization
to maximize the mutual information between discretized variables.

Return of Scholing Colonial Origins
X Years of Schooling Proxy of Colonial Institutions
Y Wage Level GDP level
Z Quarter of Birth Latitude

CCEIV(Z;Y |X,V ) 0.820 1.318
CCEIV(V ;Y |X,Z) 2.945 2.297

Table 2. Drug Effect Example

J. Selecting IV From More Candidates
To examine our method of selecting IV in a more general setting, we consider two cases: one variable is valid IV among
three candidates, and two variables are valid IV among three candidates. We generate the simulated data with a similar
procedure as described in Appendix A. For the experiments with one valid IV (Z) and two invalid IV (V1, V2), we estimate
the CCEIV(Z;Y |X,V1, V2), CCEIV(V1;Y |X,Z, V2), and CCEIV(V2;Y |X,Z, V1). The results are shown in Figure 8.

(a) |Z| = |V1| = |V2| = 2 (b) |Z| = |V1| = |V2| = 3

Figure 8. Selecting one IV from three

For the experiments with two valid IV (Z1, Z2) and one invalid IV (V ), we estimate the CCEIV(Z1;Y |X,Z2, V ),
CCEIV(Z2;Y |X,Z1, V ), and CCEIV(V ;Y |X,Z1, Z2). The results are shown in Figure 9.

In both experiments, the results show that our method identifies the valid IV with high probability. In general, this method
can be used as a confidence score when comparing IV candidates.

K. Additional Results
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(a) |Z| = |V1| = |V2| = 2 (b) |Z| = |V1| = |V2| = 3

Figure 9. Selecting two IVs from three

(a) IV graph IV (b) Invalid IV graph D

Figure 10. Average gaps between bounds.
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(a) |X| = |Y | = |Z| = 2 (b) |X| = |Y | = |Z| = 3 (c) |X| = |Y | = |Z| = 4

Figure 11. Invalid IV rejection with CCE
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