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Abstract
Flexible sensors hold promise for human motion
capture (MoCap), offering advantages such as
wearability, privacy preservation, and minimal
constraints on natural movement. However, ex-
isting flexible sensor based MoCap methods rely
on deep learning and necessitate large and diverse
labeled datasets for training. These data typically
need to be collected in MoCap studios with spe-
cialized equipment and substantial manual labor,
making them difficult and expensive to obtain
at scale. Thanks to the high-linearity of flexible
sensors, we address this challenge by proposing
a novel Sim2Real solution for hinge joint track-
ing based on domain adaptation, eliminating the
need for labeled data yet achieving comparable
accuracy to supervised learning. Our solution re-
lies on a novel Support-based Domain Adaptation
method, namely SuDA, which aligns the supports
of the predictive functions rather than the instance-
dependent distributions between the source and
target domains. Extensive experimental results
show the effectiveness of our method and its su-
periority over state-of-the-art distribution-based
domain adaptation methods in our task.

1. Introduction
Human motion capture (MoCap) has garnered significant
attention for its vast potential in comprehending human in-
tentions and its capacity to control physical devices and
systems effectively (Yi et al., 2022; Shen et al., 2023). As
an alternative to vision-based and inertial-based solutions,
flexible sensors are emerging as they offer the benefits of
bio-compatibility, high stretchability, lightweight, and easy
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Figure 1. (a) Our Sim2Real approach simulates flexible sensors to
predict joint angle in the real world. (b) Distribution Registration
registers the feature distributions Dist(P (xs)) and Dist(P (xt))
of the source and target domains, which fails to match points of the
same label ys=yt when the two distributions are inherently differ-
ent. In contrast, the proposed Support Registration registers the
function supports supp(fs) and supp(ft) that are independent of
the specific distributions, ensuring successful domain adaptation.

integration into clothing, enabling long-term monitoring of
human physical status (Zazoum et al., 2022; Chen et al.,
2023a). Hence, there has been a growing demand to incor-
porate wearable flexible sensors into MoCap (Luo et al.,
2021; Zhang et al., 2022b; Luo, 2023).

Deep neural networks have become the leading methodol-
ogy for flexible sensor-based MoCap (Mathis et al., 2020;
Zuo et al., 2023) due to their strengths in modeling the
complex relationships between sensor signals and motions.
However, the conflict between data-hungry deep neural net-
works and the costly, labor-intensive process of collecting
paired motion and sensor data poses a challenge in the real-
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world application of flexible sensor-based Mocap. Specifi-
cally, acquiring such paired data involves setting up motion
capture studios equipped with both sensor reading collection
equipment and experienced staff, which is expensive and
labor-intensive to conduct at scale. A full-fledged optical
MoCap setup typically costs between $25K and $500k.

Thanks to the high-linearity of flexible sensors, our paper
addresses the conflict mentioned above by proposing a novel
Sim2Real solution, which eliminates the need for any paired
motion and sensor data yet achieves comparable accuracy.
Specifically, a support-based domain adaptation (SuDA)
method is proposed to align the mapping between sensor
and motion from the simulated (source) domain to the real-
world (target) domain in a simple yet effective way. In con-
trast to state-of-the-art distribution-based domain adaptation
methods (i.e., DiDA) that register the instance-dependent
distributions between the source and target domains (Fig. 1),
SuDA registers the supports of the predictive functions in-
stead, making it independent of distribution variations re-
sulting from body shapes, motions, sensor positions, etc..
Without loss of generality, we empirically evaluate our solu-
tion by predicting the hinge joint angle using a smart pad
equipped with two flexible sensors and worn on users’ joints.
Extensive experimental results demonstrate the effective-
ness of our method and its superiority over state-of-the-art
distribution-based domain adaptation methods in human
motion capture.

Our contributions are three-fold:

• We propose a Sim2Real solution for human hinge joint
tracking using flexible sensors, eliminating the need
for an expensive real-world data collection process yet
achieving comparable accuracy to supervised learning.

• We propose a novel support-based domain adaptation
method (SuDA) that registers predictive function sup-
ports rather than data distributions, leading to more
accurate and generalizable results.

• We conduct extensive experiments covering various
application scenarios (different users, motions, wearing
positions and joints) to show the effectiveness of our
method.

2. Related Work
2.1. Motion Capture with Flexible Sensors

Human motion capture has been actively explored due to its
competence in learning profound knowledge about human
motion from raw sensor inputs (Wang et al., 2022). In
addition to established motion capture systems using the
multi-camera matrix (such as Vicon), alternative methods
mainly include vision-based (Tian et al., 2023) and IMU-
based approaches (Yi et al., 2022; Mollyn et al., 2023).

Flexible sensors have been used for long-term monitoring
of human physical status, precisely motion capture (Zhang
et al., 2022b; Chen et al., 2023a), human-computer inter-
faces (Liu et al., 2022; Zhang et al., 2020; Fang et al., 2023),
soft robotics (Guo et al., 2023), etc., for their advantages of
bio-compatibility, high stretch-ability, lightweight, and ease
of integration within clothing (Zazoum et al., 2022).

For MoCap, existing methods have explored the use of
flexible sensors in tracking the motion of the full body (Chen
et al., 2023b), upper body (Jin et al., 2020a; Zhou et al.,
2023), fingers (Glauser et al., 2019), lower limbs (Kwak
et al., 2020), elbow joints (Abro et al., 2019; Chen et al.,
2023a), and knee joints (Yu et al., 2021).

However, all these methods face critical data scarcity chal-
lenges, requiring collection across different users, motion
types, and wearing sessions (Chen et al., 2023a; Kang et al.,
2022). This typically involves MoCap studios, specialized
equipment, and significant manual labor, making large-scale
data acquisition difficult and expensive.

2.2. Sim2Real Paradigm

The Sim2Real paradigm trains models on simulated data and
then applies them to solve real-world problems, thus suc-
cessfully alleviating the data scarcity problem in machine
learning (Höfer et al., 2021; Nikolenko, 2021). Researchers
use this approach to develop cost-effective solutions for
MoCap (Huang et al., 2018; Yi et al., 2021; 2022), pose
estimation (Lin et al., 2021), pedestrian detection (Fabbri
et al., 2021; Stauner et al., 2022), action recognition (Win-
kler et al., 2022), autonomous driving (Müller et al., 2018;
Zhou et al., 2019) and robotics (Abeyruwan et al., 2023;
Kataoka et al., 2023; Wu et al., 2023). These works use
generative models that make simulation look more like real-
ity (Bousmalis et al., 2017), domain adaptation to mitigate
domain discrepancy (Doersch and Zisserman, 2019), or
randomize the simulator to increase the distribution overlap
(Horváth et al., 2022).

To our knowledge, Park et al. (2020) is the only work that
adopted a Sim2Real approach for flexible sensor based Mo-
Cap, which simulates the interplay between flexible capaci-
tive sensors and human motions using OpenSim (Delp et al.,
2007). However, unlike their use of a distribution-based
method to fine-tune models pre-trained with synthetic data
using real labeled data, our SuDA achieves a high accuracy
comparable to supervised learning without the need for any
real labeled data and is therefore more cost-effective.

2.3. Domain Adaptation

Domain adaptation (DA) aims to mitigate the gap between
the source and target domains so that models trained in the
source domain(s) can be applied to the target domain(s).
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Figure 2. (a) Our hardware. R1 and R2 denote the two sensors on
our smart pad, and θ denotes the joint angle. (b) High linearity
characteristics of capacitive strain sensors.

To date, distribution-based domain adaptation (DiDA) has
dominated DA, which aims to reduce the distribution dis-
crepancy between two domains (Pan and Yang, 2009). With
advent of deep learning, pioneer works showed that deep
neural networks could learn more transferable features for
domain adaptation (Yosinski et al., 2014). Since then, vari-
ous solutions have been proposed to align the distributions
(or their statistics) of features extracted by deep neural net-
works in the source and target domains. For example, Deep
Domain Confusion (DDC) (Tzeng et al., 2014) first pro-
posed the use of Maximum Mean Discrepancy (MMD) loss
to align the feature distributions; Deep Adaptation Networks
(DAN) (Gretton et al., 2012) extends the idea to the use of
multiple-kernel MMD; Deep CORAL (Sun and Saenko,
2016) proposed CORAL loss to align statistics of feature
distributions for domain adaptation. This distribution-based
formulation has become a “standard” for state-of-the-art
domain adaptation solutions (Ganin and Lempitsky, 2015;
Yu et al., 2019; Liu et al., 2021; Deng et al., 2021; Yang
et al., 2022; Lee et al., 2022; Garg et al., 2023).

Despite their effectiveness, DiDA methods struggle when
there is a significant distribution disparity between the
two domains (a.k.a., Negative Transfer), which is a long-
standing and challenging issue in DA (Rosenstein et al.,
2005; Wang et al., 2019; Jin et al., 2020b; Zhang et al.,
2022a). Addressing this challenge, we propose a novel
support-based domain adaption (SuDA) paradigm that
aligns the supports rather than distributions between two
domains. Thanks to its independence from distribution dis-
parity, SuDA produces more accurate and generalizable
motion capture results.

3. Real and Simulation Data Preparation
3.1. Real Data with Flexible Sensors

We develop a prototype by augmenting a standard smart pad
with two capacitive strain sensors with high-linearity placed
on the elbow’s olecranon side. Our method aims to estimate
the bending angle, θ, of human joints, denoted as yt, from
the two sensor readings, denoted as xt = {R1, R2} (Fig. 2).
The high-linearity nature of capacitive strain sensors guaran-

tees their capacitance (i.e., sensor readings) increases with
the stretch caused by joint bending (Atalay et al., 2017;
Totaro et al., 2017; White et al., 2017; Wang et al., 2017).
Please see Appendix A about our hardware.

3.2. Simulation Data with Body-Fabric-Sensor Model

The ultimate goal of our simulation approach is to mimic
characteristics of the capacitive strain sensors.

To achieve this, we here construct a body-fabric-sensor
model to generate the paired sample between the simulated
joint rotation and sensor readings. We used the SMPL model
to create fbx files of simulated human 3D models. The entire
process of synthesizing digital mannequins through SMPL
models can be divided into four major stages as follows.

3.2.1. BODY MODELING

We employ the Skinned Multi-Person Linear (SMPL)
(Loper et al., 2015) model to simulate human body and
movement. It comprises the following four steps.

• Template construction: we first defined a mean tem-
plate as the foundational pose of the human body and
then represent each human pose using parameters that
describe its offsets from the fundamental pose.

• Shape variation: we specified the shape of the simu-
lated human body using the SMPL shape parameter
and obtained a mesh with specific height and weight.

• Mesh skinning: We only calculated the mesh in the
static pose in the previous two stages. When human
skeleton joints move, the “skin” composed of vertexes
will change with the movement of the skeleton joints;
this process is called skinning.

• Motion simulation and binding: To address the effect of
different motions, we collected approximately 30,000
frames of MoCap data from the free online animation
library Mixamo containing eleven expressive motions
(e.g., Chincken Dance, Robot Dance).

3.2.2. FABRIC DEFORMATION

To reduce the Sim2Real domain gaps arising from creases of
real fabric, we used the cloth database built into the clothing
design software Marvelous Designer. Considering the basic
parameters such as elasticity, friction, and thickness of real
fabric pads and visual comparison inspection of simulation
results, we selected hard-jeanet from the database.

3.2.3. SENSOR STRETCHING

The flexible sensors we used exhibit high linearity and re-
peatability (R2 = 0.999) with low hysteresis (Fig. 2). We
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can approximate its readings by its stretched length. Specif-
ically, we compute the changes in the geodesic distance be-
tween sensor endpoints in the elbow pad in different frames
to measure sensor stretching and its readings. The simulated
sensor readings are represented as xs.

3.2.4. ELBOW BENDING ANGLE

We calculate the elbow angle of the SMPL model created
above using the 3D coordinates of its elbow joint in different
frames. This is the ys in the source domain.

4. Support-based Domain Adaptation (SuDA)
The overall objective of SuDA is to minimize the support
divergence between the two domains.

4.1. Preliminaries

Definition of Support For a real-valued function f : X 7→
R defined on a domain X, we denote the set-theoretic sup-
port of f as supp(f), i.e., the set of points in X where f is
non-zero:

supp(f) = {x ∈ X : f(x) ̸= 0} (1)

Definition 4.1 (SuDA). Let Ds = {(xs, ys) ∈ (Xs ×
Ys)}Ns

s=1 be the source domain, Dt = {xt ∈ Xt}Nt
t=1 be the

unlabeled target domain, and let fs and ft be the motion pre-
diction functions defined on Xs and Xt respectively, SuDA
aims to learn an optimized f∗

t by minimizing a given loss
function L (e.g., MAE) computed between the prediction
ft(x̂t), where x̂t is estimated from xs, and its corresponding
label ŷt = ys:

f∗
t = argmin

ft

EDs
L(ft(x̂t), ŷt)

= argmin
ft

EDs
L(ft(R(xs)), ys)

(2)

where the Support Registration function R is defined as:

R : supp(fs) 7→ supp(ft) (3)

4.2. The Rationale Underpinning SuDA

The effectiveness of SuDA hinges on the assumption that
supp(fs) and supp(ft) are bijective (i.e., one-to-one corre-
spondence), i.e., ∀xa

s , x
b
s ∈ supp(fs), ∀xa

t , x
b
t ∈ supp(ft):

xa
s ̸= xa

t , x
b
s ̸= xb

t

yb − ya =

∫ xb
s

xa
s

dfs
dxs

dxs =

∫ xb
t

xa
t

dft
dxt

dxt

(4)

Eq. 4 guarantees the the correctness of SuDA, which ensures
that ya and yb are the labels corresponding to xa

s , x
a
t and

xb
s, x

b
t respectively through Support Registration:

R : xa
s 7→ xa

t , x
b
s 7→ xb

t (5)

Consequently, the success of SuDA is contingent upon the
effectiveness of the Support Registration function R.

4.3. Support Registration in Flexible Sensor-Based
Hinge Joint Tracking

In our task, y denotes joint angles, supp(fs) and supp(ft)
denote geodesic distances on simulated motion meshes and
flexible sensor readings, respectively. The overall object
of Support Registration is to map xs and xt with the same
label (i.e., ys = yt) properly.

The intrinsic degree of freedom of the elbow joint Dim =
1, therefore we parameterize the curves of supp(fs) and
supp(ft) with parameter l ∈ [0, 1] using geometric curve
fitting and have:

supp(fs) ↔ gs(l)

supp(ft) ↔ gt(l)
(6)

where gs(l) and gt(l) denote the parametric equations of
supp(fs) and supp(ft), respectively. After parameteriza-
tion, we find data with equal parameter change (i.e., l − 0)
have the same label change (i.e., yb − ya):∫ xb

s

xa
s

dfs
dxs

dxs =

∫ xb
t

xa
t

dft
dxt

dxt =

∫ l

0

dfl
dl

dl (7)

which ensures the success of SuDA in our flexible sensor-
based MoCap task. Please see evidence of Eq. 7 in Ap-
pendix C.

To find a proper mapping between corresponding xs and xt

with the same label, we can define the Support Registration
function R for flexible sensor-based motion capture as:

R : xs 7→ l 7→ gt(l) = x̂t (8)

Then we simplify subsequence calculations by quantizing
each of the support curves into n + 1 evenly-distributed
proxy points:

gQs (l) :{p0s, p1s, ..., pn−1
s , pns }, where pis = gs(l ∗ i/n)

gQt (l) :{p0t , p1t , ..., pn−1
t , pnt }, where pit = gt(l ∗ i/n)

(9)

This allows us to define the quantized version of our Support
Registration function, denoted as RQ, by mapping xs to its
nearest pis:

RQ : xs 7→ pis 7→ i 7→ pit = x̂t (10)
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Figure 3. Pipeline Overview. Top row: the generation of simulation data with our Body-Fabric-Sensor model, which consists of four
main parts: 1. Body Modeling 2. Fabric Deformation 3. Elbow Bending Angle 4. Sensor Streching. Bottom row: the proposed
support-based domain adaptation method (SuDA). SuDA first parameterizes the supports of source and target domain, denoted as
supp(fs) and supp(ft), into n+ 1 evenly-distributed proxy points respectively, denoted as gQs (l) and gQt (l). Then, it applies a novel
Support Registration RQ to map xs to its nearest pis. Finally, we train the predictive function f∗

t on the target domain using (x̂t, ŷt =ys)
and finally to x̂t.

We use RQ in all our experiments. Alg. 1 shows the pseudo-
code of our SuDA method.

(a) Before SuDA (b) After SuDA

Figure 4. Orange and Blue: source and target data samples. Black:
parameterized and quantized supports. (a) Two scatter curve tracks
are our data samples and represent function support of the two
domains. (b) Then, we use curve parameterization to quantize
function support into several segments. According to Eq. 7, points
with the same parameters have the same labels and can be regis-
tered together by RQ.

5. Experimental Results
5.1. Experimental Setup

5.1.1. IMPLEMENTATION DETAILS

Following common practice, we implement the predictive
function in the target domain (f∗

t in Step 4 of Alg. 1) with
a neural network consisting of LSTM and MLP layers and
train it using an SGD optimizer with a learning rate of
1e−3 and a weight decay of 5e−4, momentum= 0.9, batch
size= 32, and training epoch e = 50. We use a LRscheduler

Algorithm 1 Support Based Domain Adaptation (SuDA)

Input: Source domain data Ds = {(xs, ys)}Ns
s=1, target

domain data Dt = {xt ∈ Xt}Nt
t=1, loss function L

Output: Prediction function f∗
t on the target domain;

1: Parameterize supp(fs) and supp(ft) with parameter
l ∈ [0, 1] using {xs}Ns

s=1 and {xt}Nt
t=1, respectively;

2: Quantize the parameterized supports (Eq. 9)
3: Conduct (quantized) support registration RQ to map xs

to x̂t with ŷt = ys (Eq. 10);
4: Optimize f∗

t = argmin
ft

EDs
L(ft(x̂t), ŷt) (Eq. 2) us-

ing gradient descent (e.g., SGD);
5: Return f∗

t

with γ = 0.0003 and decay = 0.8. We employ an MAE loss
as the L used in Alg. 1: Lmae =

∑n
i=1 |yi − f(xi)|/n.

To make a fair comparison, we use the same network ar-
chitecture, optimization strategy, and loss function when
training our Sim2Real method and the two baselines: su-
pervised learning and Real2Real. All experiments were
conducted on a desktop PC with an Intel i7-12700KF CPU
and an NVIDIA RTX 3090 GPU. The appendix includes
details on network architectures(including implementations
of methods in the following comparison experiment) and
the dataset used in our experiments.
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5.1.2. REAL DATASET Dt∗

After obtaining the ethical approval, we collected our real
dataset D(id,m,wp)

t∗ consisting of paired motion and sensor
readings, where id denotes user ID, m denotes motion, and
wp denotes wearing position, as follows. Specifically, we re-
cruited 11 participants (id = 1, 2, ..., 11) and asked them to
perform four basic motions (m = run,walk, jump, clap)
at 12 wearing positions (wp = 30◦, 60◦, 90◦, ..., 360◦),
and collected 371,661 frames of data in total. For each
(id,m,wp) instance, we split its data into a training set
D(id,m,wp)

t,train and a test set D(id,m,wp)
t∗,test by 0.7 : 0.3, where we

remove the motion labels in the training set to satisfy the
unsupervised domain adaptation conditions in real-world
application scenarios. Note that we use Dt∗ rather than Dt

as we need to collect ground truth motion labels to evaluate
our method.

We report the mean and standard deviation of the test ac-
curacy across all D(id,m,wp)

t∗,test in a set of instances specified
by different (id,m,wp) over four runs in all our experi-
ments. Unless specified, we evaluated all combinations of
(id,m,wp).

5.1.3. SIMULATION DATASET Ds

With the simulation platform introduced above, we built
our simulation dataset using around 30,000 motion capture
frames involving eleven complex semantic motions (e.g.,
swing-dancing, chicken-dancing, hybrid motions) gathered
from the Mixamo online animation library (Mixamo Ani-
mation, 2022).

5.2. Comparison with Supervised Learning

As Table 1 shows, although using no real data, the pro-
posed method, denoted as Ours (Sim2Real), achieves a
high accuracy comparable to that of supervised learning,
demonstrating its effectiveness in flexible sensor-based hu-
man motion capture. To further justify our choice of using
simulated rather than real data, we compared it to an addi-
tional baseline, denoted as Ours (Real2Real), which applies
the proposed SuDA to a piece of real data collected with a
random user, motion, and wearing position. Experimental
results show that Ours (Sim2Real) achieves much higher
accuracy than Ours (Real2Real), suggesting that our simula-
tion creates data with more diverse motion features and less
noise at a lower cost, which is more desirable in practice.

5.3. Comparison with State-of-the-Art Methods

As Table 2 shows, we compared our method with state-of-
the-art (SOTA) distribution-based domain adaptation meth-
ods. For a fair comparison, we have adapted the official
code provided by the authors to share the same input and
output format as ours. Please see the Appendix for more

Table 1. Results of our method (Sim2Real) and two baselines: su-
pervised learning and ours (Real2Real).

Method MAE (deg)

Ours (Real2Real) 11.91 ± 4.87
Ours (Sim2Real) 7.60 ± 2.58

Supervised 6.42 ± 2.73

Table 2. Comparison of our method (SuDA) with SOTA
distribution-based domain adaptation methods.

Method MAE (deg)

Source Only 21.93 ± 8.83
DAN (Long et al., 2015) 22.38 ± 8.34
DANN (Ganin and Lempitsky, 2015) 21.51 ± 8.03
D-CORAL(Sun and Saenko, 2016) 21.89 ± 8.85
DAAN (Yu et al., 2019) 21.80 ± 8.28
BNM (Cui et al., 2020) 21.70 ± 8.61
Ours (SuDA) 7.60 ± 2.58

Supervised 6.42 ± 2.73

details on implementations. It can be observed that SuDA
outperforms all SOTA DiDA methods, which demonstrates
its superiority in flexible sensor-based hinge joint tracking.

5.4. Robustness against Different Users, Motions &
Wearing Positions

5.4.1. ROBUSTNESS AGAINST DIFFERENT USERS

As Table 3 shows, our method consistently achieves high ac-
curacy comparable to supervised learning and demonstrates
significant improvements over competing methods for all
11 users, demonstrating the robustness of our method across
different users.

5.4.2. ROBUSTNESS AGAINST DIFFERENT WEARING
POSITIONS

Similar to the above, our method achieves high accuracy
comparable to supervised learning and demonstrates its su-
periority over competing methods across different wearing
positions (Table 4).

5.4.3. ROBUSTNESS AGAINST DIFFERENT MOTIONS

The same conclusions hold for different motions: Ours
is comparable to supervised learning while significantly
outperforming competing methods (Table 5).

In addition, we observed that: i) the accuracy of both our
SuDA method and supervised learning change with dif-
ferent users, wearing positions and motions, showing that
the inherent variations among instances still account for
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Table 3. Performance comparison over different users. Source Only: the same predictive neural network trained on the source domain
(simulated) data only. We enumerate on id while averaging over all possible values of m and wp of Did,m,wp

t∗,test .
Method id =1 2 3 4 5 6 7 8 9 10 11
Source Only 17.94±0.34 32.14±1.14 12.94±2.28 24.34±0.67 15.34±0.98 16.62±1.63 21.26±0.69 33.28±5.58 18.34±1.12 14.90±3.37 26.15±1.93
DAN 21.17±3.62 34.43±1.50 12.81±0.18 24.96±1.05 17.43±0.67 18.02±0.73 20.36±0.33 33.95±4.14 16.80±2.48 14.37±3.03 24.37±0.82
DANN 17.62±1.48 31.60±1.24 12.02±0.70 24.37±0.98 14.72±2.30 16.31±1.22 19.65±0.67 33.43±5.69 18.96±1.59 15.33±3.53 24.75±0.39
D-CORAL 17.46±0.87 31.82±1.25 12.23±0.77 25.20±1.12 13.29±2.18 16.21±2.24 21.09±0.69 33.56±3.73 17.11±2.20 15.13±3.16 26.18±1.17
DAAN 18.43±0.35 33.16±1.39 12.53±0.68 25.36±0.71 14.12±1.25 16.40±2.48 21.03±0.20 31.67±5.01 16.46±3.24 15.51±2.62 25.36±0.77
BNM 18.41±0.44 32.14±1.14 12.15±0.53 24.34±0.68 13.20±2.00 16.11±2.10 21.08±0.77 33.53±4.02 16.99±2.02 14.99±3.29 26.53±2.17
SuDA (Ours) 2.57±0.13 2.55±0.09 6.72±0.36 7.37±0.75 5.76±0.08 9.65±0.16 7.59±0.16 7.43±0.29 10.16±0.72 12.87±3.16 14.11±1.31
Supervised 1.41±0.04 1.96±0.07 3.06±0.13 2.54±0.16 6.51±0.23 7.58±0.31 9.18±0.98 3.33±0.36 7.67±0.38 15.12±1.00 17.01±0.27

Table 4. Performance comparison over different wearing positions. Source Only: the same predictive neural network trained on the source
domain (simulated) data only. We enumerate on wp while average over all possible values of id and m of Did,m,wp

t∗,test .
Method wp = 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦ 360◦

Source Only 17.94±0.34 13.57±0.67 12.11±1.38 17.21±3.90 21.75±1.98 27.04±1.76 46.70±1.64 24.07±1.45 16.60±0.57 12.96±0.49 19.78±2.15 11.34±0.53
DAN 21.17±3.62 16.24±0.68 12.44±1.08 19.59±2.79 25.44±1.62 25.41±0.49 45.01±3.26 24.04±3.53 16.28±0.67 13.02±0.57 20.34±0.69 19.85±0.91
DANN 17.62±1.48 13.96±0.44 12.30±1.00 19.20±2.10 22.00±2.13 28.15±2.60 42.92±3.64 24.03±0.62 17.04±1.02 12.77±0.22 19.37±1.62 20.24±0.31
D-Coral 17.46±0.87 14.04±1.00 12.51±1.08 19.74±4.73 24.34±2.53 28.50±1.49 46.75±1.38 24.52±0.58 16.65±0.22 13.09±0.25 19.50±1.39 19.95±0.87
DAAN 18.43±0.35 13.76±0.28 12.81±1.45 20.92±2.70 24.76±2.41 26.92±2.19 44.70±3.09 24.85±0.66 15.83±0.93 12.67±0.18 19.52±1.69 19.65±0.44
BNM 18.41±0.44 13.88±0.59 12.10±1.38 17.21±3.90 24.34±2.53 27.47±1.76 46.70±1.64 25.04±1.22 16.37±0.57 12.96±0.49 19.50±1.39 19.89±0.88
SuDA (Ours) 2.57±0.13 5.55±0.36 5.41±0.23 4.05±0.77 9.39±0.14 6.79±0.14 8.18±0.25 7.99±0.31 10.59±0.42 11.69±0.24 13.45±0.19 5.83±0.23
Supervised 1.41±0.04 6.52±0.45 8.05±0.86 2.55±0.11 6.88±0.29 6.25±0.30 8.49±0.39 4.83±0.19 6.61±0.09 7.61±0.13 10.86±0.23 6.59±0.24

Table 5. Performance comparison over different motions. Source
Only: the same predictive neural network trained on the source
domain (simulated) data only. We enumerate on m while average
over all possible values of id and wp of Did,m,wp

t∗,test .

Method m =Jump m =Run m =Clap m =Walk
Source Only 27.49±0.49 13.76±0.62 36.19±2.40 31.34±3.08
DAN 27.29±1.51 12.79±0.63 37.62±0.70 17.15±1.87
DANN 26.04±0.44 13.50±0.27 37.29±1.53 17.86±0.90
D-Coral 27.79±0.64 13.78±0.63 35.85±1.55 17.72±1.78
DAAN 28.04±0.30 13.86±0.79 36.78±1.91 17.45±2.05
BNM 27.62±0.50 13.63±0.64 36.19±2.40 17.54±1.65
SuDA (Ours) 7.63±0.07 11.00±0.10 3.98±0.17 8.59±0.23
Supervised 6.51±0.05 10.55±0.23 4.30±0.13 7.87±0.08

significant differences in performance; ii) in most cases,
most state-of-the-art (SOTA) domain adaptation methods
work comparably to Source Only, that is, applying models
trained on the source domain (simulated) data only, indicat-
ing that they failed at our task and did not perform much
meaningful adaptation at all. We ascribe their failure to the
inherently different distributions between the two domains
and extremely low dimensionality of our sensor data.

6. Applications
Performance in real-world scenarios. We recruited five
new participants of varying body shapes to investigate how
our proposed method works in real-world applications. We
asked them to wear our elbow pads in three different ar-
bitrary positions and perform three distinct real-world ac-
tivities respectively: Table Tennis, Basketball, and Box-
ing. In total, we collected 45 (5 participants × 3 wearing
positions × 3 real-world activities) unique data segments,
comprising 81, 848 frames. As Table 6 shows, our method
achieves a high accuracy comparable to supervised learn-
ing. It significantly outperforms SOTA distribution-based

Table 6. Applications in real-world scenarios. The results are aver-
aged over 5 new participants with varying body shapes who wore
the elbow pad in three arbitrary positions.

Method Table Tennis Basketball Boxing Average
Source Only 21.53±6.40 19.39±4.52 20.89±8.71 20.61±0.90
DAN 21.60±5.74 18.80±3.81 19.42±6.41 19.94±1.20
DANN 21.73±6.39 18.79±3.82 20.10±8.41 20.47±1.24
D-Coral 22.00±6.04 18.90±4.81 21.14±8.31 20.68±1.31
DAAN 21.40±6.07 17.78±4.34 20.85±8.33 20.01±1.60
BNM 21.74±6.06 19.26±5.08 21.26±8.73 20.76±1.08
SuDA (Ours) 10.56±2.30 11.62±3.53 10.02±3.18 10.74±0.67
Supervised 12.28±3.50 11.90±3.06 11.96±3.75 12.05±0.17

Table 7. Applications in four different joints. The results are aver-
aged over 3 new participants with varying body shapes who wore
the elbow pad and knee pad.

Method Left Elbow Right Elbow Left Knee Right Knee
Source Only 39.29±3.78 40.85±5.13 43.45±6.28 42.88±5.80
DAN 38.01±4.75 37.98±5.80 41.92±5.81 40.32±6.28
DANN 40.22±3.50 40.89±4.83 42.92±5.35 42.01±6.05
D-Coral 39.23±5.26 41.25±5.91 43.18±5.27 40.14±5.10
DAAN 39.65±3.58 40.59±7.92 42.92±5.35 42.01±6.05
BNM 38.78±4.60 40.76±5.54 42.01±6.46 42.28±5.82
SuDA (Ours) 9.09±1.89 9.86±2.55 12.13±2.02 10.84±1.84
Supervised 6.07±0.84 7.50±2.84 8.20±0.40 9.12±3.06

domain adaptation methods, demonstrating that our SuDA
method generalizes well to real-world scenarios.

Generalization across joints. Besides, we recruited an-
other three participants to investigate how SuDA works in
different joints. In total, we collected 12 (3 participants ×
4 joints) unique data segments, comprising 22, 577 frames.
As Table 7 shows, our method achieves a high accuracy
comparable to supervised learning. It significantly outper-
forms SOTA distribution-based domain adaptation methods,
demonstrating that our SuDA method generalizes well to dif-
ferent joints. Notice that we only use right elbow simulation
data as our source domain.
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Figure 5. MAE vs. size of simulation dataset. MAE drops quickly
between 0 and 5,000 frames with the increase in the size of the
simulation dataset. Between 5,000 and 10,000 frames, the MAE
drops slightly towards convergence. With more than 10,000 frames,
MAE becomes stable against the increase in dataset size.

7. Discussions
7.1. MAE vs. Size of Simulation Dataset

As Fig. 5 shows, MAE decreases quickly when the size
of the simulation dataset increases from 0 to 5,000 frames,
followed by a slower decline, and eventually converges
around 10,000 frames. This indicates that the support of the
source domain (simulated) can be well approximated with
more than 10,000 motion frames. In all our experiments,
we use a safer option of 30,000 frames as the size of our
simulation dataset.

7.2. Distribution-based vs. Support-based Domain
Adaptation Methods (DiDA vs. SuDA)

Objective DiDA methods have the same goal as SuDA
- aligning the supports of the predictive functions between
the source and target domains, i.e., xs ↔ xt so that the pre-
dictive function that works on the source domain fs can also
be applied to xt. However, they take an indirect approach
to achieve this goal which aligns the feature distributions of
the source and target domains.
Data Distribution SuDA generally relies on function sup-
port yet DiDA relies more on data distribution. In our
Sim2Real task, the distribution gap between the two do-
mains (e.g., real running and simulated dancing, real knee
and simulated elbow) varies remarkably, leading to fail-
ure on all DiDA methods. Please see Appendix D about
Distribution Variations of our data.
Data Dimension SuDA is more applicable to low-
dimensional data yet DiDA is suitable to high-dimensional
one. Low-dimensional data provides significant advantages
for directly understanding the function supports. In our
task, the extremely low (readings from two flexible sen-
sors) dimension of our data makes us easy to find support
registration methods, which motivates this work and leads
to success. Despite the success of DiDA methods (e.g., in
computer vision), they have a hidden limiting assumption

- that the data being handled must be complex and high-
dimensional to provide enough space for extracting lower-
dimensional features. This reliance on high-dimensional
data restricts the applicability of distribution-based methods
to low-dimensional datasets like the one used in this paper.

Hence, the impact of diverse data distributions and low
dimensionality of sensor data makes DiDA methods have
no advantage over naive source-only methods. Empirically,
we verify this in Fig. 6, where the “transfer loss” measur-
ing distributional distances does not reduce during training,
yielding similar performance as Source-only.
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Figure 6. Training loss of distribution-based methods. Red Line:
Supervised Loss; Blue Line: Transfer Loss.

7.3. Limitations

Although effective, the proposed method is based on the
assumption that function support in the source and target
domain can be registered properly. Specifically, for flexible
sensor-based MoCap, the source and target data must have
similar ranges of joint angles during motions. Observing
that the effective range of joint angles is similar for most
people performing typical motions (around 40◦ to 160◦),
leading to matching to the support scope, so we find that
our method works well in most real-world scenarios after
calibration. However, this assumption becomes problematic
in some extreme cases when the effective range of elbow
joint angles differs between domains (please see failure
cases in the Appendix F).

8. Conclusion
To address the costly real data collection process in mo-
tion capture using flexible sensors, we propose a novel
Sim2Real solution based on domain adaptation, eliminating
the need for labeled data yet achieving comparable accu-
racy. Our solution relies on a novel support-based domain
adaptation method that aligns the supports of the predictive
functions rather than the instance-dependent distributions
between the source and target domains. This makes our
adaptation method applicable to unpaired simulated and
real data with inherently different body shapes, motions,
sensor positions, etc., as long as they share similar ranges
of joint motion. Experimental results demonstrate that the
effectiveness of our unsupervised support-based method
is comparable with supervised learning and its superiority
over state-of-the-art distribution-based domain adaptation
methods. In future work, we plan to explore applying the
proposed method to other applications, especially those in-
volving low-dimensional data.
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A. Hardware
We design and develop a prototype by adding two capacitive strain sensors to the standard elbow and knee pads, which are
placed on the ulnar side (elbow) and tibial side (knee).

The length and circumference of the pad are 20 and 25 cm (elbow pad), and 20 and 40cm (knee pad). The two sensors are
placed 2 cm apart. Our method aims to estimate the bending angle, θ, of an elbow joint (Fig. 7) from the sensor readings of
the two flexible sensors. The elbow bending angle is defined as the angle in the sagittal plane between the humerus and the
central line between the radius and the ulna. In contrast, the knee bending angle is defined as the angle in the sagittal plane
between the femur and the central line between the tibia and the fibula.

Fabric sensors are purchased as off-shelf products from ElasTech. They are capacitive, i.e., and their capacitance increase
with the stretch caused by the bending of the arm. The sensor readings are digitized to values in the range [0, 1023] and
transmitted wirelessly via Bluetooth Low Energy at a frame rate of 50Hz. The collected sensor readings are x in the target
domain.

Figure 7. Our smart elbow and knee pad (hardware).

For capacitive strain sensors, due to their high stretchability, lightness, and ease of attachment near joints, are suitable for
monitoring human body movements in unrestricted wearable devices. As flexible materials inherently possess stickiness and
elasticity, and joint movements involve twisting, bending, and other deformations, hysteresis and low repeatability may
occur. To address these issues, we have taken the following measures:

1. We selected the Elas Tech ESSB-01 commercial capacitive sensor, which features high reliability (over 300,000 bending
cycles), thinness (as thin as 1mm), and high linearity.

2. In order to improve repeatability and suppress hysteresis, we used a blended fabric with high spandex content and
stretchable wires to assemble the sensor and the entire system. We pre-stretched the assembled system to eliminate its
internal stress, and measured a linearity of R2 = 0.999 after pre-stretching.
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Figure 8. Detailed network architecture. LSTM: Long Short-Term Memory. FC: Fully-Connected.

B. Implementation Details
Fig. 8 shows the proposed network’s architecture details. Specifically, we use a 3-layer LSTM network with a hidden layer
size of 256 for sequence feature extraction and feed both its hidden state and cell state into FC2 for subsequent computation.
The output sizes of network layers are listed in Table 8.

Table 8. Details of network layers.
Layer Output Size
FC1 256
LSTM 6× 256× 2
FC2 128
FC3 1

To make a fair comparison, we used the same architecture shown in Table 8 and the same hyper-parameters.

In addition, we used the same loss Lmae (please see the main paper) for the supervised pre-training but made the following
modifications for different competitors:

• MMD (Long et al., 2015): We applied a Max Mean Discrepancy (MMD) loss at the output of FC2 for the adaptation.

• D-CORAL (Sun and Saenko, 2016): We applied a CORAL loss at the output of FC2 for the adaptation.

• DANN (Ganin and Lempitsky, 2015): We applied a gradient reverse layer and a domain classifier (a 2-layer fully
connected network) at the output of FC2 for the adaptation.

• DAAN (Yu et al., 2019): We added a softmax layer after FC2 and applied a DAAN loss at its output for the adaptation.
The dynamic factor was updated every epoch.

• BNM (Cui et al., 2020): We applied a Batch Nuclear-norm Maximization (BNM) loss at the output of FC2 for the
adaptation.

C. Evidence of Eq. 7

∫ xb
s

xa
s

dfs
dxs

dxs =

∫ xb
t

xa
t

dft
dxt

dxt =

∫ l

0

dfl
dl

dl (11)

suggests that data with equal parameter change (i.e., l − 0) have the same label change (i.e., yb − ya), we empirically
evaluate this by conducting parameterization to both simulation (source) and real (target) function supports (Fig. 9).

D. Illustration of Distribution Variations
From (a) to (e), we observe commonalities in simulation data: they all share similar label ranges. However, the distinction
lies in the distribution of labels. Simulation data exhibits a relatively uniform distribution across labels, with a higher
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Figure 9. The relationship between parameters l and label angle. The blue one is the simulation data and the others are real data samples.
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Figure 10. (a) (b) (c) (d) (e) Label (Angle) proportion of Simulation, User, Position, Motion, and Joint data Samples; (f) (g) (h) (i) (j)
Moving Velocity of Simulation, User, Position, Motion, and Joint data Samples; (k) (l) (m) (n) (o) Time Sequence of Simulation, User,
Position, Motion, and Joint data Samples; (p) (q) (r) (s) (t) Function Supports (sensor readings) of Simulation, User, Position, Motion, and
Joint data Samples;
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concentration within a smaller label range (60 degrees to 100 degrees). In contrast, real users, positional motions, and joint
movements tend to be more prevalent in a broader label range (160 degrees to 180 degrees), constituting over 30%. This
discrepancy may be attributed to the increased occurrence of elbow extension movements in real-life scenarios.

When examining the moving velocity (from (f) to (j)), it is evident that the proportion of simulation data velocities
gradually decreases from (0-0.4) (from 10 % to 0 %). In contrast, real data for users, positions, and motions experiences
a decline followed by a sudden increase. This phenomenon may be attributed to the fact that the range of 0.2 to 0.6
(degrees/microsecond) corresponds to the natural movement speed of the human body, thus constituting a higher proportion.

The time-sequence plots from (k) to (o) reveal a notable mismatch between simulation data and all real data. In fact, in
practical usage scenarios, it is challenging to identify two action sequences with entirely matching time sequences between
virtual and real data. This substantial disparity in distribution between virtual and real data is a crucial factor contributing to
this discrepancy.

In (p) through (t), the support distribution plots are presented. 1. Real data exhibits a more pronounced dispersion compared
to simulation data, attributed to inherent biases or noise introduced during the sensor-based real data acquisition process. 2.
The shapes of the support distributions for simulation and real data differ. SuDA assumes identical df

dx , aligning supports
to achieve successful migration, offering a mechanism to address the dissimilarity between the support distributions of
simulation and real data.

In conclusion, the data presented above underscores significant disparities in the distribution between simulation data and
real data. Moreover, the failure of the DiDA method can be attributed to the low-dimensionality of the data.

E. Evaluations of SuDA
Figure. 11 shows the Performance Visualization of our method SuDA. Figure 12, 13, and 14 show that SuDA achieves
comparable motion capture predictive performance in different Users, Wearing Positions and motions, although the source
data (Simulation) is quite different from target data (Real world).

(a) Ds and D(id = 1) Visualization. (b) Ds and D(wp = 180◦) Visualization. (c) Ds and D(m = run) Visualization.
Figure 11. Performance Visualization of our method SuDA. Note that the green points represent source data (Simulation), the blue points
represent target data (Real World), and the orange points represent SuDA registered simulation data. It is evident that SuDA is capable of
aligning source and target data in the feature space by aligning the supports.

Figure 12. A plot of the detailed predict results on D(id = 1).
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Figure 13. A plot of the detailed predict results on D(wp = 180◦).

Figure 14. A plot of the detailed predict results on D(m = run).

F. Potential Applications
Table 9 shows that it is possible to predict full-body movement from hand and leg motion signals using our method.
To demonstrate this, we conducted a pilot experiment on full-body movements and use the AMASS (Mahmood et al.,
2019) dataset for training and testing. Specifically, we used SuDA to predict the angles of four joints, and then used an
auto-regressive model to predict full-body joint angles based on them. Experimental results show that SuDA could achieve
effective full-body motion capture from only four flexible sensor pads, with a more comfortable user experience.

G. Failure Case of SuDA
SuDA may fail when the supports of two domains are inherently different. Specifically, we assume that both the simulated
and real movements cover the full elbow bending angles (around 30◦ to 180◦). Therefore, SuDA will degenerate when real
elbow movements cover fewer angles (Table 10).

H. Real World Dataset Description
The real-world data collected was calculated using the three-dimensional positions of markers worn on the volunteers’ elbow
joints to determine real-time angle labels. The MARS 2H motion capture system, produced by NOKOV 3 company, tracked
and calculated the three-dimensional positions of the markers at a rate of 60 frames per second. The motion capture system’s
three-dimensional tracking error is ±15mm, and the estimated rotation tracking error is a maximum of 0.88.

Users We collected 11 volunteers as our User data, which can be denoted as D(id = 1, 2, ..., 11). Their body shape details
can be seen in Table 11. Our User dataset consists of a total of 219, 932 frames.

Positions Considering that users of elbow pads may have different wearing habits, we took into account different wearing
positions when collecting data. We explore the effect caused by circular types of offsets. We moved the elbow pad in
30-degree increments for circular offset to collect data, denoted as D(wp = 30◦, 60◦, ..., 360◦). Our position dataset
consists of a total of 155, 296 frames.

Motions Motion data of four basic motions, which can be denoted as D(m = run,walk, jump, clap). Our Motion
dataset consists of a total of 143, 575 frames.

Sum After data cleansing and calibration, we finally collected 371, 611 frames as our aggregate data, which can be
denoted as D(id,m,wp)

t∗ .

17



SuDA: Support-based Domain Adaptation for Sim2Real Hinge Joint Tracking with Flexible Sensors

Table 9. Results of pilot experiment on full-body movement prediction from hand and leg motion signals.
Motion MPJRE MPJPE MPJVE

Pick 9.56 9.39 64.07
Run 8.27 7.00 48.67
Walk 8.33 7.61 70.72

Combo-motions 5.16 4.54 38.59

Table 10. SuDA will degenerate if real movements cover fewer angles than simulated ones (around 30◦ to 180◦). To demonstrate this, we
tested SuDA on modified real motions where we manually filtered out data outside a given angle range. The angle range was determined
from the average of the real data, i.e., filter symmetrically from both sides of the mean.

Angle Range (%) MAE
100 5.94
90 10.44
80 13.16
70 14.47
60 17.16
50 19.38
40 21.43
30 22.59
20 24.76
10 27.77

Applications of Real-world scenarios The real-world scenarios ((table tennis, basketball, football, boxing)) participants
can be seen in Table 12. Our Real world dataset consists of a total of 81, 848 frames. Our different joints applications ((Left
elbow, right elbow, left knee, right knee)) datasets comprises 22, 577 frames.

I. Simulation Framework
We used the SMPL model to create fbx files of simulated human 3D models. Note that the skeleton model discussed in the
following steps is a standard human skeleton obtained via MotionBuilder binding, with 68 joints instead of the 24 joints
native to SMPL. The entire process of synthesizing digital mannequins through SMPL models can be divided into three
major stages as follows.

I.1. SMPL Establishment

Shape Blend Shapes Firstly, we established a mean template T as the basic pose of the whole human body, which was
obtained statistically by using N=6,890 vertexes to represent the whole mesh. Then we described the pose of the human
body and the offset of the basic pose through the parameters and superimposed them to form the final desired human pose.
The process described above is linear, which contains a matrix multiplication procedure for parametric linear matrices, and
we will continue to discuss it next. The pose of the human mesh obtained here is called the T-pose because it does not
consider the influence of the pose parameters.

Pose Blend Shapes When we specified the shape of the human mesh according to the specified β parameter, we got a
mesh with a specific height and weight. Nevertheless, we knew that a specific action might affect the specific shape of the
local human body changes; in other words, the pose parameter θ will also affect the silent pose mesh shape to some extent.

Skinning We only calculated the mesh in the static pose in the previous two stages. When human skeleton joints move,
the ”skin” composed of vertexes will change with the movement of the skeleton joints; this process is called skinning. The
skinning process can be considered a weighted linear combination of skin nodes with changes in skeletal joints. However,
the closer an endpoint is to a specific bone joint, the stronger the effect of changes, such as rotation and translation, with that
bone joint.
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Table 11. Body profile details of the eleven experiment participants.

User ID upperc(cm) lowerc (cm) height (cm) weight (kg) Gender
ID1 24.6 24 186 78.3 Female
ID2 24 23.5 174 61 Female
ID3 25.8 24 171 69 Male
ID4 24.3 23.8 164 54.6 Famale
ID5 25 24.5 170 60.2 Male
ID6 28 27 160 72.2 Male
ID7 23 22 158 50.2 Female
ID8 25 24.2 164 61 Male
ID9 26.3 27.5 170 65.4 Male
ID10 30 28.5 175 86 Male
ID11 29 27.6 177 75 Male

Table 12. Body profile details of the five real world scenarios experiment participants

User ID Gender Height (cm) Weight (kg) Arm circumference (cm)

1 Male 179 84 30.2
2 Male 175 86 28.5
3 Male 177 75 27.6
4 Female 172 67 27.0
5 Female 168 65 26.6

I.2. Motion Binding

To address the effect of different motions on sensor parameters, we collected approximately 30,000 frames (some samples
are increased to balance the weight) of motion capture data from the free online animation library Mixamo, which contains
motion capture files for walking, running, clapping, and hybrid motions. Furthermore, we used the online binding function
to bind the motions to the 3D human model generated based on SMPL.

I.3. Fabric Simulation

The creases produced by the flexible sensors when worn and the differences in wearing position are also sources of
Sim2Real domain gaps. In order to solve these problems, we used the cloth database built into the clothing design software
Marvelous Designer. Considering the basic parameters such as elasticity, friction, and thickness of real elbow pads and
visual comparison inspection of simulation results, we selected hard-jeanet from the database. The simulation can produce
similar wrinkles, pulling, and other phenomena as real motion scenes.

I.4. Elbow Bending Angle and Sensor Readings Simulation

Our task is to estimate the bending angle of the elbow joint based on two flexible sensors surrounding the arm. Previously, it
usually required professional motion capture (mocap) equipment to complete, i.e., the wearer had to wear the mark points of
the mocap equipment, and the data needed to be collected in a specific professional environment (as shown in Figure (b)).
As soon as the data collection was completed, professional staff had to preprocess the collected data (Figure (c)). There is no
doubt that data collection is highly labor-intensive and time-consuming. To address this issue, our SuDA method employs a
Sim2Real paradigm and no longer requires real data, thus significantly reducing the costs for flexible sensor-based motion
capture.

Elbow Bending Angle Simulation We use the Biovision (BVH) file to calculate the elbow angle of SMPL. BVH file is a
general human feature animation file format containing the rotation data of the character’s bone and limb files. Various
popular animation software, such as Maya and 3DMax, are widely supported by it. The file mainly consists of two parts:
skeleton information and data block:
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Table 13. Motion types of simulation datasets.
Class Dataset Size

Chicken Dance 571
House Dance 2376
House Dance2 3142

Macarena Dance 988
Robot Hip Hop Dance 1852
Robot Hip Hop Dance 2798

Swing Dancing2 297
Swing Dancing3 624
Swing Dancing4 2965
Swing Dancing5 2510

Tut Hip Hop Dance 2032
Sum 20155

• Skeleton information: According to the hierarchical relationship, the required three-dimensional coordinate positions,
such as the forearm, arm, hand, and Euler angles of rotation components, are defined to form a complete skeleton.

• Data block: the data information of each frame part is marked.

Since the 3D position of each part of the skeleton in the original BVH file is not easy to extract, hampering the subsequent
input of neural network data, we use a script called bvh-converter to preprocess the original BVH file and obtain the file
worldpose.csv that records the 3D coordinate position information of each frame of motion joint. The forearm, arm vector,
and arm, hand vector are obtained through the 3D position calculation and then utilize formula cos θ = V1×V2

|V1×V2| to obtain
the elbow bending angle.

Sensor Readings Simulation The Geodesic Distance of Fabric was used to calculate simulated sensor readings. First, we
split the processed FBX file into a bunch of OBJ files, which contain the vertex data free-form curves, rendering attributes,
and other information of each frame. Then we used pygeodesic (Michael Hogg, 2021) to calculate the geodesic distance for
simulative fabric.
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