
Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

Shibo Jie 1 Yehui Tang 2 Ning Ding 1 2 Zhi-Hong Deng 1 3 Kai Han 2 Yunhe Wang 2

Abstract
Current solutions for efficiently constructing large
vision-language (VL) models follow a two-step
paradigm: projecting the output of pre-trained vi-
sion encoders to the input space of pre-trained lan-
guage models as visual prompts; and then transfer-
ring the models to downstream VL tasks via end-
to-end parameter-efficient fine-tuning (PEFT).
However, this paradigm still exhibits inefficiency
since it significantly increases the input length of
the language models. In this paper, in contrast
to integrating visual prompts into inputs, we re-
gard visual prompts as additional knowledge that
facilitates language models in addressing tasks
associated with visual information. Motivated
by the finding that Feed-Forward Network (FFN)
of language models acts as “key-value memory”,
we introduce a novel approach termed memory-
space visual prompting (MemVP), wherein vi-
sual prompts are concatenated with the weights of
FFN for visual knowledge injection. Experimen-
tal results across various VL tasks and language
models reveal that MemVP significantly reduces
the training time and inference latency of the fine-
tuned VL models and surpasses the performance
of previous PEFT methods. Code: https:
//github.com/JieShibo/MemVP

1. Introduction
Recently, the investigation of pre-trained foundation mod-
els has achieved remarkable success in the fields of both
computer vision and natural language processing (Touvron
et al., 2023; OpenAI, 2023; Tang et al., 2024; Radford et al.,
2021), thereby fostering advancements in vision-language
(VL) models. It has been found that VL models can be

1School of Intelligence Science and Technology, Peking
University 2Huawei Noah’s Ark Lab 3National Key Labora-
tory of General Artificial Intelligence. Correspondence to:
Yunhe Wang <yunhe.wang@huawei.com>, Zhi-Hong Deng <zh-
deng@pku.edu.cn>, Kai Han <kai.han@huawei.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

���������

������
�������

���������
����

��
��	����

��������
���������

���������

������
�������

���������
����

��
��	����

�����

��
�

��
��

��
��
��
��
�

�����������
����������������������
	� ��������������������

�����
������������
������������

�����
������������
������������

�������������� ���������������

����

Figure 1. Illustration of PEFT methods using (a) the conventional
input-space visual prompting and (b) our memory-space visual
prompting. MemVP outperforms previous paradigms in terms of
performance, training speed, and inference speed.

efficiently constructed upon off-the-shelf pre-trained vision
encoders and language models (Tsimpoukelli et al., 2021;
Alayrac et al., 2022; Li et al., 2023; Liu et al., 2023b). The
de-facto paradigm to combine them involves projecting the
outputs of vision encoders, i.e., image features, to visual
prompts within the input space of the language models via
linear projection or resampler. Subsequently, the language
models concentrate the visual prompts with the text embed-
ding tokens and process them as a whole.

Nevertheless, the scale of both vision models and lan-
guage models is experiencing exponential growth, e.g., ViT-
G (Zhai et al., 2022) has 1.8B parameters and LLaMA (Tou-
vron et al., 2023) has up to 70B parameters. Therefore, both
pre-training and fine-tuning their combinations with a vast
number of parameters for downstream VL tasks become
prohibitively expensive in terms of training and storage
resources. To mitigate this challenge, parameter-efficient
fine-tuning (PEFT) methods incorporate lightweight mod-
ules (e.g., adapters (Houlsby et al., 2019), LoRA (Hu et al.,
2022)) into the models, and/or select a small subset of pre-
trained parameters (e.g., bias, normalization). During fine-
tuning, only these modules and selected parameters are up-
dated. Prior studies (Sung et al., 2022; Luo et al., 2023) have
demonstrated that, even without resource-intensive VL pre-
training, the combinations of vision encoders and language
models can still be transferred to downstream VL tasks via
PEFT while matching the performance of full fine-tuning.

1

https://github.com/JieShibo/MemVP
https://github.com/JieShibo/MemVP

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

Although such “input-space visual prompting & PEFT”
paradigm proves efficient for training and storage, its mecha-
nism of visual prompts still limits the inference and training
efficiency. For instance, the average length of the text inputs
is only 6.3 in VQAv2 (Goyal et al., 2017) dataset and 81 in
ScienceQA (Lu et al., 2022) dataset, whereas the number of
visual tokens can be up to 256 in LLaVA (Liu et al., 2023b).
Consequently, in many scenarios, the input tokens of the
language models are mostly visual tokens, thereby signifi-
cantly amplifying the computation cost during training and
inference.

In this paper, we aim to explore an alternative manner for
integrating the visual information into language models
for downstream VL tasks, which is intended to not only
be parameter-efficient but also facilitate fast training and
inference. Existing research (Geva et al., 2021) has found
that, the Feed-Forward Network (FFN) of language models
acts as key-value memory that stores factual association
as knowledge, e.g., “Strawberries are red” could be such
knowledge stored in FFNs. Inspired by this, we infer that
the visual information also contains vision-related factual
association that is not included in the memory of language
models, e.g., the language models do not realize “The fruits
in the image are red”. Therefore, it is necessary to inject
such external knowledge into language models to enable
them to tackle vision-related tasks. Since FFN is the main
carrier of knowledge, we can put the visual information in
the memory space of language models, i.e., weights of FFN,
instead of input space, thus avoiding extending the input
length.

Based on this motivation, we propose Memory-Space Visual
Prompting (MemVP), a PEFT framework for adapting pre-
trained vision encoders and language models to downstream
VL tasks. As shown in Figure 1, MemVP first projects the
features extracted by vision encoders to the dimension of
language models as visual prompts. The position-embeded
visual prompts are concatenated with the weight matrices
of the fully-connected (FC) layers in each FFN block of the
language models. During fine-tuning, we freeze most pa-
rameters of the vision encoders and language models, only
the VL projection layers and position embeddings are tun-
able. Without extending the inputs, MemVP only introduces
a very small amount of extra parameters and computation
to the language models, and is thus more efficient during
training and inference.

To evaluate the efficiency and effectiveness of MemVP, we
conduct experiments across various downstream VL bench-
marks, including visual question answering on VQAv2,
GQA (Hudson & Manning, 2019), and ScienceQA, and
image captioning on COCO Captions (Chen et al., 2015).
Additionally, we evaluate MemVP on language models with
different scales and architectures, including BART (Lewis

et al., 2020) and T5 (Raffel et al., 2020) with an encoder-
decoder architecture, as well as decoder-only LLaMA-7B
and LLaMA-13B. MemVP demonstrates superior perfor-
mance compared to previous PEFT baselines, while achiev-
ing remarkable acceleration for both training and inference.

2. Related Work
2.1. Vision-Language Models

In the field of VL learning, many different model archi-
tectures have been proposed to meet the requirements of
different VL tasks, such as dual-encoder (Radford et al.,
2021), fusion-encoder (Tan & Bansal, 2019; Li et al., 2021;
Kim et al., 2021; Dou et al., 2022), encoder-decoder (Cho
et al., 2021; Wang et al., 2022b; Chen et al., 2023; Wang
et al., 2022a; Li et al., 2022; 2023; Liu et al., 2023b), etc.
Recently, the rapid advancement of large language models
has prompted a growing number of researchers to regard
VL tasks as a process of visual-conditioned text generation,
and focus on how to involve vision information in off-the-
shelf pre-trained language models. For example, BLIP (Li
et al., 2022) and Flamingo (Alayrac et al., 2022) insert new
cross-attention layers into the language models to interact
with visual features; Frozen (Tsimpoukelli et al., 2021),
LLaVA (Liu et al., 2023b), and PaLI (Chen et al., 2023) use
the vision encoder to generate visual prompts as the inputs
of language models. BLIP-2 (Li et al., 2023) also uses a
large Q-former as resampler to reduce the length of visual
prompts.

2.2. Parameter-Efficient Fine-Tuning for VL Alignment

PEFT has already been widely studied in the field of vi-
sion (Rebuffi et al., 2017; Chen et al., 2022; Zhang et al.,
2022; Lian et al., 2022; Jie & Deng, 2023; Jie et al., 2023),
language (Houlsby et al., 2019; Pfeiffer et al., 2021; Hu
et al., 2022; Zaken et al., 2022; Liu et al., 2021), and multi-
modality (Sung et al., 2022; Hu et al., 2023; Luo et al.,
2023; Zhang et al., 2023b; Jiang & Zheng, 2023; Lu et al.,
2023). Particularly, based on the pre-trained vision encoders
and language models, the VL models can be trained in a
parameter-efficient manner. There are many studies focus-
ing on PEFT of such assembled VL models on downstream
tasks. VL-Adapter (Sung et al., 2022) and VL-PET (Hu
et al., 2023) project the image features as visual prompts,
and fine-tune the projector and PEFT modules inserted in the
T5 or BART models. Differently, LLaMA-Adapter (Zhang
et al., 2023a) concatenates the visual prompts with the hid-
den state of LLaMA’s intermediate layers. LaVIN (Luo
et al., 2023) inserts adapters in both the vision encoder and
LLaMA, and introduces a routing mechanism for adapters.

Through PEFT, it becomes possible to train VL models
using off-the-shelf uni-modal models with less time and

2

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

0 100 200 300 400
Input Length

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ai
ni

ng
 T

im
e

(s
/b

at
ch

)

2.6x
slower

w/ visual prompts
w/o visual prompts

0 100 200 300 400
Input Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
fe

re
nc

e
Ti

m
e

(s
/b

at
ch

)

4.8x
slower

w/ visual prompts
w/o visual prompts

Figure 2. Training and inference time of LLaMA-7B on a single
V100. The training process adopts PEFT in which we only tune
LoRA modules. The training batch size and inference batch size
are 4 and 16, respectively, to maximize utilization of GPU memory.
We also highlight the position when the text token length is 64 w/
and w/o input-space visual prompts. The length of visual prompts
is 256 as in LLaVA. We fix the output length to 1.

GPU memory. However, it is noteworthy that these studies
do not take computation efficiency into account, which is
one of the main contributions of our paper.

2.3. Memory of Language Models

Geva et al. (2021) discover that the FFN of pre-trained lan-
guage models is essentially key-value memory which stores
factual association. Based on this finding, Dai et al. (2022)
locate and edit knowledge in language models by replacing
certain rows of the matrices of FFN with the embedding
of the object. Meng et al. (2022) edit the located factual
knowledge by adding new key-value pairs to FFN. Dai et al.
(2023) expand the size of FFN with extra keys and values as
a knowledge bank. Cheng et al. (2023) replace FFN in lan-
guage models with differentiable plug-in key-value memory
for interpretability. However, current works only focus on
pure language models, without exploring the potential of
visual information as external factual knowledge.

3. Revisiting Visual Prompts in VL Models
Current VL models mostly adopt a common architecture, in-
cluding a pre-trained vision encoder, a pre-trained language
model, and a module that bridges the two components. An
efficient bridging module could be one or several FC layers
that project the features of the images into the input space
of the language model as visual prompts. Although the
VL projection of visual prompts is parameter-efficient, it is
not computation-efficient enough for training and inference.
To obtain fine-grained local visual information, the visual
prompts are usually projected from patch features of images,
which contain a considerably large number of tokens. For
example, LLaVA (Liu et al., 2023b) uses ViT-L/14 as vision
encoder, which involves 256 tokens to express each im-
age. The additional visual prompts significantly increase the

length of the input sequence, leading to more computation
during training and inference.

To what extent do the visual prompts affect the compu-
tation speed? We show the inference speed across different
lengths of input and output on LLaMA-7B in Figure 2. The
computational complexity is O(L2d+Ld2) for Multi-Head
Self-Attention (MHSA) and O(LdD) for FFN, in which L,
d, and D are the length of token sequence, dimension of
tokens, and hidden dimension of FFN, respectively. For ex-
ample, after applying the visual prompts with 256 tokens to
LLaMA-7B as in LLaVA, the training and inference latency
of the language model part increase to 2.6× and 4.8× on
the text with an input length of 64 and an output length of 1.

Are there alternative solutions to use fewer visual to-
kens? BLIP2 (Li et al., 2023) uses a Q-former as resampler
to reduce the number of visual tokens, which compresses the
length of visual prompts from 256 to 32. Flamingo (Alayrac
et al., 2022) uses a single <image> token as the visual
prompt, and insert new resampler and cross-attention to
interact with visual features. Although reducing the se-
quence length, these methods introduce hundreds of mil-
lions, or even billions, of new parameters, which necessitate
large-scale VL pre-training. Therefore, we have to perform
expensive VL pre-training again when switching to new
pre-trained vision encoders or language models. Moreover,
since the new modules are large, the training process cannot
be parameter-efficient enough to reduce memory and time
costs. Also, the large new modules still bring considerably
more computation.

Overall, to obtain VL models that are efficient during both
training and inference, we need a new paradigm to con-
catenate pre-trained vision encoders and language models,
which i) introduces negligible new parameters and extra
computation; and ii) performs well when PEFT on down-
stream VL tasks.

4. Memory-Space Visual Prompting
4.1. Preliminary: Reformulation of FFN

The standard FFN of language models is composed of two
FC layers with non-linear activation in-between. Suppos-
ing x ∈ Rd is a input token of the FFN, the FFN can be
formulated as:

FFN(x) = ϕ(xW 1)W 2, (1)

in which ϕ is activation like ReLU and GELU, W 1 ∈ Rd×D

and W 2 ∈ RD×d are the weight matrices of the two FC
layers. Note that W 1 and W 2 can be rewritten as:

W 1 = (k1,k2, ...,kD),W 2 = (v1,v2, ...,vD)⊺, (2)

3

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

���������

������
�������

����

��

����
�	�������
��
��
��
��

�
��
��

������
�����

����
�����

���������

������
�������

��

����
�	�������

��
��
��
��

�
��
��

������
�����

����
�����

����

����� ���������

������
�������

����

��

����
�	�������

��
��
��
��

�
��
��

������
�����

����
�����

�
��������
�	�������

�����������
����	����� ��
����	����� �����	������
��������

���
�����������
 �����
���	����� ���
��������������
������ ���
��	��
������

......

......

��

Figure 3. Overview of the mainstream paradigms to concatenate vision encoder and language model. (a) Concatenating visual
prompts with the text tokens as inputs of the language model is not computation-efficient, e.g., LLaVA, VL-Adapter, VL-PET. (b) Using
cross-attention layers to incorporate the visual information from visual tokens is not parameter-efficient, e.g., Flamingo, BLIP. (c) Our
MemVP injects visual prompts into the FFN blocks of language models, achieving both parameter and computation efficiency.

in which ki ∈ Rd and vi ∈ Rd are entries of key and value,
respectively. Then, the FFN can be rewritten as

FFN(x) =
D∑
i=1

ϕ(⟨x,ki⟩) · vi. (3)

Therefore, the FFN can be interpreted as using input x as
the query to calculate its similarity with keys, and gath-
ering values based on the similarity. Previous work has
found that FFN acts as a key-value memory storing factual
knowledge (Geva et al., 2021).

4.2. FFN with Visual Prompting

As illustrated in Figure 3, in conventional input-space visual
prompting, the image features are projected to the prefix of
the input as context for text generation. Since increasing
the input length leads to inefficiency, we avoid using extra
visual tokens, and thus all the visual information needs to
be contained in textual tokens. A solution to incorporat-
ing visual information is to let the textual tokens retrieve
information from the visual features. Previous works like
Flamingo and BLIP perform retrieval via cross-attention
layers, which can be formulated as

XAttn(x) = softmax

(
xW qW k

⊺Z⊺

√
d

)
ZW vW o

⊺, (4)

in which x ∈ Rd is a textual token and Z =
(z1, z2, ...,zn)

⊺ ∈ Rn×d′
is the visual features. However,

the cross-attention layer introduces a large amount of new
parameters, i.e., W q/k/v/o, which is far from parameter
efficiency and brings considerable additional computation.

Note that the cross-attention essentially performs a soft
look-up using the query xW q from the key-value pairs
(ZW k,ZW v) and outputs the weighted average of the
retrieved values. Inspired by the fact that FFN also performs
similar retrieval from its key-value memory, we consider

a more simplified and efficient retrieval process for visual
features:

Retrieval(x) =
n∑

i=1

ϕ(⟨x,K(zi)⟩) · V(zi), (5)

in which K(zi),V(zi) ∈ Rd are the key and value corre-
sponding to zi. This formulation shares a similar form with
Eq (3). Since the size of FFN’s key-value memory D is
usually much larger than the number of visual features n
(D = 11008 in LLaMA-7B and n = 256 for ViT-L/14),
the computation of retrieving visual features is insignificant.
Therefore, we do not introduce new cross-attention layers
as in previous work, but perform such retrieval along with
FFN instead.

From the perspective of FFN, we regard the (K(zi),V(zi))
as new memory entries to complement vision-related knowl-
edge that language models used to lack. The new visual
key-value entries are inserted into memory,

FFN(x) =
D∑
i=1

ϕ(⟨x,ki⟩) ·vi+

n∑
i=1

ϕ(⟨x,K(zi)⟩) ·V(zi). (6)

As for K and V , they should realize two key functions: i)
aligning the dimension between visual feature zi ∈ Rd′

and textual token x ∈ Rd, and ii) identifying the position
of each entry in the visual input. We use a projector f ,
which could be one or several FC layers, to project the
visual features to the dimension of the textual token as a
visual prompt. The projector is shared between K and V for
parameter efficiency. The projected visual features are then
added with position embedding,

K(zi) = λf(zi) + pk
i , V(zi) = λf(zi) + pv

i , (7)

in which λ is a hyperparameter and pk,pv ∈ Rn×d are
position embedding for visual prompts inserted into keys
and values, respectively.

4

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

To implement Eq (6), the position-embedded visual prompts
are inserted into the memory as new key-value entries. For
the FFN block, the weight matrices are modified to

W ′
1 = (k1,k2, ...,kD, λf(z1) + pk

1 , ..., λf(zn) + pk
n),

W ′
2 = (v1,v2, ...,vD, λf(z1) + pv

1 , ..., λf(zn) + pv
n)

⊺.

(8)

Since the visual prompts are concatenated with the FFN
weights which are actually memories, we call the proposed
new paradigm memory-space visual prompting (MemVP).

Besides the standard FFN above, which is widely used in
small and middle-scale language models, large language
models usually adopt Gated Linear Units (GLU) to enhance
the FFN for better performance. For instance, LLaMA uses
SwiGLU in FFN, which is

FFN(x) = (SiLU(xW 1)⊗ xW 3)W 2. (9)

Supposing W 3 = (g1, ..., gD), Eq (9) can be rewritten as

FFN(x) =
D∑
i=1

SiLU(⟨x,ki⟩) · ⟨x, gi⟩ · vi, (10)

where ⟨x, gi⟩ can be viewed as matching the query with
another key. For FFN using GLU, we simply let the second
key entries responding to the visual prompts be x

|x|22
, i.e.,

modify W 3 to

W ′
3 = (g1, g2, ..., gD,

x

|x|22
, ...,

x

|x|22
), (11)

which is equivalent to omitting the second key when looking
up the visual knowledge to avoid involving more parameters,
i.e.,

FFN(x) =
D∑
i=1

SiLU(⟨x,ki⟩) · ⟨x, gi⟩ · vi

+

n∑
i=1

SiLU(⟨x, λf(zi) + pk
i ⟩) · (λf(zi) + pv

i).

(12)

In this paradigm, only the projector and position embedding
are newly introduced, which are negligible compared with
the large size of the pre-trained models. During fine-tuning,
we can freeze the parameters of the vision encoders and
language models, and only fine-tune these new parameters.

From another perspective, the added key and value entries
can be regarded as the two FC layers of a vision-conditioned
adapter for PEFT. Therefore, in practice, we also adopt some
design philosophy of adapters (Luo et al., 2023). First, we
set the length of position embedding as a hyperparameter
to control the number of trainable parameters. We allow
the length of position embedding to be longer than the vi-
sual prompts, in which case we simply zero-pad the visual
prompt to align their lengths. Second, we add another scal-
ing factor to the retrieval results as a hyperparameter to
control their magnitude.

4.3. Complexity Analysis

We consider a language model layer that is only composed
of MHSA and FFN blocks. For simplicity, we omit the
bias terms and normalization layers. Let L, d, and n denote
the length of token sequence, dimension of tokens, and
length of visual prompts, respectively. The FLOPs of MHSA
and FFN are 8Ld2 + 4L2d and 16Ld2 respectively. We
use FLOPsLM, FLOPsVP, and FLOPsMemVP to denote the
FLOPs of a single transformer layer in the language model
without visual prompts, with input-space visual prompts,
and with memory-space visual prompts, respectively. Then
we have

FLOPsLM = 4Ld(6d+ L). (13)

For the previous manner which uses input-space visual
prompting, the length of the input sequence becomes L+ n.
Then, the additional FLOPs of a layer are

FLOPsVP − FLOPsLM = 4nd(6d+ n+ 2L). (14)

Whereas for MemVP, the length of the input is unchanged,
and only the hidden dimension of FFN is increased. The
additional FLOPs of a layer is

FLOPsMemVP − FLOPsLM = 4ndL. (15)

Since current VL models basically satisfy d >> n, and for
VL tasks we have n > L in the most cases, we find that
FLOPsVP is multiple times of FLOPsLM, but the difference
between FLOPsLM and FLOPsMemVP can be ignored. For
other architectures such as encoder-decoder model, MemVP
mainly reduces the FLOPs of the encoder part. Overall,
MemVP is computation-efficient for VL tasks on various
language model architectures.

5. Experiments
In all the experiments, we follow prior works (Sung et al.,
2022; Hu et al., 2023; Luo et al., 2023) adopting a fast and
economic adaptation setting, i.e., the resource-intensive VL
pre-training stage is not incurred. Although VL pre-training
has already been widely used nowadays, our setting has
practical significance since it enables low-cost deployment
on new foundation models, considering the rapid evolution
of language models.

5.1. Experiments on BART & T5

Datasets and Baselines. For visual question answering,
we evaluate our method on VQAv2 (Goyal et al., 2017) and
GQA (Hudson & Manning, 2019); for image captioning,
we evaluate on COCO Captions (Chen et al., 2015). All
these tasks are regraded as text generation tasks which di-
rectly output the answers in an open-ended space. Note
that, different from previous work (Sung et al., 2022; Hu

5

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

Table 1. Results on VQAv2, GQA, and COCO Captions. “FLOPs” denotes the average FLOPs in language models on test set. We report
average performance over three runs on Karpathy test split for VQAv2 and COCO Captions, and on test-dev split for GQA. All the
baseline results are reproduced using the official code of VL-PET (Hu et al., 2023).

Method #Trainable
Params (M/task)

VQAv2 GQA COCO Captions Average
ScoreVQA Score FLOPs (G) VQA Score FLOPs (G) CIDEr FLOPs (G)

BART-base

Full Fine-Tuning 141.16 65.4 4.8 53.1 5.3 110.6 6.4 76.4
Compacter 3.87 64.2 4.9 52.3 5.4 115.3 6.5 77.3
LoRA 3.92 64.8 4.8 52.2 5.3 115.1 6.4 77.4
VL-Adapter 3.87 65.5 4.9 53.7 5.4 114.3 6.5 77.8
VL-PET 3.84 65.3 5.0 53.9 5.5 120.3 6.6 79.8
MemVP (Ours) 3.78 65.2 1.2 55.1 1.8 120.2 2.8 80.2

T5-base

Full Fine-Tuning 224.54 64.3 9.4 52.0 10.8 112.6 12.9 76.3
Compacter 6.11 65.5 9.6 53.6 11.0 113.4 13.2 77.5
LoRA 6.05 63.3 9.4 50.8 10.8 113.9 12.9 76.0
VL-Adapter 6.10 65.6 9.6 54.4 11.0 113.4 13.2 77.8
VL-PET 6.07 65.4 9.8 54.6 11.3 121.2 13.4 80.4
MemVP (Ours) 6.00 65.7 2.3 56.0 3.8 120.8 5.8 80.8

Figure 4. Left: Training time, training memory, and inference time of T5-base on VQAv2. The per-GPU batch sizes for training and
inference are 64 and 512, respectively. Measured on V100 GPUs. Right: Average score vs. FLOPs of BART-base on the three datasets.
The visual prompts of VL-PET are downsampled to reduce the input length.

et al., 2023) using a multi-tasks learning setting where the
VQA tasks benefit from the concurrently trained captioning
data, we fine-tune MemVP and all the baselines on each
dataset individually. We compare MemVP with baselines
using previous input-space visual prompting, including cur-
rent state-of-the-art PEFT methods on BART and T5: VL-
Adapter (Sung et al., 2022) and VL-PET (Hu et al., 2023), as
well as representative PEFT methods designed for language
models: Compacter (Mahabadi et al., 2021) and LoRA (Hu
et al., 2022). We also report the results of fully fine-tuning
the language models with input-space visual prompting.

Implementation Details. Following previous work (Sung
et al., 2022; Hu et al., 2023), we use ResNet-101 pre-trained
via CLIP (Radford et al., 2021) to pre-extract image fea-
tures. The resolution of input images is 224 × 224. The
visual encoder is frozen during fine-tuning, and the PEFT
modules are only inserted into the language model. For the
language part, we use BART-base (Lewis et al., 2020) and
T5-base (Raffel et al., 2020) with encoder-decoder archi-
tecture. For our MemVP, the grid features before global
average pooling are projected to visual prompts via a single
FC layer, and the visual prompts are only injected into the
FFN blocks of language encoders. Additionally, we also
unfreeze the layer normalization of language models. We

train on each dataset for 20 epochs with batch size 8× 64
and report performance on the test set. The hyperparameters
of all methods are summarized in Appendix.

Results and Analyses. As shown in Table 1, our MemVP
achieves average performance better than current state-of-
the-art PEFT method, VL-PET, and much better than other
baselines. However, the FLOPs in the language models of
MemVP are only 23%–44% of other baselines. To exhibit
the advantage of shorter inputs, we compare the training
speed, training memory, and inference speed of all meth-
ods on VQAv2 in Figure 4 (left). Compared with VL-PET,
MemVP is 1.7× faster during training and 1.4× faster dur-
ing inference, while using only 56% training memory. Al-
though PEFT only unlocks a small number of parameters
for training, the gradient still needs to be propagated back
through the whole language model, leading to considerable
time and memory consumption. Therefore, the time and
memory costs during training and inference are profoundly
affected by the FLOPs in language models. MemVP re-
leases the time and memory burden for fine-tuning by di-
rectly reducing FLOPs, suggesting that computation effi-
ciency is also crucial in designing PEFT methods.

Furthermore, we compared MemVP with a straightforward
strategy to reduce the length of the visual prompt: 2D adap-

6

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

������������������������������� ������������������������������
� � � �����������

����������������������������
������������������������������

����������������������������
������������������������������

Figure 5. Visual knowledge locating. The similarity values be-
tween blod text tokens and keys of visual knowledge are averaged
over all layers.

���������������������
�������������������������������������

��������� ���������

Figure 6. Visual knowledge distortion. Left: Inputs of model;
Middle: Original similarity between text tokens and keys of visual
knowledge; Right: Distorted similarity. The values in the red
rectangle are set to 0.

tive pooling. As illustrated in Figure 4 (right), after pooling
the visual prompt, the input-space prompting methods suffer
from obvious performance degradation, implying that the
fine-grained local information is lost in this process. By
contrast, MemVP can use long visual prompts without ex-
tending the input, thus outperforming the baselines in terms
of efficiency.

Visualization. We conduct experiments to verify our main
motivation, i.e., the visual information can be inserted into
memories of language models as external knowledge. If the
model acquires the visual knowledge successfully, we are
supposed to observe that i) the visual knowledge related to
the text inputs is retrieved, and ii) when the model fails to
retrieve the correct knowledge under manual distortion, the
model should output the corresponding wrong contents.

In Figure 5, we visualize the similarity between queries
and keys, i.e., ϕ(⟨x, λf(zi)⟩) in Eq (6), of BART-base fine-
tuned on VQAv2. We find that the text tokens have a high
similarity with the keys of related visual knowledge entries,
implying that the corresponding values are retrieved. For
instance, when asking the model “What is in the sky?”, the
model retrieves knowledge entries around the plain; when
asked “What is the color of the sky?”, the model retrieves
knowledge entries of the background. Moreover, we find
that different words in the input sentence have different pref-
erences, e.g., when asking the model “What is the man on
the far right side wearing?”, the “man” token retrieves the
knowledge entries that contain men, and the “right” token

retrieves the entries on the right side of the image.

Next, we try distorting the knowledge by editing the query-
key similarity. As the example in Figure 6, when asking the
model “How many black horses do you see?”, the model
mainly retrieves the entries containing the black horse. Then,
we manually block the retrieval of the two most responsive
entries by setting ϕ(⟨x, λf(zi)⟩) = 0. As a result, the
model outputs “0” since it fails to obtain knowledge about
the existence of black horse. Overall, these observations
verify that the visual information is actually inserted into
memory and direct the outputs of language models.

5.2. Experiments on LLaMA

Datasets and Baselines. We use a challenging VQA
task, ScienceQA (Lu et al., 2022), to evaluate our method.
ScienceQA is a large-scale science question-answering
dataset compiled from diverse knowledge domains. We com-
pare MemVP with other LLaMA-based fine-tuned models
with input-space visual prompting, including LLaVA (Liu
et al., 2023b), LLaMA-Adapter (Zhang et al., 2023a), and
LaVIN (Luo et al., 2023). We also provide results of
LLaVA equipped with LoRA. All these methods adopt a one-
stage paradigm, i.e., directly generating the answers end-
to-end without multi-stage chain-of-thought (CoT) prompt-
ing (Zhang et al., 2023c). We adopt the training recipe
used by Luo et al. (2023) and train each method for 20
epochs. All these methods use a ViT-L/14 pre-trained via
CLIP as the visual encoder. We also report zero-shot results
of GPT4 (OpenAI, 2023).

Implementation Details. Following LLaVA (Liu et al.,
2023b), MemVP and LLaVA-LoRA use the 256 patch fea-
tures before the last layer of ViT-L/14 and project them as
visual prompts. Differently, LaVIN and LLaMA-adapter
stack 6 global features (i.e., [CLS] tokens of ViT) selected
from different intermediate layers as much shorter visual
prompts. The projectors of MemVP, LaVIN, and LLaVA-
LoRA are two FC layers with non-linear activation in be-
tween. Since LaVIN also inserts adapters in the visual
encoder, we adopt a comparable strategy on MemVP and
LLaVA-LoRA for a fair comparison. Specifically, we in-
troduce parallel adapters to the FFN of the vision encoder
following previous work (Chen et al., 2022). Moreover,
since LLaMA has much more layers and larger dimension
than BART and T5, we also share the position embedding
of MemVP across different layers for parameter efficiency.
For the samples that do not have image inputs, we simply
set the visual prompts of MemVP to zero tensors, and only
insert the position embedding.

Results and Analyses. As shown in Table 2, our MemVP
significantly outperforms all the baseline PEFT methods on
both LLaMA-7B and LLaMA-13B. LLaVA-LoRA performs
better than LaVIN and LLaMA-Adapter, indicating that VL

7

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

Table 2. Accuracy on ScienceQA test set. Question categories: NAT = natural science, SOC = social science, LAN = language science,
TXT = w/ text context, IMG = w/ image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12. † denotes our reproduced
results. Other results are quoted from their original papers.

Method #Trainable
Params

Language
Model

VL
Pre-Train

Subject Context Modality Grade AverageNAT SOC LAN TXT IMG NO G1-6 G7-12

Human - - - 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40
GPT-4 (0-shot) - GPT-4 - 84.06 73.45 87.36 81.87 70.75 90.73 84.69 79.10 82.69
LLaVA 7B Vicuna-7B

√
- - - - - - - - 89.84

LLaVA 13B Vicuna-13B × - - - - - - - - 85.81
LLaVA 13B Vicuna-13B

√
90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92

PEFT methods
LLaMA-Adapter 1.8M LLaMA-7B × 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19
LLaVA-LoRA† 4.4M LLaMA-7B × 91.70 94.60 86.09 91.25 90.28 88.64 91.52 89.65 90.85
LaVIN 3.8M LLaMA-7B × 89.25 94.94 85.24 88.51 87.46 88.08 90.16 88.07 89.41
MemVP (Ours) 3.9M LLaMA-7B × 94.45 95.05 88.64 93.99 92.36 90.94 93.10 93.01 93.07
LaVIN 5.4M LLaMA-13B × 90.32 94.38 87.73 89.44 87.65 90.31 91.19 89.26 90.50
MemVP (Ours) 5.5M LLaMA-13B × 95.07 95.15 90.00 94.43 92.86 92.47 93.61 94.07 93.78

Table 3. Training and inference time. Measured on 8×A800
GPUs without memory-saving or speed-up techniques (e.g., flash
attention). The per-GPU batch size is 4 for training and 64 for
inference.

Method
Length of

Visual Prompt
#Trainable

Params
Training

Time (s/batch)
Inference

Time (s/batch)

LLaVA-LoRA 7B 256 4.4M 0.49 3.42
LaVIN 7B 6 3.8M 0.39 2.06
MemVP 7B 256 3.9M 0.28 1.88
MemVP 13B 256 5.5M 0.46 3.07

Table 4. Ablation experiments on ScienceQA. “Average” and
“IMG” denote the accuracy on the whole test set and on the IMG
subset, respectively.

Settings Average IMG
#Trainable
Params (M)

MemVP 7B 93.07 92.36 3.9
w/o visual prompts 85.33 76.05 3.3
visual features: local → global 89.01 84.18 3.9
position embedding: add → concat 89.79 86.07 3.9
insert visual prompts in keys only 91.94 90.23 3.9
insert visual prompts in values only 92.78 92.36 3.9

models benefit from the local visual information in longer
visual prompts. Notably, MemVP also beats LLaVA, a fully
fine-tuned model with VL pre-training, on average results
as well as 7 out of 8 subsets. Besides, we also compare the
training and inference speed of different PEFT methods in
Table 3. In spite of the long visual prompts, MemVP is still
1.4× faster than LaVIN during training, since the routing
mechanism of LaVIN delays the training speed. LLaVA-
LoRA, which also uses local visual prompts in input space,
is 1.75× and 1.8× slower than MemVP in training and
inference, respectively. Overall, memory-space prompting
exhibits remarkable advantage in computation efficiency.

To demonstrate the effectiveness of the components of
MemVP, we conduct comprehensive ablation experiments.
As in Table 4, when we insert the position embedding with-
out adding visual prompts into the language model, its per-

formance on IMG subset degrades significantly, since the
language model cannot obtain the visual knowledge. We
note that using global features as in LaVIN leads to a drop
in performance due to the loss of local information. We
also attempt to concatenate the position embedding with
visual prompts instead of adding to them, where the visual
prompts will not acquire hard-coded position information
but the number of trainable parameters keeps unchanged.
The degraded performance indicates the importance of posi-
tion information for visual prompts since the text inputs may
be location-related. When only inserting visual prompts in
keys or values, the model performs worse in both cases.

6. Conclusion & Limitation
In this paper, we revisit the current mainstream “input-space
visual prompting & PEFT” paradigm for efficiently bridging
pre-trained vision encoders and language models, and point
out its remaining inefficiency in terms of computation due
to the extended inputs. Motivated by previous findings that
the FFNs of language models serve as knowledge memo-
ries, we propose MemVP, a memory-space visual prompting
method that inserts visual prompts into the FFN weights.
Experiments on both small-scale and large-scale language
models indicate that MemVP is both parameter-efficient
and computation-efficient. Compared to previous state-of-
the-art PEFT methods, it achieves competitive performance
while enabling faster training and inference, and less mem-
ory overhead, providing an economic solution for model
adaptation on downstream VL tasks.

However, MemVP still has limitations. Its main contribution
lies in reducing the length of the input sequence, but the
impact of input length on inference speed primarily occurs
during the prefill stage, i.e., the generation of the first token.
Therefore, for the generation of long texts (e.g., detailed
captioning), MemVP’s advantage in inference speed will be
diminished, which could be improved in future work.

8

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

Impact Statement
The method proposed in this paper is based on pre-trained
models, especially large language models (LLMs). It may
inherit the drawbacks of LLMs such as inherent biases and
misinformation, or generate copyright-violating material
such as verbatim snippets from non-free content.

References
Alayrac, J., Donahue, J., Luc, P., Miech, A., Barr, I., Has-

son, Y., Lenc, K., Mensch, A., Millican, K., Reynolds,
M., Ring, R., Rutherford, E., Cabi, S., Han, T., Gong,
Z., Samangooei, S., Monteiro, M., Menick, J. L.,
Borgeaud, S., Brock, A., Nematzadeh, A., Sharifzadeh,
S., Binkowski, M., Barreira, R., Vinyals, O., Zisserman,
A., and Simonyan, K. Flamingo: a visual language model
for few-shot learning. In Proceedings of NeurIPS, 2022.

Chen, S., Ge, C., Tong, Z., Wang, J., Song, Y., Wang, J., and
Luo, P. Adaptformer: Adapting vision transformers for
scalable visual recognition. In Proceedings of NeurIPS,
2022.

Chen, X., Fang, H., Lin, T., Vedantam, R., Gupta, S.,
Dollár, P., and Zitnick, C. L. Microsoft COCO captions:
Data collection and evaluation server. arXiv preprint,
arXiv:1504.00325, 2015.

Chen, X., Wang, X., Changpinyo, S., Piergiovanni, A. J.,
Padlewski, P., Salz, D., Goodman, S., Grycner, A.,
Mustafa, B., Beyer, L., Kolesnikov, A., Puigcerver, J.,
Ding, N., Rong, K., Akbari, H., Mishra, G., Xue, L.,
Thapliyal, A. V., Bradbury, J., and Kuo, W. Pali: A
jointly-scaled multilingual language-image model. In
Proceedings of ICLR, 2023.

Cheng, X., Lin, Y., Chen, X., Zhao, D., and Yan, R. De-
couple knowledge from paramters for plug-and-play lan-
guage modeling. In Findings of ACL, 2023.

Cho, J., Lei, J., Tan, H., and Bansal, M. Unifying vision-
and-language tasks via text generation. In Proceedings of
ICML, 2021.

Chu, X., Qiao, L., Lin, X., Xu, S., Yang, Y., Hu, Y., Wei, F.,
Zhang, X., Zhang, B., Wei, X., and Shen, C. Mobilevlm
: A fast, strong and open vision language assistant for
mobile devices. arXiv preprint, arXiv:2312.16886, 2023.

Dai, D., Dong, L., Hao, Y., Sui, Z., Chang, B., and Wei,
F. Knowledge neurons in pretrained transformers. In
Proceedings of ACL, 2022.

Dai, D., Jiang, W., Dong, Q., Lyu, Y., and Sui, Z. Neural
knowledge bank for pretrained transformers. In Proceed-
ings of NLPCC, 2023.

Dou, Z., Xu, Y., Gan, Z., Wang, J., Wang, S., Wang, L.,
Zhu, C., Zhang, P., Yuan, L., Peng, N., Liu, Z., and Zeng,
M. An empirical study of training end-to-end vision-and-
language transformers. In Proceedings of CVPR, 2022.

Geva, M., Schuster, R., Berant, J., and Levy, O. Trans-
former feed-forward layers are key-value memories. In
Proceedings of EMNLP, 2021.

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and
Parikh, D. Making the V in VQA matter: Elevating the
role of image understanding in visual question answering.
In Proceedings of CVPR, 2017.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
de Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for NLP.
In Proceedings of ICML, 2019.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank
adaptation of large language models. In Proceedings of
ICLR, 2022.

Hu, Z., Li, Y., Lyu, M. R., and Wang, L. VL-PET: vision-
and-language parameter-efficient tuning via granularity
control. In Proceedings of ICCV, 2023.

Hudson, D. A. and Manning, C. D. GQA: A new dataset for
real-world visual reasoning and compositional question
answering. In Proceedings of CVPR, 2019.

Jiang, J. and Zheng, N. Mixphm: Redundancy-aware
parameter-efficient tuning for low-resource visual ques-
tion answering. In Proceedings of CVPR, 2023.

Jie, S. and Deng, Z.-H. Fact: Factor-tuning for lightweight
adaptation on vision transformer. In Proceedings of AAAI,
2023.

Jie, S., Wang, H., and Deng, Z. Revisiting the parameter
efficiency of adapters from the perspective of precision
redundancy. In Proceedings of ICCV, 2023.

Kim, W., Son, B., and Kim, I. Vilt: Vision-and-language
transformer without convolution or region supervision.
In Proceedings of ICML, 2021.

Lei, J., Yu, L., Bansal, M., and Berg, T. L. TVQA: localized,
compositional video question answering. In Proceedings
of EMNLP, 2018.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
BART: denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. In Proceedings of ACL, 2020.

9

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

Li, J., Selvaraju, R. R., Gotmare, A., Joty, S. R., Xiong, C.,
and Hoi, S. C. Align before fuse: Vision and language
representation learning with momentum distillation. In
Proceedings of NeurIPS, 2021.

Li, J., Li, D., Xiong, C., and Hoi, S. C. H. BLIP: boot-
strapping language-image pre-training for unified vision-
language understanding and generation. In Proceedings
of ICML, 2022.

Li, J., Li, D., Savarese, S., and Hoi, S. C. H. BLIP-2: boot-
strapping language-image pre-training with frozen image
encoders and large language models. In Proceedings of
ICML, 2023.

Li, L., Chen, Y., Cheng, Y., Gan, Z., Yu, L., and Liu, J.
HERO: hierarchical encoder for video+language omni-
representation pre-training. In Proceedings of EMNLP,
2020.

Lian, D., Zhou, D., Feng, J., and Wang, X. Scaling &
shifting your features: A new baseline for efficient model
tuning. In Proceedings of NeurIPS, 2022.

Liu, H., Li, C., Li, Y., and Lee, Y. J. Improved base-
lines with visual instruction tuning. arXiv preprint,
arXiv:2310.03744, 2023a.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction
tuning. In Proceedings of NeurIPS, 2023b.

Liu, X., Ji, K., Fu, Y., Du, Z., Yang, Z., and Tang, J. P-
tuning v2: Prompt tuning can be comparable to fine-
tuning universally across scales and tasks. arXiv preprint,
arXiv:2110.07602, 2021.

Lu, H., Ding, M., Huo, Y., Yang, G., Lu, Z., Tomizuka,
M., and Zhan, W. Uniadapter: Unified parameter-
efficient transfer learning for cross-modal modeling.
arXiv preprint, arXiv:2302.06605, 2023.

Lu, P., Mishra, S., Xia, T., Qiu, L., Chang, K., Zhu, S.,
Tafjord, O., Clark, P., and Kalyan, A. Learn to explain:
Multimodal reasoning via thought chains for science ques-
tion answering. In Proceedings of NeurIPS, 2022.

Luo, G., Zhou, Y., Ren, T., Chen, S., Sun, X., and Ji, R.
Cheap and quick: Efficient vision-language instruction
tuning for large language models. In Proceedings of
NeurIPS, 2023.

Mahabadi, R. K., Henderson, J., and Ruder, S. Compacter:
Efficient low-rank hypercomplex adapter layers. In Pro-
ceedings of NeurIPS, 2021.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual knowledge in GPT. arXiv preprint,
arXiv:2202.05262, 2022.

OpenAI. GPT-4 technical report. arXiv preprint,
arXiv:2303.08774, 2023.

Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., and Gurevych,
I. Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of EACL, 2021.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
Proceedings of ICML, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Rebuffi, S., Bilen, H., and Vedaldi, A. Learning multiple
visual domains with residual adapters. In Proceedings of
NIPS, 2017.

Sung, Y., Cho, J., and Bansal, M. VL-ADAPTER:
parameter-efficient transfer learning for vision-and-
language tasks. In Proceedings of CVPR, 2022.

Tan, H. and Bansal, M. LXMERT: learning cross-modality
encoder representations from transformers. In Proceed-
ings of the EMNLP-IJCNLP, 2019.

Tang, Y., Liu, F., Ni, Y., Tian, Y., Bai, Z., Hu, Y.-Q., Liu, S.,
Jui, S., Han, K., and Wang, Y. Rethinking optimization
and architecture for tiny language models. arXiv preprint,
arXiv:2402.02791, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models. arXiv preprint, arXiv:2302.13971, 2023.

Tsimpoukelli, M., Menick, J., Cabi, S., Eslami, S. M. A.,
Vinyals, O., and Hill, F. Multimodal few-shot learning
with frozen language models. In Proceedings of NeurIPS,
2021.

Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J.,
Zhou, C., Zhou, J., and Yang, H. OFA: unifying architec-
tures, tasks, and modalities through a simple sequence-to-
sequence learning framework. In Proceedings of ICML,
2022a.

Wang, Z., Yu, J., Yu, A. W., Dai, Z., Tsvetkov, Y., and Cao,
Y. Simvlm: Simple visual language model pretraining
with weak supervision. In Proceedings of ICLR, 2022b.

Zaken, E. B., Goldberg, Y., and Ravfogel, S. Bitfit: Sim-
ple parameter-efficient fine-tuning for transformer-based
masked language-models. In Proceedings of ACL, 2022.

10

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling
vision transformers. In Proceedings of CVPR, 2022.

Zhang, R., Han, J., Zhou, A., Hu, X., Yan, S., Lu, P., Li,
H., Gao, P., and Qiao, Y. Llama-adapter: Efficient fine-
tuning of language models with zero-init attention. arXiv
preprint, arXiv:2303.16199, 2023a.

Zhang, Y., Zhou, K., and Liu, Z. Neural prompt search.
arXiv preprint, arXiv:2206.04673, 2022.

Zhang, Z., Guo, W., Meng, X., Wang, Y., Wang, Y., Jiang,
X., Liu, Q., and Yang, Z. Hyperpelt: Unified parameter-
efficient language model tuning for both language and
vision-and-language tasks. In Findings of ACL, 2023b.

Zhang, Z., Zhang, A., Li, M., Zhao, H., Karypis, G., and
Smola, A. Multimodal chain-of-thought reasoning in lan-
guage models. arXiv preprint, arXiv:2302.00923, 2023c.

11

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

Appendix

A. Experiment Details
A.1. Experiments on BART & T5

We list the hyperparameters in Table 5. We use task-specific prompt to the input sentence for each downstream task, as
shown in Table 6.

Table 5. Hyperparameters on BART-base and T5-base.
Method Learning Rate Batch Size Epoch Structure Hyper-Parameters

Full Fine-Tuning 1e-4 512 20 -
Compacter 1e-3 512 20 hidden dimension d = 48, kronecker products k = 2
LoRA 1e-3 512 20 rank r = 40
VL-Adapter 1e-3 512 20 hidden dimension d = 48

VL-PET 1e-3 512 20
Encoder: hidden dimension d = 48, scaling factor s = 1, #head Nh = 4
Decoder: hidden dimension d = 48, scaling factor s = 1, #head Nh = 1

MemVP 1e-3 512 20 scaling factor λ = 0.01, length of position embedding n = 240

Table 6. Input-output formats with task prompts.
Task Input Output

VQAv2 [Question] [Answer]
GQA [Question] [Answer]
COCO Captions Provide a one-sentence caption for the provided image. [Caption]
ScienceQA Question: [Question]\n Context: [Context]\n Options: [Choices]\n Reponse: The answer is [Answer]

A.2. Experiments on LLaMA

As mentioned in the main text, since LaVIN also inserts adapters in the visual encoder, we adopt a comparable strategy on
MemVP and LLaVA-LoRA for a fair comparison. Specifically, we use two FC layers with hidden dimension of 12 and
GELU activation in between as adapters, which are inserted in parallel with the FFNs of ViT, i.e., the adapter use the same
input as FFN, and its output is also added to the output of FFN. We list the hyperparameters in Table 7 and the input-output
format in Table 6.

Table 7. Hyperparameters on LLaMA.
Method Learning Rate Batch Size Epoch Structure Hyper-Parameters

LLaVA-LoRA (7B) 9e-3 32 20 rank r = 6
MemVP (7B) 9e-3 32 20 scaling λ = 0.01, length of position embedding n = 320
MemVP (13B) 9e-3 32 20 scaling λ = 0.01, length of position embedding n = 400

B. Supplementary Experiments
B.1. Video Question Answering

We conduct experiments on video question answering tasks on BART-base, including TVQA (Lei et al., 2018) and
How2QA (Li et al., 2020). We follow the setting used for image-based tasks and fine-tune each dataset under single-task
protocol. We use the features of [CLS] tokens extract by CLIP-ViT-B/32 from the 64 frames of each video. We train each
method for 20 epochs with batch size 64. We report results on validation sets since the test sets are not publicly available.
The results shown in Table 8 verify the effectiveness of MemVP on video-based tasks.

B.2. Visual Instruction Tuning

We also conduct experiments on visual instruction tuning of large language models. Following LLaVA-1.5 (Liu et al., 2023a),
we perform instruction tuning using MemVP on CLIP-ViT-L/14@336 and Vicuna-v1.5-7B with a two-stage protocol.

12

Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning

Table 8. Results on TVQA and How2QA. “FLOPs” denotes the average FLOPs of language models on validation set.

Method #Trainable
Params (M/task)

TVQA How2QA
Acc FLOPs (G) Acc FLOPs (G)

LoRA 2.74 68.2 44.6 69.4 38.1
VL-Adapter 2.69 68.9 45.3 68.6 38.8
VL-PET 2.66 69.1 46.3 69.1 39.7
MemVP (Ours) 2.60 69.7 38.9 70.7 32.3

Table 9. Results of visual instruction tuning.
Method Vision Encoder Language Model # Trainable GQA SQA MME-P MMB POPE Pre-Training Time Inference Time

LLaVA-1.5-7B CLIP-ViT-L@336 Vicuna-v1.5-7B 7B 62.0 66.8 1511 64.3 85.9 5.43 s/batch 5.28 s/batch
MobileVLM-1.7B CLIP-ViT-L@336 MobileLLaMA-1.4B-chat 1.4B 56.1 54.7 1196 53.2 84.5 0.61 s/batch 1.73 s/batch
MemVP-7B CLIP-ViT-L@336 Vicuna-v1.5-7B 346M 58.7 69.0 1384 62.6 85.3 0.60 s/batch 1.71 s/batch

In the first stage, we pretrain the projector and position embedding on LCS-558K for 1 epoch. In the second multi-task
finetuning stage, we find that when the number of updated parameters is fewer than 100M, the model’s instruction-following
performance is notably poor. Therefore, we also insert LoRA into the language model, and jointly fine-tune the projector,
position embedding, and LoRA modules with rank 128 on the 665K instruction tuning data used by LLaVA-1.5. In Table 9,
we report the performance of MemVP on various benchmarks, as well as the pretraining speed (batch size = 32/GPU) and
inference speed on MMB dataset (batch size = 64/GPU).

As the results in the above table, compared to LLaVA-1.5, MemVP is much more faster in training and inference. Although
MemVP cannot compete with LLaVA-1.5 on some tasks, which highlights a limitation of our model, it is noteworthy that
the pretraining and inference speed of MemVP-7B is comparable to MobileVLM-1.7B (Chu et al., 2023) which is a smaller
LLaVA-style model trained on the same data, but MemVP-7B outperforms MobileVLM-1.7B by a large margin.

13

