
Graph Generation with Diffusion Mixture

Jaehyeong Jo 1 * Dongki Kim 1 * Sung Ju Hwang 1 2

Abstract
Generation of graphs is a major challenge for
real-world tasks that require understanding the
complex nature of their non-Euclidean structures.
Although diffusion models have achieved notable
success in graph generation recently, they are ill-
suited for modeling the topological properties of
graphs since learning to denoise the noisy sam-
ples does not explicitly learn the graph structures
to be generated. To tackle this limitation, we
propose a generative framework that models the
topology of graphs by explicitly learning the final
graph structures of the diffusion process. Specifi-
cally, we design the generative process as a mix-
ture of endpoint-conditioned diffusion processes
which is driven toward the predicted graph that
results in rapid convergence. We further introduce
a simple parameterization of the mixture process
and develop an objective for learning the final
graph structure, which enables maximum likeli-
hood training. Through extensive experimental
validation on general graph and 2D/3D molecule
generation tasks, we show that our method out-
performs previous generative models, generating
graphs with correct topology with both contin-
uous (e.g. 3D coordinates) and discrete (e.g.
atom types) features. Our code is available at
https://github.com/harryjo97/GruM.

1. Introduction
Generation of graph-structured data has emerged as a cru-
cial task for real-world problems such as drug discovery (Si-
monovsky & Komodakis, 2018), protein design (Ingraham
et al., 2019), and program synthesis (Brockschmidt et al.,
2019). To tackle the challenge of learning the underlying
distribution of graphs, deep generative models have been

*Equal contribution 1Korea Advanced Institute of Science
and Technology (KAIST) 2DeepAuto.ai. Correspondence to:
Jaehyeong Jo <harryjo97@kaist.ac.kr>, Dongki Kim <clev-
erki@kaist.ac.kr>, Sung Ju Hwang <sjhwang82@kaist.ac.kr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

proposed, including models based on generative adversarial
networks (GANs) (De Cao & Kipf, 2018; Martinkus et al.,
2022), recurrent neural networks (RNNs) (You et al., 2018),
and variational autoencoders (VAEs) (Jin et al., 2018).

Recently, diffusion models have achieved state-of-the-art
performance on the generation of graph-structured data (Niu
et al., 2020; Jo et al., 2022; Hoogeboom et al., 2022). These
models learn the generation process as the time reversal of
the forward process, which corrupts the graphs by gradually
adding noise that destroys its topological properties. Since
the generative process is derived from the unknown score
function (Song et al., 2021) or noise (Ho et al., 2020), exist-
ing graph diffusion models aim to estimate them in order to
denoise the data from noise, which are commonly referred
to as the denoising diffusion models (Figure 1 (a)).

Despite their success, learning the score or noise is funda-
mentally ill-suited for the generation of graphs. In contrast
to other types of data such as images, the key to generat-
ing valid graphs is accurately modeling the discrete struc-
tures that determine the topological properties such as con-
nectivity or clusteredness. However, learning the score or
noise does not explicitly model these features, as it aims
to gradually denoise the corrupted structures. Thereby it is
challenging for the diffusion models to recover the topolog-
ical properties, which leads to failure cases even for small
graphs. A way to more accurately generate graphs with
correct topology would be directly learning the final graph
and its structure, instead of learning how to denoise a noisy
version of the original graphs.

However, predicting the final graph structure of the diffusion
process is difficult since the prediction would be highly
inaccurate in the early steps of the diffusion process, and
such an inaccurate prediction may lead the process in the
wrong direction resulting in invalid results. Few existing
works (Hoogeboom et al., 2021; Austin et al., 2021; Vignac
et al., 2023) based on denoising diffusion models aim to
predict the probability of the final states by parameterizing
the denoising process, but it is only applicable to categorical
data with a finite number of states and thus cannot generate
graphs with continuous features, which is not suitable for
tasks such as 3D molecule generation.

To address these limitations of existing graph diffusion mod-
els, we propose a novel framework that explicitly models the

1

Graph Generation with Diffusion Mixture

graph topology, by learning the prediction of the resulting
graph of the generative process which is represented as a
weighted mean of graph data (Figure 1 (b)). Specifically,
we construct a diffusion process via the mixture of endpoint-
conditioned Ornstein-Uhlenbeck processes for which the
drift drives the process in the direction of the predicted
graph, differing from the denoising diffusion process used
in previous works (Section 3.1). In order to model the
mixture of the diffusion process, we develop a simple pa-
rameterization of the graph generative model with respect
to the prediction of the final graph. We further derive an
efficient training objective for learning the graph prediction,
which guarantees to maximize the likelihood of our gener-
ative model (Section 3.2). Thanks to its ability to capture
accurate graph structures, our framework achieves fast con-
vergence to the correct graph topology in an early sampling
step (Figure 1 (c) and Figure 3 (Right)).

We experimentally validate our method on diverse real-
world graph generation tasks. We first validate it on general
graph generation benchmarks with synthetic and real-world
graphs, on which it outperforms previous deep graph gen-
erative models including graph diffusion models, by being
able to generate valid graphs with correct topologies. We
further validate our method on 2D and 3D molecule genera-
tion tasks to demonstrate its ability to generate graphs with
both the continuous and discrete features, on which ours
generates a significantly larger number of valid and stable
molecules compared to the state-of-the-art baselines. Our
main contributions can be summarized as follows:

• We observe that previous diffusion models cannot ac-
curately model the graph structures as they learn to de-
noise at each step without considering the topology of the
graphs to be generated.

• To fix such a myopic behavior of previous diffusion mod-
els, we propose a new graph generation framework that
captures the graph structures by directly predicting the
final graph of the diffusion process modeled by a mixture
of endpoint-conditioned diffusion processes.

• We develop a simple parameterization of the graph gener-
ative model for modeling the mixture process and present
a simulation-free training objective for graph prediction.

• Our method significantly outperforms previous graph dif-
fusion models on the generation of diverse real and syn-
thetic graphs, as well as on 2D/3D molecule generation
tasks, by being able to generate graphs with accurate
topologies, and both the discrete and continuous features.

2. Related Work
Diffusion Models Diffusion models have been shown to
successfully generate high-quality samples from diverse
data domains such as images (Dhariwal & Nichol, 2021; Sa-

haria et al., 2022) and videos (Ho et al., 2022). Despite their
success, existing diffusion models for graphs (Niu et al.,
2020; Jo et al., 2022) often fail to generate graphs with cor-
rect structures since they learn to estimate the score or noise
for the denoising process which does not explicitly capture
the final graph and its structure. To address these limita-
tions, we propose a graph diffusion framework that models
the generative process as a mixture of diffusion processes,
which learns to predict the final graph with valid topology
instead of predicting the denoising function at each step.
This promotes our generative process to be driven toward
the prediction of the final graph, resulting in generation of
valid graphs with correct topology.

Diffusion Bridge Process A line of recent works has im-
proved the generative framework of diffusion models by
leveraging the diffusion bridge processes, i.e., processes
conditioned to the endpoints. Schrödinger Bridge (Bortoli
et al., 2021b; Chen et al., 2022) aims to find both the forward
and the backward process that transforms two distributions
back and forth using iterative proportional fittings that re-
quire heavy computations. More recent works (Peluchetti,
2021; Wu et al., 2022; Liu et al., 2023; Jo & Hwang, 2023)
consider learning the generation process as a mixture of
diffusion processes instead of reversing the noising process
as in denoising diffusion models, which we describe in de-
tail in Appendix A.11. However, previous works aim to
approximate the drifts of the diffusion processes which can-
not accurately capture the discrete structure of graphs as it
does not explicitly learn the graph structures to be generated.
Moreover, learning the drift could be problematic as the
drift of the diffusion process diverges near the terminal time.
Instead, we present a new approach to parameterizing the
mixture process with the prediction of the final graph which
allows it to model valid graph topology.

Graph Generative Models Deep generative models for
graphs either generate nodes and edges in an autoregres-
sive manner or all the nodes and edges at once using
VAE (Jin et al., 2018), RNN (You et al., 2018), normal-
izing flow (Zang & Wang, 2020; Shi et al., 2020; Luo et al.,
2021), and GAN (De Cao & Kipf, 2018; Martinkus et al.,
2022). However, these models show poor performance due
to restrictive model architectures for modeling the likeli-
hood or their inability to model the permutation equivariant
nature of graphs. Recently, diffusion models for graphs (Jo
et al., 2022; Hoogeboom et al., 2022; Vignac et al., 2023)
have made large progress, but either fail to capture the graph
topology or are not applicable to general tasks due to the
architectural restriction of the framework. In our work, we
introduce a diffusion framework that predicts the final graph
structure instead of denoising noisy graphs. Our method
largely outperforms existing models (Jo et al., 2022; Vignac
et al., 2023; Hoogeboom et al., 2022) on generation tasks
including general graphs as well as 2D and 3D molecules.

2

Graph Generation with Diffusion Mixture

Final ResultFinal Result

Noising

Denoising

(b)(a)

Reverse-time
Diffusion

Predicted GraphIncorrect
Topology

Correct
Topology

N
o

is
e

 le
ve

l

Predicted Noise

OU Bridge
Mixture Drift: Eq.(7)

Data Distribution

(c)

Converged!

Predicted
Graph

Graph Mixture

T/10 T/5 T/4 T/3 T/2 T~ ~

Mismatch Match

Figure 1: Illustration of the graph generative process. (a: Denoising diffusion model, b: GruM (ours), c: Graph mixture)
For GruM, we design the generative process as a mixture of endpoint-conditioned diffusion processes (Eq. (3)), namely
the OU bridge mixture (Eq. (6)), which is driven toward the graph mixture (green) by its drift (Eq. (8)). Our GruM in (b)
successfully generates graphs with valid topology by predicting the final result via learning the graph mixture as a weighted
mean of data (Eq. (1)). The predicted graph of GruM converges in an early stage to the correct topology as visualized in (c).
In contrast, previous denoising diffusion models in (a) often fail to capture the correct topology as they learn the score or
noise for denoising (red), without explicit knowledge of final graph structure.

3. Graph Diffusion Mixture
In this section, we present our graph generation framework
Graph Diffusion Mixture (GruM), for modeling valid topol-
ogy of graphs using a mixture of diffusion processes.

3.1. Designing Graph Generative Process

The key to generating graph-structured data is understanding
the underlying topology of graphs which is crucial to deter-
mining its validity, since a slight modification in the edges
may significantly change its structure and the attributes, for
example, planarity or molecular properties. However, pre-
vious diffusion models fail to do so as their objective is
to denoise the noisy graphs, in which the topology is only
implicitly captured (Figure 1 (a)) from the noisy structure.
To overcome the limitation, we propose a graph diffusion
framework that can directly learn the accurate graph struc-
tures and capture valid topology.

Throughout the paper, we represent a graph with N nodes
as a pair G=(X,A) where X∈RN×F is the node features
of feature dimension F and A ∈ RN×N is the weighted
adjacency matrix that defines the connection between nodes.

Graph Mixture Our goal is to directly predict the final
graph of the diffusion process that transports a prior dis-
tribution to the data distribution Π∗. To be specific, for a
graph diffusion process represented as a trajectory of ran-
dom variables {Gτ =(Xτ ,Aτ)}τ∈[0,T], we aim to predict
the terminus of the process GT in Π∗given the current state
Gt. However, identifying the exact GT at the early stage of
the process is problematic since the prediction based on Gt

of almost no information would be highly inaccurate, and
could lead the process in the wrong direction.

To address this problem, we present a different approach
to predicting the probable graph, which we define as a
weighted mean of all the possible final results (Figure 1
(b)). Since the probability of a graph g being the final result
is equal to the transition probability of the process denoted
as pT |t(g|·), we define the probable graph given the current
state Gt via the expectation of the graphs as follows:

D(Gt, t) =

∫
g · pT |t(g|Gt) dg, (1)

which we refer to as the graph mixture of the process, visu-
alized in Figure 1. In order to explicitly model this, we con-
struct a generative process driven toward the graph mixture
using a mixture of diffusion processes, which we describe
in the following paragraphs.

Ornstein-Uhlenbeck Bridge Process As a building
block of our generative framework, we leverage diffusion
processes with fixed endpoints, namely the diffusion bridge
processes. We propose to use a family of bridge processes,
namely the Ornstein-Uhlenbeck (OU) bridge process that
enables simulation-free training for our generative model
while providing flexibility for modeling the complex gener-
ative process for graphs.

Given an OU process Q modeled by the following SDE:

Q : dGt = ασ2
tGtdt+ σtdWt, (2)

where α is a constant, σt is a noise schedule, and Wt is
the standard Wiener process, the OU bridge process Qg is
the process Q pinned at a fixed terminal point g. Using the
Doob’s h-transform (Doob & Doob, 1984), we can derive
the OU bridge process Qg as follows (we provide detailed

3

Graph Generation with Diffusion Mixture

derivation of the bridge process in Appendix A.1):

dGt =

[
ασ2

tGt +
σ2
t

vt

(
g

ut
−Gt

)
︸ ︷︷ ︸

ηg(Gt,t)

]
dt+ σtdWt, (3)

where the scalar functions ut and vt are defined as follows:

ut = exp
(
α

∫ T

t

σ2
τdτ

)
, vt =

1

2α

(
1− u−2

t

)
. (4)

The endpoint of Qg is fixed to GT = g, since the drift
ηg(·, t) of the process forces the trajectory Gt in the direc-
tion of g. Although there exists a more general class of
bridge processes with non-linear drift (see Appendix A.1),
they have intractable transition probability and require ex-
pensive SDE simulation to obtain trajectories. In contrast,
the OU bridge processes yield tractable transition probabili-
ties due to their affine nature and allow the training of our
generative model to be simulation-free, which we further dis-
cuss in Section 3.2. Note that the Brownian bridge process
used in previous works (Wu et al., 2022; Liu et al., 2022)
is a special case of the OU bridge process when α → 0
(see Appendix A.1). Especially, we can write the OU bridge
process of Eq. (3) for graphs g=(x,a) as a system of SDEs:
dXt=

[
α1σ

2
1,tXt+

σ2
1,t

v1,t

(
x

u1,t
−Xt

)]
dt+σ1,tdW1,t

dAt=
[
α2σ

2
2,t At+

σ2
2,t

v2,t

(
a

u2,t
−At

)]
dt+σ2,tdW2,t

(5)

With the OU bridge processes in hand, we develop a frame-
work for predicting the final graph via the graph mixture.

Diffusion Mixture for Graph Generation As the graph
mixture in Eq. (1) is a weighted mean of the final graphs,
conceptually, this can be modeled by aggregating the
endpoint-conditioned processes with respect to the weights
from the graph mixture. Inspired by the diffusion mixture
framework (Peluchetti, 2021; Wu et al., 2022; Liu et al.,
2022), we design the generation process by mixing the OU
bridge processes with the endpoints from the data distribu-
tion, where we leverage the diffusion mixture representa-
tion (Brigo, 2008; Peluchetti, 2021). This yields the SDE
representation of a mixture process as a weighted mean of
the SDEs of the diffusion processes (we provide a formal
definition of the mixture representation in Appendix A.2).

Specifically, we mix a collection of OU bridge processes
{Qg : g=(x,a)∼Π∗} to construct a generation process,
for which the mixture process is modeled by the SDE:

QΠ∗
:

{
dXt = η1(Xt,At, t)dt+ σ1,tdW1,t

dAt = η2(Xt,At, t)dt+ σ2,tdW2,t

(6)

with G0=(X0,A0) following an arbitrary prior distribution
Γ and the drifts η1 and η2 defined as follows:(

η1(Xt,At, t)
η2(Xt,At, t)

)
=

∫ (
ηx1 (Xt, t)
ηa2 (At, t)

)
pgt (Gt)

pt(Gt)
Π∗(dg) (7)

for Gt = (Xt,At), where pgt is the marginal density of
the bridge process Qg, and pt(·) :=

∫
pgt (·)Π∗(dg) is the

marginal density of the mixture process. Notably, the ter-
minal distribution of the mixture process QΠ∗

is equal to
the data distribution Π∗ by construction. We refer to this
mixture process as the OU bridge mixture.

Remarkably, the mixture process QΠ∗
can be explicitly rep-

resented in terms of the graph mixture. We derive a param-
eterization of QΠ∗

from the SDE representation of the OU
bridge process in Eq. (3) as follows (see Appendix A.3 for
the derivation):

η1(Xt,At,t) = α1σ
2
1,tXt+

σ2
1,t

v1,t

(
DX(Xt,At,t)

u1,t
−Xt

)
η2(Xt,At,t) = α2σ

2
2,tAt+

σ2
2,t

v2,t

(
DA(Xt,At,t)

u2,t
−At

) (8)

where DX and DA are defined as a weighted mean of the
node features and the adjacency matrices respectively:

DΠ∗
(Gt, t) :=

(
DX(Gt, t)
DA(Gt, t)

)
=

∫ (
x
a

)
pgt (Gt)

pt(Gt)
Π∗(dg) (9)

Notice that from the definition of the transition distribution,
we can derive the following identity:

DΠ∗
(Gt, t) =

∫
g
pgt (Gt)

pt(Gt)
Π∗(dg) =

∫
g · pT |t(g|Gt)dg,

which shows that DΠ∗
(·, t) coincides with the graph mix-

ture of QΠ∗
as in Eq. (1). As a result, DΠ∗

(·, t) acts as
the prediction of the final graph at time t, where DX and
DA are the predicted node features and adjacency matrices,
respectively, in the form of a weighted mean of data.

In the view of the graph mixture as the weighted mean
from DΠ∗

, it converges to the final graph of the mixture
process since the marginal density pgt of the bridge process
converges to one if g corresponds to the final graph while
the probability becomes zero otherwise. This convergence
is achieved at an early stage as visualized in Figure 1 (c) and
Appendix E.2, where we further analyze the convergence
behavior with respect to the coefficient α and the noise
schedule σt in Appendix D.2.

A key observation is that the drift of the OU bridge mix-
ture in Eq. (8) highly resembles the drift of the OU bridge
process in Eq. (3), except that the final graph g is replaced
by the graph mixture. From this observation, we can see
that the trajectory of the mixture process is guided by the
drift in the direction of DΠ∗

(·, t), driven toward the graph

4

Graph Generation with Diffusion Mixture

mixture that converges to a graph in the data distribution Π∗.
Therefore, if we could estimate the graph mixture of this
process, we can build a generative model upon the mixture
process without relying on score function or noise, where
the graph structures and the topological attributes can be
explicitly modeled by the graph mixture.

Before introducing the training objective for learning the
graph mixture, we discuss the difference between our frame-
work and the denoising diffusion models. Our generative
process is modeled by the mixture of bridge processes that
describes the exact transport from the prior distribution
to the data distribution by construction, whereas the time
reversal of denoising diffusion models is not an exact trans-
port to the data distribution for finite time (Franzese et al.,
2023). We provide further discussion on the difference in
the characteristics of our mixture process and the denoising
diffusion processes in Appendix A.10.

3.2. Generation Framework Using Graph Mixture

Training Objectives Our goal is to design a generative
model that explicitly learns the graph topology. To this end,
we leverage the OU bridge mixture parameterized by the
graph mixture, where we estimate the graph mixture using a
neural network sθ(·, t) that corresponds to directly learning
the graph structures. In particular, we show that estimating
the graph mixture guarantees to maximize the likelihood
of our generative model. For the rest of the section, we
represent the system of SDEs of Eq. (6) as a SDE with
respect to Gt for notational simplicity.

We propose to define the generative model Pθ to approxi-
mate the mixture process QΠ∗

as follows:

Pθ : dGt = ηθ(Gt, t)dt+ σtdWt,

ηθ(Gt, t) = ασ2
tGt +

σ2
t

vt

(
1

ut
sθ(Gt, t)−Gt

)
,

(10)

where sθ is desired to estimate the graph mixture DΠ∗
.

In order to model the drift ηθ, we provide a tractable objec-
tive for estimating the graph mixture, which guarantees to
maximize the likelihood of our generative model Pθ. Lever-
aging the Girsanov theorem (Øksendal, 2003), we upper-
bound the KL divergence between Π∗and the terminal dis-
tribution of Pθ denoted as pθT as follows (see Appendix A.5
for a detailed derivation of the objective):

DKL(Π
∗∥pθT) ≤ DKL(QΠ∗

∥Pθ)

= EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

∥∥∥sθ(Gt, t)−DΠ∗
(Gt, t)

∥∥∥2 dt]+ C1

= EG∼QΠ∗

[
1

2

∫ T

0

γ2
t ∥sθ(Gt, t)−GT ∥2dt

]
+ C2, (11)

where γt := σt/(utvt), C1 and C2 are constants indepen-
dent of θ, and the expectation is computed over the samples

G from the OU bridge mixture QΠ∗
.

During training, Gt from the mixture process QΠ∗
can be

easily obtained without simulating the SDE. Notice that Gt

follows the distribution pt|0,T (Gt|G0,GT), which is the
distribution of the mixture process QΠ∗

at time t given the
endpoints G0 and GT . By construction, the OU bridge
mixture with fixed endpoints G0 and GT coincides with
the OU process (Eq. (2)) with these fixed endpoints, and
pt|0,T (Gt|G0,GT) corresponds to the marginal probability
of the OU process with the fixed endpoints G0 and GT .

Using the Bayes theorem, we derive that the distribution
p(Gt|G0,GT) is also Gaussian that results from the prod-
uct of Gaussian distributions, where the mean µ∗

t and the
covariance Σ∗

t have analytical forms as follows (see Ap-
pendix A.6 for the derivation):

µ∗
t =

sinh (φT − φt)

sinh (φT)
G0 +

sinh (φt)

sinh (φT)
GT ,

Σ∗
t =

1

α

sinh (φT − φt) sinh (φt)

sinh (φT)
I,

(12)

where φt := α
∫ t

0
σ2
τdτ . Thereby the training of GruM

is simulation-free, and our approach is 17.5 times faster
compared to the training that relies on expensive SDE simu-
lation (Wu et al., 2022).

In particular, Eq. (12) shed light on the connection of the
OU bridge mixture and the stochastic interpolant (Albergo
et al., 2023) between the distributions Γ and Π∗ as follows:

Gt =
sinh (φT − φt)

sinh (φT)
G0 +

sinh (φt)

sinh (φT)
GT

+

(
1

α

sinh (φT − φt) sinh (φt)

sinh (φT)

)1/2

Z. (13)

where G0∼Γ, GT ∼Π∗, and Z∼N (0, I), respectively.

Note that the goal of Eq. (11) is to model the drift of the OU
bridge mixture parametrized by the graph mixture, where sθ
is trained to estimate the graph mixture instead of the exact
graph GT , and we refer to this objective as the graph mix-
ture matching. Learning the graph mixture not only allows
us to directly model the structures of the final graph and
their topological properties, but further guarantees our gen-
erative model to closely approximate the data distribution.
Additionally, we discuss the difference between learning
the graph mixture and the training objectives of denoising
diffusion models in Appendix A.9 and A.10. We summarize
the training process in Algorithm 1 and provide the details
in Appendix B.2.

Sampling from GruM Using the trained model sθ to
compute the drift ηθ of the parameterized mixture process
in Eq. (10), we generate samples by simulating Pθ from time

5

Graph Generation with Diffusion Mixture

Algorithm 1 Training
Input: Model sθ, constant ϵ
For each epoch:

1: Sample graph G from the training set
2: N ← number of nodes of G
3: Sample t ∼ [0, T − ϵ] and G0 ∼ N (0, IN)
4: Sample Gt ∼ pt|0,T (Gt|G0,G) ▷ Eq. (13)
5: γt ← σt/utvt
6: Lθ ← γ2

t ∥sθ(Gt, t)−G∥2
7: Update θ using Lθ

Algorithm 2 Sampling
Input: Trained model sθ, number of sampling steps K,
diffusion step size dt

1: Sample number of nodes N from the training set.
2: G0 ∼ N (0, IN) ▷ Start from noise
3: t← 0
4: for k = 1 to K do
5: η ← ασ2

tGt +
σ2
t

vt

(
1
ut
sθ(Gt, t)−Gt

)
6: w ∼ N (0, IN)
7: Gt+dt← ηdt+ σt

√
dtw ▷ Euler-Maruyama Step

8: t← t+ dt
9: end for

10: G← quantize(Gt) ▷ Quantize if necessary
11: Return: Graph G

t = 0 to t = T with initial samples drawn from the prior
distribution. Note that we generate the node features and
the adjacency matrices simultaneously using the system of
SDEs in the form of Eq. (6), and solving the SDEs is similar
to that of denoising diffusion models which does not require
additional time. We summarize the sampling process in
Algorithm 2 and describe the details in Appendix B.4.

Advantages of Our Framework We conclude this sec-
tion by explaining the advantages of our framework. First,
GruM can directly model the graph topology by predict-
ing the graph structures via the graph mixture, instead of
implicitly capturing via noise or score. Furthermore, our
framework is not restricted to the type of data to be gen-
erated, allowing it to be applicable to both continuous and
discrete data, for example, 3D molecules with both discrete
atom types and continuous coordinates.

From the perspective of the model hypothesis space, learn-
ing the graph mixture is considerably easier compared to
previous objectives such as learning the score function or
the drift of the diffusion process. While the graph mixture is
supported inside the bounded data space, the score function
or the drift tends to diverge near the terminal time which
could be problematic for the model to learn. Furthermore,
we can exploit the inductive bias of the graph data for learn-

ing the graph mixture, which is critical as it dramatically
reduces the hypothesis space. To be specific, we can lever-
age the prior knowledge of the graph representation such as
one-hot encoding or the categorical type by adding an addi-
tional function at the last layer of the model sθ, for instance,
softmax function for the one-hot encoded node features and
the sigmoid function for the 0-1 adjacency matrices (we
provide more details in Appendix B.3). We experimentally
verify these advantages in Section 4.4.

4. Experiments
4.1. General Graph Generation
We validate GruM on general graph generation tasks to show
that it can generate valid graph topology.

Datasets and Metrics We evaluate the quality of gen-
erated graphs on three synthetic and real datasets used as
benchmarks in previous works (Martinkus et al., 2022; Vi-
gnac et al., 2023): Planar, Stochastic Block Model (SBM),
and Proteins (Dobson & Doig, 2003). We follow the evalu-
ation setting of Martinkus et al. (2022) using the same data
split. We measure the maximum mean discrepancy (MMD)
of four graph statistics between the set of generated graphs
and the test set: degree (Deg.), clustering coefficient (Clus.),
count of orbits with 4 nodes (Orbit), and the eigenvalues of
the graph Laplacian (Spec.). To verify that the model truly
learns the distribution, we report the percentage of valid,
unique, and novel (V.U.N.) graphs for which the validness
is defined as satisfying the specific property of each dataset.
We provide further details in Appendix C.1.

Baselines We compare our method against the following
graph generative models: GraphRNN (You et al., 2018)
an autoregressive model based on RNN, GRAN (Liao
et al., 2019) an autoregressive model with attention, SPEC-
TRE (Martinkus et al., 2022) a one-shot model based on
GAN, EDP-GNN (Niu et al., 2020) a score-based model for
adjacency matrix, GDSS (Jo et al., 2022) and ConGress (Vi-
gnac et al., 2023) a continuous diffusion model, and Di-
Gress (Vignac et al., 2023), a discrete diffusion model. We
provide the details of training and sampling of our GruM
in Appendix B and describe further implementation details
including the hyperparameters in Appendix C.1.

Results Table 1 shows that our method outperforms all
the baselines on all datasets. Especially, ours achieves the
highest validity (V.U.N.) metric, as it accurately learns the
underlying topology of the graphs. Notably, our method out-
performs DiGress by a large margin in V.U.N., even though
we do not use specific prior distributions or structural fea-
ture augmentation that are utilized in DiGress. We provide
an ablation study on the model architecture in Appendix D.2
to validate that the superior performance of GruM comes
from its ability to accurately model the graph topology by

6

Graph Generation with Diffusion Mixture

Table 1: Generation results on the general graph datasets. Best results are highlighted in bold, where smaller MMD and
larger V.U.N. indicate better results. Hyphen(-) denotes out-of-resources that take more than 2 weeks.

Planar SBM Proteins

Synthetic, |V | = 64 Synthetic, 44 ≤ |V | ≤ 187 Real, 100 ≤ |V | ≤ 500

Deg. Clus. Orbit Spec. V.U.N. Deg. Clus. Orbit Spec. V.U.N. Deg. Clus. Orbit Spec.

Training set 0.0002 0.0310 0.0005 0.0052 100.0 0.0008 0.0332 0.0255 0.0063 100.0 0.0003 0.0068 0.0032 0.0009

GraphRNN 0.0049 0.2779 1.2543 0.0459 0.0 0.0055 0.0584 0.0785 0.0065 5.0 0.0040 0.1475 0.5851 0.0152
GRAN 0.0007 0.0426 0.0009 0.0075 0.0 0.0113 0.0553 0.0540 0.0054 25.0 0.0479 0.1234 0.3458 0.0125
SPECTRE 0.0005 0.0785 0.0012 0.0112 25.0 0.0015 0.0521 0.0412 0.0056 52.5 0.0056 0.0843 0.0267 0.0052

EDP-GNN 0.0044 0.3187 1.4986 0.0813 0.0 0.0011 0.0552 0.0520 0.0070 35.0 - - - -
GDSS 0.0041 0.2676 0.1720 0.0370 0.0 0.0212 0.0646 0.0894 0.0128 5.0 0.0861 0.5111 0.732 0.0748
ConGress 0.0048 0.2728 1.2950 0.0418 0.0 0.0273 0.1029 0.1148 - 0.0 - - - -
DiGress 0.0003 0.0372 0.0009 0.0106 75 0.0013 0.0498 0.0434 0.0400 74 - - - -

GruM (Ours) 0.0005 0.0353 0.0009 0.0062 90.0 0.0007 0.0492 0.0448 0.0050 85.0 0.0019 0.0660 0.0345 0.0030

Figure 2: (Left) Topology analysis. We compare Spec. MMD and V.U.N of the graph mixture from GruM against the
implicit prediction computed from GDSS, ConGress, and DiGress which we provide details in Appendix C.1. (Middle)
MMD between the test set and the graph mixture of GruM through the generative process. (Right) The complexity of
GruM with and without using the inductive bias, measured by the Frobenius norm of the Jacobian of the models.

predicting the graph mixture. We provide the visualization
of the generated graphs and the generative process of GruM
in Appendix E, showing that it can accurately capture the
attributes of each dataset.

Topology Analysis To show how learning the graph mix-
ture results in graphs with correct topology, we conduct an
analysis of the graph mixture. Figure 2 (Left) demonstrates
that GruM can achieve the spectral property of the final
graph at an early stage by explicitly modeling the topol-
ogy via learning the graph mixture. In contrast, GDSS and
ConGress fail to recover the spectral properties as they im-
plicitly model the topology via predicting the noise or score
functions. Further, ours recovers the spectral property faster
than DiGress, resulting in graphs with higher validity. In
particular, we observe that the V.U.N. of the estimated graph
mixture increases after achieving the desired spectral prop-
erty, resulting in 90% V.U.N. This shows that predicting the
final graph allows us to better capture the global topologies.
Moreover, we plot the MMD results of GruM through the
generative process in Figure 2 (Middle), which demonstrates
that the local characteristics of the predicted graph rapidly
converge to that of the graphs from the training set.

4.2. 2D Molecule Generation
We further validate GruM on 2D molecule generation tasks
to show that it can accurately generate graphs with both the
node features and the topologies of the target graphs.

Datasets and Metrics We evaluate the quality of gener-
ated 2D molecules on two molecule datasets used as bench-
marks in Jo et al. (2022): QM9 (Ramakrishnan et al., 2014)
and ZINC250k (Irwin et al., 2012). Following the eval-
uation setting of Jo et al. (2022), we evaluate the models
with four metrics: Validity is the percentage of the valid
molecules among the generated without any posthoc correc-
tion. FCD (Preuer et al., 2018) measures the distance be-
tween the sets of molecules in the chemical space. NSPDK
MMD (Costa & De Grave, 2010) evaluates the quality of the
graph structure compared to the test set. Scaffold similarity
(Scaf.) evaluates the ability to generate similar substructures.
We provide more details in Appendix C.2.

Baselines We compare to the following molecular graph
generative models: MoFlow (Zang & Wang, 2020) is a one-
shot flow-based model. GraphAF (Shi et al., 2020) and
GraphDF (Luo et al., 2021) are autoregressive flow-based
model. EDP-GNN, GDSS, ConGress, and DiGress are

7

Graph Generation with Diffusion Mixture

Table 2: Generation results on the 2D molecule datasets. We report the mean of 3 different runs. Best results are
highlighted in bold. We provide the results of uniqueness, novelty and variance in Appendix D.1.

QM9 (|V | ≤ 9) ZINC250k (|V | ≤ 38)

Method Valid (%)↑ FCD↓ NSPDK↓ Scaf.↑ Valid (%)↑ FCD↓ NSPDK↓ Scaf.↑
Training set 100.0 0.0398 0.0001 0.9719 100.0 0.0615 0.0001 0.8395

MoFlow (Zang & Wang, 2020) 91.36 4.467 0.0169 0.1447 63.11 20.931 0.0455 0.0133
GraphAF (Shi et al., 2020) 74.43 5.625 0.0207 0.3046 68.47 16.023 0.0442 0.0672
GraphDF (Luo et al., 2021) 93.88 10.928 0.0636 0.0978 90.61 33.546 0.1770 0.0000

EDP-GNN (Niu et al., 2020) 47.52 2.680 0.0046 0.3270 82.97 16.737 0.0485 0.0000
GDSS (Jo et al., 2022) 95.72 2.900 0.0033 0.6983 97.01 14.656 0.0195 0.0467
DiGress (Vignac et al., 2023) 98.19 0.095 0.0003 0.9353 94.99 3.482 0.0021 0.4163

GruM (Ours) 99.69 0.108 0.0002 0.9449 98.65 2.257 0.0015 0.5299

QM9 (|V | ≤ 29) GEOM-DRUGS (|V | ≤ 181)

Method Atom Stab.(%) Mol. Stab.(%) Atom Stab.(%) Mol. Stab.(%)

G-Schnet (Gebauer et al., 2019) 95.7 68.1 - -
EN-Flow (Satorras et al., 2021) 85.0 4.9 75.0 0.0
GDM (Hoogeboom et al., 2022) 97.0 63.2 75.0 0.0
EDM (Hoogeboom et al., 2022) 98.7 ±0.1 82.0 ±0.4 81.3 0.0
Bridge (Wu et al., 2022) 98.7 ±0.1 81.8 ±0.2 81.0 ±0.7 0.0
Bridge+Force (Wu et al., 2022) 98.8 ±0.1 84.6 ±0.2 82.4 ±0.7 0.0

GruM (Ours) 98.81 ±0.03 87.34 ±0.19 82.96 ±0.12 0.51 ±0.03 0 500 1000
Timesteps

0.0

0.5

1.0

1.5

2.0

L2
-d

ist
an

ce

0

20

40

60

80

M
ol

. S
ta

bi
lit

y
(%

)

GruM: L2
EDM: L2

GruM: Stab.
EDM: Stab.

Figure 3: (Left) Generation results on the 3D molecule datasets. Best results are highlighted in bold which is the average
of 3 different runs. The baseline results are taken from Hoogeboom et al. (2022) and Wu et al. (2022). (Right) Convergence
of the generative process. We compare the convergence of the graph mixture from GruM and the implicit prediction
computed from EDM. We measure the convergence (L2 distance) and report the molecule stability of the predictions.

diffusion models previously explained. We describe further
implementation details in Appendix C.2.

Results Table 2 shows that our method achieves the high-
est validity on all datasets verifying that GruM can generate
valid molecules without correction. Further, ours outper-
forms the baselines in FCD and NSPDK metrics demon-
strating that the molecules synthesized by GruM are similar
to the molecule from the training set in both chemical and
graph-structure aspects. Especially, ours achieves the high-
est scaffold similarity indicating that it is able to generate
similar substructures from that of the training set. We visu-
alize the generated molecules in Appendix E.1.

4.3. 3D Molecule Generation
To show that GruM is able to generate graphs with both con-
tinuous and discrete features, we validate it on 3D molecule
generation tasks, which come with discrete atom types and
continuous coordinates.

Datasets and Metrics We evaluate the generated 3D
molecules on two standard molecule datasets used as bench-
marks in Hoogeboom et al. (2022): QM9 (Ramakrishnan
et al., 2014) (up to 29 atoms) and GEOM-DRUGS (Axelrod
& Gomez-Bombarelli, 2022) (up to 181 atoms). Following
Hoogeboom et al. (2022), both datasets include hydrogen

atoms. For GEOM-DRUGS, we select 30 conformations for
each molecule with the lowest energy. We evaluate the qual-
ity of the generated molecules with two stability metrics:
Atom stability is the percentage of the atoms with valid va-
lency. Molecule stability is the percentage of the generated
molecules that consist of stable atoms. We provide more
details in Appendix C.3.

Baselines We compare GruM against 3D molecule gen-
erative models: G-Schnet (Gebauer et al., 2019) is an
autoregressive model based on the 3d point sets. EN-
Flow (Satorras et al., 2021) is a flow-based model. GDM
and EDM (Hoogeboom et al., 2022) are denoising diffu-
sion models. Bridge (Wu et al., 2022) is a diffusion model
based on the diffusion mixture that learns to approximate
the drift and Bridge+Force (Wu et al., 2022) adds physical
force to the drift. For ours, we follow the training setting
of Hoogeboom et al. (2022) using the same architecture of
EGNN (Satorras et al., 2021). We describe further imple-
mentation details in Appendix C.3.

Results As shown in the table of Figure 3, our method
yields the highest atom stability compared to all the base-
lines on both datasets. Furthermore, ours achieves higher
molecule stability since we directly model the topology
by learning the graph mixture. Moreover, GruM outper-

8

Graph Generation with Diffusion Mixture

forms Bridge+Force (Wu et al., 2022) even though GruM
does not require task-dependent prior force while trained
in a simulation-free manner. Notably, our method achieves
non-zero molecule stability in the GEOM-DRUGS dataset
consisting of large molecules with up to 181 atoms. We vi-
sualize the generated molecules and the generative process
of GruM in Appendix E, demonstrating that we can predict
the final molecule at an early stage of the process leading to
stable molecules. We further observe that GruM generates
×1.5 more number of connected molecules compared to
EDM as shown in Table 8 of the Appendix.

Stability Analysis To further investigate the superior
performance of our framework in generating more stable
molecules, we conduct an analysis of the convergence and
stability. Figure 3 (Right) shows the convergence of the
predicted graph from GruM and the implicit prediction from
EDM computed from the estimated noise. We observe that
for GruM, the predicted graphs converge rapidly to the fi-
nal result. After the convergence, the stability of GruM
increases as it has sufficient steps to calibrate the details to
produce valid molecules, which is visualized in the gener-
ative process of Figure 19 of the Appendix. As for EDM,
the implicit predictions converge slowly since EDM does
not explicitly learn the information of the final result, which
leads to lower stability. This analysis shows that learning the
final graph is significantly superior in capturing the correct
topology compared to previous diffusion models.

4.4. Further Analysis
We conduct an analysis to investigate the advantages of our
framework explained in Section 3.2.

Exploiting Inductive Bias To validate that exploiting the
inductive bias of the graph data is critical, we compare
GruM against a variant of it without an additional function
at the last layer in the model. Figure 2 (Right) shows the
complexity of the models sθ trained on the Planar dataset,
where the transformation at the last layer significantly re-
duces the model complexity for predicting the final graph.
Especially, the larger complexity gap at the late stage of the
diffusion process suggests that exploiting the inductive bias
is crucial for learning valid structures and their topology.

Comparison with Learning Drift To verify that learning
the graph mixture as in our framework is superior to learning
the drift, we compare with Bridge (Wu et al., 2022) which
models the drift of the mixture process. Table 3 shows
that ours outperforms Bridge, especially for the molecule
stability, since learning the drift is challenging due to its
diverging nature and unable to model the topology directly.
We further validate that learning the drift performs poorly
on general graph generation tasks and fails to generate the
correct topology in Appendix D.2.

Early stopping for the generative process In Figure 2
(Left) and (Middle), the V.U.N. and the MMD results of
DruM in the Planar dataset demonstrate that the estimated
destination mixture converges to the exact destination at
early sampling steps, accurately capturing both the global
topology and local graph characteristics. This allows us
to early-stop the diffusion process, which reduces the gen-
eration time by up to 20% on this task. The generation
results on SBM and Proteins datasets in Section D.2 of the
Appendix show a similar tendency.

5. Conclusion
In this work, we proposed a new diffusion-based graph gen-
eration framework, GruM, that explicitly models the topol-
ogy of the graphs. Unlike existing graph diffusion models
that learn to denoise, our framework learns to predict the
final graph of the generative process through the graph mix-
ture, thereby accurately capturing the valid graph structure
and its topological features. Specifically, we construct the
generation process as a mixture of diffusion bridges, which
differs from the denoising diffusion process, where the drift
drives the generation process toward the predicted graph
that converges in an early stage. We extensively validated
our framework on diverse graph generation tasks, including
2D/3D molecular generation, on which ours significantly
outperforms previous graph generation methods. A promis-
ing future direction would be the generalization to domains
other than graphs where the topology of the data is impor-
tant, such as proteins and manifolds.

Impact Statement This paper presents work whose goal
is to advance the field of deep generative models, specifically
for graph-structured data. We believe that our work can
accelerate the discovery of feasible drugs and improve the
quality of human lives by recommending drug candidates in
silico, which reduces time-consuming wet lab experiments
performed by experts. However, one might maliciously use
our framework to generate toxic substances or narcotics
harmful to humans or the environment.

Acknowledgement This work was supported by Insti-
tute for Information & communications Technology Promo-
tion(IITP) grant funded by the Korea government(MSIT)
(No.2019-0-00075 Artificial Intelligence Graduate School
Program(KAIST)), Google Research Grant and Google
Cloud Research Credits program with the award (XKCV-
N0JU-8K3R-65LK, 40KR-GJX5-XH4X-PU3L), Institute
of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea govern-
ment(MSIT) (No.2022-0-00713), and the National Research
Foundation of Korea(NRF) grant funded by the Korea gov-
ernment(MSIT) (No. RS-2023-00256259).

9

Graph Generation with Diffusion Mixture

References
Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E.

Stochastic interpolants: A unifying framework for flows
and diffusions. arXiv:2303.08797, 2023.

Anderson, B. D. Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313–
326, 1982.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den
Berg, R. Structured denoising diffusion models in dis-
crete state-spaces. In Advances in Neural Information
Processing System, 2021.

Axelrod, S. and Gomez-Bombarelli, R. Geom, energy-
annotated molecular conformations for property predic-
tion and molecular generation. Scientific Data, 9(1):1–14,
2022.

Bemis, G. W. and Murcko, M. A. The properties of known
drugs. 1. molecular frameworks. Journal of medicinal
chemistry, 39(15):2887–2893, 1996.

Bortoli, V. D., Doucet, A., Heng, J., and Thornton,
J. Simulating diffusion bridges with score matching.
arXiv:2111.07243, 2021a.

Bortoli, V. D., Thornton, J., Heng, J., and Doucet, A. Diffu-
sion schrödinger bridge with applications to score-based
generative modeling. In Advances in Neural Information
Processing Systems, 2021b.

Brigo, D. The general mixture-diffusion sde and its rela-
tionship with an uncertain-volatility option model with
volatility-asset decorrelation. arXiv:0812.4052, 2008.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polo-
zov, O. Generative code modeling with graphs. In Inter-
national Conference on Learning Representations, 2019.

Campbell, A., Benton, J., De Bortoli, V., Rainforth, T.,
Deligiannidis, G., and Doucet, A. A continuous time
framework for discrete denoising models. Advances in
Neural Information Processing Systems, 2022.

Chen, T., Liu, G., and Theodorou, E. A. Likelihood train-
ing of schrödinger bridge using forward-backward sdes
theory. In International Conference on Learning Repre-
sentations, 2022.

Corlay, S. Properties of the ornstein-uhlenbeck bridge. arXiv
preprint arXiv:1310.5617, 2013.

Costa, F. and De Grave, K. Fast neighborhood subgraph
pairwise distance kernel. In International Conference on
Machine Learning, 2010.

De Cao, N. and Kipf, T. Molgan: An implicit generative
model for small molecular graphs. ICML 2018 workshop
on Theoretical Foundations and Applications of Deep
Generative Models, 2018.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis. arXiv:2105.05233, 2021.

Dobson, P. D. and Doig, A. J. Distinguishing enzyme struc-
tures from non-enzymes without alignments. Journal of
Molecular Biology, 330(4):771–783, 2003.

Doob, J. L. and Doob, J. Classical potential theory and its
probabilistic counterpart, volume 549. Springer, 1984.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs. arXiv:2012.09699, 2020.

Franzese, G., Rossi, S., Yang, L., Finamore, A., Rossi, D.,
Filippone, M., and Michiardi, P. How much is enough? a
study on diffusion times in score-based generative models.
Entropy, 25(4):633, 2023.

Gebauer, N. W. A., Gastegger, M., and Schütt, K. Symmetry-
adapted generation of 3d point sets for the targeted dis-
covery of molecules. In Advances in Neural Information
Processing Systems, 2019.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. In Advances in Neural Information
Processing Systems, 2020.

Ho, J., Salimans, T., Gritsenko, A. A., Chan, W.,
Norouzi, M., and Fleet, D. J. Video diffusion models.
arXiv:2204.03458, 2022.

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling,
M. Argmax flows and multinomial diffusion: Learning
categorical distributions. In Advances in Neural Informa-
tion Processing Systems, 2021.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling,
M. Equivariant diffusion for molecule generation in 3d.
In International Conference on Machine Learning, 2022.

Ingraham, J., Garg, V. K., Barzilay, R., and Jaakkola, T. S.
Generative models for graph-based protein design. In Ad-
vances in Neural Information Processing Systems, 2019.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and
Coleman, R. G. Zinc: a free tool to discover chemistry for
biology. Journal of chemical information and modeling,
52(7):1757–1768, 2012.

Jin, W., Barzilay, R., and Jaakkola, T. S. Junction tree
variational autoencoder for molecular graph generation.
In International Conference on Machine Learning, 2018.

10

Graph Generation with Diffusion Mixture

Jo, J. and Hwang, S. J. Generative modeling on mani-
folds through mixture of riemannian diffusion processes.
arxiv:2310.07216, 2023.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In International Conference on Machine
Learning, 2022.

Kingma, D., Salimans, T., Poole, B., and Ho, J. Varia-
tional diffusion models. Advances in Neural Information
Processing Systems, 2021.

Landrum, G. et al. Rdkit: Open-source cheminfor-
matics software, 2016. URL http://www. rdkit. org/,
https://github. com/rdkit/rdkit, 2016.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duve-
naud, D. K., Urtasun, R., and Zemel, R. Efficient graph
generation with graph recurrent attention networks. Ad-
vances in Neural Information Processing Systems, 2019.

Liu, X., Wu, L., Ye, M., and Liu, Q. Let us build bridges:
Understanding and extending diffusion generative models.
arXiv:2208.14699, 2022.

Liu, X., Wu, L., Ye, M., and Liu, Q. Learning diffusion
bridges on constrained domains. In International Confer-
ence on Learning Representations, 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv:1711.05101, 2017.

Luo, Y., Yan, K., and Ji, S. Graphdf: A discrete flow model
for molecular graph generation. International Conference
on Machine Learning, 2021.

Martinkus, K., Loukas, A., Perraudin, N., and Wattenhofer,
R. SPECTRE: spectral conditioning helps to overcome
the expressivity limits of one-shot graph generators. In
International Conference on Machine Learning, 2022.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In AISTATS, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems. 2019.

Peluchetti, S. Non-denoising forward-time diffusions. Open-
review, 2021.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. C. Film: Visual reasoning with a general
conditioning layer. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence,, pp. 3942–
3951. AAAI Press, 2018.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
Klambauer, G. Fréchet chemnet distance: a metric for
generative models for molecules in drug discovery. Jour-
nal of chemical information and modeling, 58(9):1736–
1741, 2018.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld,
O. A. Quantum chemistry structures and properties of
134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E. L., Ghasemipour, S. K. S., Lopes, R. G., Ayan,
B. K., Salimans, T., Ho, J., Fleet, D. J., and Norouzi,
M. Photorealistic text-to-image diffusion models with
deep language understanding. In Advances in Neural
Information Processing Systems, 2022.

Satorras, V. G., Hoogeboom, E., Fuchs, F., Posner, I., and
Welling, M. E(n) equivariant normalizing flows. In Ad-
vances in Neural Information Processing Systems, 2021.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang,
J. Graphaf: a flow-based autoregressive model for molec-
ular graph generation. In International Conference on
Learning Representations, 2020.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In ICANN, 2018.

Song, Y. and Ermon, S. Improved techniques for training
score-based generative models. In Advances in Neural
Information Processing Systems, 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Särkkä, S. and Solin, A. Applied Stochastic Differential
Equations. Institute of Mathematical Statistics Textbooks.
Cambridge University Press, 2019.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. In International Conference on
Learning Representations, 2023.

Wu, L., Gong, C., Liu, X., Ye, M., and Liu, Q. Diffusion-
based molecule generation with informative prior bridges.
In Advances in Neural Information Processing Systems,
2022.

11

Graph Generation with Diffusion Mixture

Ye, M., Wu, L., and Liu, Q. First hitting diffusion models.
In Advances in Neural Information Processing Systems,
2022.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International Conference on Ma-
chine Learning, 2018.

Zang, C. and Wang, F. Moflow: an invertible flow model for
generating molecular graphs. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 617–626, 2020.

Øksendal, B. Stochastic Differential Equations. Universi-
text. Springer Berlin Heidelberg, 2003.

12

Graph Generation with Diffusion Mixture

Appendix
Organization The Appendix is organized as follows: In Section A, we provide the derivations of the results from the
main paper. In Section B, we explain the details of our generative framework including the training objectives, the sampling
method, and the model architectures. In Section C, we provide experimental details for the generation tasks and further
present additional experimental results in Section D. In Section E, we visualize the generated graphs and molecules, with
visualized generative processes. Finally, in Section F, we discuss the limitations of our work.

A. Derivations
A.1. Diffusion bridge processes

Here we derive the Ornstein-Uhlenbeck (OU) bridge process using Doob’s h-transform (Doob & Doob, 1984) and show
that the Brownian bridge process is a special case of the OU bridge process. We further discuss a general class of bridge
processes and explain the advantage of the OU bridge process.

Ornstein-Uhlenbeck bridge process First, we consider the simple case when the reference process is given as a standard
OU process without a time-dependent diffusion coefficient:

Q̂ : dGt = αGtdt+ dWt, (14)

where α is a constant. Then the Doob’s h-transform on Q̂ yields the representation of an endpoint-conditioned process
Q̂g := Q̂(·|GT = g) defined by the following SDE:

Q̂g : dGt =
[
αGt +∇Gt

log p̂T |t(g|Gt)
]
dt+ dWt, (15)

where p̂T |t(g|Gt) is the transition probability from time t to T of the standard OU process in Eq. (14). Since the standard
OU process has a linear drift, the transition probability is Gaussian, i.e. p̂T |t(g|Gt) = N (g;µt,Σt), where the mean µt

and the covariance Σt satisfies the following ODEs (derived from the results of Eq.(5.50) and Eq.(5.51) of Särkkä & Solin
(2019)):

dµt

dt
= αµt ,

dΣt

dt
= I+ 2αΣt. (16)

The ODE with respect to Σt can be modified as:

d

dt
e−2αtΣt = e−2αtI, (17)

which give the following closed-form solutions:

µt = ûtGt , Σt =
1

2α

(
û2
t − 1

)
I for ût = eα(T−t). (18)

Therefore, the SDE representation of the standard OU bridge process with fixed endpoint g is given as follows:

Q̂g : dGt =

[
αGt +

2α

1− û−2
t

(g

ût
−Gt

)]
dt+ dWt. (19)

Now we derive the bridge process for the general OU process with a time-dependent diffusion coefficient defined by the
following SDE:

Q : dGt = ασ2
tGtdt+ σtdWt, (20)

where σt is a scalar function. Since the time change (Section 8.5. of Øksendal (2003)) with βt =
∫ t

0
σ2
τdτ of Q̂ in Eq. (14)

is equivalent to Q of Eq. (20), the transition probability p̃T |t(g|Gt) of the general OU process satisfies the following:

p̃T |t(g|Gt) = p̂βT |βt
(g|Gt) (21)

13

Graph Generation with Diffusion Mixture

Thereby, the OU bridge process conditioned on the endpoint g is defined by the following SDE:

Qg : dGt =

[
ασ2

tGt +
σ2
t

vt

(g

ut
−Gt

)]
dt+ σtdWt, (22)

where the scalar function ut and vt are given as:

ut = eα(βT−βt) = exp
(
α

∫ T

t

σ2
τdτ

)
, vt =

1

2α
(1− u−2

t). (23)

Note that the OU bridge process, also known as the constrained OU process, was studied theoretically in previous
works (Corlay, 2013; Peluchetti, 2021; Bortoli et al., 2021a). However, we are the first to validate the effectiveness of the
OU bridge processes for modeling the generative process through extensive experiments, especially for the generation of
graphs in diverse tasks including the generation of general graphs as well as 2D and 3D molecular graphs.

Brownian bridge process We show that the Brownian bridge process is a special case of the OU bridge process. When
the constant α of the OU bridge process approaches 0, the scalar function ut converges to 1 that leads to the convergence of
vt as follows:

vt =
1

2α
(1− u−2

t) =
1

2α

(
1− e−2α(βT−βt)

)
→ βT − βt,

which is due to the Taylor expansion of the exponential function. Therefore, the OU bridge process for α→ 0 is modeled
by the following SDE:

Qg
bb : dGt =

σ2
t

βT − βt
(g −Gt) dt+ σtdWt, (24)

which is equivalent to the SDE representation of the Brownian bridge process. Compared to the OU bridge process in
Eq. (22), the Brownian bridge process has a simpler SDE representation with less flexibility for designing the generative
process as the process is solely determined by the noise schedule σt.

Note that the Brownian bridge is an endpoint-conditioned process with respect to a reference Brownian Motion defined by
the following SDE:

dGt = σtdWt, (25)

which is a diffusion process without drift, and also a special case of the OU process that is used for the reference process of
the OU bridge process.

More bridge processes Wu et al. (2022) proposes an approach for designing a more general class of diffusion bridges
using the Lyapunov function method. Starting from a simple Brownian bridge Qg

bb, we can create a new bridge process by
adding an extra drift term as follows:

Qg
bb,f : dGt =

[
σtft(Gt)︸ ︷︷ ︸

extra drift

+
σ2
t

βT − βt
(g −Gt)

]
dt+ σtdWt, (26)

for ft satisfying EG∼Qg
bb,f

[∥ft(Gt)∥2] <∞. (27)

Qg
bb,f of Eq. (26) is still a bridge process with endpoint g since the drift of the Brownian bridge (i.e. Eq. (24)) dominates the

extra drift term due to the condition of Eq. (27). Moreover, Wu et al. (2022) introduces problem-dependent prior f inspired
by physical energy functions.

These general bridge processes could be used for our framework to construct a mixture process for modeling the generative
process, as described in Section 3.1. If the explicit SDE representation for the general bridges is accessible, the mixture
process can be represented by leveraging the diffusion mixture representation, and further the Brownian bridge could be
replaced with the OU bridge process.

However, in contrast to constructing the generative process as a mixture of the OU bridge processes, using the mixture of
the general bridge processes results in difficulty during training; Training a generative model that approximates the mixture
of the general bridge processes requires expensive SDE simulation due to the intractable transition probability. We show
through extensive experiments that for our approach, the family of OU bridge processes is sufficient to model the complex
generation process while the generative model can be trained in a simulation-free manner.

14

Graph Generation with Diffusion Mixture

A.2. Diffusion mixture representation

In this section, we provide the formal definition of the diffusion mixture representation (Brigo, 2008; Peluchetti, 2021).

Consider a collection of diffusion processes {Qλ : λ ∈ Λ} defined by the SDEs:

Qλ : dZλ
t = ηλ(Zt, t)dt+ σλ

t dW
λ
t , Zλ

0 ∼ pλ0 (28)

where Wλ
t are independent standard Wiener processes and pλ0 are the initial distributions. Denote pλt as the marginal density

of the process Qλ. Further, define the mixture of marginal densities and the mixture of initial distributions with respect to a
mixing distribution L on the collection Λ as follows:

pt(z) =

∫
Λ

pλt (z)L(dλ) , p0(z) =

∫
Λ

pλ0 (z)L(dλ), (29)

Then there exists a diffusion process that induces a marginal density pt, and the diffusion process is modeled by the following
SDE:

QL : dZt = η(Zt, t)dt+ σtdWt , Z0 ∼ p0, (30)

where the drift and diffusion coefficients are given as the weighted mean of the corresponding coefficients of Qλ as follows:

η(z, t) =

∫
Λ

ηλ(z, t)
pλt (z)

pt(z)
L(dλ) , σ2

t =

∫
Λ

(σλ
t)

2 p
λ
t (z)

pt(z)
L(dλ). (31)

Below, we provide a proof of this statement.

proof. It is enough to show that pt defined in Eq. (29) is the solution to the corresponding Fokker-Planck equation of
Eq. (30), which is given as follows:

∂qt(z)

∂t
= −∇z ·

(
qt(z)η(z, t)−

1

2
σ2
t∇zqt(z)

)
, (32)

where qt denotes the marginal density of Eq. (30). Using the definition of Eq. (29) and the corresponding Fokker-Planck
equations with respect to Qλ for λ ∈ Λ, we derive the following result:

∂pt(z)

∂t
=

∂

∂t

∫
Λ

pλt (z)L(dλ) =
∫
Λ

∂

∂t
pλt (z)L(dλ)

=

∫
Λ

[
−∇z ·

(
ηλ(z, t)pλt (z)−

1

2
(σλ

t)
2∇zp

λ
t (z)

)]
L(dλ)

= −∇z ·
∫
Λ

[
ηλ(z, t)pλt (z)−

1

2
(σλ

t)
2∇zp

λ
t (z)

]
L(dλ)

= −∇z ·
(
pt(z)

∫
Λ

ηλ(z, t)
pλt (z)

pt(z)
L(dλ)− 1

2
∇z

[
pt(z)

∫
Λ

(σλ
t)

2 p
λ
t (z)

pt(z)
L(dλ)

])
= −∇z ·

(
pt(z)η(z, t)−

1

2
σ2
t∇zpt(z)

)
, (33)

which proves that pt is the solution to the Fokker-Planck equation of Eq. (32).

A.3. OU bridge mixture

Now we use the diffusion mixture representation described in Appendix A.2 to derive the OU bridge mixture. Consider a
mixture of the collection of OU bridge processes with endpoints in the data distribution, i.e. {Qg : g ∼ Π∗}. We mix this

15

Graph Generation with Diffusion Mixture

collection of processes with the data distribution Π∗ as the mixing distribution, which is represented by the following SDE:

QΠ∗
: dGt =

[∫ (
ασ2

tGt +
σ2
t

vt

(g

ut
−Gt

)) pgt (Gt)

pt(Gt)
Π∗(dg)

]
dt+ σtdWt

=

[
ασ2

tGt +
σ2
t

vt

(
1

ut

∫
g
pgt (Gt)

pt(Gt)
Π∗(dg)−Gt

)]
dt+ σtdWt

=

[
ασ2

tGt +
σ2
t

vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)]
dt+ σtdWt (34)

where pt(z) =
∫
pgt (z)Π

∗(dg) is used for the second equality and the definition of the graph mixture (Eq. (9)) is used for
the last equality.

A.4. Reverse-time diffusion process of the OU bridge mixture

Here we derive the reverse-time diffusion process of GruM, i.e. the time reversal of the OU bridge mixture. Since the
generative process of GruM transports the prior distribution Γ to the data distribution Π∗, the time reversal of GruM transports
Π∗ to Γ. We show that it has a similar SDE representation as Eq. (34).

We derive the reverse process of the OU bridge mixture by constructing a mixture of the reverse processes of each OU
bridge process. To be precise, for the mixture process Q :=

∫
QgdΠ∗, the reverse process of Q denoted as Q is equal to the

mixture process
∫
QxdΓ where Qx is the reverse process of the bridge process Qg with starting point x. For the simplicity

of the representation, we first derive the time-reversal of general bridge processes, where the reference process is given as

dGref
t = µ(Gref

t , t) + σtWt, (35)

with the marginal density denoted as p̃t. In order to obtain the reverse-time diffusion process, we leverage the reverse-time
SDE representation (Anderson, 1982; Song et al., 2021) as follows:

dGref
t =

[
− µ(Gref

t , T−t) + σ2
T−t∇Gref

t
log q̃t(G

ref)
]
dt+ σT−tdWt, (36)

where q̃t = p̃T−t is the marginal density of the process {Gref
t }t∈[0,T]. Then the bridge process of Eq. (36) with fixed end

point x ∼ Γ can be derived by using the Doob’s h-transform (Doob & Doob, 1984) as follows:

Qx : dGt =
[
−µ(Gt, T−t) +σ2

T−t∇Gt
log q̃t(Gt) +σ2

T−t∇Gt
log q̃T |t(x|Gt)

]
dt+σT−tdWt, (37)

which is a reverse process for the conditioned process of Gref with starting point x and endpoint g ∼ Π∗fixed. Here using
the fact that q̃t = p̃T−t, we can see that

q̃t(y)q̃T |t(x|y) = q̃(GT =x,Gt=y) =
q̃(GT =x,Gt=y)

q̃T (x)
q̃T (x) = p̃T−t|0(y|x)q̃T (x), (38)

and since ∇Gt
log q̃T (x) = 0 for fixed x, Eq. (37) can be simplified as follows:

Qx : dGt =
[
− µ(Gt, T−t) + σ2

T−t∇Gt
log p̃T−t|0(Gt|x)

]
dt+ σT−tdWt. (39)

Finally, the mixture of the bridge processes {Qx : x∼Γ} can be derived using the diffusion mixture representation as
follows:

Q : dGt =

[
−µ(Gt, t) + σ2

T−t

∫
∇Gt

log p̃T−t|0(Gt|x)
qxt (Gt)

qt(Gt)
Γ(dx)

]
dt+ σT−tdWt, (40)

where qxt is the marginal density of Qx and qt is the marginal density of the mixture process Q defined as qt(·) :=∫
qxt (·)Γ(dx).

16

Graph Generation with Diffusion Mixture

Using the result of Eq. (40), now we can derive the time reversal of the OU bridge mixture by setting µ(z, t) = ασ2
t z. Since

the transition distributions of the OU process satisfy the following (we provide closed-form mean and covariance of the
transition distribution in Eq. (56)):

p̃T−t|0(z|x) = N
(
z; utx, u

2
t vtI

)
for ut= exp

(
α

∫ T−t

0

σ2
τdτ

)
, vt=

1

2α

(
1− u−2

t

)
, (41)

the log gradient of the transition distribution can be computed as follows:

∇z log p̃T−t|0(z|x) = −
1

u2
t vt

(z − utx) . (42)

Thereby, the reverse-time diffusion process of the OU bridge mixture is given by:

Q : dGt =

[
−ασ2

T−tGt +
σ2
T−t

u2
t vt

(
utD

Γ(Gt, t)−Gt

)]
dt+ σT−tdWt, G0 ∼ Π∗, (43)

where DΓ(·, t) is the graph mixture of Q defined as follows:

DΓ(Gt, t) =

∫
x
qxt (Gt)

qt(Gt)
Γ(dx). (44)

Since Q describes the diffusion process from the data distribution to the prior distribution, it can be considered a perturbation
process. Further, we can observe that the time reversal of the OU bridge mixture is non-linear with respect to Gt in general,
and completely different from the forward process (i.e. perturbation process) of denoising diffusion models, i.e. the VESDE
or VPSDE (Song et al., 2021).

Note that the reverse process of the OU bridge mixture perfectly transports the data distribution Π∗ to the arbitrary prior
distribution Γ in the sense that the terminal distribution exactly matches Γ for finite terminal time T . On the other hand, the
forward process of denoising diffusion models, for example, VPSDE (Song et al., 2021), does not perfectly transport the
data distribution to the prior distribution. The terminal distribution of the forward process is approximately Gaussian but not
exactly a Gaussian distribution for finite T , although the mismatch is small for sufficiently large T . This is because the
forward process requires infinite T in order to decouple the prior distribution Γ from the data distribution Π∗.

In conclusion, the generative process of GruM is different from denoising diffusion models which naturally follows from the
fact that the time reversal of the OU bridge mixture is different from the forward processes of denoising diffusion models.

A.5. Derivation of the graph mixture matching objective

We provide the derivation of our graph mixture matching objective, corresponding to Eq. (11). First, we leverage the
Girsanov theorem (Øksendal, 2003) to upper bound the KL divergence between the data distribution Π∗and the terminal
distribution of Pθ denoted as pθT :

DKL(Π
∗∥pθT) ≤ DKL(QΠ∗

∥Pθ) (45)

= DKL(QΠ∗

0 ∥Pθ
0) + EQΠ∗

[
log

dQΠ∗

dPθ

]
(46)

= EG∼QΠ∗

[
− log pθ0(G0) +

1

2

∫ T

0

∥∥σ−1
t (ηθ(Gt, t)− η(Gt, t))

∥∥2 dt]+ C (47)

= EG∼QΠ∗

[
− log pθ0(G0) +

1

2

∫ T

0

γ2
t

∥∥∥sθ(Gt, t)−DΠ∗
(Gt, t)

∥∥∥2 dt]+ C, (48)

where pθ0 is a predetermined prior distribution that is easy to sample from, for instance, Gaussian distribution, and C is
a constant independent of θ. Note that the first inequality is known as the data processing inequality. The expectation in
Eq. (48) corresponds to Eq. (11).

17

Graph Generation with Diffusion Mixture

Furthermore, the expectation of Eq. (48) can be written as follows:

EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

∥∥∥sθ(Gt, t)−DΠ∗
(Gt, t)

∥∥∥2 dt]
= EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

∥∥∥(sθ(Gt, t)−GT

)
+
(
GT −DΠ∗

(Gt, t)
)∥∥∥2 dt]

= EG∼QΠ∗

[
1

2

∫ T

0

γ2
t ∥sθ(Gt, t)−GT ∥2dt

]
+ E + ET + C1, (49)

where E and C1 are defined as:

E = EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

(
sθ(Gt, t)−GT

)T(
GT −DΠ∗

(Gt, t)
)
dt

]
,

C1 = EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

∥∥∥GT −DΠ∗
(Gt, t)

∥∥∥2dt]. (50)

From the definition of the graph mixture (Eq. (9)), the following identity holds for all t ∈ [0, T]:

EG∼QΠ∗DΠ∗
(Gt, t) = EG∼QΠ∗GT , (51)

which gives the following result:

E = EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

(
sθ(Gt, t)−GT

)T(
GT −DΠ∗

(Gt, t)
)
dt

]
(52)

= EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

(
sθ(Gt, t)−GT

)T(
GT −GT

)
dt

]
= 0 (53)

Therefore, we can conclude that minimizing Eq. (48) is equivalent to minimizing the following loss:

EG∼QΠ∗

[
1

2

∫ T

0

γ2
t ∥sθ(Gt, t)−GT ∥2dt

]
(54)

which corresponds to the graph mixture matching presented in Eq. (11).

A.6. Analytical computation of graph mixture matching

In order to practically use the graph mixture matching (Eq. (11)), we provide the analytical form of the distribution
pt|0,T (Gt|G0,GT). Notice that by construction, the OU bridge mixture with a fixed starting point G0 and an endpoint
GT coincides with the reference OU process in Eq. (20) with a fixed starting point G0 and an endpoint GT . Thereby,
pt|0,T (Gt|G0,GT) is equal to p̃t|0,T (Gt|G0,GT) where p̃ denotes the marginal probability of the reference OU process
of Eq. (20). Using the Bayes theorem, we can derive the following:

p̃(Gt|G0,GT) =
p̃(Gt,GT |G0)

p̃(GT |G0)
=

p̃(GT |Gt,G0) p̃(Gt|G0)

p̃(GT |G0)
=

p̃(GT |Gt) p̃(Gt|G0)

p̃(GT |G0)
, (55)

where the last equality is due to the Markov property of the OU process. Note that the transition distributions of the reference
OU process are Gaussian with the mean and the covariance as follows:

p̃b|a(Gb|Ga) = N (Gb;ub|aGa, u
2
b|avb|aI) for 0 ≤ a < b ≤ T,

where ub|a := exp
(
α

∫ b

a

σ2
τdτ

)
, vb|a :=

1

2α

(
1− u−2

b|a

)
.

(56)

Therefore, the distribution p(Gt|G0,GT) is also Gaussian resulting from the product of Gaussian distributions, where the
mean µ∗

t and the covariance Σ∗
t have analytical forms as follows:

µ∗
t =

vT |t

ut|0vT |0
G0 +

vt|0

uT |tvT |0
GT , Σ∗

t =
vT |tvt|0

vT |0
I. (57)

18

Graph Generation with Diffusion Mixture

The mean and the covariance can be simplified by using the hyperbolic sine function as follows:

µ∗
t =

sinh (φT − φt)

sinh (φT)
G0 +

sinh (φt)

sinh (φT)
GT , Σ∗

t =
1

α

sinh (φT − φt) sinh (φt)

sinh (φT)
I, (58)

where φt := αβt = α
∫ t

0
σ2
τdτ .

A.7. GruM as a stochastic interpolant

Recently, Albergo et al. (2023) introduced the concept of stochastic interpolant which unifies the framework for diffusion
models from the perspective of continuous-time stochastic processes.

From the results of Eq. (58), we can represent the OU bridge mixture as a stochastic interpolant between the distributions Γ
and Π∗ as follows:

Gt =
sinh (φT − φt)

sinh (φT)
G0 +

sinh (φt)

sinh (φT)
GT +

(
1

α

sinh (φT − φt) sinh (φt)

sinh (φT)

)1/2

Z. (59)

where G0, GT , and Z are random variables sampled independently from the distributions Γ, Π∗, and N (0, I), respectively.
Eq. (59) shows that Gt is linear in both the starting point G0 ∼ Γ and the endpoint GT ∼ Π∗. Note that our proposed graph
mixture matching is different from the loss introduced in Albergo et al. (2023), as graph mixture matching does not require
estimation of the score function. Additionally, we further derive the score function of our GruM in Section A.9.

A.8. Understanding the informative prior as regularizing the graph mixture

Wu et al. (2022) introduces incorporating prior information into the generative process, for example injecting physical and
statistical information. To be specific, given a generative process:

dGt = η(Gt, t)dt+ σtWt,

Wu et al. (2022) modifies the drift by adding a prior function f(·, t) as follows:

dGt =
(
σtf(Gt, t) + η(Gt, t)︸ ︷︷ ︸

ηR(Gt,t)

)
dt+ σtWt, (60)

where f(·, t) is designed to be a force defined as f(·, t) = −∇E(·) where E(·) is a problem-dependent energy function.
Although Wu et al. (2022) shows that incorporating prior information is beneficial for the generation of stable molecules or
realistic 3D point clouds, how this modification leads to better performance was not fully explained.

Notably, from the perspective of our framework, we can interpret the incorporation of the prior information as modifying the
generative path toward an energy-regularized result. To be precise, given a generative process modeled by the OU bridge
mixture as in Eq. (34), adding the prior function f(·, t) to the drift can be written as follows:

ηR(Gt, t) = ασ2
tGt +

σ2
t

vt

[
1

ut

(
DΠ∗

(Gt, t) +
utvt
σt

f(Gt, t)
)
−Gt

]
, (61)

which is equivalent to regularizing the graph mixture with the weighted prior function as follows:

DΠ∗

R (Gt, t) := DΠ∗
(Gt, t) +

utvt
σt

f(Gt, t). (62)

Since the weight of the prior function converges to 0 through the generative process:

utvt
σt

=
exp

(
α
∫ T

t
σ2
τdτ

)
− exp

(
−α

∫ T

t
σ2
τdτ

)
2ασt

→ 0 as t→ T,

we can see that DΠ∗

R converges to the original graph mixture DΠ∗
where the convergence is determined by the prior function.

By defining f(·, t) = −∇E(·) where E is an energy function, for example, potential energy for the 3D molecules or Riesz
energy for the 3D point cloud, the regularized graph mixture has the following representation:

DΠ∗

R (Gt, t) = DΠ∗
(Gt, t)−

utvt
σt
∇E(Gt). (63)

19

Graph Generation with Diffusion Mixture

Thereby, DΠ∗

R follows a path that minimizes the energy function E through the generative process. Therefore, the generative
process is guided toward the regularized graph mixture which results in samples that achieve desired physical properties, for
instance, stable 3D-structured molecules or point clouds.

A.9. Associated probability flow ODE of GruM

Since we have derived the reverse-time diffusion process of the OU bridge mixture in Section A.4, we can further derive its
associated probability flow ODE (Song et al., 2021), i.e. a deterministic process that shares the same marginal density with
the OU bridge mixture.

First, the OU bridge mixture is modeled by the following SDE:

dGt =

[
ασ2

tGt +
σ2
t

vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)]
dt+ σtdWt,

where the scalar functions ut and vt, and the graph mixture DΠ∗
are defined as:

ut = exp
(
α

∫ T

t

σ2
τdτ

)
, vt =

1

2α
(1− u−2

t), DΠ∗
(Gt, t) =

∫
g
pgt (Gt)

pt(Gt)
Π∗(dg).

Then using the results of Section A.4, the reverse-time diffusion process of the OU bridge mixture is modeled by the
following SDE:

dGt =

[
−ασ2

T−tGt +
σ2
T−t

u2
t vt

(
utD

Γ(Gt, t)−Gt

)]
dt+ σT−tdWt,

where the scalar functions ut and vt, and the reversed graph mixture DΓ are defined as:

ut = exp

(
α

∫ T−t

0

σ2
τdτ

)
, vt =

1

2α

(
1− u−2

t

)
, DΓ(Gt, t) =

∫
x
qxt (Gt)

qt(Gt)
Γ(dx).

From the relation between the diffusion process and its reverse-time diffusion process (for instance, Eq. (35) and Eq. (36)),
the score function of the OU bridge mixture can be computed as follows:

∇Gt log pt(Gt) =
1

vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)
+

1

u2
T−tvT−t

(
uT−tD

Γ(Gt, T−t)−Gt

)
. (64)

Therefore, the associated probability flow ODE can be derived as follows:

dGt

dt
= ασ2

tGt +
σ2
t

vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)
− 1

2
σ2
t∇Gt

log pt(Gt) (65)

= ασ2
tGt +

σ2
t

2vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)
− σ2

t

2u2
T−tvT−t

(
uT−tD

Γ(Gt, T−t)−Gt

)
. (66)

To practically use the probability flow ODE as a generative model, the graph mixtures DΠ∗
(·, t) and DΓ(·, t) should be

approximated by the neural networks sθ(·, t) and sϕ(·, t), respectively. sθ can be trained using the graph mixture matching
(Eq. (54)). sϕ also can be trained in a similar way where the trajectories are sampled from the reverse-time process of the
OU bridge mixture.

In particular, from the result of Eq. (64), we can see that learning the score function of the mixture process is not
interchangeable with learning the graph mixture since the score function additionally requires the knowledge of the reversed
graph mixture DΓ. Our mixture process differs from the denoising diffusion processes for which learning the score function
is equivalent to recovering clean data from its corrupted version (Kingma et al., 2021). The difference originates from
the difference in the construction of the generative process, where denoising diffusion processes are derived by reversing
the forward noising processes while our mixture process is built as a mixture of bridge processes without relying on the
time-reversal approach. We further discuss the difference between our framework and the denoising diffusion models in
Section A.10.

20

Graph Generation with Diffusion Mixture

A.10. Comparison with Denoising Diffusion Models

Here we explain in detail the difference between our framework and previous denoising diffusion models.

Comparison of the generative processes The main difference with the denoising diffusion models (Ho et al., 2020;
Song et al., 2021) is in the different generative processes. While denoising diffusion models derive the generative process
by reversing the forward noising process, our method constructs the generative process using the mixture of OU bridge
processes described in Eq. (3) which does not rely on the time-reversal approach. Due to the difference in the generative
process, our method demonstrates two distinct properties: First, the mixture process defines an exact transport from an
arbitrary prior distribution to the data distribution by construction. In contrast, denoising diffusion processes are not an
exact transport to the data distribution since the forward noising processes require infinitely long diffusion time in order to
guarantee convergence to the prior distribution (Franzese et al., 2023).

Furthermore, our framework does not suffer from the restrictions of denoising diffusion models. Denoising diffusion
models require pprior to be approximately independent of the data distribution Π∗, e.g. Gaussian, as the perturbation
process decouples pprior from Π∗, and further this decoupling requires infinitely long diffusion time T . On the contrary, our
framework does not have any constraints on the prior distribution pprior and does not require large T , since the OU bridge
mixture can be defined between two arbitrary distributions for any T > 0, where its drift forces the process to the terminal
distribution regardless of the initial distribution. Therefore, the OU bridge mixture provides flexibility for our generative
framework in choosing the prior distribution and the finite terminal time while maintaining the generative process to be an
exact transport from the prior to the data distribution.

Comparison of the training objectives We further compare our training objective in Eq. (54) with the training objectives
of denoising diffusion models. First, we clarify that learning the graph mixture is not equivalent to learning the score
function for the mixture process of GruM. As derived in Eq. (64) of Section A.9, the score function of the OU bridge mixture
additionally requires the knowledge of the reversed graph mixture DΓ, thus learning the score function needs to predict not
only the graph mixture but also the reversed graph mixture. In contrast, the training objectives of denoising diffusion models
are interchangeable (Kingma et al., 2021), i.e., learning the score function of the denoising diffusion process is equivalent to
recovering clean data from its corrupted version. This difference in the training objective originates from the difference in
the generative process, which we have discussed in detail in the previous paragraphs.

Furthermore, our training objective differs from the objectives of previous works (Saharia et al., 2022) that aim to recover
clean data from its corrupted version. While our method learns the graph mixture, i.e. the probable graph represented as
the weighted mean of data, Saharia et al. (2022) aims to predict the exact final result which could be problematic as the
prediction would be highly inaccurate in early steps which may lead the process in the wrong direction. It should be noted
that the goal of Eq. (54) is to estimate the graph mixture, i.e. the weighted mean of data, not to predict the exact graph as in
Saharia et al. (2022). This is because Eq. (54) is derived from Eq. (11) which minimizes the difference between our model
prediction and the ground truth graph mixture. We emphasize that learning graph mixture (Eq. (11)) is only feasible for the
OU bridge mixture and cannot be used for denoising diffusion models due to the difference in the generative processes.

In the perspective of the mathematical formulation of the training objective, Eq. (54) differs from the objective of Saharia
et al. (2022) in two parts: (1) The computation of the expectation for the squared error loss term is different. The expectation
is computed by sampling from the trajectory of the diffusion process, where our GruM uses the OU bridge mixture while
previous works use the denoising diffusion process. These two processes are not the same and therefore result in different
objectives. (2) The weight function in the loss is different. The weight function γt of Eq. (11) is different from the weight
function used in denoising diffusion models, and γt is derived to guarantee that minimizing Eq. (54) is equivalent to
minimizing the KL divergence between the data distribution and the terminal distribution of our approximated process.

Another line of works on discrete diffusion models (Austin et al., 2021; Hoogeboom et al., 2021; Vignac et al., 2023) aims
to predict the probabilities of each state of the final data to be generated. Since these works predict the probabilities, they are
limited to data with a finite number of states and cannot be applied to data with continuous features. In contrast, our method
directly predicts the weighted mean of the data (i.e., graph mixture) instead of the probabilities, which can be applied to data
with continuous features, for example, 3D molecules as well as the discrete data, which we experimentally validate to be
effective. It is worth noting that our GruM is a continuous diffusion model, and thereby our framework can leverage the
advanced sampling strategies that reduce the sampling time or improve sample quality (Campbell et al., 2022), whereas the
discrete diffusion models are forced to use a simple ancestral sampling strategy.

21

Graph Generation with Diffusion Mixture

Table 3: Comparison of graph diffusion models.

Explicitly model Simulation-free Arbitrary prior Does not require large Learning object Model
graph topology training distribution diffusion time T is bounded prediction

EDM (Hoogeboom et al., 2022) ✗ ✓ ✗ ✗ ✓ Noise
GDSS (Jo et al., 2022) ✗ ✓ ✗ ✗ ✗ Score
Bridge (Wu et al., 2022) ✗ ✗ ✓ ✓ ✗ Drift

GruM (Ours) ✓ ✓ ✓ ✓ ✓ Data

A.11. Additional explanation on relevant works

Related works on diffusion bridges Recent works (Peluchetti, 2021; Wu et al., 2022; Ye et al., 2022; Liu et al., 2023)
introduce learning the generative process using a mixture of diffusion bridge processes, instead of learning to reverse the
noising process as in denoising diffusion models. Peluchetti (2021) introduces a diffusion mixture representation that
constructs a generation process as a mixture of the bridge processes. Wu et al. (2022) injects physical information into the
process by adding informative prior to the drift, while Ye et al. (2022) and Liu et al. (2023) extend the bridge process to
constrained domains.

Related works on graph generative models Recently, graph diffusion models (Niu et al., 2020; Jo et al., 2022; Hooge-
boom et al., 2022; Vignac et al., 2023) have made large progress on generating general graphs as well as molecular graphs.
EDP-GNN (Niu et al., 2020) aims to generate the adjacency matrix by learning the score function of the denoising diffusion
process, while GDSS (Jo et al., 2022) proposes a framework for generating the nodes and edges simultaneously by learning
the joint score function that captures the node-edge dependency. However, learning the score function is ill-suited for
modeling the graph topology as it does not explicitly consider the graph structures, and further could be problematic due
to the diverging score function. On the other hand, discrete diffusion model (Vignac et al., 2023) proposes to model the
noising process as successive graph edits, preserving the discrete structure during the diffusion process. However, this is not
a desirable solution for real-world graph generation tasks since it applies to graphs with categorical node and edge attributes,
and cannot be alone applied to graphs with continuous features, such as the 3D coordinates of atoms. We summarize the
comparison between closely related graph diffusion models in Table 3.

B. Details of GruM
In this section, we provide the details of the training and sampling methods of GruM, describe the models used in our
experiments, and further discuss the hyperparameters of GruM.

B.1. Overview

We provide the pseudo-code of the training and sampling of our generative framework in Algorithm 3 and 4, respectively.
We further provide the implementation details of the training and sampling for each generation task in Section C.

B.2. Training objectives

Random permutation The general graph datasets, namely Planar and SBM, contain only 200 graphs. Thus to ensure the
permutation invariant nature of the graph dataset, we apply random permutation to the graphs of the training set during
training. To be specific, for a graph data G = (X,A) in the training set and random permutation matrix P , we use the
permuted data (P TX,P TAP) for training, where P T denotes the transposed matrix. We empirically found that this leads
to more stable training.

Simplified loss We provide the explicit form of simplified loss explained in Section 3.2, which uses constant loss
coefficient c instead of the time-dependent γt as follows:

L(θ) = EG∼QΠ∗

[
1

2

∫ T

0

c2 ∥sθ(Gt, t)−GT ∥2dt
]
. (67)

We empirically found that using this loss is beneficial for the generation of continuous features such as eigenvectors of the
graph Laplacian or 3D coordinates.

22

Graph Generation with Diffusion Mixture

Algorithm 3 Training of GruM
Input: Model sθ, constant ϵ
For each epoch:

1: Sample graph G from the training set
2: N ← number of nodes of G
3: Sample t ∼ [0, T − ϵ] and G0 ∼ N (0, IN)
4: Sample Gt ∼ pt|0,T (Gt|G0,G) ▷ Section A.6
5: γt ← σt/utvt
6: Lθ ← γ2

t ∥sθ(Gt, t)−G∥2 ▷ Eq. (54)
7: Update θ using Lθ

Algorithm 4 Sampling of GruM
Input: Trained model sθ, number of sampling steps K,
diffusion step size dt

1: Sample number of nodes N from the training set.
2: G0 ∼ N (0, IN) ▷ Start from noise
3: t← 0
4: for k = 1 to K do
5: η ← ασ2

tGt +
σ2
t

vt

(
1
ut
sθ(Gt, t)−Gt

)
6: w ∼ N (0, IN)
7: Gt+dt← ηdt+ σt

√
dtw ▷ Euler-Maruyama

8: t← t+ dt
9: end for

10: G← quantize(Gt) ▷ Quantize if necessary
11: Return: Graph G

Algorithm 5 PC Sampler for GruM
Input: Trained models sθ and sϕ (described in Section A.9),
number of sampling steps K, number of correction steps per
prediction M , diffusion step size dt, score-to-noise ratio r
Output: Sampled graph G

1: Sample number of nodes N from the training set.
2: G0 ∼ N (0, IN) ▷ Start from noise
3: t← 0
4: for k = 1 to K do
5: η ← ασ2

tGt +
σ2
t

vt

(
1
ut
sθ(Gt, t)−Gt

)
6: w ∼ N (0, IN)
7: G̃t ← ηdt+ σt

√
dtw ▷ Predictor

8: for m = 1 to M do ▷ Corrector loop
9: D, D̄ ← sθ(G̃t, t), sϕ(G̃t, T−t)

10: s←Compute_Score(D, D̄, G̃t) ▷ Eq.(64)
11: w ∼ N (0, IN)

12: ϵ← 2 (r∥w∥2/∥s∥2)2
13: G̃t←Corrector(G̃t, s, ϵ)
14: end for
15: Gt+dt ← G̃t

16: t← t+ dt
17: end for
18: G← quantize(Gt) ▷ Quantize if necessary
19: Return: Graph G

Attributed graphs Especially for the generation of attributed graphs G = (X,A), the graph mixture matching for
X and A can be derived from Eq. (11). Specifically, for the model sθ(·, t) = (sXθ (·, t), sAθ (·, t)), we use the following
objective:

L(θ) = EG∼QΠ∗

[
1

2

∫ T

0

γ2
1,t

∥∥sXθ (Gt, t)−XT

∥∥2dt+ λ

2

∫ T

0

γ2
2,t

∥∥sAθ (Gt, t)−AT

∥∥2dt] (68)

where λ is the hyperparameter. We use λ = 5 for all our experiments and empirically observed that changing λ did not
make much difference for sufficient training epochs.

B.3. Model architecture

For the general graph and 2D molecule generation tasks, we leverage the graph transformer network introduced in Dwivedi
& Bresson (2020) and Vignac et al. (2023). The node features and the adjacency matrices are updated with multiple attention
layers with global features obtained by the self-attention-based FiLM layers (Perez et al., 2018). We additionally use the
higher-order adjacency matrices following Jo et al. (2022). For general graph generation tasks, we add the sigmoid function
to the output of the model since the entries of the weighted mean of the data are supported in the interval [0, 1]. For 2D
molecule generation tasks, we apply the softmax function to the output of the node features to model the one-hot encoded
atom types, and further apply the sigmoid function to the output of the adjacency matrices. Note that we do not use the
structural augmentation as in Vignac et al. (2023). For the 3D molecule generation task, we use EGNN (Satorras et al.,
2021) to model the E(3) equivariance of the molecule data. We additionally add a softmax function at the last layer to model
the one-hot encoded atom types.

B.4. Sampling from GruM

Sampling from the generative model requires solving the SDE of Eq. (10). If our model sθ can closely approximate the
graph mixture, a simple Euler-Maruyama method would be enough to simulate the generative model, which is true for
most of the experiments. Since sθ is trained on the marginal density pt, Gt outside of pt could cause incorrect predictions

23

Graph Generation with Diffusion Mixture

that lead to an undesired result. To address the limitation, we may leverage the predictor-corrector (PC) sampling method
introduced in Song et al. (2021). Using the corrector method such as Langevin dynamics (Song et al., 2021), we force Gt to
be drawn from pt which ensures a more accurate estimation of the graph mixture. The score function to be used for the
corrector can be computed as in Eq. (64) of Section A.9. We provide the pseudo-code of the predictor-only sampler and the
PC sampler for our GruM in Algorithm 4 and 5. Note that our GruM does not require additional time for sampling compared
to the denoising diffusion models, since the generation is equivalent to solving the SDE where the drift is computed each
step from the forward pass of the model.

B.5. Hyperparameters of GruM

The generative process of GruM modeled as the OU bridge mixture is uniquely determined with the noise schedule σt and
constant α. Through our experiments, we use α = −1/2 and a decreasing linear noise schedule, starting from σ2

0 and ends
in σ2

0 defined as follows:

σ2
t = (1− t)σ2

0 + tσ2
1 for 0 < σ1 < σ0 < 1 (69)

We perform a grid search for the hyperparameters σ0 and σ1 in {0.4, 0.6, 0.8, 1.0} and {0.1, 0.2, 0.3}, respectively, where
the search space slightly differs for each generation task.

C. Experimental Details
C.1. General graph generation
Datasets and evaluation metrics We evaluate the quality of generated graphs on three graph datasets used as benchmarks
in Martinkus et al. (2022): Planar graph dataset consists of 200 synthetic planar graphs where each graph has 64 nodes. We
determine that a graph is a valid Planar graph if it is connected and planar. Stochastic Block Model (SBM) graph dataset
consists of 200 synthetic stochastic block model graphs with the number of communities uniformly sampled between 2
and 5, where the number of nodes in each community is uniformly sampled between 20 and 40. The probability of the
inter-community edges and the intra-community edges are 0.3 and 0.05, respectively. We determine that a graph is a valid
SBM graph if it has the number of communities between 2 and 5, the number of nodes in each community between 20 and
40, and further using the statistical test introduced in Martinkus et al. (2022). Proteins graph dataset (Dobson & Doig, 2003)
consists of 918 real protein graphs with up to 500 nodes in each graph. The protein graph is constructed by considering
each amino acid as a node and connecting two nodes if the corresponding amino acids are less than 6 Angstrom. For our
experiments, we use the datasets provided by Martinkus et al. (2022).

We follow the evaluation setting of Liao et al. (2019) using total variation (TV) distance for measuring MMD which is
considerably fast compared to using the earth mover’s distance (EMD) kernel, especially for large graphs. Moreover, we use
the V.U.N. metric following Martinkus et al. (2022) that measures the proportion of valid, unique, and novel graphs among
the generated graphs, where the validness is defined as satisfying the specific property of the dataset explained above. The
baseline results are taken from Vignac et al. (2023) or obtained by running the open-source codes.

Implementation details We follow the standard setting of Martinkus et al. (2022) using the same data split and evaluation
procedures. We report the baseline results taken from Martinkus et al. (2022) and Vignac et al. (2023), or the results obtained
from running the open-source codes using the hyperparameters given by the original work. We could not report the results
of EDP-GNN (Niu et al., 2020) and DiGress (Vignac et al., 2023) on the Proteins dataset as they took more than 2 weeks.
For the diffusion models including our proposed method, we set the diffusion steps to 1000 for a fair comparison.

For our proposed GruM, we train our model for 30,000 epochs for all datasets using a constant learning rate with AdamW
optimizer (Loshchilov & Hutter, 2017) and weight decay 10−12, applying the exponential moving average (EMA) to the
parameters (Song & Ermon, 2020). We perform the hyperparameter search explained in Section B.5 for the lowest MMD
and highest V.U.N. results. We initialize the node features with the eigenvectors of the graph Laplacian of the adjacency
matrices, which we further scale with constant. During training (Algorithm 3), we sample the noise for the adjacency
matrices to be symmetric with zero diagonals. During generation (Algorithm 4), we generate both the node features and
adjacency matrices starting from noise, and we quantize the entries of the resulting adjacency matrices. Empirically, we
found that the entries of the resulting sample lie very close to the desired values 0 and 1, for which the L1 distance between
the resulting sample and the quantized sample is smaller than 10−2.

In Figure 2 (Left), we measure the Spec. MMD and V.U.N. of our method and the baselines as follows: For GruM we
evaluate the predicted graph mixture. For DiGress, we evaluate the prediction obtained from the predicted probability

24

Graph Generation with Diffusion Mixture

of each state. For GDSS and ConGress, we evaluate the implicit prediction computed from the estimated score or noise
following Eq. (16) of Hoogeboom et al. (2022). The Spec. MMD and the V.U.N. are measured after quantizing the predicted
adjacency matrix with thresholding at 0.5.

C.2. 2D molecule generation
Datasets and evaluation metrics We evaluate the quality of generated 2D molecules on two molecule datasets used as
benchmarks in Jo et al. (2022). QM9 (Ramakrishnan et al., 2014) dataset consists of 133,885 molecules with up to 9 heavy
atoms of four types. ZINC250k (Irwin et al., 2012) dataset consists of 249,455 molecules with up to 38 heavy atoms of 9
types. Molecules in both datasets have 3 edge types, namely single bond, double bond, and triple bond. For our experiments,
we follow the standard procedure (Shi et al., 2020; Luo et al., 2021; Jo et al., 2022) of kekulizing the molecules using the
RDKit library (Landrum et al., 2016) and removing the hydrogen atoms from the molecules in the QM9 and ZINC250k
datasets.

We evaluate the models with four metrics: Validity is the percentage of the valid molecules among the generated without
any post-hoc correction such as valency correction or edge resampling. Fréchet ChemNet Distance (FCD) (Preuer et al.,
2018) measures the distance between the feature vectors of generated molecules and the test set using ChemNet, evaluating
the chemical properties of the molecules. Neighborhood subgraph pairwise distance kernel (NSPDK) MMD (Costa &
De Grave, 2010) measures the MMD between the generated molecular graphs and the molecular graphs from the test set,
assessing the quality of the graph structure. Scaffold similarity (Scaf.) measures the cosine similarity of the frequencies of
Bemis-Murcko scaffolds (Bemis & Murcko, 1996), evaluating the ability to generate similar substructures. See Section C.2
for more details. Among these, FCD and NSPDK MMD metrics measure the distribution similarity between the test dataset
and generated samples while scaffold similarity evaluates the similarity of the generated scaffolds. The baseline results are
taken from Jo et al. (2022) or obtained by running open-source codes.

Implementation details We report the results of the baselines taken from Jo et al. (2022), except for the results of the
Scaffold similarity (Scaf.) and the results of DiGress, which we obtained by running the open-source codes. Especially, the
2D molecule generation results of DiGress on the QM9 dataset are different compared to the results reported in its original
paper, since we have used the preprocessed dataset following the setting of Jo et al. (2022) for a fair comparison with other
baselines. We set the diffusion steps to 1000 for all the diffusion models.

For our GruM, we train our model sθ with a constant learning rate with AdamW optimizer and weight decay 10−12, applying
the exponential moving average (EMA) to the parameters. We perform the hyperparameter search similar to that of the
general graph generation tasks. Especially for GruM, we follow Jo et al. (2022) by using the adjacency matrices in the
form of A ∈ {0, 1, 2, 3}N×N where N is the maximum number of atoms in a molecule and each entries indicating the bond
types: 0 for no bond, 1 for the single bond, 2 for the double bond and 3 for the triple bond. Further, we scale the entries
with a constant scale of 3 in order to bound the input of the model in the interval [0, 1], and rescale the final sample of
the generation process to recover the bond types. We also sample the noise for the adjacency matrices to be symmetric
with zero diagonals during training. We quantize the entries of the resulting adjacency matrices to obtain the discrete bond
types {0, 1, 2, 3}. Empirically, we found that the entries of the resulting sample lie very close to the desired bond types
{0, 1, 2, 3}, for which the L1 distance between the resulting sample and the quantized sample is approximately 0.

C.3. 3D molecule generation
Datasets and evaluation metrics We evaluate the quality of generated 3D molecules on two molecule datasets used as
benchmarks in Hoogeboom et al. (2022). QM9 (Ramakrishnan et al., 2014) dataset consists of 133,885 molecules with up to
29 atoms of five types including hydrogen atoms. The node features of the QM9 dataset include the one-hot representation of
atom type and atom number. GEOM-DRUGS (Axelrod & Gomez-Bombarelli, 2022) dataset consists of 430,000 molecules
with up to 181 atoms of fifteen types including hydrogen atoms. GEOM-DRUGS dataset contains different conformations
for each molecule. Among many conformations, the 30 lowest energy conformations for each molecule are retained. For
the GEOM-DRUGS dataset, we utilize the one-hot representation of atom type without the atom number. To evaluate the
generated molecules, we measure the atom and molecule stability by predicting the bond type between atoms with the
standard bond lengths and then checking the valency.

Implementation details We follow the standard setting of Hoogeboom et al. (2022) for a fair comparison: for the
QM9 experiment, we use EGNN with 256 hidden features and 9 layers and train the model, and for the GEOM-DRUGS
experiment, we use EGNN with 256 hidden features and 4 layers and train the model. We report the results of the baselines
taken from Hoogeboom et al. (2022) and Wu et al. (2022). In Figure 3 (Right), we compute the implicit prediction using the

25

Graph Generation with Diffusion Mixture

Table 4: 2D molecule generation results on the QM9 dataset. The baseline results are taken from Jo et al. (2022) or
obtained by running the open-source codes. Best results are highlighted in bold.

Method Valid (%)↑ FCD ↓ NSPDK ↓ Scaf. ↑ Uniq (%) ↑ Novelty (%) ↑

MoFlow (Zang & Wang, 2020) 91.36 ±1.23 4.467 ±0.595 0.017 ±0.003 0.1447 ±0.0521 98.65 ±0.57 94.72 ±0.77
GraphAF‘(Shi et al., 2020) 74.43 ±2.55 5.625 ±0.259 0.021 ±0.003 0.3046 ±0.0556 88.64 ±2.37 86.59 ±1.95
GraphDF (Luo et al., 2021) 93.88 ±4.76 10.928 ±0.038 0.064 ±0.000 0.0978 ±0.1058 98.58 ±0.25 98.54 ±0.48

EDP-GNN (Niu et al., 2020) 47.52 ±3.60 2.680 ±0.221 0.005 ±0.001 0.3270 ±0.1151 99.25 ±0.05 86.58 ±1.85
GDSS (Jo et al., 2022) 95.72 ±1.94 2.900 ±0.282 0.003 ±0.000 0.6983 ±0.0197 98.46 ±0.61 86.27 ±2.29
DiGress (Vignac et al., 2023) 98.19 ±0.23 0.095 ±0.008 0.0003 ±0.000 0.9353 ±0.0025 96.67 ±0.24 25.58 ±2.36

GruM (ours) 99.69 ±0.19 0.108 ±0.006 0.0002 ±0.000 0.9449 ±0.0054 96.90 ±0.15 24.15 ±0.80

Table 5: 2D molecule generation results on the ZINC250k dataset. The baseline results are taken from Jo et al. (2022) or
obtained by running the open-source codes. Best results are highlighted in bold.

Method Valid (%)↑ FCD ↓ NSPDK ↓ Scaf. ↑ Uniq (%) ↑ Novelty (%) ↑

MoFlow (Zang & Wang, 2020) 63.11 ±5.17 20.931 ±0.184 0.046 ±0.002 0.0133 ±0.0052 99.99 ±0.01 100.00 ±0.00
GraphAF (Shi et al., 2020) 68.47 ±0.99 16.023 ±0.451 0.044 ±0.005 0.0672 ±0.0156 98.64 ±0.69 99.99 ±0.01
GraphDF (Luo et al., 2021) 90.61 ±4.30 33.546 ±0.150 0.177 ±0.001 0.0000 ±0.0000 99.63 ±0.01 100.00 ±0.00

EDP-GNN (Niu et al., 2020) 82.97 ±2.73 16.737 ±1.300 0.049 ±0.006 0.0000 ±0.0000 99.79 ±0.08 100.00 ±0.00
GDSS (Jo et al., 2022) 97.01 ±0.77 14.656 ±0.680 0.019 ±0.001 0.0467 ±0.0054 99.64 ±0.13 100.00 ±0.00
DiGress (Vignac et al., 2023) 94.99 ±2.55 3.482 ±0.147 0.0021 ±0.0004 0.4163 ±0.0533 99.97 ±0.01 99.99 ±0.01

GruM (ours) 98.65 ±0.25 2.257 ±0.084 0.0015 ±0.0003 0.5299 ±0.0441 99.97 ±0.03 99.98 ±0.02

estimated noise following Eq. (16) of Hoogeboom et al. (2022).

For our GruM, we train our model sθ for 1,300 epochs with batch size 256 for the QM9 experiment, and for 13 epochs with
batch size 64 for the GEOM-DRUGS experiment. We apply EMA to the parameters of the model with a coefficient of 0.999
and use AdamW optimizer with learning rate 10−4 and weight decay 10−12. The 3D coordinates and charge values are
scaled as×4 and×0.1, respectively, and we use the simplified loss with a constant c = 100. We perform the hyperparameter
search with smaller values for coordinates in {0.1, 0.2, 0.3} and higher values for node features in {0.6, 0.7, 0.8, 0.9, 1.0}.
For the generation, we use the Euler-Maruyama predictor.

C.4. Computing resources

For all experiments, we use NVIDIA GeForce RTX 3090 and 2080 Ti and implement the source code with PyTorch (Paszke
et al., 2019).

D. Additional Experimental Results
D.1. 2D molecule generaation

We provide the standard deviation results in Table 4 and Table 5. We additionally report the following two metrics: Novelty
is the proportion of the molecules generated that are valid and not in the training set, and Uniqueness is the proportion
of the molecules generated that are valid and unique, where valid molecules are the ones that do not violate the chemical
valency rule.

D.2. Further analysis

0.00 0.25 0.50 0.75 1.00
Diffusion time

25
20
15
10

5
0
5

10

lo
g

F(t
)

GruM (Ours)
w/o Inductive Bias
Drift

Figure 8: Model complexity
comparison of GruM and Drift.

Comparison with learning the drift To verify that learning the graph mixture as in
our GruM is superior compared to learning the drift, we additionally report the generation
result of the variant of GruM which learns the drift, similar to Wu et al. (2022), on the
Planar dataset. Table in Figure 4 shows that learning the drift, denoted as Drift in
the table, performs poorly generating only 15% valid, novel, and unique graphs. The
generated Planar graphs in Figure 4 demonstrate that learning the drift fails to capture
the correct topology.

Further, to verify why learning the drift fails to capture the correct topology, we compare
the complexity of the models for learning different objectives. As shown in Figure 8,
the complexity of learning the drift (Drift) is significantly higher than learning the graph

26

Graph Generation with Diffusion Mixture

Figure 4: (Left) Generation results on the Planar dataset. Best results are highlighted in bold, where smaller MMD and
larger V.U.N. indicate better results. (Right) Generated graphs by learning the drift. Visualized graphs are randomly
sampled without curation.

Planar

Deg. Clus. Orbit Spec. V.U.N.

Training set 0.0002 0.0310 0.0005 0.0052 100.0

GraphRNN (You et al., 2018) 0.0049 0.2779 1.2543 0.0459 0.0
SPECTRE (Martinkus et al., 2022) 0.0005 0.0785 0.0012 0.0112 25.0

EDP-GNN (Niu et al., 2020) 0.0044 0.3187 1.4986 0.0813 0.0
GDSS (Jo et al., 2022) 0.0041 0.2676 0.1720 0.0370 0.0
DiGress (Vignac et al., 2023) 0.0003 0.0372 0.0009 0.0106 75

Drift 0.0008 0.0845 0.0075 0.0126 15

GruM (Ours) 0.0005 0.0353 0.0009 0.0062 90.0

Figure 5: MMD results of graph mixture of GruM through the generative process. Dotted lines indicate MMDs of training
set.

(a) Planar (b) SBM (c) Proteins
Sampled Graph Graph Mixture

Figure 6: Convergence of sampled graphs and graph mixtures with varying σ0 and σ1 values.

mixture (GruM) for all time steps. Moreover, learning the drift is much harder compared to learning the graph mixture
without exploiting the graph structure (w/o Inductive Bias). In particular, the complexity gap dramatically increases at
the late stage of the diffusion process, because the drift diverges approaching the terminal time while the graph mixture is
supported inside the data space, as discussed in Section 3.2.

Early Stopping for Generative Process In Figure 2 (Left) and (Middle), the V.U.N. and the MMD results of GruM in the
Planar dataset demonstrate that the estimated graph mixture converges to the final result at early sampling steps, accurately
capturing both the global topology and local graph characteristics. This allows us to early-stop the diffusion process, which
reduces the generation time by up to 20% on this task.

We provide additional MMD results of the generative processes in Figure 5, which show that the estimated graph mixture

27

Graph Generation with Diffusion Mixture

Figure 7: The experimental results for the variant of EDM where it aims to predict the final result (EDM-Var.). (Left)
Generation results on the 3D molecule QM9 datasets. Best results are highlighted in bold where the higher stability
indicates better results. (Right) Convergence of the generative process. We compare the convergence of the graph mixture
from GruM, the implicit prediction computed from the estimated noise of EDM, and the predicted result of EDM-Var.
We measure the convergence with L2 distance and further visualize the molecule stability of the predictions through the
generative process.

QM9 (|V | ≤ 29)

Method Atom Stab.(%) Mol. Stab.(%)

G-Schnet (Gebauer et al., 2019) 95.7 68.1
GDM (Hoogeboom et al., 2022) 97.0 63.2
EDM (Hoogeboom et al., 2022) 98.7 82.0
Bridge (Wu et al., 2022) 98.7 81.8
Bridge+Force (Wu et al., 2022) 98.8 84.6

EDM-Var. 94.02 35.95

GruM (Ours) 98.81 87.34 0 500 1000
Timesteps

0.0

0.5

1.0

1.5

2.0

L2
-d

ist
an

ce

0

20

40

60

80

M
ol

. S
ta

bi
lit

y
(%

)

GruM: L2
EDM: L2
EDM-Var: L2

GruM: Stab.
EDM: Stab.
EDM-Var: Stab.

converges to the final result around 800 diffusion steps for all datasets.

Role of the diffusion coefficient We can observe that the generative process of GruM is uniquely determined by the
constant α and the diffusion coefficient σt. These two coefficients control the convergence behavior of the diffusion process:
large α and small σt lead to a drift with a large norm that forces the trajectory to converge quickly. Here, we demonstrate
the effect of the diffusion coefficient σt on the convergence of the generative process. Figure 6 (Sampled Graph) shows
that the smaller values of σt (i.e. 0.2∼0.1) lead to faster convergence of the trajectory to the final result, compared to the
larger σt. This is due to the fast convergence of each bridge process with small σt. Especially, as shown in Figure 6 (Graph
Mixture), large σt for the continuous feature (i.e., 3D coordinates) leads to slower convergence of the graph mixture since it
destroys the topology of graphs and makes it hard to predict the final result.

Graph prediction through EDM Additionally, we compare our GruM with the variant of EDM (Hoogeboom et al.,
2022) which learns to predict the final result of the denoising process instead of learning the noise. Table of Figure 7 shows
the generation result of this variant, denoted as EDM-Var., on the 3D molecule QM9 dataset. EDM-Var. exhibits the lowest
atom stability and extremely low molecule stability of less than 40%, which performs significantly worse than GruM as well
as the original EDM. This is because EDM-Var. depends on a single deterministic prediction during the generative process,
and the inaccurate prediction of the final result at the early step of the generative process leads the process in the wrong
direction resulting in invalid molecules, as discussed in the Introduction and Section 3.1.

On the other hand, our GruM predicts the final grpah of the generative process using the graph mixture which represents the
probable graph as a weighted mean of the data, thereby guiding the process in the right direction resulting in valid molecules
with correct topology. We further provide the convergence results of EDM-Var. in Figure 7, which demonstrates that the
prediction of GruM converges significantly faster than that of EDM and EDM-Var. The inaccurate prediction of EDM-Var.
results in slower convergence and low molecule stability.

Analysis on the model architecture As shown in Table 6 and 7, GDSS using graph transformer architecture shows
improved performance over original GDSS but is still outperformed by our GruM with a large margin in V.U.N, FCD, and
NSPDK. These results verify that the superior performance of GruM comes from its ability to accurately model the topology
of the final graph to be generated.

28

Graph Generation with Diffusion Mixture

Table 6: General graph generation results with GDSS using graph transformer.

Planar SBM

Synthetic, |V | = 64 Synthetic, 44 ≤ |V | ≤ 187

Deg. Clus. Orbit Spec. V.U.N. Deg. Clus. Orbit Spec. V.U.N.

Training set 0.0002 0.0310 0.0005 0.0052 100.0 0.0008 0.0332 0.0255 0.0063 100.0

GDSS 0.0041 0.2676 0.1720 0.0370 0.0 0.0212 0.0646 0.0894 0.0128 5.0
GDSS+Transformer 0.0036 0.1206 0.0525 0.0137 5.0 0.0411 0.0565 0.0706 0.0074 27.5
ConGress 0.0048 0.2728 1.2950 0.0418 0.0 0.0273 0.1029 0.1148 - 0.0
DiGress 0.0003 0.0372 0.0009 0.0106 75 0.0013 0.0498 0.0434 0.0400 74

GruM (Ours) 0.0005 0.0353 0.0009 0.0062 90.0 0.0007 0.0492 0.0448 0.0050 85.0

Table 7: 2D molecule generation results with GDSS using graph transformer.

QM9 (|V | ≤ 9) ZINC250k (|V | ≤ 38)

Method Valid (%)↑ FCD↓ NSPDK↓ Scaf.↑ Valid (%)↑ FCD↓ NSPDK↓ Scaf.↑

Training set 100.0 0.0398 0.0001 0.9719 100.0 0.0615 0.0001 0.8395

GDSS 95.72 2.900 0.0033 0.6983 97.01 14.656 0.0195 0.0467
GDSS+Transformer 99.68 0.737 0.0024 0.9129 96.04 5.556 0.0326 0.3205
DiGress 98.19 0.095 0.0003 0.9353 94.99 3.482 0.0021 0.4163

GruM (Ours) 99.69 0.108 0.0002 0.9449 98.65 2.257 0.0015 0.5299

E. Visualization
In this section, we visualize the generated graphs and molecules of GruM, and further provide visualization of the diffusion
processes for diverse generation tasks.

E.1. Generated samples of GruM

General graphs Graphs from the training set and the generated graphs of GruM are visualized in Figure 9, 10, and 11. The
visualized graphs are randomly selected from the training set and the generated graph set. Note that we visualize the entire
graph for the Proteins dataset, unlike Martinkus et al. (2022) which visualizes the largest connected component since it fails
to consistently generate connected graphs. For GruM, we found that 92% of the generated Proteins graphs are connected.

(a) Training set (b) GruM (Ours)

Figure 9: Visualization of graphs from the Planar dataset and the generated graphs of GruM.

29

Graph Generation with Diffusion Mixture

(a) Training set (b) GruM (Ours)

Figure 10: Visualization of graphs from the SBM dataset and the generated graphs of GruM.

(a) Training set (b) GruM (Ours)

Figure 11: Visualization of graphs from the Proteins dataset and the generated graphs of GruM.

30

Graph Generation with Diffusion Mixture

2D molecules We provide the visualization of the molecules from the training set and the generated 2D molecules in
Figure 12 and 13. These molecules are randomly selected from the training set and the generated molecule set.

(a) Training set (b) GruM (Ours)

Figure 12: Visualization of molecules from the QM9 dataset and the generated molecules of GruM for the 2D molecule
generation experiment.

(a) Training set (b) GruM (Ours)

Figure 13: Visualization of the molecules from the ZINC250k dataset and the generated molecules of GruM for the
2D molecule generation experiment.

31

Graph Generation with Diffusion Mixture

Table 8: Fraction of connected graphs
on GEOM-DRUGS experiment.

Methods Connected (%)

EDM 37.70 ±0.79
GruM (Ours) 56.57 ±0.31

3D molecules We visualize the generated molecules for the 3D molecule gen-
eration experiment in Figure 14 and 15. Note that the visualized molecules are
all stable. For the GEOM-DRUGS experiment, we observe that a few of the
generated molecules are not connected as pointed out in Hoogeboom et al. (2022).
To measure how many graphs are connected, we report the fraction of the con-
nected graphs, taking the average of 3 different runs. Table 8 shows that GruM
can generate a significantly larger number of connected molecules compared to
EDM (Hoogeboom et al., 2022).

(a) Training Set (b) GruM (Ours)

Figure 14: Visualization of the molecules from the QM9 dataset and the generated molecules of GruM for the 3D
molecule generation experiment.

(a) Training Set (b) GruM (Ours)

Figure 15: Visualization of the molecules from the GEOM-DRUGS dataset and the generated molecules of GruM for
the 3D molecule generation experiment.

32

Graph Generation with Diffusion Mixture

E.2. Generative process of GruM

Here we visualize the generative process of GruM. We visualize the generative process of general graphs in Figure 16, 17,
and 18. We also visualize the generative process of the 3D molecules in Figure 19. We further provide the animation of the
generative process in https://github.com/harryjo97/GruM.

Pl
an

ar

t=0 t=0.25 t=0.5 t=0.75 t=1

t=0 t=0.25 t=0.5 t=0.75 t=1

Figure 16: Visualization of the generative process of GruM. We visualize the graph mixture from GruM on the Planar
dataset.

t=0 t=0.25 t=0.5 t=0.75 t=1

SB
M

t=0 t=0.25 t=0.5 t=0.75 t=1

Figure 17: Visualization of the generative process of GruM. We visualize the graph mixture from GruM on the SBM
dataset.

Pr
ot

ei
ns t=0 t=0.3 t=0.7 t=0.8 t=1

t=0 t=0.3 t=0.7 t=0.8 t=1

Figure 18: Visualization of the generative process of GruM. We visualize the graph mixture from GruM on the Proteins
dataset.

33

Graph Generation with Diffusion Mixture
G

ra
ph

M
ix

tu
re

Sa
m

pl
ed

G
ra

ph
G

ra
ph

M
ix

tu
re

Sa
m

pl
ed

G
ra

ph
G
ra
p
h

M
ix
tu
re

Sa
m
p
le
d

G
ra
p
h

G
ra
p
h

M
ix
tu
re

Sa
m
p
le
d

G
ra
p
h

Figure 19: Visualizations of the 3D molecule generative process of GruM on QM9 dataset (Top) and GEOM-DRUGS
dataset (Bottom). For each dataset, we visualize the trajectory Gt in the first row, and we visualize the estimated graph
mixtures from GruM in the second row. Note that the visualized molecules are stable. The atom types and the 3D coordinates
of the atoms inside the green circles are calibrated after the convergence of the graph mixtures, where the convergence is
achieved at an early stage. 34

Graph Generation with Diffusion Mixture

F. Limitation
Limitation We proposed a novel diffusion-based graph generation framework that directly predicts the final graph of
the generative process as a weighted mean of data, thereby accurately capturing the valid structures and the topological
properties. We have shown that our framework is able to generate graphs with correct topology for diverse graph generation
tasks, including 2D/3D molecular generation, on which ours significantly outperforms previous graph generation methods.
While GruM shows superior performance, future work would benefit from improving our framework.

First, the likelihood of the generative process of GruM cannot be directly computed from the training objective. In order to
compute the likelihood, one could derive an associated probability flow ODE of GruM as described in Section A.9, but this
requires training an additional model for estimating the reverse graph mixture.

Furthermore, the proposed framework is focused on unconditional graph generation tasks. We could design a conditional
framework of GruM by training a model sθ(Gt, t, c) for a given condition (i.e., class label) c for estimating the c-conditional
graph mixture defined as follows:

DΠ∗
c (Gt, t) :=

∫
g
pgt (Gt)

pt(Gt)
Π∗

c(dg), Π∗
c := {g : g ∼ Π∗with label c}. (70)

Intuitively, the generative process of the modified OU bridge mixture, for which the graph mixture is replaced by DΠ∗
c (Gt, t)

is guided by the conditional graph mixture that terminates in the conditioned distribution Π∗
c. We leave this conditional

framework as future work.

35

	Introduction
	Related Work
	Graph Diffusion Mixture
	Designing Graph Generative Process
	Generation Framework Using Graph Mixture

	Experiments
	General Graph Generation
	2D Molecule Generation
	3D Molecule Generation
	Further Analysis

	Conclusion
	Derivations
	Diffusion bridge processes
	Diffusion mixture representation
	OU bridge mixture
	Reverse-time diffusion process of the OU bridge mixture
	Derivation of the graph mixture matching objective
	Analytical computation of graph mixture matching
	GruM as a stochastic interpolant
	Understanding the informative prior as regularizing the graph mixture
	Associated probability flow ODE of GruM
	Comparison with Denoising Diffusion Models
	Additional explanation on relevant works

	Details of GruM
	Overview
	Training objectives
	Model architecture
	Sampling from GruM
	Hyperparameters of GruM

	Experimental Details
	General graph generation
	2D molecule generation
	3D molecule generation
	Computing resources

	Additional Experimental Results
	2D molecule generaation
	Further analysis

	Visualization
	Generated samples of GruM
	Generative process of GruM

	Limitation

