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Abstract

Pretrained vision language models (VLMs)

present an opportunity to caption unlabeled 3D

objects at scale. The leading approach to sum-

marize VLM descriptions from different views of

an object (Luo et al., 2023) relies on a language

model (GPT4) to produce the final output. This

text-based aggregation is susceptible to halluci-

nations as it merges potentially contradictory de-

scriptions. We propose an alternative algorithm to

marginalize over factors such as the viewpoint that

affect the VLM’s response. Instead of merging

text-only responses, we utilize the VLM’s joint

image-text likelihoods. We show our probabilistic

aggregation is not only more reliable and effi-

cient, but sets the SoTA on inferring object types

with respect to human-verified labels. The aggre-

gated annotations are also useful for conditional

inference; they improve downstream predictions

(e.g., of object material) when the object’s type is

specified as an auxiliary text-based input. Such

auxiliary inputs allow ablating the contribution

of visual reasoning over visionless reasoning in

an unsupervised setting. With these supervised

and unsupervised evaluations, we show how a

VLM-based pipeline can be leveraged to produce

reliable annotations for 764K objects from the

Objaverse dataset.

1. Introduction

Numerous applications could benefit from a zero-shot VLM

pipeline to identify the type and nature of a 3D object from

views of it. We assess the design choices for such a pipeline:

(i) what images to use, (ii) what VLM, (iii) how to prompt

the VLM, (iv) how to process multi-view or multi-prompt

responses to produce an aggregate, and (v) what auxiliary
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information can be provided to improve inference. These

stages can be evaluated and optimized using sparse labeled

data. But to scale VLM pipeline assessment beyond vali-

dation accuracy, we also develop unsupervised metrics to

track hallucination and ablate visual reasoning.

Datasets of 3D objects (e.g., Objaverse from Deitke et al.

(2023)) provide a rich testing ground for such a pipeline. We

target the generation of useful text pairings for 764K object

assets. We look not only at captioning but also inferring

specific properties such as type, material, physical behavior,

affordances, or relations like containment between objects.

These property-specific, open-vocabulary annotations help

index the dataset on a set of conceptual axes (Fig 1).

To address the challenge of inspecting a 3D object using

2D views, we generate VLM responses with accompanying

image-text likelihoods. This facilitates a visually grounded

score-based aggregation (ScoreAgg) to determine the most

reliable responses across different object views. Our al-

gorithm is novel, general, and can be applied to arbitrary

factors (besides viewpoint) varied across VLM queries. It

compares favorably with text-only summarization; the latter

requires additional computation, some instruction tuning,

yet tends to propagate contradictions (i.e., hallucinations).

We also explore conditional inference via prompt-chaining

(together with ScoreAgg) to boost the accuracy of VLM an-

notations. These methods help leverage off-the-shelf VLMs,

without retraining or task-specific in-context learning. As

ScoreAgg produces a probabilistic output, it also helps quan-

tify the uncertainty across possible responses. The aggrega-

tion exhibits increasing accuracy as we sample more VLM

responses per probe or run more VLM probes, thus per-

mitting flexible use of computation to improve reliability.

These capabilities could help optimize VLM pipelines more

broadly than our particular focus on annotating 3D objects.

We organize the paper around the design choices we intro-

duced for a zero-shot VLM annotation pipeline. Section 2

lays out some background and prior work. In Section 3, we

aim to summarize type annotations reliably under changes

in view or prompt. In Section 4, we assess the inference

of object material using a variety of VLMs and condition-

ing inputs. Both sections rely on human-verified labels as
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Figure 1: An inferred conceptual subgrid for 3D objects. We probe pretrained VLMs on how well they infer object

properties such as type (e.g., “cup”, “pot”, “tower”) and material (e.g., “ceramic”, “wood”, “plastic”). We apply a visually

grounded aggregation across 2D views to avoid hallucinated outputs. Our method, ScoreAgg, produces more reliable

captions than the current SoTA, CAP3D (Luo et al., 2023), as shown in the callouts.

well as unsupervised metrics to evaluate the annotations and

pipeline choices. In Appendix E.1, we also vary the render-

ing of images or object appearances to study the impact on

VLM performance.

Our salient contributions are the following–we:

1. Introduce a visually grounded aggregation (ScoreAgg)

of VLM responses across multiple queries.

2. Compare our annotations with a leading approach

based on GPT4 (CAP3D (Luo et al., 2023)). We use

caption blow-up ratios as a measure of hallucination

to show our method is reliable where CAP3D is not.

3. Establish a SoTA on type and material inference w.r.t.

given and collected human labels respectively.

4. Propose an unsupervised visual sensitivity metric that

is predictive of VLM accuracy.

5. Are releasing 5M aggregated captions and annotations

for Objaverse. These are available via our project page.

2. Background and Setting

Dataset. Our main target is Objaverse 1.0 (Deitke et al.,

2023), an internet-scale collection of 800K diverse but

poorly annotated 3D models. They were uploaded by 100K

artists to the Sketchfab platform. While the uploaded tags

and descriptions are inconsistent and unreliable, a subset

of 44K objects called Objaverse-LVIS is accompanied by

human-verified categories. We rely on it to validate our

semantic annotations. We also introduce a subset with ma-

terial labels to test material inference. Other datasets we

considered include OmniObject3D (Wu et al., 2023), ABO

(Collins et al., 2022), and ScanNeRF (De Luigi et al., 2023).

But they lack the scale and potential of Objaverse—for in-

stance, the number of object classes in other datasets is a

few hundred, compared to 1156 in Objaverse-LVIS alone.

Baseline. A three-module pipeline was recently proposed

to generate captions for Objaverse. Though we aim to go

beyond captioning and supervised evaluation, we rely on

CAP3D (Luo et al., 2023) as the primary baseline for our

work. Their pipeline is as follows: a VLM (BLIP-2 (Li et al.,

2023)) first produces 5 candidate captions for 8 object views;

CLIP (Radford et al., 2021) filters all but one caption per

view, and GPT4 (OpenAI, 2023) generates an aggregated

caption. We found this last step to be prone to hallucinations

(discussed in detail in Section 3). Our procedure is similar

up to CAP3D’s first stage, but we don’t use any further

modules for filtering or summarization.

Models. To generate our own captions or annotations, we

use variants of PaLI-X pretrained specifically for captioning

or visual question answering. Both variants consist of a ViT-

22B (Dehghani et al., 2023) vision model and 32B UL2 (Tay

et al., 2022) language backbone, totaling 55B parameters.

For material prediction, we also run BLIP-2 T5 XL (Li et al.,

2023) as a baseline. All models are run zero-shot, one input

image at a time, and output an autoregressive distribution

over language tokens. The likelihood of any sampled text

can be computed during the VLM sampling process (e.g.,

beam search) without any additional cost. None of our

methods or results are specific to PaLI or BLIP.

2



Leveraging VLM-Based Pipelines to Annotate 3D Objects

A. Multi-view differences can produce varying object descriptions

B1. Aggregation in text space using an LLM and
engineered prompt (CAP3D)

B2. Aggregation using available VLM scores of each description (ours)

Figure 2: A. Three of eight regularly spaced views of a 3D object. Each view is accompanied by the top caption produced

by two different models: BLIP-2 & PaLI-X. Captions from BLIP-2 were obtained from the competitive CAP3D baseline,

whereas captions from PaLI-X were generated with accompanying scores for this work. Both models show an expected

variation in responses across views. B1. To aggregate multi-view captions, CAP3D feeds them to GPT4 and prompts it for

an object-level summary. The LLM is unable to reconcile captions from different views, and simply adds up the contents.

B2. Our algorithm downweights unreliable responses by combining scores across views. We show its top-4 outputs.

2.1. Related Work

We present a literature review in Appendix D. Though ap-

plying VLMs to 3D domains remains under-explored, the

following papers are close to certain aspects of our work:

1. Zhu et al. (2023) propose a VQA-based approach to

caption 2D images. They use an LLM (GPT) to gener-

ate questions about image contents, a VLM (BLIP-2)

to answer them, and finally an LLM to produce a sum-

mary caption. CAP3D takes a similar approach with

an extra filtering step before summarization.

2. O’Connell et al. (2023) attempt to replicate human-

level 3D-shape understanding using multi-view learn-

ing objectives. But all tested models fall short of hu-

man performance on held-out ShapeNet objects.

3. Gao et al. (2023) crowd-source a dataset to explore

VLM-based inference of object physical properties in

natural images. VLMs like InstructBLIP (Dai et al.,

2023) benefit from fine-tuning on their data.

4. A method that contends with fusing VLM outputs (but

assuming posed RGB-D data) is ConceptGraphs (Gu

et al., 2023). Their focus on building scene graphs to

map environments is different from our goal of gener-

ating object-centric, property-specific annotations.

3. Type Annotation

Our first task is to infer the type of each Objaverse object in

a zero-shot, open-vocabulary setting. The task is compelling

because only ∼ 5% of Objaverse is accompanied by verified

category labels. Being able to predict them would help shed

light on the rest of the dataset. We also expect asking for

the type of an object to be a language-amenable query, and

hence a basic test for VLMs.

Despite how simple a task this initially appears, the chal-

lenge of captioning a 3D object is evident from Fig 2-A. The

current SoTA for 3D captioning (CAP3D) relies on GPT4 to

summarize annotations across multiple views of an object.

This can produce deeply flawed summaries—the LLM prop-

agates hallucinations or confusions when there’s contrasting

details across views (see Fig 2-B1). Though it is explicitly

instructed that it is given captions of one object, the LLM

can interpret them as multiple co-occurring objects. It lacks

the visual context to reconcile contradictions.

To address this, we propose an alternative method of aggre-

gating multi-view or multi-query annotations (Fig 2-B2).

We describe the algorithm in Section 3.1. We compare base-

line sources with captions and type annotations produced

by our method in Section 3.2. We then present a measure of

hallucination (Section 3.3) to show our method is reliable

where CAP3D is not. Finally, we unpack the performance

of our aggregation and show how it scales in Section 3.4.

3.1. Visually Grounded Score-Based Aggregation

We introduce a method for aggregating VLM outputs across

multiple queries that relies on the log-likelihoods or scores
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Objv. tags PaLI VQA

Top-1 acc. 0.06± 0.24 0.26± 0.44
Top-5 acc. 0.13± 0.34 0.52± 0.50
Top-∞ acc. 0.15± 0.36 0.67± 0.47
Soft acc. 0.04± 0.17 0.19± 0.26

Figure 3: Comparison of captions and type annotations generated from different sources/models. All results are

averaged over Objaverse-LVIS. Left: the bars show text-embedding similarity scores (↑) for the aggregate/top per-object

descriptions from each source. We show an example caption/type annotation above each bar; these correspond to a fixed

object shown in the upper left corner from two different views. Right: string-match metrics that assess full predicted

distributions from two sources. We report top-k accuracies (whether the correct type is in the top-k predictions, ↑) as well as

the soft accuracy (probability of the correct type in the output distribution, ↑).

of the sampled outputs. Say we run I queries (spanning dif-

ferent views/prompts) to get J responses per query, denoted

{ri,j}. This forms our support for the aggregate output dis-

tribution, i.e., we have IJ possibilities for the final response.

An expensive approach to estimate the compatibility be-

tween all responses and queries would use the VLM like-

lihood p(r|x, q, θ) to score {ri,j} with respect to each

image x and question/prompt q. This would give us a

dense response-score matrix, sized IJ × I . We could then

marginalize across the I columns to compute global log-

likelihoods for all IJ responses. Obtaining the dense ma-

trix, however, would require not only O(IJ) forward passes

through the VLM sampler (to obtain the IJ candidates), but

also a subsequent scoring cost of O(I2J). The quadratic

factor I2 would make it harder to run more queries (multiple

views/prompts) to ensure the final output is reliable.

ScoreAgg: We posit that when VLM queries are correlated

(e.g., views of the same object or paraphrased questions),

we’ll get recurring responses across queries. We also exploit

the fact that we can obtain one score per candidate response

for free. Paying only the initial O(IJ) VLM sampling cost,

we obtain a sparse response-score matrix containing IJ
response-score pairs {(ri,j , si,j)}. Let f be a map to post-

process strings and reduce them to a canonical form. The

following aggregation helps identify responses r that occur

frequently while accounting for the model’s confidence in

each occurrence. ∀r ∈ {ri,j}:

si(r) := sup{si,j | f(ri,j) = r and j = 1, 2, ..., J} (1)

sagg(r) := log
∑

i

exp(si(r)) (2)

p̃(r|{ri,j , si,j}) := exp(sagg(r))/
∑

r′

exp(sagg(r
′)) (3)

Eq 1 deduplicates and re-scores responses for a given query

i. The string processor f determines when ri,j is treated

equivalent to r, and can be customized per VLM. This is

useful when responses are identical up to punctuation, case,

or uninformative tokens. Since these are undesirable dupli-

cates, we want to avoid accumulating their scores, so we

take the supremum instead. Note that si(r) can be −∞ if

no r equivalent occurs in the J responses for query i. Eq 2

then aggregates scores across occurrences of r in distinct

queries. These are desirable duplicates (over distinct images

or prompts) that merit reinforcing. Finally, Eq 3 computes

an aggregate probability distribution over responses by tak-

ing a softmax over the aggregate scores. See Fig 2-B2 for a

visual overview of the algorithm.

By assuming some overlap across the I queries, our ap-

proach avoids the quadratic scoring cost of the strawman

approach. Our final complexity is just O(IJ). (This in

fact helps us run more queries to ensure overlapping re-

sponses.) To work with the fact that we expect fewer than

I scores for each de-duplicated response r, we cannot add

log-likelihoods in Eq 2—a sum would make the aggregate

score smaller for responses that occur frequently (since the

log-likelihoods are negative), while less frequent responses

avoid that treatment. Instead we need an aggregation func-

tion that is non-decreasing in the number of available scores.

Log-sum-exp and max are two choices (which we compare

in Section 3.4, showing the former works better). Other

choices would require manipulating the scores by adding a

positive offset or scaling by a positive constant, but those

cannot be chosen in a principled way.

Compared to model-based summarization (e.g., using an

LLM), ScoreAgg requires a simple numerical computation.

Whereas an LLM needs a task-specific prompt, our algo-

rithm can aggregate over arbitrary VLM queries (e.g., to

control factors other than the viewpoint). While an LLM

produces a point estimate, our method outputs a distribution

over possible responses. Although our method inherits po-
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tential flaws in a given VLM’s scoring, it would be straight-

forward to decouple the two VLM outputs if desired—we

could score {ri,j} using a different model and replace {si,j}
before Eq 1. f could also be used to implement arbitrar-

ily complex string matching or textual entailment (Korman

et al., 2018) to aggregate similar responses.

3.2. Evaluation w.r.t. Human Labels

We collect four sets of semantic descriptions for Objaverse:

1. Objaverse tags (baseline): these were uploaded by the

creator of each 3D asset. They are inherently noisy and

inconsistent between objects. We comma-separate the

tags to produce an aggregate string for each object. But

when we compute distributional metrics, we treat the

tags separately, as ordered but uniformly likely.

2. CAP3D captions (baseline): these were generated and

released by Luo et al. (2023). A post-processed version

removes the frequent prefix, “3D model of”. We compare

both versions.

3. PaLI captions (ours): using a captioning variant of

PaLI and simple prompt (“A picture of ”), we generated

descriptive captions similar to CAP3D’s first stage. We

then applied ScoreAgg to summarize J = 5 responses

across I = 8 views per object. We compare results with

and without a post-processing map f (Eq 1) to ignore

suffixes of the form “on/against a white background.”

4. PaLI VQA annotations (ours): we used four VQA

prompts to probe for the type of each object: (i) “What

is this?” (ii) “What type of object is this?” (iii) “What

is in the image?” (iv) “Describe the object in the im-

age”. This produced 4 sets of top-5 responses per view

(I = 4 ∗ 8 = 32, J = 5). The responses are typically

WordNet entities (Miller, 1995) that group synonyms or

related terms in a comma-separated list. We deduplicate

responses by taking the first such term per response. This

post-processing map is also ablated.

We compare outputs from these sources to human-verified

object categories from Objaverse-LVIS. For our sources,

we take the likeliest output from each aggregate distribu-

tion. We then embed all text using an independent language

encoder, the Universal Sentence Encoder (v4) (Cer et al.,

2018) from TensorFlow-Hub. Finally, we compute cosine

similarities between the embedded outputs and verified cat-

egories. With 512-dim embeddings, the sentence encoder

allows comparisons that are invariant to sentence length.

Fig 3-L shows that all VLM pipelines outperform tags from

the original dataset. PaLI captions (using ScoreAgg) outper-

form CAP3D substantially. The quantitative improvement

is due to less hallucination and increased accuracy from

view-aggregation, as we show in Sections 3.3 and 3.4.

PaLI VQA annotations perform significantly better than

Figure 4: Objects with the largest caption blow-up ratio

for CAP3D. We compare their aggregate captions with ours.

the rest. They match ground-truth string labels on a large

fraction of validation data without being trained for the task:

our output distributions contain the exact expected type on

two-thirds of Objaverse-LVIS (Fig 3-R). The soft accuracy

(19%) is significant considering there are up to IJ = 160
unique responses in each aggregate output distribution.

3.3. An Unsupervised Measure of Hallucination

To explain the performance gap between our approach and

CAP3D, we develop a measure to identify cases where

CAP3D hallucinates. The goal is to systematically compare

those cases with our captions without cherry-picking. We

observe that CAP3D’s aggregated outputs are often longer

than the per view captions, because GPT4 naively adds up

descriptions from different views. This blow-up in caption

size due to the aggregation step can be measured as follows:

blow-up ratio(r) :=
wordcount(r)

maxi,j wordcount(ri,j)
(4)

Eq 4 divides the word count of an output summary by the

maximum word count across all single-view captions for the

same object. For CAP3D, we find caption blow-up ratios as

high as 5.6, implying that GPT4 accumulated the words of

at least 5 single-view captions for that particular object. On

the other hand, if we computed caption blow-up ratios for

ScoreAgg, we would always get a ratio of 1.0, because our

final caption is always one of the single-view captions.

We visualize objects with the highest CAP3D blow-up ratios

in Fig 4 (see also Fig 10 in the Appendix, where we show

more objects). Across the board, our captions are more con-

cise and accurate. We find groups of similar objects emerge

when they are ranked, suggesting systematic CAP3D errors

(e.g., three “child’s drawings”, two “silhouette” figures, and

two “cartoon birds” in the top 20). While a high blow-up

ratio is a precise indicator of hallucination, it has low recall,

because even shorter CAP3D summaries can contain con-

tradictions (e.g., “a banana and a chicken” in Figure 3). We

present such examples in Fig 11.
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3.4. Explaining ScoreAgg’s performance

To show how ScoreAgg works, we examine (i) the benefit of

multi-view/multi-prompt aggregation over individual VLM

queries; (ii) an alternative for the log-sum-exp function in

Eq 2; and (iii) the effect of hyperparameters I and J , which

determine the VLM compute budget. We use the same

similarity score as Section 3.2 for these analyses.

Fig 5a shows the accuracy of individual object views ver-

sus all-view ScoreAgg responses. The log-sum-exp (LSE)

aggregate performs better than any individual view, under-

scoring why our captions are more reliable than CAP3D’s.

Fig 5a also compares the LSE aggregation with the simpler

choice of taking the maximum score. The LSE outper-

forms the max-score aggregation by a small but significant

margin—the latter performs worse than several views indi-

vidually, because overconfident responses might dominate

the aggregate. This validates our algorithmic choice.

Prompt-aggregation further boosts the accuracy of type pre-

diction, as we show qualitatively in Fig 6. Using multiple

questions smoothens the ScoreAgg response distribution

and widens the support. We see that prompt-aggregation

helps avoid mode collapse in bimodal cases (such as the bee

on the wall). It also reduces question-specific biases (e.g.,

questions that include the word “object” make the VLM

likelier to say “toy,” while remaining questions are likelier

to elicit “statue” or “lion.”)

Finally, we examine how ScoreAgg scales with respect to

additional VLM computation (which may yield inconsistent

responses). Figures 5b and 5c underscore that ScoreAgg

benefits from more candidate captions and views. The intu-

ition is that increasing I and J increases the overlap in the

response-view score matrix (see Fig 2-B2), thus producing

a more reliable aggregate score for each candidate caption.

In sum, ScoreAgg is key to improving the accuracy of type

annotation. We probe these annotations further on inferring

downstream properties in the next section.

4. Material Inference

Our second task is to infer what each Objaverse object is

made of. The task is significant because an object’s physical

composition has immediate implications for how it behaves

physically. Whether it will sink, bounce, stretch, or crack

is largely determined by its material. There is limited prior

work to study whether VLMs can infer material properties

(Gao et al., 2023), mainly due to a lack of validation data.

To address the gap, we collected a test set of 860 objects

spanning 58 material classes. All labels are derived from

original Objaverse tags (see Appendix C.2 for details). To

make the test as challenging as possible, we included:

(a) Score-based aggregation across views and across questions.
Each bar aggregates a different subset of VLM responses. We
compare single-view predictions (labeled 0-7) with aggregated
predictions over all views, while highlighting the gap between
asking a single or multiple questions.

(b) Effect of aggregating across a variable number of object
views, Iv .

(c) Effect of aggregating across a variable number of VLM
responses sampled per probe, J .

Figure 5: Explaining ScoreAgg’s performance. We apply

ScoreAgg on different subsets of VLM probes (Iv = 8
object views, Iq = 4 VQA prompts) and VLM responses

per probe (up to J = 5). Aggregate outputs are scored on

Objaverse-LVIS as before.

(i) classes at different levels of specificity (e.g., ‘metal’

and ‘aluminum’), because we expect aggregated VLM

predictions to place probability mass on both levels

(varying based on the VLM’s confidence). This is not

the same as multi-label classification; we only evaluate

on one target label per object.

(ii) a wide range of materials with different properties: non-

rigid materials (e.g., ‘tarpaulin’, ‘snow’), organic mate-

rials (e.g., ‘bamboo’, ‘seashell’, ‘bone’), manufactured

6
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Figure 6: PaLI VQA responses per question and after aggregation for fixed views of a selection of objects. To reduce

visual clutter, we filtered responses with scores below a fixed threshold (-1.2). Each subplot legend lists the possible

responses sorted by aggregate probabilities. For comparison, we show the object’s LVIS category where available.

materials (e.g., ‘glass’, ‘plastic’, ‘steel’), food ingre-

dients (e.g., ‘chocolate’, ‘rice’), fabrics (e.g., ‘wool’,

‘denim’), and natural elements (e.g., ‘sand’, ‘ice’).

4.1. Evaluation w.r.t. Human Labels

We devise and evaluate 10 inference scenarios over the

following axes. We assume ScoreAgg to generate view-

aggregated predictions:

(i) Conditional inference: We expect an object’s mate-

rial to be harder to infer from images than type; this

raises the question whether we can prompt a VLM to

reason deeper about material. One way is to equip the

VLM with prior inferences such as the object’s type.

Thus the VLM can make its prediction on the basis of

two factors: object type and appearance. We evaluate

how well this works by posing questions including or

excluding the likeliest type (e.g., “what material is the

spoon made of” vs “what material is this made of”).

We also run a third probe including the type in the ques-

tion but without any image input (e.g., “what material

is a spoon made of”). This makes the model operate

as an LLM, with the same model weights, and helps

measure the accuracy of language-only reasoning.

(ii) Choice of type annotations: When specifying the

object’s type as part of a question, we can choose to

use detailed captions like CAP3D’s, or succinct type

annotations produced by our VQA pipeline (see Sec

3.2). The comparison is unfair because 43% of CAP3D

captions explicitly contain the target material label,

compared to 12% of PaLI types, mainly due to objects

like “iceberg” or “woodcarving”. Nevertheless we

study which type annotations perform better.

(iii) Choice of VLM: We run two VLMs on all scenar-

ios above–––PaLI-X VQA as before and the smaller

BLIP-2 T5 XL (used in CAP3D). This helps ensure

our results are not specific to a model class or size.

Results. Table 1 reveals that class-conditional inference

can boost material prediction abilities in both VLMs (PaLI-

X and BLIP-2). Although the effect is stronger in (the

significantly larger) PaLI-X, using a type annotation as well

as the object’s appearance generally outperforms using one

or the other. We conjecture two possible reasons: (i) fixing

a value for an upstream property, from the VLM’s full range

of predictions, helps mitigate confusion; and (ii) access

to previous computations helps the VLM avoid redundant

processing and attend to the downstream task.

Predictions from text alone (see “From Type” subcolumns)

confirm that CAP3D captions contain more material infor-

mation than PaLI-VQA types. Yet PaLI types are on par or

better than CAP3D captions when we do use the object’s

appearance (see “From Type and Appearance” subcolumns).

This is likely explained by hallucinations or specious details

in CAP3D captions which hinder VLM reasoning. See Ta-

ble 5 for more examples of predictions from all inference

scenarios across the material test set.

4.2. An Unsupervised Metric for Downstream Inference

We now probe our material annotations through an unsuper-

vised lens. The motivation is—while VLMs can perform

arbitrary question answering tasks, collecting labeled data

to validate their responses remains a bottleneck. What we

do have are some intermediate inferences which are already

validated, and can be used for conditional inference. Using

these, we develop a metric to characterize the quality of

downstream VLM responses, and to highlight interesting or

problematic cases without supervision.

As in Sec 4.1, we run VLMs with and without a visual input

by supplying a text value z for the type property in both

cases. The question qz changes slightly to be type-specific

in LLM mode, q′z , rather than instance-specific in VLM

mode. Let {ri,j} and {r′j} respectively denote the sampled

responses (where i indexes object views and j indexes VLM

7
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Table 1: Material inference with two VLMs: PaLI-X and BLIP-2.. The models are provided either an object type

annotation or image as inputs or both. We report top-k accuracies and soft accuracies averaged over the material test set; we

also show top-2 predictions on an example object (right) under each inference scenario. VLM-mode responses are view

aggregated (via ScoreAgg). The predicted distributions contain up to J=5 alternatives in LLM mode or IJ=40 in VLM mode.

From Type

(LLM mode)

From Appearance

(VLM mode)

From Type and Appearance

(VLM mode)
Example object

Material label: “porcelain”. CAP3D

caption: “small white porcelain

vase with colorful floral designs

on it”. PaLI-VQA type: “inkwell”.

CAP3D

captions

PaLI-VQA

types

No caption/type

information

CAP3D

captions

PaLI-VQA

types

PaLI-X
55B
VQA

Top-1 acc. 0.46± 0.50 0.33± 0.47 0.56± 0.50 0.61± 0.49 0.60± 0.49
Top-3 acc. 0.73± 0.44 0.58± 0.49 0.83± 0.37 0.87± 0.34 0.86± 0.35
Soft acc. 0.36± 0.29 0.25± 0.28 0.41± 0.28 0.44± 0.27 0.44± 0.29
Example

preds.

“porcelain” (0.29),

“faience” (0.28)

“glass” (0.28),

“porcelain” (0.24)

“faience” (0.88),

“porcelain” (0.06)

“faience” (0.68),

“porcelain” (0.15)

“faience” (0.71),

“porcelain” (0.16)

BLIP-2
T5 XL

Top-1 acc. 0.21± 0.41 0.18± 0.39 0.57± 0.50 0.47± 0.50 0.56± 0.50
Top-3 acc. 0.24± 0.43 0.22± 0.41 0.68± 0.47 0.59± 0.49 0.69± 0.46
Soft acc. 0.19± 0.35 0.16± 0.33 0.50± 0.41 0.42± 0.42 0.51± 0.42

Example

preds.

“China” (0.58),

“ceramic” (0.24)

“metal” (0.93),

“metal or
plastic” (0.06)

“porcelain” (0.99),

“white
porcelain” (0.01)

“porcelain” (0.80),

“china” (0.12)

“porcelain” (0.94),

“china” (0.04)

responses for a fixed query). We compare outputs from

running in VLM and LLM modes using a probability metric,

the Hellinger distance H , which for discrete distributions

(like the output of ScoreAgg) is identical to the Euclidean

distance between two square root probability vectors:

visual sensitivity(qz) := H(p̃(r|{ri,j}), p̃(r|{r
′

j})) (5)

While such a distance can be computed for any VLM in any

unsupervised case, the question that arises is whether the

distance correlates with predictive performance. Since the

contribution of a VLM’s visual branch is generally residual

(via cross-attention from the language branch), we posit

that when answers differ between the visionless and vision-

based conditions, the latter is likely more accurate. We

assess this hypothesis in Figure 7a using PaLI-X predictions

on the labeled material test set (from Section 4.1). We find

significant correlation between the visual sensitivity metric

and gains in (supervised) soft accuracy. The correlation is

likely underestimated due to noise in the material labels—

the vision-based material predictions are often justifiably

multi-modal (see Figure 7b) whereas our labels are one-hot.

Having shown its usefulness on material, we compute our

visual sensitivity metric when querying for other object

properties (Table 2). We infer (i) binary properties such

as fragility or lift-ability, (ii) open-vocabulary properties

such as color and affordance, and (iii) relations between

objects such as what a given object might contain. We find

that the standard deviation of Hellinger distances for any

given question is indicative of the size of the output space

(e.g., binary-response questions have the lowest spread).

We also find that the mean of Hellinger distances grows

as expected with the difficulty of answering questions in

visionless mode (e.g., color benefits the most from VLM

mode). Lastly, we find that providing more information in

the question (both material and type rather than type alone)

consistently reduces the gap (i.e., mean Hellinger distance)

Table 2: Object properties assessed without validation,

via visual ablation of PaLI-X responses. Placeholders T

and M are filled in with a prior type or material inference.

The visual sensitivity metric is averaged over 44K objects.

(See also Fig 12 where we showcase these predictions qual-

itatively on a fixed set of objects.)

Question

type

Question in LLM/VLM

mode

Hellinger vis.

sensitivity

Fragility
Is a/this T fragile? 0.110±0.058
Is a/this M T fragile? 0.103±0.054

Lift-

ability

Can a human lift a/this T? 0.133±0.063
Can a human lift a/this M T? 0.124±0.055

Afford-

ance

How is a/the T typically

used?

0.575±0.223

Contain-

ment

What might a/the T contain? 0.690±0.260
What is something that typi-

cally goes into a/the T?

0.570±0.235

What items or substance

might a/the T contain?

0.731±0.236

Color
What color is a/this T? 0.894±0.163
What color is a/this M T? 0.875±0.173

between VLM and LLM mode responses.

Our analysis is useful not only to compare questions in

aggregate, but also to highlight individual cases which merit

attention. For instance (in Figures 7b & 7c), it flags the

atypical material of a wooden sword or unexpected objects

contained in a cappuccino (marshmellows), which were

evident only from visual context. Thus, the analysis could

be instrumental in scaling VLM annotation to unsupervised

cases beyond the scope of human-powered validation.

5. Conclusions

We explored the design space of VLM pipelines for caption-

ing and open-vocabulary classification. We evaluated what

VLMs are sensitive to, including changes in object view,

question wording, prior inferences specified in the prompt,

8
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(a) Gains in material prediction accuracy when the VLM
diverges from underlying language-only predictions. We
show all datapoints from the material validation set, with a
linear fit to highlight the correlation.

(b) Material predictions. We show outputs over 2% prob.

(c) Containment predictions. We show outputs over 5% prob.

Figure 7: Visual sensitivity measured as the divergence

between VLM and LLM mode predictions. VLM mode

results are view-aggregated using ScoreAgg.

and access to the object’s appearance. We introduced an

algorithm (ScoreAgg) to marginalize over some of these

factors—akin to how humans might arrive at an inference

by examining an object from multiple angles. If the aggre-

gation is not visually grounded, we showed it hallucinates

using a simple indicator.

Score-aggregated annotations serve as reliable representa-

tions for downstream inference. Our unsupervised visual

sensitivity metric helps address the bottleneck of validation

data in scaling VLM pipelines. Our outputs for Objaverse

are available on our project page, and promise to serve a

variety of applications (from retrieval to 3D generation and

physical simulation). We hope our evaluations and insights

also help shape VLM annotation pipelines in other contexts.

5.1. Limitations and Future Work

ScoreAgg’s reliability is based on using numerous overlap-

ping queries. When there’s disjoint coverage across queries,

it will likely drop infrequent details to produce a globally

consistent caption. If we applied it to non-overlapping pho-

tos of a room (e.g., taken from the center) we can only

expect a high-level caption rather than a combination of

details across views. This limitation could be mitigated by

increasing the field of view to ensure overlap (e.g., taking

photos from the boundary of the room). We saw in our usage

that ScoreAgg benefits from aggregating over more VLM

queries (Figure 5b). Hence, extra VLM compute could be

deployed to boost query overlap and final accuracy.

Another limitation concerns the aggregation function in Eq 2.

The log-sum-exp (LSE) helps balance contradictory signals

and produce a globally reliable response. It would need to

be modified if the goal was different—say if we wanted to

detect whether a certain feature occurs in any view of an

object. In such cases, it might be appropriate to replace the

LSE function with a max.

Future generations of pretrained models might include

VLMs capable of processing multi-view images simulta-

neously to produce a global response. While this would be

an interesting direction, there is still value in approaches

like ours: the ScoreAgg algorithm is transparent and helps

mitigate black-box hallucination.

Before this work can be applied to object identification using

arbitrary images (e.g., from a mobile camera), it would be

useful to develop a measure of the marginal value of specific

new views or object complexity as a whole. Nonetheless,

we hope our pipeline optimization approach will transfer to

scene understanding beyond digital 3D objects.

Impact Statement

Our work allows using pretrained VLMs more accurately

for annotation tasks. It may reduce the need for compute re-

sources spent on fine-tuning such models, a positive societal

consequence. On the flip side:

While increasing the reliability of our annotations was a key

focus for us, any automated captioning system will exhibit

biases. Given the scale of the annotations we produce (350

million open-vocabulary responses), they may contain all

kinds of content.

The concern is heightened from our use of Objaverse—a

9
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relatively new, under-explored set of object assets. They

were originally created and uploaded by 100K artists to the

Sketchfab platform. Given their diverse origin, the assets

may contain all kinds of content. Our annotations (for 764K

objects) will verbalize and reflect what is in the assets.

We include some of our annotations in the supplementary

materials to help reviewers assess them (see Appendix A

for an outline). We ran the outputs through the Perspective

API to measure toxicity. Although we did not find any

concerning examples, the API may have missed them.

If our annotations do get popularly used, we would cau-

tion users and highlight the need to review the captions.

This could be undertaken in a community-driven way, but

remains impossible for individuals.
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A. Outline

We attach the following files as supplementary materials:

1. PaLI captions for all of Objaverse.

2. PaLI VQA type annotations for all of Objaverse.

3. PaLI VQA material annotations for all of Objaverse.

4. Images showing our material validation set, presenting

all objects with their material labels.

5. Python code for our score-based, multi-probe aggrega-

tion method.

6. Code diff for BLIP-2 to highlight our minimal changes

to generate outputs with scores and run in LLM mode.

The Appendix is structured as follows—we provide model

and dataset details in Sections B and C respectively. We

present a literature review in Sec D. Then we present the

following extended results:

1. Section E.1: VLM sensitivity to image and lighting

conditions or object texture.

2. Section E.2: statistics, word clouds, and more exam-

ples comparing CAP3D captions with ours (including

two objects that the CAP3D paper highlighted as fail-

ure cases).

3. Section E.3: predictions from all material inference

scenarios on 24 example objects.

4. Section E.4: probes on a fixed set of objects to draw

qualitative insights on what factors affect VLM predic-

tions for a series of properties.

B. Model Details

We used the following VLMs off the shelf without tweaking:

B.1. PaLI-X

The model (Chen et al., 2023b) is based on the flaxformer

transformer (Vaswani et al., 2017) library and t5x train-

ing/evaluation infrastructure (Roberts et al., 2022), both

written and released in jax (Frostig et al., 2018). The

captioning- and VQA-tuned variants have a common ar-

chitecture. Checkpoints and configs for the 20B UL2 (Tay

et al., 2022) language backbone are separately available

here. The language backbone relies on a SentencePiece

tokenizer (Kudo & Richardson, 2018) with vocab size 250K

available here. The visual backbone for PaLI-X (a ViT-22B

(Dehghani et al., 2023)) includes an additional OCR-based

classification pretraining task on WebLI images (Chen et al.,

2023c) beyond the original JFT-3B (Sun et al., 2017; Zhai

et al., 2022) image classification task.

During VLM training, the captioning and VQA variants

diverge in their image resolutions (6722 versus 7562) and

training task mixtures. While the VQA variant was partly

trained using the Object-Aware method (Piergiovanni et al.,

2022) to detect or list object classes on the OpenImages V4

dataset (Kuznetsova et al., 2020), we are not aware of any

other reason PaLI-X would be predisposed to predict object

labels accurately, especially on the long-tailed distribution

of Objaverse.

PaLI scoring is length normalized as originally described in

Eq 14 of (Wu et al., 2016) or coded in t5x here. This is to

help ensure that longer outputs are not disadvantaged. We

kept the length norm parameter fixed at α = 0.6 and used

default beam searching sampling with 5 parallel decodings.

B.2. BLIP-2

As CAP3D did, we use BLIP-2 from LAVIS (Li et al.,

2022a), which is based on the widely used PyTorch trans-

formers library. The model is appealing because it was

shown to perform better than 54x larger models on VQA

and image captioning. Its FlanT5 encoder-decoder back-

bone (Chung et al., 2022) was pretrained using the span

corruption objective (introduced in T5 (Raffel et al., 2020)),

then instruction-finetuned for various language-based ques-

tion answering. The image encoder is a ViT-g/14 model, as

trained by EVA-CLIP (Fang et al., 2023).

Unlike PaLI-X components, BLIP-2’s ViT was directly eval-

uated for object detection and instance segmentation on

LVISv1.0 (Gupta et al., 2019). The authors highlighted

emergent capabilities on object-level instance segmentation;

their ViT classified 1200 LVIS categories as accurately as

the 80 COCO categories on which it was trained (Fang

et al., 2023). We expect BLIP-2 to exhibit some transfer to

Objaverse-LVIS. So it is surprising that PaLI-X outperforms

BLIP-2 nonetheless. Besides model size, a reason for the

performance gap could be that BLIP-2 operates with images

of size 2242.

We tweaked BLIP-2’s code slightly to (i) generate outputs

with accompanying scores, using existing functionality in

the transformers library; and (ii) optionally run in LLM

mode, by removing visual tokens from inputs to the trans-

former. We attach the diff for these changes, totaling 20

lines, in blip2-code_diff.txt.

C. Dataset Details

C.1. Objaverse Rendering

We downloaded 798,759 Objaverse GLB files and rendered

them using Blender 3.4 (Community, 2018). We dropped

animated objects while rendering (to avoid misrepresenting

them by generating static-object captions). This produced

763,844 objects rendered from 8 different views, including

44,199 with LVIS categories.

Rendering process. We placed each object at the origin and

scaled its maximum dimension to 1. We then rotated the

camera at a fixed height and distance to the origin, rendering
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images at azimuthal intervals of 45 degrees. To determine

the camera height, we swept over a few values of the polar

angle θ w.r.t. the z-axis. We presented this sweep and other

rendering hyperparameters (such as lighting conditions) in

Table 4 in the main text.

Reproducing CAP3D views. CAP3D uses a distinct image

rendering pipeline. While we render images at a fixed cam-

era height, CAP3D images include top-down and bottom

views of the object. Although we did not have access to

their original images, we compared rendered images and

approximated their camera poses from Fig 23 in the CAP3D

paper. By default, only views 1, 3, 5, and 7 (zero-indexed)

from our pipeline are comparable to 4, 3, 5, and 2 from the

CAP3D pipeline. We remap CAP3D captions to align with

our view indices, and focus on the compatible viewpoints

when comparing captions.

C.2. Material Test Set

We took inspiration from the long-tailed distribution of LVIS

categories (Gupta et al., 2019) to enumerate material classes

for our test set. To make the test as difficult as possible,

we included a range of materials with different properties.

We included labels at different levels of specificity. We

also included labels which are easily conflated (e.g., ‘coral’,

‘seashell’, and ‘conch’).

Recipe. Rather than label objects on our own, we searched

through object tags from Objaverse for a superset of 122 ma-

terial labels. The initial matches were noisy—the tags often

contain spurious materials (because artists can add arbitrary

tags to optimize search engine visibility for their objects).

So we used a custom web app to accept or reject object-label

pairs from the initial matches. This helped preserve the nat-

ural, long-tailed distribution of material tags in the dataset

(that also reflects the real world). We dropped query terms

which returned too few/poor quality matches1. In some

cases, we had to resolve multiple tag matches per object. Al-

though this was an opportunity to test multi-label prediction

(which our aggregate VLM predictions do facilitate), for

now we chose to focus on the primary/dominant material of

each object. Finally, we merged some near-duplicate labels

1Full list of material tags we searched for, but dropped due to
insufficient, ambiguous, or poor quality matches: ‘alcohol’, ‘al-
loy’, ‘aluminium foil’, ‘ash’, ‘ashes’, ‘buckram’, ‘canvas’, ‘carbon
fiber’, ‘carbon fibre’, ‘carbon-fiber’, ‘carbon-fibre’, ‘cashmere’,
‘cellulose’, ‘chenille’, ‘chitin’, ‘cloth’, ‘corduroy’, ‘corn’, ‘egg’,
‘eggs’, ‘eggshell’, ‘feather’, ‘feathers’, ‘felt’, ‘fiberglass’, ‘flax’,
‘flour’, ‘flowers’, ‘fur’, ‘granite’, ‘graphite’, ‘grass’, ‘knitwear’,
‘lace’, ‘laminate’, ‘leaf’, ‘leaves’, ‘limestone’, ‘mahogany’, ‘milk’,
‘oil’, ‘papyrus’, ‘parchment’, ‘pasta’, ‘pewter’, ‘platinum’, ‘ply’,
‘plyboard’, ‘pvc’, ‘pyrex’, ‘resin’, ‘suede’, ‘shell’, ‘silk’, ‘slate’,
‘tartan’, ‘teflon’, ‘textile’, ‘titanium’, ‘veggie’, ‘veggies’.

that we included initially to increase matches2.

The final test set contains 860 objects spanning 58 classes,

with at least 3 objects per class, as shown in Figure 8.

See the attached file material_test_set_objects.

pdf for images of all objects in the test set.

Evaluation metric. Unlike in Sec 3.2, we cannot rely on

similarity in text embedding space because materials can

appear close even when they are different (e.g. "wood" and

"metal" have a cosine similarity score of 0.408). So we look

for exact string matches in the VLM responses.

See Appendix E.3 for examples of PaLI-X and BLIP-2

predictions.

D. Literature Review

D.1. Classic object recognition

Besl & Jain (1985) wrote an influential survey scoping the

field of 3D object recognition. They defined the task as

follows: given a “list of distinguishable objects” and some

“digitized sensor data corresponding to one particular, but

arbitrary, field of view”, to be able to answer whether any ob-

ject appears in the sensor data (and infer its location, count,

and 3D orientation). They assumed either range or intensity

data (i.e., depth or RGB). The methods they surveyed pri-

marily relied on feature extraction to characterize objects

(e.g., dimensions, extreme points, and spatial relationships

between object components), surfaces (e.g., curvature), or

edges (e.g., parallel edge relationships).

Even modern methods tend to assume/retrieve a “list of

distinguishable objects”—for instance, Zareian et al. (2021)

explored novel object detection using sparse bounding box

annotations, but relied on extensive image-caption data. Our

approach does not require any specified object classes—we

emphasize the ability to work with novel objects. (That said,

one might argue that our list of distinguishable objects is

baked into the VLM’s pretrained knowledge.)

Our task is also different from the classical definition in our

emphasis on multi-view consistency. Compared to classical

methods such as feature extraction and graphical represen-

tation, using a VLM does seem very black-box; but it is

much less black-box than end-to-end learning, which would

process all inputs (e.g., multi-view images) together.

D.2. Dense object-centric tasks

Given real-world visual inputs, the task typically shifts to

segmentation or bounding box detection. He et al. (2021)

survey a variety of deep learning approaches for 3D seg-

mentation from point clouds, voxels, meshes, or RGB-D. A

2Full list of materials we merged into other labels: ‘metallic’,
‘woollen’, ‘aluminium’, ‘tarp’, ‘shell’.
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Figure 8: Our long-tailed material test set comprising 58 material classes (on the x-axis) and 860 objects.

recent work (Koo et al., 2022) showed that part segmenta-

tion emerged using human text annotations to discriminate

between related shapes; the work is evocative of image-text

contrastive learning which powers VLM training. Even

in 2D, object detection and tracking is an important prob-

lem for applications in robotics, augmented reality, or au-

tonomous driving (Yao et al., 2020). These applications typ-

ically benefit from slow changes in the view, object motion

relative to the scene, or availability of camera parameters.

Our task is salient in that it isolates an object and attempts

to generate annotations that are consistent w.r.t. all views of

the object. Our focus on global annotation is different from

the local processing/dense spatial emphasis of segmentation,

tracking, or bounding box detection.

D.3. Language-based 3D tasks

Captioning or question answering in 3D are nascent but

growing fields. A substantial amount of work involves nav-

igating environments to answer questions (Gordon et al.,

2018) or to find specified objects (e.g., ObjectNav (Batra

et al., 2020)). For observational settings, ScanQA (Azuma

et al., 2022) is one dataset which tests object understanding

via question answering. But the dataset is limited to 800

rooms and 41k questions. It assumes RGB-D or point cloud

inputs rather than multi-view images.

Captioning 3D objects or scenes is also infrequently ex-

plored. One approach (Han et al., 2020) to caption 3D

shapes detected parts of an object across multiple views,

then translated a sequence of view-aggregated part features

into a caption using an RNN. Chen et al. (2023a) proposed

an approach for dense captioning that aims “to generate

multiple captions per scene localized with their associated

object regions.” While there’s extensive work on 2D cap-

tioning using scene graphs (Yang et al., 2019; Chen et al.,

2020), and we have also seen methods for 3D scene graph

inference (Armeni et al., 2019; Wald et al., 2020), the com-

bination has not been explored for 3D captioning to our

knowledge.

Pretrained large models: With the advent of LLMs and

VLMs (Li et al., 2019; Radford et al., 2021; Jia et al., 2021;

Li et al., 2022b; Alayrac et al., 2022; Chen et al., 2023c), it

became possible to derive interpretable solutions for arbi-

trary image-processing tasks. VISPROG (Gupta & Kemb-

havi, 2023) used in-context learning to produce Python code

to invoke off-the-shelf vision models and image processing

APIs. Their method worked well for 2D question answering.

ViperGPT (Surís et al., 2023) also showed gains in reason-

ing at the level of object attributes by decomposing queries

into executable image-processing subroutines.

But the use of foundation models remains limited in 3D do-

mains. Hong et al. (2023) is one work which contends with

question answering and captioning in 3D. They propose to

train 3D VLMs by projecting 3D feature maps to 2D and

bootstrapping from a pretrained 2D VLM. Their focus on

training LLMs to ingest point clouds as inputs is orthogo-

nal to our focus on pushing the performance of pretrained

models without fine-tuning.

In conclusion, applying pretrained models to 3D domains

remains under-explored. CAP3D (Luo et al., 2023) was the

only suitable baseline for our work.

E. Extended Results

E.1. Ablating Image and Lighting Conditions

So far we have assumed a given set of images per object.

That is a limiting assumption for user-driven, real-time ob-

ject annotation. In this section we explore VLM sensitivity

to image and camera settings (such as lighting, poses) as

well as changes to the object’s appearance (such as untex-

tured rendering). See Table 4.

First, we are interested in how much VLMs and their under-

lying ViTs rely on texture to recognize objects versus shape

(Hermann et al., 2020; Naseer et al., 2021; Dehghani et al.,

2023). We render all objects without colors and lighting

(using Blender’s Workbench engine) to compare with the

default appearances. The untextured images do hurt PaLI’s
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Table 3: CAP3D captions versus ours, compared on the frequency of satisfying undesirable criteria (↓). We use the

aggregate, post-processed captions in each case—CAP3D drops prefixes like "3D model of," whereas we remove suffixes

like "on a white background" from PaLI captions using Eq 1. We count captions that meet the listed criteria, then normalize

by the full size of Objaverse (798,759). We use case-insensitive keyword searches unless marked with an asterisk *.

Captions that... Cap3D PaLI captions

Are missing/empty 17.17% 4.37%

Contain undesirable keywords:

"object"

"model" / "3D"

"royalty-free" / "royalty free"

"download" / "sale"

* "OBJ" / "FBX" / "C4D" / "Blender" / "Maya" (but not "Mayan")

2.95%

2.90%

0.42%

0.19%

0.14%

9.45%

0.89%

0.00%

0.00%

0.00%

Start with a word other than "a" / "an" / "the" / "two" 32.59% 5.79%

End with "background" or "background." 0.45% 0.15%

type prediction performance but the effect is small enough

to suggest that PaLI is largely shape-driven.

Another reason for the reduced impact of untextured ren-

dering is that a number of Objaverse models are already

untextured. We suspect that lighting conditions will make

a difference in recognizing these objects, because they are

prone to losing detail with brightness. We render all objects

with three different scene lighting choices: (i) eight area

lights and one ceiling light surrounding the object, (ii) a sta-

tionary light placed higher than the camera’s initial position

to enhance shadows, (iii) a moving backlight that follows

the camera as we move it. (i) and (iii) ensure symmetry

of lighting across the eight views we render, whereas (ii)

makes an object look darker from “behind.” We find these

intuitions do translate to slight performance gains in recog-

nizing objects. And for the same reasons, placing objects on

dark backgrounds (rather than a constant white) also helps.

Lastly, we revisit our choice of camera poses for image

collection. Our aim was to encourage overlap in VLM

responses to ensure the most reliable responses can “win”

during aggregation. So we took images from regular yaw

intervals on a circle around the object. But there are other

possible schemes, e.g., one might maximize the informa-

tion content of each view by prioritizing atypical object

views. CAP3D took this alternative approach, varying cam-

era height simultaneously with yaw to include top and bot-

tom views of the object. Though we didn’t have access to

the original images from CAP3D, we reverse-engineered

their camera poses, and found that our choice worked better

with our method. We also varied the free parameter in our

choice, i.e., the polar angle at which the camera is placed

facing the object. This didn’t make much difference.

On the whole, we found PaLI to be quite robust to the visual

and image settings which affect object appearance.

Table 4: VLM sensitivity to image conditions and object

appearance. We collect and score PaLI VQA type annota-

tions using cosine similarity on Objaverse-LVIS. All results

are view-aggregated.

Hyperparameters
PaLI VQA

type similarity score

Object appearance

Textured (Cycles)

Untextured (Workbench)

0.593± 0.290
0.549± 0.289

Scene lighting

Surround area lights

Stationary point light

Camera backlight

0.580± 0.291
0.586± 0.291
0.593± 0.290

Image background

Black (0, 0, 0)

Dark grey (100, 100, 100)

White (255, 255, 255)

0.603± 0.296
0.612± 0.294
0.593± 0.290

Camera poses

CAP3D (w/ top & bottom views)

Ours (constant polar angle)

0.588± 0.290
0.593± 0.290

Camera polar angle θ
64 degrees

68 degrees

72 degrees

0.591± 0.291
0.593± 0.290
0.593± 0.290

E.2. Detailed Comparison with CAP3D

Figure 10 extends Figure 4 from the main text, showing the

next 18 objects with the highest CAP3D caption blow-up.

As discussed, the caption blow-up ratio is a precise indicator

but lacks recall. To focus on hallucination cases which are

not picked up by the blow-up ratio, we show more examples

in Figure 11. This figure visualizes single-view captions

from both pipelines to illustrate where the aggregates come

from. The last two rows of the figure present two specific
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examples presented as failure cases in the CAP3D paper.

Finally, we plot word frequency clouds in Figure 9 and

compute aggregate statistics in Table 3 for both sets of cap-

tions. While our pipeline is missing captions for 4% of

objects (mostly animations) which we dropped while ren-

dering, CAP3D is missing captions for 17% of Objaverse.

CAP3D’s reason for dropping a significant fraction of ob-

jects was that they lacked “sufficient camera information for

rendering” (see Sec 3.2 of Luo et al. (2023)). Nevertheless,

both pipelines have better coverage than artist-written tags

or descriptions in the original dataset—those are empty for

38% and 37% of all objects respectively.

E.3. Material Inference

We show material predictions under all inference scenarios

for various objects from our test set in Table 5. For aggregate

statistics, see Table 1 in the main text.

E.4. What Factors Matter for Different Properties

We take a qualitative look at the effect of varying the ques-

tion, view, or appearance of an object when predicting var-

ious properties. We also observe an effect of object size

though we kept it fixed in our pipeline.

To examine the role of the question, we fix a set of objects

and probe them for all properties discussed so far. We

avoid aggregating across object views in this section. For

each property we show PaLI responses to question variants

separately, then the effect of aggregating across questions

using ScoreAgg. We cover changes in question wording and

what prior inferences are specified.

Open-vocabulary properties. Figure 12 starts with type

and material inference. We observe PaLI-X shows varying

confidence in its responses on different objects. This could

provide signal for when we need to refine predictions (e.g.,

by asking more questions).

We find PaLI-X surprisingly capable of describing what an

object might contain, even when the contained object is

hidden or hypothetical (e.g., “money” in a “wallet” or “peo-

ple” in a “boat”). It is unclear whether the variance across

questions here is due to significant changes in wording, or

the complexity of the knowledge we’re probing. We ask a

single question on object affordance—the space of possible

responses and entropy of predictions are large even under a

single question. The model appears to understand use cases

for all our objects.

Physical behavior. When it comes to physical properties,

PaLI makes more mistakes. It knows that a “leather wallet”

can be molded but not crushed; that a “brick bakery” would

be hard to deform; that a rock can only be crushed. On the

other hand, it expects a “wood boat” or “snow globe“ to

(a) PaLI aggregate top captions.

(b) CAP3D aggregate captions.

Figure 9: Word clouds comparing PaLI and CAP3D cap-

tions based on word frequency. Articles and prepositions

are dropped.
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be moldable by hand. It takes most objects to be fragile

(including a “soda can” or “remote control”) and incapable

of floating in water (with the obvious exception of a “boat”).

Interestingly, whether or not an object contains something

significantly changes the likelihood of its floating or sinking.

Lift-ability. When predicting if objects are liftable, we run

into the consequences of not controlling for object size. The

model is uncertain even in obvious cases like a “clay toy”

and “aluminum soda can.” These are both objects for which

the height was the maximum dimension; they take up more

vertical image space and possibly appear abnormally large to

the model. Though we could try aggregating/marginalizing

over varying-size renderings of an object, a better solution

might specify an object’s scale (if available) to the model

explicitly.

Color and count. The model can express colors in words

correctly. It offers multi-color responses when there’s a

mix of colors (e.g., “yellow and blue” for the clay toy).

When it comes to counting, PaLI can separate single objects

(count=1) with high precision. It also does reasonably for

disjoint objects. For busy scenes, it seems to get the scale

right—we even see the variance of its numerical responses

increase (e.g. the “banquet”).

Pose. An object appears in different poses to the model

across our rendered images (i.e., changes in view). We

test whether the model can tell the front of an object from

its back or side (Fig 14). This seems readily possible for

asymmetric objects, perhaps helped by the presence of facial

features in the case of the “lion”. For more symmetrical

objects like the “wallet”, the model can tell side views from

(squarely) front or back views, but is somewhat confused.

Shininess. Whether an object is shiny is a physical prop-

erty that follows from its type and material. This offers

an opportunity to assess whether VLMs are more sensitive

to their visual inputs or prompts. We take an object with

ambiguous shine, then vary the lighting conditions, camera

angle, and background image color (Fig 15). We ask four

question variants specifying the object’s type or material

in all combinations. We find almost no effect of varying

the prompt in comparison to the effect of varying the image

settings. The “soda can” is described as shiny and dull in

equal measure across the appearance-varying probes.

Conclusion. Running multiple VLM probes and aggregat-

ing across them can be a powerful technique to uncover/deal

with VLM uncertainty. We can meaningfully marginal-

ize over views of an object (camera pose) or variations in

the question. But VLMs can be thrown off by visual fea-

tures (e.g., lighting, contrast, or object size) especially when

they’re not relevant to the query. Such queries should be

decoupled from object appearance either by specifying more

relevant information in the prompt, or failing that, perhaps

using a visionless model.
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Figure 10: Comparison of view-aggregated captions from our pipeline versus the current SoTA, CAP3D, on objects

with the highest CAP3D caption blow-up ratios. We skip the three objects already presented in Fig 4.
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Figure 10: Comparison of view-aggregated captions from our pipeline versus the current SoTA, CAP3D, on objects

with the highest CAP3D caption blow-up ratios (contd.)
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Figure 11: Comparison of captions from our pipeline versus the current SoTA, CAP3D. Besides the aggregates, we also

show view-specific captions from the underlying VLMs (PaLI-X and BLIP-2).
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Figure 11: Comparison of captions from our pipeline versus the current SoTA, CAP3D (contd.) The last two rows

were described as failure cases for CAP3D in that paper.
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Table 5: Material prediction examples on 12 categories from our custom test set. We show predicted distributions from

both VLMs (PaLI-X and BLIP-2) and all five sets of inputs described in Sec 4. For brevity, only the top two outputs from

each predicted distribution are presented, along with their probabilities in parentheses. We use tcap3d or tpali to denote

the type annotations, A to denote all object views, pvlm(m̂|.) to denote a predicted distribution, and m to denote the true

material.

m “glass”

tcap3d “hat and a jar, both with ropes tied around them”

tpali “potion”

ppali(m̂|tcap3d) “cotton” (0.64), “can’t tell” (0.36)

ppali(m̂|tpali) “potion” (0.35), “glass” (0.27)

ppali(m̂|A) “cork” (0.45), “glass” (0.19)

ppali(m̂|tcap3d, A) “burlap” (0.44), “canvas” (0.30)

ppali(m̂|tpali, A) “glass” (0.67), “cork” (0.17)

pblip(m̂|tcap3d) “straw” (0.49), “plastic” (0.33)

pblip(m̂|tpali) “a tainted potion made of a tainted potion and a tainted

potion” (0.77), “a tainted potion made of a tainted potion,

and a tainted poti” (0.14)

pblip(m̂|A) “wood” (0.83), “rope” (0.10)

pblip(m̂|tcap3d, A) “wood” (0.68), “leather” (0.13)

pblip(m̂|tpali, A) “wood” (0.95), “stone” (0.04)

m “glass”

tcap3d “light bulb”

tpali “light”

ppali(m̂|tcap3d) “glass” (0.77), “filament” (0.11)

ppali(m̂|tpali) “glass” (0.58), “light-emitting diode,LED” (0.13)

ppali(m̂|A) “glass” (0.41), “brass” (0.19)

ppali(m̂|tcap3d, A) “glass” (0.60), “porcelain” (0.13)

ppali(m̂|tpali, A) “glass” (0.51), “filament” (0.14)

pblip(m̂|tcap3d) “glass” (0.52), “filament” (0.29)

pblip(m̂|tpali) “light-emitting diodes” (0.73), “light-emitting diodes

(LEDs)” (0.20)

pblip(m̂|A) “metal” (0.30), “3ds max” (0.22)

pblip(m̂|tcap3d, A) “metal” (0.84), “gold” (0.13)

pblip(m̂|tpali, A) “metal” (0.78), “gold” (0.14)

m “porcelain”

tcap3d “blue and white vase featuring a dragon design”

tpali “vase”

ppali(m̂|tcap3d) “ceramic” (0.38), “porcelain” (0.34)

ppali(m̂|tpali) “ceramic” (0.35), “glass” (0.31)

ppali(m̂|A) “faience” (0.62), “porcelain” (0.14)

ppali(m̂|tcap3d, A) “ceramic” (0.38), “porcelain” (0.32)

ppali(m̂|tpali, A) “faience” (0.44), “ceramic” (0.24)

pblip(m̂|tcap3d) “porcelain” (0.65), “Chinese celadon” (0.32)

pblip(m̂|tpali) “Porcelain” (0.86), “terracotta” (0.09)

pblip(m̂|A) “porcelain” (0.83), “ceramic” (0.08)

pblip(m̂|tcap3d, A) “porcelain” (0.88), “china” (0.12)

pblip(m̂|tpali, A) “porcelain” (0.80), “china” (0.07)
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Material prediction examples on each category from our custom test set (contd).

m “porcelain”

tcap3d “small white porcelain vase with colorful floral designs

on it”

tpali “inkwell”

ppali(m̂|tcap3d) “porcelain” (0.29), “faience” (0.28)

ppali(m̂|tpali) “glass” (0.28), “porcelain” (0.24)

ppali(m̂|A) “faience” (0.88), “porcelain” (0.06)

ppali(m̂|tcap3d, A) “faience” (0.68), “porcelain” (0.15)

ppali(m̂|tpali, A) “faience” (0.71), “porcelain” (0.16)

pblip(m̂|tcap3d) “China” (0.58), “ceramic” (0.24)

pblip(m̂|tpali) “metal” (0.93), “metal or plastic” (0.06)

pblip(m̂|A) “porcelain” (0.99), “white porcelain” (0.01)

pblip(m̂|tcap3d, A) “porcelain” (0.80), “china” (0.12)

pblip(m̂|tpali, A) “porcelain” (0.94), “china” (0.04)

m “leather”

tcap3d “armored leather gloves and a brown leather boot”

tpali “glove”

ppali(m̂|tcap3d) “leather” (0.83), “cowhide” (0.08)

ppali(m̂|tpali) “leather” (0.34), “cotton” (0.21)

ppali(m̂|A) “leather” (0.69), “armor plate,armour plate,armor plat-

ing,plate armor,plate armour” (0.08)

ppali(m̂|tcap3d, A) “leather” (0.80), “cowhide” (0.07)

ppali(m̂|tpali, A) “leather” (0.84), “nylon” (0.04)

pblip(m̂|tcap3d) “leather” (1.00)

pblip(m̂|tpali) “leather” (0.98), “neoprene” (0.02)

pblip(m̂|A) “leather” (1.00)

pblip(m̂|tcap3d, A) “leather” (1.00), “neoprene” (0.00)

pblip(m̂|tpali, A) “leather” (1.00), “neoprene” (0.00)

m “leather”

tcap3d “round tan leather sofa-style dog bed with buttons”

tpali “dog bed”

ppali(m̂|tcap3d) “leather” (0.70), “suede” (0.16)

ppali(m̂|tpali) “foam” (0.39), “cotton” (0.37)

ppali(m̂|A) “leather” (0.81), “upholstery” (0.08)

ppali(m̂|tcap3d, A) “leather” (0.87), “faux leather” (0.04)

ppali(m̂|tpali, A) “leather” (0.89), “faux leather” (0.04)

pblip(m̂|tcap3d) “faux leather” (0.87), “faux-leather” (0.13)

pblip(m̂|tpali) “a soft fabric, such as cotton, wool, linen, or a combi-

nation of the two” (1.00), “a soft fabric, such as cotton,

wool, linen, or a synthetic material, such as acetate or

polypropylene” (0.00)

pblip(m̂|A) “leather” (1.00)

pblip(m̂|tcap3d, A) “leather” (0.79), “3d model” (0.12)

pblip(m̂|tpali, A) “leather” (1.00)
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Material prediction examples on each category from our custom test set (contd).

m “oak”

tcap3d “wooden staircase with metal railings”

tpali “bannister”

ppali(m̂|tcap3d) “wood” (0.46), “steel” (0.19)

ppali(m̂|tpali) “wood” (0.80), “marble” (0.07)

ppali(m̂|A) “wood” (0.78), “timber” (0.06)

ppali(m̂|tcap3d, A) “wood” (0.46), “oak” (0.31)

ppali(m̂|tpali, A) “wood” (0.50), “metal” (0.26)

pblip(m̂|tcap3d) “a wooden staircase with metal railings” (1.00), “a wooden

staircase with metal railings is called a balustrade” (0.00)

pblip(m̂|tpali) “wood” (0.73), “wooden” (0.27)

pblip(m̂|A) “wood” (0.99), “wooden railings” (0.00)

pblip(m̂|tcap3d, A) “wood” (0.98), “wooden staircase with metal railings”

(0.02)

pblip(m̂|tpali, A) “wood” (0.97), “wooden” (0.03)

m “oak”

tcap3d “small wooden table with two legs and a slanted top”

tpali “trestle table”

ppali(m̂|tcap3d) “wood” (0.65), “oak” (0.24)

ppali(m̂|tpali) “wood” (0.88), “timber” (0.05)

ppali(m̂|A) “wood” (0.63), “oak” (0.15)

ppali(m̂|tcap3d, A) “wood” (0.43), “oak” (0.42)

ppali(m̂|tpali, A) “wood” (0.70), “oak” (0.20)

pblip(m̂|tcap3d) “trestle table” (0.80), “a trestle table” (0.20)

pblip(m̂|tpali) “wood” (0.98), “wooden trestle” (0.02)

pblip(m̂|A) “wood” (0.97), “wooden” (0.03)

pblip(m̂|tcap3d, A) “wood” (0.90), “solid wood” (0.09)

pblip(m̂|tpali, A) “wood” (0.99), “solid wood” (0.01)

m “metal”

tcap3d “three-tier metal shelving unit”

tpali “bookshelf”

ppali(m̂|tcap3d) “steel” (0.41), “metal” (0.29)

ppali(m̂|tpali) “wood” (0.91), “metal” (0.03)

ppali(m̂|A) “metal” (0.42), “steel” (0.36)

ppali(m̂|tcap3d, A) “steel” (0.49), “metal” (0.29)

ppali(m̂|tpali, A) “metal” (0.59), “steel” (0.20)

pblip(m̂|tcap3d) “steel” (0.99), “steel or stainless steel” (0.01)

pblip(m̂|tpali) “wood” (0.98), “reclaimed wood” (0.02)

pblip(m̂|A) “metal” (0.72), “steel” (0.21)

pblip(m̂|tcap3d, A) “black metal” (0.43), “steel” (0.32)

pblip(m̂|tpali, A) “metal” (0.68), “steel” (0.20)

m “metal”

tcap3d “yellow fire hydrant”

tpali “fire hydrant”

ppali(m̂|tcap3d) “metal” (0.37), “steel” (0.24)

ppali(m̂|tpali) “metal” (0.32), “steel” (0.25)

ppali(m̂|A) “iron” (0.31), “metal” (0.17)

ppali(m̂|tcap3d, A) “metal” (0.37), “steel” (0.19)

ppali(m̂|tpali, A) “metal” (0.32), “iron” (0.21)

pblip(m̂|tcap3d) “cast iron” (0.91), “cast-aluminum” (0.09)
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Material prediction examples on each category from our custom test set (contd).

pblip(m̂|tpali) “a fire hydrant is a device used to extinguish a fire.” (0.98),

“a fire hydrant is a device used to extinguish a fire by means

of a pressurized stream of water” (0.01)

pblip(m̂|A) “plastic” (0.35), “3ds max” (0.24)

pblip(m̂|tcap3d, A) “metal” (0.79), “plastic” (0.20)

pblip(m̂|tpali, A) “metal” (0.70), “plastic” (0.17)

m “marble”

tcap3d “white marble column”

tpali “pedestal”

ppali(m̂|tcap3d) “marble” (0.75), “limestone” (0.09)

ppali(m̂|tpali) “marble” (0.44), “stone” (0.31)

ppali(m̂|A) “marble” (0.69), “stone” (0.17)

ppali(m̂|tcap3d, A) “marble” (0.73), “carrara” (0.10)

ppali(m̂|tpali, A) “marble” (0.67), “stone” (0.21)

pblip(m̂|tcap3d) “marble” (1.00)

pblip(m̂|tpali) “marble” (1.00)

pblip(m̂|A) “marble” (0.96), “wood” (0.04)

pblip(m̂|tcap3d, A) “marble” (0.73), “white marble” (0.27)

pblip(m̂|tpali, A) “marble” (0.95), “wood” (0.04)

m “marble”

tcap3d “white marble skull”

tpali “skull”

ppali(m̂|tcap3d) “marble” (0.79), “porcelain” (0.09)

ppali(m̂|tpali) “bone” (0.75), “bones” (0.09)

ppali(m̂|A) “clay” (0.35), “marble” (0.22)

ppali(m̂|tcap3d, A) “marble” (0.55), “clay” (0.20)

ppali(m̂|tpali, A) “clay” (0.33), “marble” (0.27)

pblip(m̂|tcap3d) “limestone” (0.68), “marble” (0.32)

pblip(m̂|tpali) “calcium phosphate” (0.83), “calcareous limestone” (0.08)

pblip(m̂|A) “marble” (0.81), “white marble” (0.10)

pblip(m̂|tcap3d, A) “white marble” (0.85), “marble” (0.07)

pblip(m̂|tpali, A) “marble” (0.43), “limestone” (0.36)

m “wood”

tcap3d “small metal house with a roof and legs”

tpali “birdhouse”

ppali(m̂|tcap3d) “aluminum” (0.48), “steel” (0.34)

ppali(m̂|tpali) “wood” (0.75), “clay” (0.10)

ppali(m̂|A) “wood” (0.42), “copper” (0.23)

ppali(m̂|tcap3d, A) “steel” (0.21), “iron” (0.19)

ppali(m̂|tpali, A) “wood” (0.61), “metal” (0.17)

pblip(m̂|tcap3d) “a styrofoam styrofoam styrofoam sty” (0.36), “a styro-

foam styrofoam styrofoam sandwich” (0.33)

pblip(m̂|tpali) “wood” (0.68), “Cedar” (0.31)

pblip(m̂|A) “metal” (0.86), “wood” (0.07)

pblip(m̂|tcap3d, A) “3d model” (0.59), “rusty metal” (0.21)

pblip(m̂|tpali, A) “metal” (0.61), “wood” (0.33)
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Material prediction examples on each category from our custom test set (contd).

m “wood”

tcap3d “wooden rocking chair”

tpali “rocking chair”

ppali(m̂|tcap3d) “wood” (0.58), “oak” (0.22)

ppali(m̂|tpali) “wood” (0.81), “wicker” (0.08)

ppali(m̂|A) “wood” (0.88), “rattan” (0.04)

ppali(m̂|tcap3d, A) “oak” (0.40), “wood” (0.22)

ppali(m̂|tpali, A) “wood” (0.93), “mahogany” (0.02)

pblip(m̂|tcap3d) “wood” (0.96), “rattan” (0.04)

pblip(m̂|tpali) “wood” (0.97), “wooden rocking chair” (0.03)

pblip(m̂|A) “wood” (0.98), “wooden” (0.01)

pblip(m̂|tcap3d, A) “wood” (0.96), “wooden rocking chair” (0.04)

pblip(m̂|tpali, A) “wood” (1.00), “wooden rocking chair” (0.00)

m “ceramic”

tcap3d “terracotta bowl with a curved top, flat bottom”

tpali “tray”

ppali(m̂|tcap3d) “ceramic” (0.40), “stoneware” (0.25)

ppali(m̂|tpali) “wood” (0.28), “ceramic” (0.24)

ppali(m̂|A) “clay” (0.33), “stoneware” (0.28)

ppali(m̂|tcap3d, A) “clay” (0.47), “ceramic” (0.18)

ppali(m̂|tpali, A) “clay” (0.41), “stoneware” (0.19)

pblip(m̂|tcap3d) “earthenware” (0.55), “terracotta” (0.31)

pblip(m̂|tpali) “stainless steel” (1.00), “stainless steel or stainless steel-

alloys” (0.00)

pblip(m̂|A) “clay” (0.92), “terracotta” (0.05)

pblip(m̂|tcap3d, A) “clay” (0.64), “terracotta” (0.35)

pblip(m̂|tpali, A) “clay” (0.94), “terracotta” (0.05)

m “ceramic”

tcap3d “vase with two handles and intricate designs”

tpali “jug”

ppali(m̂|tcap3d) “ceramic” (0.38), “porcelain” (0.27)

ppali(m̂|tpali) “glass” (0.56), “porcelain” (0.17)

ppali(m̂|A) “stoneware” (0.29), “clay” (0.23)

ppali(m̂|tcap3d, A) “clay” (0.36), “pottery” (0.27)

ppali(m̂|tpali, A) “ceramic” (0.29), “clay” (0.27)

pblip(m̂|tcap3d) “Chinese celadon” (0.97), “Chinese lacquerware” (0.02)

pblip(m̂|tpali) “clay” (0.87), “tin” (0.13)

pblip(m̂|A) “clay” (0.73), “ceramic” (0.27)

pblip(m̂|tcap3d, A) “clay” (0.76), “ceramic” (0.24)

pblip(m̂|tpali, A) “clay” (0.87), “ceramic” (0.13)

m “gold”

tcap3d “gold flower ring featuring a yellow and white flower

design”

tpali “hair slide”

ppali(m̂|tcap3d) “gold” (0.74), “sterling silver” (0.09)

ppali(m̂|tpali) “plastic” (0.44), “rubber” (0.24)

ppali(m̂|A) “gold plate” (0.33), “brass” (0.31)

ppali(m̂|tcap3d, A) “gold” (0.40), “brass” (0.24)

ppali(m̂|tpali, A) “brass” (0.23), “metal” (0.23)

pblip(m̂|tcap3d) “14K yellow gold” (0.35), “18k white gold” (0.34)

pblip(m̂|tpali) “plastic” (0.88), “acetate” (0.12)

pblip(m̂|A) “gold” (0.65), “metal” (0.32)

27



Leveraging VLM-Based Pipelines to Annotate 3D Objects
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pblip(m̂|tcap3d, A) “gold” (0.59), “3d model” (0.15)

pblip(m̂|tpali, A) “gold” (0.72), “metal” (0.22)

m “gold”

tcap3d “gold Egyptian cat ring”

tpali “ring”

ppali(m̂|tcap3d) “gold” (0.68), “gold plate” (0.11)

ppali(m̂|tpali) “gold” (0.74), “brass” (0.10)

ppali(m̂|A) “gold” (0.63), “gold plate” (0.20)

ppali(m̂|tcap3d, A) “gold” (0.78), “brass” (0.10)

ppali(m̂|tpali, A) “gold” (0.82), “brass” (0.09)

pblip(m̂|tcap3d) “gold” (1.00), “gold-plated tibetan calfskin” (0.00)

pblip(m̂|tpali) “precious metals, such as gold, silver, platinum, palladium,

and rhodium” (0.93), “precious metals, such as gold, silver,

platinum, palladium, rhodium, and tin” (0.03)

pblip(m̂|A) “gold” (1.00), “gold 3d printed” (0.00)

pblip(m̂|tcap3d, A) “gold” (0.90), “3d printed” (0.10)

pblip(m̂|tpali, A) “gold” (1.00)

m “rubber”

tcap3d “tire”

tpali “tire”

ppali(m̂|tcap3d) “rubber” (0.99), “rubber and steel” (0.00)

ppali(m̂|tpali) “rubber” (0.99), “rubber and steel” (0.00)

ppali(m̂|A) “rubber” (0.96), “blacktop,blacktopping” (0.02)

ppali(m̂|tcap3d, A) “rubber” (0.97), “black rubber” (0.01)

ppali(m̂|tpali, A) “rubber” (0.97), “black rubber” (0.01)

pblip(m̂|tcap3d) “rubber” (0.90), “pneumatic tires” (0.09)

pblip(m̂|tpali) “rubber” (0.73), “Rubber” (0.27)

pblip(m̂|A) “rubber” (0.87), “black rubber” (0.10)

pblip(m̂|tcap3d, A) “rubber” (0.93), “black rubber” (0.06)

pblip(m̂|tpali, A) “rubber” (0.91), “black rubber” (0.09)

m “rubber”

tcap3d “green coiled cable with a white plug and attached earbud”

tpali “hose”

ppali(m̂|tcap3d) “nylon” (0.44), “plastic” (0.36)

ppali(m̂|tpali) “rubber” (0.86), “plastic” (0.05)

ppali(m̂|A) “hose” (0.48), “rubber” (0.20)

ppali(m̂|tcap3d, A) “rubber” (0.38), “plastic” (0.19)

ppali(m̂|tpali, A) “rubber” (0.70), “plastic” (0.15)

pblip(m̂|tcap3d) “tin-alloy” (0.79), “tin-plated copper” (0.20)

pblip(m̂|tpali) “rubber” (0.95), “PTFE” (0.05)

pblip(m̂|A) “wire” (0.33), “metal” (0.26)

pblip(m̂|tcap3d, A) “teflon” (0.92), “stranded copper” (0.05)

pblip(m̂|tpali, A) “plastic” (0.36), “pvc” (0.23)
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Material prediction examples on each category from our custom test set (contd).

m “cardboard”

tcap3d “stack of brown cardboard boxes with white tape on them”

tpali “packing box”

ppali(m̂|tcap3d) “cardboard” (0.64), “paper” (0.30)

ppali(m̂|tpali) “cardboard” (0.74), “paper” (0.13)

ppali(m̂|A) “cardboard” (0.52), “cellulose tape,Scotch tape,Sellotape”

(0.17)

ppali(m̂|tcap3d, A) “cardboard” (0.67), “paper” (0.13)

ppali(m̂|tpali, A) “cardboard” (0.82), “corrugated cardboard” (0.06)

pblip(m̂|tcap3d) “shipping cartons” (1.00), “a receptacle for the shipment

of goods” (0.00)

pblip(m̂|tpali) “cardboard” (0.65), “paper” (0.27)

pblip(m̂|A) “cardboard” (1.00), “styrofoam” (0.00)

pblip(m̂|tcap3d, A) “cardboard” (0.96), “3d model” (0.01)

pblip(m̂|tpali, A) “cardboard” (0.99), “paper” (0.01)

m “cardboard”

tcap3d “cardboard Amazon robot toy with logo”

tpali “carton”

ppali(m̂|tcap3d) “cardboard” (0.57), “paper” (0.32)

ppali(m̂|tpali) “cardboard” (0.47), “paper” (0.45)

ppali(m̂|A) “cardboard” (0.80), “carton” (0.13)

ppali(m̂|tcap3d, A) “cardboard” (0.73), “carton” (0.10)

ppali(m̂|tpali, A) “cardboard” (0.85), “corrugated cardboard” (0.06)

pblip(m̂|tcap3d) “cardboard” (0.99), “acetate” (0.01)

pblip(m̂|tpali) “paper” (0.75), “paperboard” (0.25)

pblip(m̂|A) “cardboard” (1.00)

pblip(m̂|tcap3d, A) “cardboard” (1.00), “cardboard, cardboard boxes, card-

board boxes, cardboard boxes, cardboard boxes, card-

board boxes, cardboard boxes, cardboard boxes, cardboard

boxes, cardboard boxes, cardboard” (0.00)

pblip(m̂|tpali, A) “cardboard” (0.99), “paper” (0.01)

m “plastic”

tcap3d “large silver trash bag”

tpali “garbage bag”

ppali(m̂|tcap3d) “plastic” (0.45), “aluminum” (0.35)

ppali(m̂|tpali) “plastic” (0.80), “polythene” (0.07)

ppali(m̂|A) “garbage” (0.45), “plastic” (0.42)

ppali(m̂|tcap3d, A) “plastic” (0.66), “cellophane” (0.13)

ppali(m̂|tpali, A) “plastic” (0.83), “polythene” (0.06)

pblip(m̂|tcap3d) “plastic” (0.97), “woven polypropylene” (0.03)

pblip(m̂|tpali) “plastic” (1.00), “a polyethylene terephthalate (PET) film”

(0.00)

pblip(m̂|A) “black plastic” (0.67), “3ds max” (0.15)

pblip(m̂|tcap3d, A) “plastic” (0.83), “black plastic” (0.11)

pblip(m̂|tpali, A) “plastic” (0.60), “black plastic” (0.38)
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Material prediction examples on each category from our custom test set (contd).

m “plastic”

tcap3d “blue plastic bowl with a lid”

tpali “washtub”

ppali(m̂|tcap3d) “polypropylene” (0.53), “plastic” (0.47)

ppali(m̂|tpali) “porcelain” (0.56), “ceramic” (0.35)

ppali(m̂|A) “plastic” (0.65), “polypropylene” (0.18)

ppali(m̂|tcap3d, A) “polypropylene” (0.58), “plastic” (0.24)

ppali(m̂|tpali, A) “plastic” (0.78), “polypropylene” (0.10)

pblip(m̂|tcap3d) “borosilicate glass” (0.97), “PP (Polypropylene)” (0.02)

pblip(m̂|tpali) “plastic” (0.90), “tin” (0.10)

pblip(m̂|A) “plastic” (1.00), “polygons” (0.00)

pblip(m̂|tcap3d, A) “plastic” (0.99), “polypropylene” (0.01)

pblip(m̂|tpali, A) “plastic” (1.00)
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Figure 12: Responses to various questions, on a fixed set of objects, for a series of properties. Top: type. Bottom:

material.
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Figure 12: Variations of questions per property for a fixed set of objects (contd.) Top: containment. Bottom: affordance.
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Figure 12: Responses to various questions, on a fixed set of objects, for a series of properties (contd.) Top: deformability.

Bottom: fragility.
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Figure 12: Responses to various questions, on a fixed set of objects, for a series of properties (contd.) Top: float-ability.

Bottom: lift-ability.
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Figure 12: Responses to various questions, on a fixed set of objects, for a series of properties (contd.)
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Figure 13: Variations of questions to infer object count. We show the prior set of objects (above), then a set of multi-object

scenes (below).
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Figure 14: Pose inference. We show eight views per object to the VLM, asking if it knows which side of the object is

visible in each view.
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Figure 15: How lighting/rendering settings affect the inference of shininess. For a fixed object, we vary the lighting or

camera height across columns, keeping the image background color fixed. The first column uses an area light under the

object. The second column uses surround lighting. The third and fourth column use the same camera backlight, but vary in

camera height.
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