
Think Before You Act: Decision Transformers with Working Memory

Jikun Kang 1 2 Romain Laroche * Xingdi Yuan * 3 Adam Trischler * Xue Liu * 1 2 Jie Fu 2

Abstract
Decision Transformer-based decision-making
agents have shown the ability to generalize across
multiple tasks. However, their performance re-
lies on massive data and computation. We argue
that this inefficiency stems from the forgetting
phenomenon, in which a model memorizes its be-
haviors in parameters throughout training. As a
result, training on a new task may deteriorate the
model’s performance on previous tasks. In con-
trast to LLMs’ implicit memory mechanism, the
human brain utilizes distributed memory storage,
which helps manage and organize multiple skills
efficiently, mitigating the forgetting phenomenon.
Inspired by this, we propose a working memory
module to store, blend, and retrieve information
for different downstream tasks. Evaluation results
show that the proposed method improves training
efficiency and generalization in Atari games and
Meta-World object manipulation tasks. Moreover,
we demonstrate that memory fine-tuning further
enhances the adaptability of the proposed archi-
tecture. 1

1. Introduction
Recently, with the tremendous success of decoder-only
Transformer models (Brown et al., 2020; OpenAI, 2023;
Dosovitskiy et al., 2021; Touvron et al., 2023), an increas-
ing number of researchers have focused on decoder-only
Transformer-based decision-making agents. As shown with
GPT-3 (Brown et al., 2020) and follow-up work (Kaplan
et al., 2020; Clark et al., 2022), the generalization of these
LLMs depends significantly on the model size, i.e. the num-

*Equal advising 1Department of Computer Science, McGill Uni-
versity, Montréal, Canada 2Mila - Québec AI Institute, Montréal,
Canada 3Microsoft Research, Montréal, Canada. Correspon-
dence to: Jikun Kang <jikun.kang@mail.mcgill.ca>, Jie Fu
<jie.fu@polymtl.ca>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1We open source the code at https://github.com/
luciferkonn/DT_Mem.

Asteroids

Asteroids Delux

Games

Space Invaders

Space Invaders II

Asteroids 
Knowledge

Asteroids Delux 
Knowledge

Space Invaders 
Knowledge

Space Invaders II 
Knowledge

Working Memory

Shared 
Knowledge

Memory 
Update

Memory 
Retrieve

Figure 1: Illustrating how a robot can use its memory to
guide its playing strategy.

ber of parameters. This is partly because neural network
parameters act as implicit memory (Neyshabur et al., 2019),
enabling models to “memorize” a huge amount of training
data by fitting these parameters. However, relying purely
on scale has practical and ethical limits: there are economic
and ecological costs, and it reduces accessibility To address
some limits of the implicit, parameter-based memory of
large models, we take inspiration from the concept of “work-
ing memory” (Baddeley, 2003; Cowan, 2008) to explicitly
store and recall past experiences for use in future decision-
making. The concept, “working memory”, originates from
cognitive psychology and neuroscience (Baddeley, 2003;
Goldman-Rakic, 1995), where it refers to the system re-
sponsible for the temporary storage and manipulation of
information during cognitive tasks.

Our motivation comes from how humans think before they
act: they can reason on past experiences to generate ap-
propriate behavior in new situations. We want to equip our
robots with similar abilities. Imagine training a robot to play
four different Atari games: Asteroids, Asteroids Deluxe,
Space Invaders, and Space Invaders II (Figure 1). Asteroids
Deluxe is a sequel to Asteroids that introduces new boss
fights and enemies, similarly, Space Invaders II is a sequel
to Space Invaders. For a robot to play these four games,
it must actively store what it has learned in memory and
choose the appropriate strategy for each game. Throughout
training, the robot’s memory module continuously processes

1

https://github.com/luciferkonn/DT_Mem
https://github.com/luciferkonn/DT_Mem


Think Before You Act: Decision Transformers with Working Memory

and updates relevant game information, allowing it to make
informed decisions and adapt its strategies.

Followed by this intuition, we introduce Decision
Transformers with Memory (DT-Mem): which represents
a working memory as a matrix, the functioning of the mem-
ory entails two primary steps, namely memory update and
memory retrieval. DT-Mem builds on earlier work on
memory-augmented neural networks (Santoro et al., 2016)—
including neural Turing machines (Graves et al., 2014) and
memory networks (Sukhbaatar et al., 2015)—in several
ways, as we detail in Section 2.

We use content-based addressing (Eslami et al., 2016) to
locate the memory position to update information into or
retrieve information from it. The memory update involves
modifying or replacing existing information. This enables
the system to keep track of changes, maintain task-relevant
information, and facilitate decision-making. More specif-
ically, we first map both the input sequence and memory
into three entities: query, key, and value. Next, we use
an attention-based mechanism to calculate the correlations
between the input and memory, and subsequently use the
attended weight of the input sequence to update the mem-
ory. Memory retrieval refers to the process of accessing and
recovering stored information. It involves bringing relevant
information back to condition decision-making. We read
from the updated memory at the content-based address to
achieve that.

Humans can make analogies by mapping experience be-
tween tasks, this enables us to leverage experience when en-
countering new tasks. Therefore, we also equip our memory
module with an adaptable mapping capability. Specifically,
for adapting the memory module to a new task, we employ
the Low-Rank Adaptation (LoRA) method as described in
(Hu et al., 2022) as our fine-tuning strategy. The main idea
behind LoRA is to train a low-rank projection matrix on a
small amount of labeled data from a new task. This matrix
maps the parameters of a pre-trained model to a new task.
In this work, we fine-tune only the memory module because
we rely on the generalization capacity of a pre-trained De-
cision Transformer (DT). In prior works, Transformers are
often pre-trained on large-scale datasets (Lee et al., 2022;
Xu et al., 2023), such pre-training enables them to capture
broad knowledge that is transferable across tasks. In con-
trast, the memory module we propose is designed to store
knowledge explicitly that can be modified and utilized to
new tasks.

DT-Mem differs from external memory and information
retrieval-based methods in several ways. First, external
memory methods often require a large dataset that serves as
a look-up table; whereas in our system, the working memory
can be maintained at a handy size. Second, external mem-
ory methods require an extra step of representation learning

to convert entries in the look-up table into vector space;
in contrast, information in our system naturally operates
in a latent space. Finally, external/retrieval-based memory
methods often resort to a k-nearest neighbor search during
retrieval, mainly because it is computationally impractical
for an attention-based mechanism to operate on large sets
(the look-up table); our method, on the other side, could nat-
urally leverage attention-based module during both memory
update and retrieval.

To validate our approach, we evaluate DT-Mem in two en-
vironments and compare against a set of strong baselines:
(a) Atari games: we compare against Multi-game Decision
Transformer (MDT, Lee et al., 2022) and Recurrent Mem-
ory Decision Transformer (RMDT, Bessonov et al., 2023);
(b) Meta-World environments: we compare against Prompt
Decision Transformer (PDT, Xu et al., 2022) and Hyper-
Decision Transformer (HDT, Xu et al., 2023). Our results
show that DT-Mem improves generalization and adaptability
with fewer model parameters and less training time.

2. Related work
Transformer-based Reinforcement Learning methods
Transformer (Vaswani et al., 2017) is a powerful architecture
designed for sequence modeling. Owing to the capabilities
that emerge as model and data size scale up, the Transformer
has become a foundational model in several domains, in-
cluding natural language processing (Brown et al., 2020;
OpenAI, 2023; Touvron et al., 2023) and computer vision
(Dosovitskiy et al., 2021). However, applying Transformer
in reinforcement learning settings, such that it generalizes
to multiple tasks, remains an open problem.

Recently, Chen et al. (2021) and Janner et al. (2021) treat the
RL problem as a sequence modeling problem and proposed
a Transformer-based architecture to solve it with offline
RL. These findings inspired researchers to develop more ad-
vanced Transformer-based RL methods. Subsequent efforts
mainly focus on two aspects: generalization and adaptabil-
ity. To improve model online adaptability, Zheng et al.
(2022) propose the Online Decision Transformer (Online
DT), which utilizes the maximum-entropy idea to encour-
age pre-trained policies to explore during a phase of online
adaptation. To improve offline adaptation, Xu et al. (2023)
propose a Hyper-network-based module that helps DT adapt
to unseen tasks efficiently. To facilitate task adaptation, Xu
et al. (2022) introduce the prompt-based DT, which selects
short trajectories to use in a task prompt in analogy with
in-context learning for large language models. Furthermore,
Lee et al. (2022) propose a multi-game DT (MDT), which
use the expert action inference to produce actions of highly-
rewarding behavior consistently. MDT demonstrates that
DT can generalize to various Atari games with human-level
performance.

2



Think Before You Act: Decision Transformers with Working Memory

We argue that the generalization of the above-mentioned
works relies on the size of the models and does not learn
the data efficiently. To address this issue, we introduce a
memory module that can store, mix, and retrieve training
information for better model and training efficiency.

Working memory In the context of machine learning, there
is a long history of neural network-based models that incor-
porate memory mechanisms (Das et al., 1992; Schmidhu-
ber, 1992; Hochreiter & Schmidhuber, 1997; Santoro et al.,
2016; Ba et al., 2016; Munkhdalai & Yu, 2017; Munkhdalai
et al., 2018; Csordás & Schmidhuber, 2019; Ramsauer et al.,
2020; Wu et al., 2022a). Generally, this research aims to
enhance the capacity of neural networks to store and manip-
ulate information over extended periods of time, leading to
improved performance on a range of tasks. It often takes
inspiration from human cognitive function. Most salient to
our work, Graves et al. (2014) merge concepts from Turing
machines and deep learning in “Neural Turing Machines”
(NTMs), neural networks that include a content-addressable
matrix memory space for storing and updating informa-
tion throughout time. They show NTMs to be effective
for various algorithmic tasks. Concurrently, Sukhbaatar
et al. (2015) introduce “memory networks,” which use a
content-addressable matrix memory to store and retrieve
information from previous computational steps, facilitating
complex reasoning and inference tasks.

Infinity-former excels in handling unbounded contexts with
precision and flexibility, ideal for extensive and complex
datasets (Martins et al., 2022). LONGMEM decoupled
architecture and token-to-chunk retrieval make it adept at
managing large contexts and overcoming memory staleness
(Wang et al., 2024). kNN-augmented Transformer offers
flexibility in context length and rapid adaptation to new
data, enhancing the model’s real-time applicability (Wu
et al., 2022b).

More recently, Bessonov et al. (2023) introduces a recur-
rent memory mechanism to address reinforcement learning
challenges, which preserves a hidden state throughout the
decision-making process. However, this method overlooks
the storage and retrieval of task-related information, thereby
falling short of fostering model generalization and task adap-
tation. Munkhdalai et al. (2019) propose a rapidly adaptable
neural memory system, with which they instantiate as a
feedforward neural network trained by meta-learning (Chen
et al., 2022). They evaluate the memory’s effectiveness in a
simple RL setting, maze exploration, and on various NLP
tasks. Alternatively, Goyal et al. (2022) builds on the “global
workspace” theory from cognitive science, which posits that
different input entities share information through a com-
mon communication channel. The proposed shared global
workspace method employs the attention mechanism to en-
courage the most useful information to be shared among

neural modules. It is closely related to working memory
and inspires us to explore how an explicit working mem-
ory can improve the generalization of Transformer-based
models. An upshot of our work is that it may be valuable
to revisit earlier memory-augmentation methods in light of
more powerful foundation models.

Comparisons with classic memory-based methods There
are several classic memory-based methods; however, none
of them can be directly applied to DT in the same man-
ner as RMDT. Consequently, we have not included them
in our evaluations. To distinguish our approach, we com-
pare these methods in terms of both memory writing and
memory reading. Memory Writing: ∞-former (Martins
et al., 2022) represents memory as a continuous signal using
radial basis functions (RBFs). When new information is
encountered, it is integrated into this continuous representa-
tion. This process involves evaluating the continuous signal
at specific locations and then concatenating these evalua-
tions with new vectors coming from the short-term memory.
DT-Mem involves sophisticated mechanisms using attention
to manage the significance of new and existing data. This
process would be based on calculating correlations between
the input and memory and updating the memory with the
attended weight of the input sequence. LONGMEM (Wang
et al., 2024) caches paired attention keys and values from
the previous context into a non-differentiable memory bank
using a frozen backbone Large Language Model (LLM) as
the memory encoder. KNN-transformer (Fan et al., 2021)
uses (key, value) pairs from the local context are appended
to the end of an external memory. Memory Reading: The
reading process of ∞-former utilizes a continuous-space
attention framework. DT-Mem uses content-based address-
ing for memory retrieval. This process would involve using
attention mechanisms to read from the updated memory, fo-
cusing on the content relevant to the current task or context.
LONGMEM uses a decoupled memory module, specifically
a residual side-network (SideNet), for memory retrieval and
reading. The SideNet retrieves cached key-value pairs of
previous contexts from memory using the attention query
of the current input. KNN-transformer features a kNN-
augmented attention layer that combines standard dense
self-attention with approximate k-nearest-neighbor search
into the external memory. The kNN lookup retrieves the
top-k (key, value) pairs for each query from the input sub-
sequence, constructing an attention matrix that represents
these memories differently for each query.

3. Preliminaries
3.1. Offline Reinforcement Learning

A trajectory consists of a series of states,
actions, and rewards, expressed as τ =
(s0, a0, r0, s1, a1, r1, · · · , sT , aT , rT ). In the context

3



Think Before You Act: Decision Transformers with Working Memory

of offline RL, data acquisition does not come from active
interaction with the environment. Instead, we rely solely
on a predefined and limited dataset containing various
trajectories generated by different policies. This scenario
presents greater challenges as it restricts the agent’s
ability to actively explore the environment and gather new
information, which is a crucial aspect of traditional RL
approaches.

Formally, in the context of model evaluation, we can define
a set of training tasks and testing tasks as T train and T test, re-
spectively. These two sets deliberately have no overlapping
tasks but may share the same or similar observation and
action spaces. To be more specific, for each training task
T i ∈ T train, we have access to a large training dataset, which
contains trajectories τ0:H = (s0, a0, r0, · · · , sH , aH , rH),
where H is the episode length. However, we assume access
to only a small amount of data for the testing tasks.

Our goal is to evaluate the proposed model in two dimen-
sions. First, we want to assess the model’s generalization,
which refers to its ability to solve the testing tasks within a
finite time with no additional fine-tuning. Second, we want
to test the model’s adaptability, which refers to its abil-
ity to improve its performance on the testing tasks through
fine-tuning on limited data after pre-training on separate
tasks.

3.2. Low-rank Adaptation

Low-rank adaptation (LoRA, Hu et al., 2022) is a transfer
learning technique used to adapt a pre-trained model to a
new task with limited labeled data. The main idea behind
LoRA is to utilize a small amount of labeled data from a
new task to learn a low-rank projection matrix. This matrix
maps the parameters of a pre-trained model to the new task.
Specifically, for a pre-trained weight matrix W ∈ Rd×k,
we assume a low-rank decomposition for the weight update:
W +∆W = W +BA, where B ∈ Rd×r and A ∈ Rr×k.
Once the projection matrix is learned, it can transform the
pre-trained model’s parameters to a new subspace that is
more suitable and which alters its forward pass output. In
other words, Wx+∆Wx = Wx+BAx.

4. Methodology
4.1. Overview

In Figure 2, we depict the architecture of DT-Mem, which
consists of four components: the attention module, the en-
coder module associated with positional encoding, the ac-
tion decoder module, and the memory module. The pri-
mary role of the attention module is to capture dependencies
and relationships between states, actions, and returns in
a sequence. The encoder with positional encoder module
embeds the inputs and persists the temporal correlations be-

tween states and actions. The input of the encoder module is
a fixed-length sequence of trajectories, denoted as τ t+1:t+K .
The output is a sequence of embeddings, where each entry
can be attended state embeddings, action embeddings, or
return-to-go embeddings. The action decoder is a multi-
layer perceptron (MLP) that responds to decode the latent
parameters of actions. We introduce a memory module for
storing and manipulating intermediate information on top
of the standard Decision Transformer architecture. This
memory design is inspired by the Neural Turing Machine
(Graves et al., 2014), where the memory is utilized to infer
multiple algorithms. The details of memory module design
and functionality are introduced in Section 4.2.

4.2. Memory Module

The design for the memory module is inspired by the way
humans think before they act. Its functioning consists of
three parts: identifying salient information output from the
Transformer module; determining where to store new in-
formation and how to integrate it with existing memory
slots; and considering how to use these memory slots for
future decision-making. We break down these questions and
design the following steps to address them.

Step 0: Memory Module Initialization. The memory is
initialized as a random matrix M , where each row mi ∈
Rd, with i ∈ [0, N ], represents a memory slot.

Step 1: Input Sequence Organizing. As illustrated in Sec-
tion 3.1,an input sequence comprises multiple steps of the
tuple < r̂t, st, at >. Instead of directly feeding this se-
quence into the Transformer module, we treat each tuple
as an entity and embed them into the same latent space.
Specifically, we define embedding functions gs(s) = es,
ga(a) = ea, and gr(r̂) = er̂, where es, ea, and er̂ ∈ Rd

with d representing the dimension in the latent space. The
final input sequence emerges from the concatenation of
embeddings E = [· · · , [est ; eat

; er̂t ], · · · ].

Recall that we represent our memory as a matrix with fixed
dimensions (i.e., number of slots × hidden dimensions). It
is crucial to synchronize the input dimensions for efficient
storage. Notably, in our design, we maintain the relation-
ships among trajectories as posited in the Decision Trans-
former paper, although this is not a requisite. For instance,
in another prior work, Trajectory Transformer (Janner et al.,
2021), states, rewards, and others are grouped individually.
We demonstrate in Appendix B.6 that these varied designs
exhibit no significant difference.

Step 2: Content-based Address. We use an attention-based
mechanism to locate a proper memory slot for new input by
identifying correlated information. This approach is based
on the idea that humans tend to store and group similar or
related information together (e.g., in Documentation Sci-

4



Think Before You Act: Decision Transformers with Working Memory

Output
Embeddings Memory 

Cross Attention Cross Attention

Adding vector Erasing vector

Memory
Update

Memory
Retrieve

Encoder + Positional Encoding

Attention Module Memory

Memory
Update

Memory
Retrieve

Action Decoder
Attention
Module

Inputs

N

Memory Retrieve

Memory Update

Figure 2: An overview of the proposed DT-Mem architecture. The input of the encoder is a fixed-length sequence of
trajectories. The encoder with positional encoder module embeds the inputs and persists the temporal correlations between
states and actions. The primary role of the attention module is to capture dependencies and relationships between states,
actions, and returns in a sequence. Note that there are multiple attention modules stack together. Our design deconstructs
this module and manages the memory flows between the attention module within each block. The output from attention
blocks flows to the action decoder, which decodes back to the real actions.

ence and Archival Science (Dooley, 2007)). To locate the
memory position, we compute the position address w as
follows: w = softmax

(
QKT

√
d

)
. Here, Q = MW q and

K = EW k, where W q and W k are parameters in the
MLP. The objective is to map the memory and input in-
formation into the query and key matrix, and then use the
dot product to determine the similarities between these two
matrices. The softmax function guarantees that the sum of
all addresses equals one.

Step 3: Memory update. To store incoming information
and blend it with existing memory, we calculate two vec-
tors: an erasing vector, ϵe, and an adding vector, ϵa. The
erasing vector erases the current memory, while the adding
vector controls information flow to the memory. To achieve
this goal, we again utilize the attention mechanism. First,
we map memory and input information to query, key, and
value vectors, denoted as Q̂ = MŴ q, K̂ = EŴ k,
and V̂ = EŴ v, respectively, where Ŵ q, Ŵ k, and Ŵ v

are parameters. Next, we calculate the writing strength,
β = softmax

(
Q̂K̂T

√
d

)
. The erasing vector is used to se-

lectively erase information from the memory matrix and
is computed as a function of the content-based addressing
vector and the write strength. The erasing vector is calcu-
lated as ϵe = w⊙ (1−β), where ⊙ indicates element-wise
multiplication. The complement of the write strength is

1 minus the write strength, so this will result in a vector
where the elements corresponding to the selected memory
locations are set to 0, and the elements corresponding to the
unselected memory locations are unchanged.

The adding vector is used to selectively add information to
the memory matrix and is computed as a function of the
write strength and the input vector. Specifically, the adding
vector is calculated as ϵa = (w ⊙ β)Ŵ vx.

Finally, the memory is updated as Mt = Mt−1⊙(1−ϵe)+
ϵa. The new information will be stored if the selected mem-
ory slot is empty or erased. Otherwise, the new information
will be blended with the existing memory contents.

Step 4: Memory retrieval. We retrieve information from
the updated memory slots to utilize memory for decision-
making. Reading from the memory matrix is done by
computing a read position vector. This vector can be com-
puted using the above content-based addressing mechanism
that compares the query vector with the contents of the
memory matrix. Note that in other retrieval-based methods
(Humphreys et al., 2022; Borgeaud et al., 2022), the nearest
neighbor is the common way to retrieve related information.
However, in our case, the working memory is consider-
ably smaller than typical external memory, which makes
attention-based retrieval feasible. Since the query informa-
tion is the same as the input information, we use the same

5



Think Before You Act: Decision Transformers with Working Memory

content address to retrieve the memory: Eout = w ⊙Mt.

4.3. Pre-training

We use a set of training tasks T train, where each task
Ti ∈ T train has an associated offline dataset Di consist-
ing of hundreds of trajectories τ generated by a behavior
policy. The behavior policy can either be a pre-trained pol-
icy (such as DQN), a rule-based policy, or even human
players — depending on what is available. Each trajec-
tory τ = (s0, a0, r0, · · · , sH , aH , rH), where si ∈ S, ai ∈
A, ri ∈ R, and H is the episode length.

To serve as an input to the DT-Mem, we first segment the tra-
jectory τ into several pieces, each with length K. We denote
τt+1:t+K = (st+1, at+1, rt+1, · · · , st+K , at+K , rt+K) as
one of the input sequence. However, we modify these
trajectories instead of inputting them directly. Specifi-
cally, we follow the return-to-go Decision Transformer
idea (Chen et al., 2021) and calculate the return to go,
r̂t =

∑t+K
t+1 rt, which is performed at every timestep.

This is effective because r̂t acts as a subgoal, encour-
aging the Transformer module to generate actions that
can reduce the negative of this value as close to zero as
possible. Therefore, we feed the modified trajectories
τ̂t+1:t+K = (r̂t+1, st+1, at+1, · · · , r̂t+K , st+K , at+K) as
input to the Transformer module. The output of the Trans-
former module is a sequence embedding eseq ∈ Rd×3K ,
where d is the dimension of the embedding space.

Next, we transmit eseq to the memory module to update
and retrieve the memory information. Finally, we feed the
retrieved information Eout into the MLPs to generate the
corresponding actions ât. We minimize a supervised train-
ing loss with three terms: predicted actions ãt, predicted
reward r̃t, and predicted return-to-go R̃t. The loss function
is:

L =

t+K∑
t+1

||ãt − at||2 + α||r̃t − r̂t||2 + λ||R̃t − rt||2, (1)

where α and λ are scalar hyper-parameters. Empirically, we
find that the final performance is not sensitive to specific α
and λ values, so we set them to 1 for simplicity.

The full pre-training process is summarized in Appendix
A.2 Algorithm 1.

4.4. Fine-tuning with LoRA

Fine-tuning LLMs involves heavy computation due to the
large number of parameter updates required. We argue
that fine-tuning only the memory module can achieve re-
sults comparable to those of fine-tuning the entire parameter
space. LLMs such as BERT (Devlin et al., 2019) or GPT
(Radford et al., 2019) greatly benefit from training on large-
scale datasets, which expose the model to a diverse range of

linguistic patterns and semantic relationships. This exposure
helps the model learn robust and generalized representations
that capture different language understanding and genera-
tion aspects. After pre-training, the model can be fine-tuned
on specific downstream tasks with task-specific labeled data.
In our case, this task-specific knowledge is stored in the
memory module. Thus, fine-tuning the memory module
helps the model update its memory module to adapt to the
new task.

We apply the low-rank adaptation approach (LoRA, Hu
et al., 2022) to fine-tune the memory module. Specifically,
we modify the forward pass by adding low-rank matrices
to W q, W k, W v, Ŵ q, and Ŵ k. Taking W q as an exam-
ple. Assuming the original output for query information is
Q = MW q, we adapt this query value to a new task as
Q′ = M(W q+BqAq), where W q ∈ Rn×d, B ∈ Rn×m,
and A ∈ Rm×d, and m is the size of the memory module.
Since the rank m ≪ min(n, d), fine-tuning the parameters
Bq and Aq reduces the number of trainable parameters for
downstream tasks. We perform supervised training by com-
puting the loss between the model’s output and the labels
in the fine-tuning dataset. Only Bq and Aq are updated
during this process. The detailed fine-tuning procedure can
be found in Appendix A.2 Algorithm 2.

5. Evaluation
We design our experiments to answer the following ques-
tions:

• Q1: Does DT-Mem improve model generalization?
• Q2: Does DT-Mem improve pre-training results and

training efficiency?
• Q3: Does DT-Mem scales with model size?
• Q4: Does fine-tuning only the memory module im-

prove model adaptability?

We use generalization to refer to performance on tasks the
model has never been trained on (zero-shot), and adaptabil-
ity to refer to performance after fine-tuning.

5.1. Environments and Models Setup

Atari Games. To ensure a fair comparison with the Multi-
Game Decision Transformer, we use the same Atari dataset,
which comprises multiple training runs of DQN trajectories.
Due to limited compute resources and to prevent cherry-
picking, we select 17 games from a total of 41 based on
their alphabetical order, as introduced in (Lee et al., 2022).
For each game, the data contains 50 policy checkpoints,
each containing 500k environment steps. For the fine-tuning
dataset, we randomly selected 10% of the data from the
unseen dataset, yielding 50k environment steps. Following
the settings from Lee et al. (2022), we choose four games
(Alien, Ms. Pac-Man, Space Invaders, and Star Gunner)

6



Think Before You Act: Decision Transformers with Working Memory

Model Layers Hidden size (d) Heads Params Memory Size Memory Module Params
HDT 4 512 8 13M N.A. N.A.

MDT-200M 10 1280 20 200M N.A. N.A.
DT-Mem 4 512 8 13M 559K 7M

Table 1: Implementation details of model sizes

Alien MsPacman SpaceInvaders StarGunner
MDT 3.8% (±0.4%) 13.2% (±1.3%) 8.6% (±1.6%) 2.3% (±0.1%)

RMDT 22.3% (±10.7%) 22.9% (±8.9%) 17.6% (±9.2%) 27.7% (±11.5%)
DT-Mem 51.0% (±32.2%) 69.3% (±19.3%) 53.6% (±29.0%) 62.2% (±19.1%)

Table 2: Evaluation results on 4 held-out games after pre-training on other Atari Games. Each value represents the DQN-
normalized score, computed with a 95% confidence interval.

to be used only for fine-tuning. Moreover, Brandfonbrener
et al. (2022) suggests that return-conditioned supervised
learning (RCSL) algorithms require strong dataset cover-
age to select a near-optimal policy. Therefore, our dataset
contains both expert and non-expert behaviors.

Meta-World. To make a fair comparison with Hyper-DT
and Prompt-DT, we evaluate the proposed method on the
Meta-World environment (Yu et al., 2019). We evaluate
using the Meta-World ML45 benchmark, which includes 45
training tasks and 5 testing tasks. Following the approach
taken in (Xu et al., 2023), for each training task, we generate
an offline dataset containing 1000 episodes for each game,
using a rule-based script policy. For fine-tuning data, we
randomly pick 10k episodes from the testing dataset, as
compared to 20k-80k episodes used in Hyper-DT.

Implementation details. We report results for DT-Mem
20M (20 million parameters), which consists of 13M Trans-
former parameters and 7M memory module parameters. For
all games, we use eight V100 GPUs for model training and
one V100 GPU for fine-tuning. We train on both Atari
games and Meta-World for 10M steps. For fine-tuning on
unseen scenarios, we train for 100k steps.

Table 1 summarizes the different model configurations used
for evaluation. In this section, we describe these model
configurations in detail. While Table 1 provides a summary,
we will provide additional information here. DT-Mem, PDT,
and HDT all share the same Transformer architectures. How-
ever, for task-adaptation, HDT utilizes a pre-trained 2.3M
hyper-network, while DT-Mem introduces 147K LoRA pa-
rameters. To compare with MDT, we use the same parameter
size as reported in (Lee et al., 2022).

5.2. Baseline Methods

We compare DT-Mem’s performance against the following
baselines. MDT: Multi-game Decision Transformer (Lee
et al., 2022), which trains a large Transformer-based model

on multi-game domains. For a fair comparison, we train
an MDT with 20M parameters, which is approximately the
same size of DT-Mem. RMDT: Recurrent Memory Deci-
sion Transformer (Bessonov et al., 2023), which utilizes
a recurrent memory mechanism for solving reinforcement
learning problems. This is the most related memory-based
DT that is close to our work. HDT: Hyper-Decision Trans-
former (Xu et al., 2023), which utilizes a hyper-network
module to help DT adapt rapidly to unseen tasks. Since
we do not have access to the implementation at the time of
writing, for the sake of correctness, we compare our model
with HDT on Meta-World only. The results reported in our
evaluation section come from the HDT paper. PDT: The
Prompt Decision Transformer (Xu et al., 2022) generates
actions by considering both recent context and pre-collected
demonstrations from the target task.

5.3. DT-Mem improves model generalization.

We evaluate four held-out games fine-tuning results as listed
in Table 2. Each evaluation signifies an average derived
from 16 runs, each under differing random seeds. The de-
rived results show that the memory-incorporated methods,
RMDT and DT-Mem, enhance model generalization when
compared to their ablation method MDT. A noteworthy
observation is that DT-Mem demonstrates superior gener-
alization performance than RMDT in all four games. This
suggests that RMDT does not adequately address the storage
and retrieval of information related to tasks, consequently
not effectively supporting model generalization and task
adaptation development. This contrasts DT-Mem, which is
designed to accomplish these objectives.

5.4. DT-Mem enables more computationally efficient
training and scale with model parameters.

To demonstrate training efficiency, we illustrate the model
training time in Table 3 and the training curve in Appendix
B.2 Figure 5. During training, we find that DT-Mem reduces

7



Think Before You Act: Decision Transformers with Working Memory

26%

71%

123%
143%

56%

93%

126%

0%
20%
40%
60%
80%

100%
120%
140%
160%

10M 12M 20M 40M 50M 200MH
um

an
-N

or
m

al
ize

d 
IQ

M
 S

co
re

Number of Model Parameters

DT-Mem MDT

Figure 3: Scaling of IQM scores

Model Training time (hours)
DT-Mem-20M 50

MDT-13M 200
MDT-40M 400

MDT-200M 1600

Table 3: Model training time

the training time by approximately 4 times, 8 times, and 32
times compared to MDT-13M, MDT-40M, and MDT-200M,
respectively. It is reasonable to report the prediction loss
on the training dataset for the training curve since we use
a supervised loss. As defined in Section 4.3, the prediction
accuracy consists of three parts: action prediction accuracy,
reward prediction accuracy, and return prediction accuracy.

Figure 3 showcases the scaling laws of the proposed DT-
Mem model. We measure performance using the human-
normalized IQM score. It’s crucial to note that for all in-
stances of DT-Mem, we maintained a consistent number of
memory slots. The result shows that the performance of
DT-Mem scales with the number of parameters. Notably,
the generalization of DT-Mem with 20M parameters is ap-
proximately on par with MDT’s 200M parameter version.
Furthermore, the 50M DT-Mem surpasses MDT by a margin
of 16.7%.

5.5. Fine-tuning only the memory module improves
model adaptability.

Another question we care about is how the pre-trained DT-
Mem performs on unseen tasks. We randomly selected
nine unseen Atari games and evaluated their performance
through relative improvement scores, as shown in Figure 4
(top). DT-Mem consistently outperforms RMDT and MDT
in most of the games listed, with the exception of Seaquest,
where MDT excels. MDT exhibits the least superior perfor-
mance across most games, with its performance particularly
lagging in KungFuMaster, Robotank, and Phoenix. RMDT
holds an intermediate performance level between DT-Mem

and MDT across most games. The consistent superior per-
formance of DT-Mem across most games suggests that this
method might have a more adaptable approach. The sin-
gular superior performance of MDT in Seaquest prompts a
further investigation into the unique attributes of this game
that may favor the MDT method.

To further understand the adaptability of the proposed
method, we compare DT-Mem with HDT and PDT in Meta-
World environments. The quantitative fine-tuning results are
shown in Table 4. Overall, DT-Mem achieves the best perfor-
mance in the comparison. As we can see, compared to HDT,
DT-Mem increases training, testing (no-FT), and testing
(FT) scores by an average of 3%, 8%, and 3%, respectively.
Moreover, the HDT adaptation module (hyper-network mod-
ule), while small (69K) relative to the full model (13M), re-
lies on the pre-trained hyper-network, which contains 2.3M
parameters. We argue that the hyper-net is more burdensome
than our design: it uses more than 10x the number of adap-
tation parameters (147K) used by DT-Mem and requires an
extra compute phase to pre-train the hyper-network module,
which again could cause extra issues in optimization.

5.6. DT-Mem improves training performance.

In this section, we evaluate whether adding the mem-
ory module helps improve the pre-training performance.
We report relative improvement for clear comparison:
rel-imp(%) = (model score−best score in data)

best score in data × 100 to measure
the model performance. For better visualization, we take
the logarithm of the rel-imp(%). As shown in Figure 4 (bot-
tom), the proposed DT-Mem out performs MDT in 13 out
of 17 games. DT-Mem outperforms RMDT in 15 out of 17
games. These results demonstrate that the memory module
improves the policy training performance.

6. Conclusion
LLM-based RL algorithms have shown generalization
across multiple tasks and games. We argue that this ability
comes from implicit memory that fits a large number of
parameters to the training data, which is inefficient in terms
of model size. In contrast, we propose a new approach in-
spired by the concept of “working memory” called Decision
Transformers with Memory (DT-Mem), which stores train-
ing experience explicitly in a content-addressable matrix
module for later retrieval and use. The evaluation demon-
strates that DT-Mem achieves better generalization on Atari
games with only 10% of the model parameters compared
to the state-of-the-art method. We also show that DT-Mem
outperforms other memory-based DT methods regarding
generalization and adaptability. Furthermore, we demon-
strate that fine-tuning DT-Mem with a small amount of data
can produce state-of-the-art results on both Atari games
and the Meta-World environment, when compared to MDT,

8



Think Before You Act: Decision Transformers with Working Memory

0
1
2
3
4
5
6
7
8

Ka
ng
aro
o

Ku
ng
Fu
Ma
ste
r

Qb
ert

Ro
bo
tan
k

Se
aq
ue
st

Riv
err
aid

Ro
ad
Ru
nn
er

Na
me
Th
isG
am
e

Ph
oe
nixDQ

N
-n

or
m

al
ize

d 
Sc

or
e

RMDT DT-Mem MDT

-10
-8
-6
-4
-2
0
2
4
6
8

10
12

Am
ida
r

As
sau
lt

Ba
nk
He
ist

Ba
ttle
Zo
ne

Be
am
Rid
er

Bre
ak
ou
t

Ce
nti
pe
de

Ch
op
pe
rCo
mm

an
d

Cra
zyC
lim
be
r

De
mo
nA
tta
ck

Do
ub
leD
un
k

Fis
hin
gD
erb
y

Fre
ew
ay

Fro
stb
ite

Go
ph
er

Gr
av
ita
r

Ice
Ho
cke
y

Im
pr

ov
m

en
t o

ve
r b

se
t s

co
re

 in
 d

at
as

et
 

Figure 4: Top: Fine-tuning performance on 10% of dataset in unseen Atari games. For better visualization, the y-axis is the
logarithm of DQN-normalized score. Bottom: The performance improvement for the training dataset.

Model Sizes Meta-World ML45 Performances
Adaptation Percentage Train Test (no-FT) Test (FT)

HDT 69K 0.5% 0.89± 0.00 0.12± 0.01 0.92± 0.10
PDT 6K 0.05% 0.88± 0.00 0.06± 0.05 0.09± 0.01

DT-Mem 147K 0.7% 0.92± 0.00 0.20± 0.01 0.95± 0.10

Table 4: Evaluation results on Meta-World ML45 benchmarks

RMDT, PDT, and HDT.

Impact Statement
We do not foresee any significant societal impact resulting
from our proposed method. The current algorithm is not
yet designed to interact with humans or any realistic en-
vironment. It is primarily developed within a controlled
and theoretical framework, focusing on improving com-
putational techniques rather than practical applications at
this stage. If one chooses to extend our methods to more
interactive or real-world scenarios, caution should be ex-
ercised to ensure that any safety and ethical concerns are
appropriately addressed. As our work is categorized in the
offline-RL domain, it is feasible to supplement its training
with a dataset that aligns with human intents and values.

This alignment could help in creating systems that are more
beneficial and less harmful when eventually deployed in
practical applications. However, one must be wary that
the way our architecture generalizes across tasks is still not
well understood, and as a consequence, we cannot guaran-
tee the generalization of its desirable features: performance,
robustness, fairness, etc. Moreover, we contribute to increas-
ing large models accessibility and reducing their ecological
impact. Efficient algorithms can lower the computational
resources required, leading to less energy consumption and
a smaller carbon footprint. In summary, while our current
work is confined to theoretical advancements, the potential
extension to practical applications must be approached with
diligence. Ensuring safety, ethical integrity, and sustainabil-
ity will be paramount as these methods evolve from offline
settings to more dynamic and human-centric environments.

9



Think Before You Act: Decision Transformers with Working Memory

References
Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu, C.

Using fast weights to attend to the recent past. Advances
in neural information processing systems, 29, 2016.

Baddeley, A. Working memory: looking back and looking
forward. Nature reviews neuroscience, 4(10):829–839,
2003.

Bessonov, A., Staroverov, A., Zhang, H., Kovalev, A. K.,
Yudin, D., and Panov, A. I. Recurrent memory decision
transformer. arXiv preprint arXiv:2306.09459, 2023.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Ruther-
ford, E., Millican, K., van den Driessche, G., Lespiau,
J., Damoc, B., Clark, A., de Las Casas, D., Guy, A.,
Menick, J., Ring, R., Hennigan, T., Huang, S., Maggiore,
L., Jones, C., Cassirer, A., Brock, A., Paganini, M., Irv-
ing, G., Vinyals, O., Osindero, S., Simonyan, K., Rae,
J. W., Elsen, E., and Sifre, L. Improving language models
by retrieving from trillions of tokens. In ICML, volume
162 of Proceedings of Machine Learning Research, pp.
2206–2240. PMLR, 2022.

Brandfonbrener, D., Bietti, A., Buckman, J., Laroche, R.,
and Bruna, J. When does return-conditioned supervised
learning work for offline reinforcement learning? In
NeurIPS, 2022.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. CoRR, abs/2005.14165,
2020.

Chen, C., Chen, X., Ma, C., Liu, Z., and Liu, X. Gradient-
based bi-level optimization for deep learning: A survey.
CoRR, abs/2207.11719, 2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. In NeurIPS, pp. 15084–15097, 2021.

Clark, A., de Las Casas, D., Guy, A., Mensch, A., Pa-
ganini, M., Hoffmann, J., Damoc, B., Hechtman, B. A.,
Cai, T., Borgeaud, S., van den Driessche, G., Ruther-
ford, E., Hennigan, T., Johnson, M. J., Cassirer, A.,
Jones, C., Buchatskaya, E., Budden, D., Sifre, L., Osin-
dero, S., Vinyals, O., Ranzato, M., Rae, J. W., Elsen, E.,
Kavukcuoglu, K., and Simonyan, K. Unified scaling laws

for routed language models. In ICML, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 4057–4086.
PMLR, 2022.

Cowan, N. What are the differences between long-term,
short-term, and working memory? Progress in brain
research, 169:323–338, 2008.

Csordás, R. and Schmidhuber, J. Improving differen-
tiable neural computers through memory masking, de-
allocation, and link distribution sharpness control. arXiv
preprint arXiv:1904.10278, 2019.

Das, S., Giles, C. L., and Sun, G.-Z. Learning context-free
grammars: Capabilities and limitations of a recurrent neu-
ral network with an external stack memory. In Proceed-
ings of The Fourteenth Annual Conference of Cognitive
Science Society. Indiana University, volume 14, 1992.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL-HLT (1), pp. 4171–4186.
Association for Computational Linguistics, 2019.

Dooley, J. The archival advantage: Integrating archival ex-
pertise into management of born-digital library materials.
Archival Science Special Issue on Archiving Research
Data, 7(1), March 2007.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR. OpenReview.net, 2021.

Eslami, S. M. A., Heess, N., Weber, T., Tassa, Y., Szepesvari,
D., Kavukcuoglu, K., and Hinton, G. E. Attend, infer,
repeat: Fast scene understanding with generative models.
In NIPS, pp. 3225–3233, 2016.

Fan, A., Gardent, C., Braud, C., and Bordes, A. Augmenting
transformers with knn-based composite memory for dia-
log. Transactions of the Association for Computational
Linguistics, 9:82–99, 2021.

Goldman-Rakic, P. S. Cellular basis of working memory.
Neuron, 14(3):477–485, 1995.

Goyal, A., Didolkar, A. R., Lamb, A., Badola, K., Ke, N. R.,
Rahaman, N., Binas, J., Blundell, C., Mozer, M. C., and
Bengio, Y. Coordination among neural modules through
a shared global workspace. In ICLR. OpenReview.net,
2022.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

10



Think Before You Act: Decision Transformers with Working Memory

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. In ICLR. OpenReview.net, 2022.

Humphreys, P. C., Guez, A., Tieleman, O., Sifre, L., Weber,
T., and Lillicrap, T. P. Large-scale retrieval for reinforce-
ment learning. In NeurIPS, 2022.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. In Ad-
vances in Neural Information Processing Systems, 2021.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Lee, K., Nachum, O., Yang, M., Lee, L., Freeman,
D., Guadarrama, S., Fischer, I., Xu, W., Jang, E.,
Michalewski, H., and Mordatch, I. Multi-game decision
transformers. In NeurIPS, 2022.

Martins, P. H., Marinho, Z., and Martins, A. F. T. ∞-former:
Infinite memory transformer. In ACL (1), pp. 5468–5485.
Association for Computational Linguistics, 2022.

Munkhdalai, T. and Yu, H. Meta networks. In International
conference on machine learning, pp. 2554–2563. PMLR,
2017.

Munkhdalai, T., Yuan, X., Mehri, S., and Trischler,
A. Rapid adaptation with conditionally shifted neu-
rons. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 3664–3673. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/
munkhdalai18a.html.

Munkhdalai, T., Sordoni, A., Wang, T., and Trischler, A.
Metalearned neural memory. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and Sre-
bro, N. The role of over-parametrization in generalization
of neural networks. In ICLR (Poster). OpenReview.net,
2019.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774,
2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich,
M., Adler, T., Gruber, L., Holzleitner, M., Pavlović, M.,
Sandve, G. K., et al. Hopfield networks is all you need.
arXiv preprint arXiv:2008.02217, 2020.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and
Lillicrap, T. Meta-learning with memory-augmented neu-
ral networks. In International conference on machine
learning, pp. 1842–1850. PMLR, 2016.

Schmidhuber, J. Learning to control fast-weight memories:
An alternative to dynamic recurrent networks. Neural
Computation, 4(1):131–139, 1992.

Sukhbaatar, S., Weston, J., Fergus, R., et al. End-to-end
memory networks. Advances in neural information pro-
cessing systems, 28, 2015.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In NIPS, pp. 5998–6008, 2017.

von Oswald, J., Henning, C., Sacramento, J., and Grewe,
B. F. Continual learning with hypernetworks. In ICLR.
OpenReview.net, 2020.

Wang, W., Dong, L., Cheng, H., Liu, X., Yan, X., Gao, J.,
and Wei, F. Augmenting language models with long-term
memory. Advances in Neural Information Processing
Systems, 36, 2024.

Wu, C.-Y., Li, Y., Mangalam, K., Fan, H., Xiong, B.,
Malik, J., and Feichtenhofer, C. Memvit: Memory-
augmented multiscale vision transformer for efficient
long-term video recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13587–13597, 2022a.

Wu, Y., Rabe, M. N., Hutchins, D., and Szegedy, C. Mem-
orizing transformers. arXiv preprint arXiv:2203.08913,
2022b.

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,
J. B., and Gan, C. Prompting decision transformer for
few-shot policy generalization. In ICML, volume 162 of
Proceedings of Machine Learning Research, pp. 24631–
24645. PMLR, 2022.

Xu, M., Lu, Y., Shen, Y., Zhang, S., Zhao, D., and Gan,
C. Hyper-decision transformer for efficient online policy
adaptation. CoRR, abs/2304.08487, 2023.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and eval-
uation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019. URL
https://arxiv.org/abs/1910.10897.

11

https://proceedings.mlr.press/v80/munkhdalai18a.html
https://proceedings.mlr.press/v80/munkhdalai18a.html
https://arxiv.org/abs/1910.10897


Think Before You Act: Decision Transformers with Working Memory

Zheng, Q., Zhang, A., and Grover, A. Online decision
transformer. In ICML, volume 162 of Proceedings of
Machine Learning Research, pp. 27042–27059. PMLR,
2022.

12



Think Before You Act: Decision Transformers with Working Memory

A. Implementation Details
A.1. Hyper-parameters

This section will delve into the specifics of the model parameters. Understanding these parameters is key to un-
derstanding the model’s workings. It is worth noting that the source code for this model is publicly available at
https://anonymous.4open.science/r/DT-Mem-Submission277/README.md. This allows for a deeper
understanding of the model’s inner workings and may facilitate replicating its results.

Hyperparameters Value
K (length of context) 28

dropout rate 0.1
maximum epochs 1000

steps for each epoch 1000
optimizer learning rate 1e-4

weight decay 1e-4
gradient norm clip 1.

data points for each dataset 500,000
batch size 64

memory slots 1290
activation GELU
optimizer AdamW
scheduler LambdaLR

Table 5: Hyperparameters for DT-Mem training

A.2. Training and fine-tuning algorithm

In this section, we present the pre-training DT-Mem in Appendix A.2 and fine-tuning DT-Mem with LoRA in Appendix 5.5.

We pre-train DT-Mem on multiple offline datasets. Each gradient update of the DT-Mem model considers information from
each training task.

Algorithm 1 Pre-train DT-Mem

1: for T episodes do
2: for Task Ti ∈ T train do
3: Sample trajectories τ = (s0, a0, r0, · · · , sH , aH , rH) from the dataset Di.
4: Split trajectories into different segments with length K and calculate return-to-go in the input sequence.
5: Given τ̂t+1:t+K , compute the sequence embedding eseq.
6: Update the memory module and retrieve the relative information as Eout
7: Given Eout, predict actions ãt, reward r̃t, and return-to-go R̃t.
8: Compute the loss according to Eqn. 1.
9: Update all module parameters.

10: end for
11: end for

We fine-tune the memory module to adapt to each downstream task. To achieve this, we fix the pre-trained DT-Mem model
parameters and add additional LoRA parameters for the memory module feed-forward neural networks. The fine-tuning
dataset is used to update these LoRA parameters only.

13

https://anonymous.4open.science/r/DT-Mem-Submission277/README.md


Think Before You Act: Decision Transformers with Working Memory

Algorithm 2 Fine-tuning DT-Mem
Require: Fine-tuning dataset T i ∈ T test dataset Di for T i. Initialize LoRA parameters
B̂q, B̂k, B̂v, Âq, Âk, Âv,Bq,Aq,Bk,Ak.

1: for T steps do
2: Split trajectories into different segments with length K and calculate return-to-go in the input sequence.
3: Given τ̂t+1:t+K , compute the sequence embedding eseq.
4: Update memory module using Q̂ = M(Ŵ q + B̂qÂq), K̂ = M(Ŵ k + B̂kÂk),V̂ = M(Ŵ v + B̂vÂv),

Q = M(W q +BqAq),K = M(W k +BkAk)
5: Retrieve the relative information as Eout
6: Given Eout, predict actions ãt, reward r̃t, and return-to-go R̃t.
7: Compute the loss according to Eqn. 1.
8: Update LoRA parameters only.
9: end for

Algorithm 3 Memory Operations

1: Step 0: Memory Module Initialization
2: Initialize memory as a random matrix M where each row mi ∈ Rd and i ∈ [0, N ].
3:
4: Step 1: Input Sequence Organizing
5: Restructure input sequence into format < r̂t, st, at >.
6: Define embedding functions gs(s) = es, ga(a) = ea, gr(r̂) = er̂.
7: Concatenate embeddings to form input sequence E = [· · · ; est , eat

, er̂t ; · · · ].
8:
9: Step 2: Content-based Address

10: Use attention to locate the memory slot for new input.
11: Calculate position address w = softmax

(
QKT

√
d

)
.

12: Define Q = MW q and K = EW k.
13:
14: for N Times memory operations do do
15: Step 3: Memory Update
16: Calculate erasing vector ϵe and adding vector ϵa.
17: Define Q̂ = MŴ q , K̂ = EŴ k, V̂ = EŴ v .
18: Compute writing strength β = softmax

(
Q̂K̂T

√
d

)
.

19: Calculate ϵe = w ⊙ (1− β).
20: Calculate ϵa = (w ⊙ β)Ŵ vx.
21: Update memory Mn = Mn−1 ⊙ (1− ϵe) + ϵa.
22:
23: Step 4: Memory Retrieve
24: Retrieve information from memory for decision-making.
25: Compute read position vector using content-based address.
26: Retrieve memory Eout = w ⊙Mn.
27: E = Eout
28: end for
29: output E for action decoder.

14



Think Before You Act: Decision Transformers with Working Memory

B. Additional Experiments
B.1. Evaluation Parameters

To evaluate the performance of our model on Atari games, we randomly selected 16 different random seeds for evaluation. We
chose the random seed by multiplying the number of runs by 100. For example, the random seed for run 6 is 6× 100 = 600.

B.2. Training Efficiencies

We illustrate the model training curve in Figure 5 to demonstrate training efficiency. It is reasonable to report the prediction
loss on the training dataset for the training curve since we use a supervised loss. Here, the prediction accuracy consists of
three parts: action prediction accuracy, reward prediction accuracy, and return prediction accuracy. The y-axis shows the
average value of these three predictions, and the x-axis is the relative walltime based on the same computing resources.

0 50 100 150 200 250 300 350 400

Relative Walltime (hours)

50

60

70

80

90

P
re

di
ct

io
n 

A
cc

ur
ac

y

DT-Mem
MDT-40M
MDT-13M

0 200 400 600 800 1000 1200 1400 1600

Relative Walltime (hours)

50

60

70

80

90

100

P
re

di
ct

io
n 

A
cc

ur
ac

y

MDT-200M

Figure 5: This graph shows the prediction accuracy during training. Each curve represents three runs with different random
seeds. For better visualization, MDT-200M is displayed in a separate figure.

B.3. The analysis of memory size

In this section, we investigate the impact of the memory module size on the performance of DT-Mem. We employ the Bayes
optimization strategy to tune the parameters. It’s worth noting that the memory size is calculated by multiplying the number
of memory slots by the size of each slot, which is fixed at 512 dimensions for the sake of evaluation simplicity. To expedite
the hyper-parameter tuning process, we present the evaluation results based on 100k training steps of the StarGunner game.
We assess various configurations of memory slots and calculate their corresponding average rewards over 16 runs. Figure 6
reveals several key findings: (1)Increasing the size of memory slots leads to a higher reward accumulation. Notably, there is
a significant performance boost when the number exceeds 1200. (2)In summary, when the number of memory slots exceeds
1800, the system’s performance decreases. This decline occurs because there is a trade-off between the number of memory
slots and the training steps. With a larger number of memory slots, it becomes necessary to allocate more training time.

B.4. Ablation study of LoRA adaptor

Meta-World ML45 Performances Data size Model
Train Test (no-FT) Test (FT) Adap. Per.

DT-Mem (hyper-net) 0.92± 0.01 0.23± 0.10 0.81± 0.15 30 5.7M 43.8%
DT-Mem 0.92± 0.00 0.20± 0.01 0.95± 0.10 10 147K 0.7%

Table 6: Ablation study results on Meta-World ML45 benchmarks. DT-Mem (hyper-net) denotes the variation of DT-Mem,
which substitutes the LoRA adaptation module with hyper-networks. Adap. stands for adaptation parameters, and Per.
stands for the percentage of the original model.

In this section, we conduct an ablation study of the LoRA-based memory adaptor. We substitute the LoRA adaptor with
hyper-networks. Specifically, the parameters of the memory module are generated from hyper-networks. This approach

15



Think Before You Act: Decision Transformers with Working Memory

Figure 6: The parameter tuning results for the number of memory slots. The blue curve shows the like from left to right over
the x-axis and plots the running average y value.

is based on (von Oswald et al., 2020), where hyper-networks take task-related information as input and generate the
corresponding networks for the downstream MLP. We use the same approach and generate parameters that are conditioned
on two types of inputs: the task embedding from the task encoder and the sequence embeddings from the Transformer
module.

To generate task embeddings, we adopt the same idea from PDT (Xu et al., 2022), demonstrating that a small part
of trajectories can represent task-related information. We further extend this idea to extract the task information fully.
To achieve this goal, we use a Neural Network as a task encoder. Specifically, this task encoder is implemented as a
Transformer encoder-like structure (Vaswani et al., 2017). We first formulate the first i steps of collected trajectories
τ0:i = (s0, a0, r0, · · · , si, ai, ri) as a task specific information. The task trajectory τ0:i is treated as a sequence of inputs to
the task encoder. The output of the task encoder is a task embedding etask ∈ Rd, where d is the dimension of the embedding.

Then, we concatenate the task embedding and sequence embedding e = [etask; eseq] and input them to the hyper-networks.
Specifically, we define the hyper-network as a function of fω(·) parameterized by ω. The output Θ = fω(e) is a set of
parameters for the memory module.

According to the evaluation results in Table 6, including a hyper-network in the DT-Mem model improves generalization
without the need for fine-tuning. However, it is worth noting that the hyper-network variant of DT-Mem (hyper-net) exhibits
higher variance compared to DT-Mem. The primary reason for this higher variance is the uncertainty arising from the task
information. Different task-related sequences are collected in each run, resulting in varying generated parameters for the
memory module. Regarding the task fine-tuning results, we observe that the LoRA module outperforms other methods.
This finding indicates that fine-tuning with LoRA enhances the model’s adaptability. We hypothesize that the size of the
hyper-networks model plays a role in these results. Fine-tuning a large model size (5.7M) with a small step-size (100k
steps in our case) becomes challenging. In an effort to improve hyper-networks fine-tuning performance, we increased the
fine-tuning dataset from 10k episodes to 30k episodes. These findings suggest that LoRA-based fine-tuning demonstrates
better data efficiency.

The motivations for using LoRA to fine-tune the model can be concluded in the following two reasons:

Hu et al. (2022) suggests that the LoRA method, in contrast to other adapters, maintains model quality without introducing

16



Think Before You Act: Decision Transformers with Working Memory

inference latency or shortening input sequence length. Furthermore, it facilitates rapid task-switching in service deployments
by sharing most model parameters. Parameter-efficient fine-tuning (PEFT) refines a limited number of model parameters,
preserving most of the pre-trained LLM parameters, which reduces computational and storage demands (Hu et al., 2022).
This approach also addresses catastrophic forgetting [4] and has outperformed standard fine-tuning in low-data and out-of-
domain situations [5]. Besides, the results of full parameter fine-tuning vs. PEFT are shown in Table 7:

Game PEFT FFT-Single FFT-All
Alien 127.4% 116.8% 113.9%

MsPacman 130.8% 122.8 77.1%
SpaceInvaders 100.8% 86.8% 73.4%

StarGunner 158.3% 55.7% 40.6%

Table 7: Performance comparison of PEFT across various games

where PEFT stands for LoRA fine-tuning for all games together, FFT-single means full-parameter fine-tuning on a single
game only, FFT-All stands for full-tine-tuning on all games together. Results are DQN-normalized score.

B.5. LoRA hyper-parameters tuning

Figure 7: LoRA hyper-parameters tuning results.

In this section, we explore the impact of LoRA hyper-parameters on the final fine-tuning results. LoRA employs three
hyper-parameters: rank, lora dropout, and lora alpha. The rank parameter, denoted as m, determines the low-rank of
adaptation matrices B ∈ Rn×m and A ∈ Rm×d, as described in Section 4.4. The lora dropout refers to the dropout rate
applied to the LoRA neural networks, while lora alpha controls the scaling factor of the LoRA outputs. Figure 7 presents
the fine-tuning results, with the last column (eval/rew mean/StarGur) specifically showcasing the fine-tuning results for
the StarGunner game. To obtain the optimal set of parameters, we employ the Bayesian optimization method for parameter
tuning, which suggests various parameter combinations that maximize the fine-tuning results.

We further analyze these parameters and present the findings in Table 8. To gain insights, we utilize two widely used metrics
in the MLOps platform Weights&Biases2.

2For better understanding, please refer to https://docs.wandb.ai/guides/app/features/
panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_
JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w

17

https://docs.wandb.ai/guides/app/features/panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w
https://docs.wandb.ai/guides/app/features/panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w
https://docs.wandb.ai/guides/app/features/panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w


Think Before You Act: Decision Transformers with Working Memory

Parameter Importance score Correlation score
rank 0.486 -0.132

lora dropout 0.285 -0.561
lora alpha 0.229 0.550

Table 8: Analysis of LoRA hyper-parameters

Regarding the importance score, we train a random forest model with the hyper-parameters as inputs and the metric
as the target output. We report the feature importance values derived from the random forest. This hyper-parameter
importance panel disentangles complex interactions among highly correlated hyper-parameters. It facilitates fine-tuning of
hyper-parameter searches by highlighting the hyper-parameters that significantly impact the prediction of model performance.

The correlation score represents the linear correlation between each hyper-parameter and the chosen metric (in this case,
val loss). A high correlation indicates that when the hyper-parameter has a higher value, the metric also tends to have higher
values, and vice versa. Correlation is a useful metric, but it does not capture second-order interactions between inputs and
can be challenging to compare when inputs have widely different ranges.

As shown in Table 8, rank emerges as the most important hyper-parameter that requires careful tuning. The correlation score
of rank is -0.132, indicating that a smaller rank number leads to better fine-tuning results. Based on our findings, a rank
value of 4 yields the best outcome. Lora dropout and lora alpha exhibit similar importance scores, suggesting that these two
parameters can be treated equally. The correlation score reveals that a smaller lora dropout value and a larger lora alpha
value result in improved performance.

B.6. Ablation studies on different input sequence organizing choices

We examine two distinct approaches to input organization. The first approach is adopted from the trajectory Transformer as
outlined in (Janner et al., 2021), which organizes the inputs as (s1, . . . , st, a1, . . . , at, r1, . . . , rt), grouping states, actions,
and rewards accordingly. The second approach is derived from the decision Transformer as described in (Chen et al., 2021),
and is the method utilized in this study.

Game Choice one Choice two (Ours)

Alien 211.9 239.6
MsPacman 637.1 713.4

SpaceInvaders 165.7 171.2
StarGunner 620.7 709.3

Table 9: Ablation studies on different choices of organizing. Each value represents raw scores in Atari games.

From the table above, we observe minor differences between the two sets of inputs. However, the variance in outcomes
between the two methodologies is not significant. Therefore, we empirically adopt the second approach for our design in
this paper.

B.7. Ablation studies with DT

As shown in Table 10, the leftmost column represents the size of the dataset used for training. As seen in the table above, the
generalized agent DT-Mem outperforms when compared to training on the DT-20M 50k datasets. Fine-tuning DT-Mem on
50k datasets yields better results than training DT-20M on 200k datasets.

B.8. Full Fine-tuning vs. LoRA

**Full Fine-tuning (FFT) vs. LoRA**: To assess whether the use of LoRA adversely affects performance, we conducted
experiments contrasting Full Fine-Tuning (FFT) of memory parameters with LoRA. In this context, FFT-single refers to
fine-tuning all parameters exclusively on a single game, whereas FFT-All represents fine-tuning simultaneously on the entire
set of games. The results are DQN-normalized score. Based on above results, we conclude the following observations:

18



Think Before You Act: Decision Transformers with Working Memory

DT-Mem (Ave) DT-Mem FT (Ave) DT-20M (Ave)
10k - - 10.1%
20k - - 9.8%
30k - - 15.3%
40k - - 22.6%
50k 51.0% 127.4% 41.8%

100k - - 83.1%
200k - - 120.3%
500k - - 170.7%

Table 10: Comparison with DT in different fine-tuning datasets

Game PEFT FFT-Single FFT-All
Alien 127.4% 116.8% 113.9%

MsPacman 130.8% 122.8 77.1%
SpaceInvaders 100.8% 86.8% 73.4%

StarGunner 158.3% 55.7% 40.6%

- LoRA appears to be the most consistently effective strategy across the games provided. - While **FFT-Single** occasionally
outperforms PEFT (like in Alien), **FFT-All** consistently trails behind the other two.

The reason full fine-tuning is not comparable to PEFT comes from the following parts: 1. Fine-tuning dataset size. Note
that we only use 50k data in LoRA, and full fine-tuning compares to 500k used in MDT paper 2. The advantages of LoRA
include its ability to tackle catastrophic forgetting, as well as its superior performance compared to standard fine-tuning in
scenarios with limited data and those that are outside of the usual domain.

B.9. Analyze of input misleading

we conducted an experiment to assess the robustness of the proposed method against input distortion. This involved adding
Gaussian noise to the input frames of Atari games. Specifically, we set the mean to 0 and experimented with various standard
deviation values. The results are detailed in the table below:

Alien MsPacman SpaceInvaders StarGunner
MDT 3.8% 13.2% 8.6% 2.3%

DT-Mem 51.0% 69.3% 53.6% 62.2%
DT-Mem (std=0.5) 55.3% 67.6% 53.0% 57.8%
DT-Mem (std=1) 35.6% 56.1% 40.0% 34.6%
DT-Mem (std=2) 25.9% 35.6% 30.5% 21.1%

From the results above, we conclude that the proposed DT-Mem demonstrates greater robustness to noisy inputs compared
to the MDT method. This is evident as the DT-Mem consistently outperforms MDT under various levels of Gaussian noise.
Notably, the performance with a standard deviation of 0.5 shows minimal difference compared to the no-noise scenario,
illustrating DT-Mem’s effectiveness in mitigating the impact of varying input distortions.

C. Memory Module Visualization
Figure 8 illustrates the visualization of the memory module. Since memory operations are trained in conjunction with the
Transformer module, we randomly select a later training episode to mitigate uncertainties regarding operational parameters.
Due to time constraints, we trained on only two games simultaneously. In the revised version of the paper, we intend to
provide visualizations for all games. For clearer visualization, we opted for a memory module of a smaller size, containing
128 memory slots.

Let’s first discuss how memory modules update within the same game. As observed in the figure, for the Amidar game, the
actively updated memory slots concentrate around rows 18, 84, and 117. This pattern is consistent across episodes, albeit
with reduced activity. Such a trend indicates that during each training iteration, the Transformer agent tends to overwrite the

19



Think Before You Act: Decision Transformers with Working Memory

same memory slot contents. We note a similar observation in the Assault game. Furthermore, we observe that the memory
module’s activity diminishes in later episodes. For instance, in the Assault game, the active memory slot in row 12 during
episode 200k becomes less active by episode 201k. We hypothesize that as training progresses, the accumulated knowledge
becomes sufficiently robust for retrieval, reducing the need for updates.

Moving on, when comparing the activity of memory slots across different games, there are intriguing overlaps. For instance,
comparing Amidar 200k and Assault 200k reveals that memory slots around row 120 are active in both games. We surmise
that this region retains cross-task knowledge shared between games. Additionally, the varying attention across other memory
slots demonstrates how these slots assist the agent in decision-making across diverse games.

Figure 8: This visualization represents the memory module. In the figure, each row is derived from the mean of a vector that
signifies a memory slot. Each depiction calculates the variation between two write operations in a single episode for each
memory slot. Lighter shades indicate memory slots that have been actively updated post-write operations. The encircled
areas highlight the comparison of active memory slots across different episodes.

D. Limitations
The first limitation of our work is the sample efficiency of memory fine-tuning. The 10% fine-tuning dataset is still sizeable,
and we plan to explore more sample-efficient methods in the future. We could, for instance, consider a setting with more
tasks, each one with less data, so that the inter-task generalization would be even more crucial to its performance. This work
does not propose a control strategy for collecting data on a new task. For future work, we plan to investigate online data
collection methods, including designing and learning exploration strategies for efficient fine-tuning on new tasks. Finally,
the approach has been intuitively motivated, and it would be valuable to have a theoretical grounding that would show the

20



Think Before You Act: Decision Transformers with Working Memory

structural limits of large models and how equipping them with a memory component overcomes them.

E. Comparison of DT-Mem and Neural Episodic Control (NEC) in Writing and Reading Memory
Memory Mechanism

• NEC: Utilizes a Differentiable Neural Dictionary (DND) for storing experiences with separate memories for each
action, containing state representations (keys) and value function estimates (values).

• DT-Mem: Integrates a working memory module within a Transformer framework, focusing on storing, blending, and
retrieving information for improving training efficiency and generalization.

Writing to Memory

• NEC: Continuously adds new experiences and rapidly updates value function estimates in memory.
• DT-Mem: Modifies or replaces existing information in the memory matrix using an attention mechanism to calculate

correlations and update memory with the attended weight of the input sequence.

Reading from Memory

• NEC: Implements context-based lookups in the DND to retrieve values, outputting a weighted sum based on the
similarity between the current state and stored keys.

• DT-Mem: Employs content-based addressing for memory retrieval, using attention mechanisms to read from the
updated memory and inform decision-making.

Distinctive Features and Advantages

• NEC: Designed for rapid assimilation and action upon new experiences with specialized and swift updates for each
action.

• DT-Mem: Aims to enhance generalization across tasks and reduce catastrophic forgetting by integrating memory with
the Transformer’s sequential data handling capabilities.

21


