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Abstract
Conformal prediction has shown impressive ca-
pacity in constructing statistically rigorous pre-
diction sets for machine learning models with ex-
changeable data samples. The siloed datasets,
coupled with the escalating privacy concerns re-
lated to local data sharing, have inspired re-
cent innovations extending conformal predic-
tion into federated environments with distributed
data samples. However, this framework for dis-
tributed uncertainty quantification is susceptible
to Byzantine failures. A minor subset of ma-
licious clients can significantly compromise the
practicality of coverage guarantees. To address
this vulnerability, we introduce a novel frame-
work Rob-FCP, which executes robust feder-
ated conformal prediction, effectively countering
malicious clients capable of reporting arbitrary
statistics in the conformal calibration process.
We theoretically provide the conformal coverage
bound of Rob-FCP in the Byzantine setting and
show that the coverage of Rob-FCP is asymptoti-
cally close to the desired coverage level. We also
propose a malicious client number estimator to
tackle a more challenging setting where the num-
ber of malicious clients is unknown to the de-
fender. We theoretically show the precision of
the malicious client number estimator. Empiri-
cally, we demonstrate the robustness of Rob-FCP
against various portions of malicious clients un-
der multiple Byzantine attacks on five standard
benchmark and real-world healthcare datasets.

1. Introduction
As deep neural networks (DNNs) achieved great success
across multiple fields (He et al., 2016; Vaswani et al., 2017;
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Li et al., 2022b), quantifying the uncertainty of model
predictions has become essential, especially in safety-
conscious domains such as healthcare and medicine (Ah-
mad et al., 2018; Erickson et al., 2017; Kompa et al., 2021).
For example, in sleep medicine domain, accurately classi-
fying sleep stages (typically on EEG recordings) is crucial
for understanding sleep disorders. Analogous to a human
expert who may offer multiple possible interpretations of a
single recording, it is desirable for a DNN to provide not
just a singular prediction but a set of possible outcomes. In
constructing such prediction sets, we often consider the fol-
lowing coverage guarantee: the prediction set should con-
tain the true outcome with a pre-specified probability (e.g.
90%). Conformal prediction (Shafer & Vovk, 2008; Bal-
asubramanian et al., 2014; Romano et al., 2020) demon-
strates the capacity to provide such statistical guarantees
for any black-box DNN with exchangeable data.

Meanwhile, the demand for training machine learning
models on large-scale and diverse datasets necessitates
model training across multiple sites and institutions. Fed-
erated learning (Konečnỳ et al., 2016; Smith et al., 2017;
McMahan et al., 2017; Bonawitz et al., 2019; Yang et al.,
2019; Kairouz et al., 2021) offers an effective approach to
collaboratively train a global model while preserving data
privacy, as it enables training with distributed data samples
without the requirement of sharing the raw data. For ex-
ample, multiple hospitals (“clients”) could jointly train a
global clinical risk prediction model without sharing raw
patient data. However, this introduces a unique challenge:
the existence of malicious or negligent clients can nega-
tively affect the training/testing of the global model.

Recently, federated conformal prediction (FCP) methods
(Lu & Kalpathy-Cramer, 2021; Lu et al., 2023; Plassier
et al., 2023; Humbert et al., 2023) provide rigorous bounds
on the coverage rate with distributed data samples. How-
ever, FCP demonstrates vulnerability to Byzantine failures
(Lamport et al., 2019), which are caused by uncontrollable
behaviors of malicious clients. For example, a hospital’s
data could be corrupted with incorrect or even fabricated
medical information due to human negligence or deliber-
ate manipulation of data statistics (such as age, gender, or
disease prevalence). In the Byzantine federated setting, the
prediction coverage guarantees of FCP are broken, and the
empirical marginal coverage is downgraded severely, even
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Figure 1: Coverage rate with different ratios of malicious
clients on SHHS dataset. The desired coverage is 0.9.

with a small portion of malicious clients as Figure 1.

In this paper, we propose a robust federated conformal pre-
diction algorithm, Rob-FCP, aimed at mitigating the im-
pact of malicious clients on the coverage rate in Byzan-
tine federated learning environments. The Rob-FCP al-
gorithm computes local conformity scores, sketches them
with characterization vectors, and detects malicious clients
based on averaged vector distance. Clients deemed highly
malicious are subsequently excluded from the calibration
process. Furthermore, we provide a technique for estimat-
ing the number of malicious clients, when their exact count
is unknown, by optimizing the likelihood of the character-
ization vectors. Our theoretical analysis of the coverage
bounds shows that the coverage of Rob-FCP is asymptoti-
cally close to the desired coverage level as long as the num-
ber of malicious clients is less than that of benign clients
and the sample sizes of benign clients are sufficiently large.

We empirically evaluate Rob-FCP against multiple Byzan-
tine attacks. Rob-FCP outperforms FCP by a large margin
and even achieves comparable prediction coverage and ef-
ficiency as the benign settings on five realistic datasets cov-
ering multiple fields. We also demonstrate the validity and
tightness of the bounds of prediction coverage with differ-
ent ratios of malicious clients. We further conduct a set of
ablation studies on the methods of conformity scores char-
acterization and different distance measurements to high-
light the critical components in Rob-FCP.

Technical Contributions: Our contributions span both
theoretical and empirical aspects.

• We provide the first certifiably robust federated confor-
mal prediction framework (Rob-FCP) in the Byzantine
setting where malicious clients can report arbitrary con-
formity score statistics.

• We propose a maliciousness score to effectively detect
Byzantine clients and a malicious client number estima-
tor to predict the number of Byzantine clients.

• We theoretically certify the coverage guarantees of Rob-
FCP. We also theoretically analyze the precision of the
malicious client number estimator.

• We empirically demonstrate the robustness of Rob-FCP

in federated Byzantine settings across multiple datasets.
We also empirically validate the soundness and tightness
of the coverage guarantees.

2. Preliminaries
2.1. Conformal prediction

Suppose that we have n data samples {(Xi, Yi)}ni=1 with
features Xi ∈ Rd and labels Yi ∈ Y := {1, 2, ..., C}. As-
sume that the data samples are drawn exchangeably from
some unknown joint distribution of feature X and label
Y , denoted by PXY . Given a desired coverage 1 − α ∈
(0, 1), conformal prediction methods construct a predic-
tion set Ĉn,α ⊆ Y for a new data sample (Xn+1, Yn+1) ∼
PXY with the guarantee of marginal prediction coverage:
P[Yn+1 ∈ Ĉn,α(Xn+1)] ≥ 1− α.

In this work, we focus on the split conformal prediction
setting (Papadopoulos et al., 2002), where the data samples
are randomly partitioned into two disjoint sets: a training
set Itr and a calibration (hold-out) set Ical = [n]\Itr. 1 We
fit a classifier to the training set Itr to estimate the condi-
tional class probability π : Rd 7→ ∆C , with the y-th ele-
ment denoted as πy(x) = P[Y = y|X = x]. Using the es-
timated probabilities that we denote by π̂(x), we then com-
pute a non-conformity score Sπ̂(Xi, Yi) for each sample in
the calibration set Ical. The non-conformity score measures
how much non-conformity each sample has with respect
to its ground truth label. A small non-conformity score
Sπ̂(Xi, Yi) indicates that the estimated class probability
π̂(Xi) aligns well with the ground truth label Yi for the data
sample (Xi, Yi). A simple and standard non-conformity
score (Sadinle et al., 2019) is Sπ̂(x, y) = 1− π̂y(x).

Given a desired coverage 1 − α, the prediction set of the
new test data point Xn+1 is formulated as:

Ĉn,α(Xn+1) = {y ∈ Y : Sπ̂(Xn+1, y) ≤
Q1−α ({Sπ̂(Xi, Yi)}i∈Ical)} ,

(1)

where Q1−α({Sπ̂(Xi, Yi)}i∈Ical) is the ⌈(1 − α)(1 +
|Ical|)⌉-th largest value of the set {Sπ̂(Xi, Yi)}i∈Ical . The
prediction set Ĉn,α(Xn+1) includes all the labels with a
smaller non-conformity score than the (1 − α)-quantile of
scores in the calibration set. Since we assume the data sam-
ples are exchangeable, the marginal coverage of the predic-
tion set Ĉn,α(Xn+1) is no less than 1−α. We refer to (Vovk
et al., 2005) for a more rigorous analysis of the prediction
coverage.

2.2. Federated conformal prediction

In federated learning, multiple clients own their private
data locally and collaboratively develop a global model.

1In here and what follows, [n] := {1, · · · , n}.
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Figure 2: Overview of Rob-FCP.

Let K be the number of clients. We denote the local
data distribution of the k-th client (k ∈ [K]) by P(k).
Let {(X(k)

i , Y
(k)
i )}i∈[nk] ∼ P(k) be nk calibration sam-

ples owned by the k-th client. We denote (Xtest, Ytest) as
the future test point sampled from the global distribution
Qtest,λ for some probability vector λ ∈ ∆K : (Xtest, Ytest) ∼
Qtest,λ :=

∑K
k=1 λkP(k). Let N =

∑K
k=1 nk be the total

sample size of K clients and q̂α be the ⌈(1−α)(N+K)⌉-th
largest value in {Sπ̂(X

(k)
i , Y

(k)
i )}i∈[nk],k∈[K], where π̂ is

the collaboratively trained conditional class probability es-
timator (α ≥ 1/(N/K + 1)). FCP (Lu et al., 2023) proves
that under the assumption of partial exchangeability (Car-
nap & Jeffrey, 1980) and λk ∝ (nk + 1), the prediction
set Ĉα(Xtest) = {y ∈ Y : Sπ̂(Xtest, y) ≤ q̂α} is a valid
conformal prediction set with the guarantee:

1− α ≤ P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+

K

N +K
. (2)

Considering communication cost and privacy concerns,
having all agents upload their local non-conformity scores
to the server for quantile computation of q̂α is impractical.
Consequently, FCP (Lu et al., 2023) utilizes data sketching
algorithms like T-digest (Dunning, 2021) for efficient and
privacy-preserving distributed quantile estimation. They
prove that if the rank of quantile estimate q̂α is between
(1−α− ϵ)(N +K) and (1−α+ ϵ)(N +K) where ϵ de-
notes the quantile estimation error induced by data sketch-
ing, then the guarantee in Equation (2) can be corrected as
the following:

1−α− ϵN + 1

N +K
≤ P

[
Ytest ∈ Ĉα(Xtest)

]
≤ 1−α+ϵ+

K

N +K
,

(3)
where K is the number of clients and N is the total sample
sizes of clients.

3. Rob-FCP and coverage guarantees
3.1. Threat model

We follow the standard setup of FCP in Section 2.2 and
consider the following Byzantine threat model. Suppose
that among K clients, there exist Kb benign clients and

Km (Km = K−Kb) malicious (Byzantine) clients. With-
out loss of generality, let the clients indexed by [Kb] =
{1, ...,Kb} be benign clients and the clients indexed by
[K]\[Kb] = {Kb + 1, ...,K} be malicious clients. The
k-th benign client (k ∈ [Kb]) leverage the collaboratively
trained global model π̂ to compute the conformity scores
on its local calibration data and sketched the score statistics
with a characterization vector v(k) ∈ ∆H where H is the
granularity of the characterization statistics and then report
the score vector v(k) to the server. In contrast, Km mali-
cious clients can submit arbitrary characterization vectors
v(k)(k ∈ [K]\[Kb]) to the server.

Following FCP (Lu et al., 2023), the server considers a
global distribution Q as a weighted combination of local
distributions, denoted by Q =

∑K
i=1 λiP(i), where λi rep-

resents the weight assigned to each local distribution and is
proportional to the size of local samples ni: λi ∝ (ni +1).
Note that the server knows the true weights of local distri-
butions (or equivalently, quantities of local samples), which
can not be manipulated by malicious clients during the con-
formal prediction phase. Since the weights of local distri-
butions (or equivalently, quantities of local samples) are
a known priori to the server during the federated model
learning phase, the threat model is reasonable and prac-
tical, aligning with the existing Byzantine analysis liter-
ature (Blanchard et al., 2017; Park et al., 2021; Data &
Diggavi, 2021). For the threat model, we aim to develop
a Byzantine-robust FCP framework (Rob-FCP) that main-
tains coverage and prediction efficiency despite the exis-
tence of malicious clients. We also aim to provide rigorous
coverage guarantees of Rob-FCP in the Byzantine setting

3.2. Rob-FCP algorithm

Rob-FCP first detects the set of malicious clients, then ex-
cludes their score statistics during the computation of em-
pirical quantile of conformity scores, and finally performs
federated conformal prediction with the quantile value,
which is not affected by malicious clients.

Characterization of conformity scores Let {s(k)j }j∈[nk]

be the conformity scores computed by the k-th client (k ∈
[K]) on its local calibration set. Since it is challenging to
detect abnormal behavior from the unstructured and un-
normalized conformity scores, we characterize the local
conformity scores {s(k)j }j∈[nk] with a vector v(k) ∈ RH

for client k, where the vector dimension H ∈ Z+ impli-
cates the granularity of the characterization. Specifically,
we can partition the range of conformity score values (e.g.,
[0, 1] for APS score (Romano et al., 2020)) into H subin-
tervals {[ah, ah+1)}0≤h≤H−2 ∪ {[aH−1, aH ]}, where ah
denotes the h-th cut point.2 Thus, the h-th element of

2For simplicity, we abuse the last interval [aH−1, aH ] as
[aH−1, aH) in the future discussions.
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the characterization vector (v(k)
h ) represents the probability

that a conformity score falls within the specific subinterval
[ah−1, ah):

v
(k)
h = P

s∼
{
s
(k)
j

}
j∈[nk]

[ah−1 ≤ s < ah]

=
1

nk

nk∑
j=1

I
[
ah−1 ≤ s

(k)
j < ah

]
,

(4)

where I[·] denotes the indicator function. The characteri-
zation vector v(k) is designed to encapsulate the distribu-
tion of score samples via histogram statistics, reflecting a
fundamental multinomial distribution. This methodology
leverages the observation that conformity scores originat-
ing from homogeneous distributions typically show sub-
stantial similarity. Consequently, characterization vectors
from benign clients exhibit notable resemblance, in con-
trast to those from malicious clients, whose score statistics
are anomalous. Such a distinct pattern facilitates the reli-
able identification of malicious clients.

Furthermore, Rob-FCP is designed with the flexibility to
incorporate various methodologies for representing empir-
ical conformity score samples as a real-valued vector v.
Among these methodologies are kernel density estimation
(Terrell & Scott, 1992), offering a more nuanced interpreta-
tion of histogram statistics; parametric model fitting, such
as Gaussian models; and clustering-based exemplar repre-
sentations, including KMeans. The empirical analysis in
Section 5.3 indicates that the histogram-based approach, as
formulated in Equation (4), surpasses both parametric mod-
els and clustering techniques in performance. Hence, we
consider the histogram statistic in Rob-FCP as our primary
method of analysis.

Maliciousness score computation Rob-FCP detects the
malicious clients via a maliciousness score in the space
of characterization vectors. First, we compute pairwise ℓp
(p ∈ Z+) vector distances among K clients:

dk1,k2 = ∥v(k1) − v(k2)∥p, ∀k1, k2 ∈ [K]. (5)

Denote Near(k, t) as the index set of the t-nearest neigh-
bors of client k (excluding itself), with the distance be-
tween two clients k1 and k2 given by Equation (5). We
define the maliciousness score M(k) ∈ R of client k
(k ∈ [K]) as the averaged distance to the Kb − 1 nearest
neighbors, where Kb is the number of benign clients:

M(k) =
1

Kb − 1

∑
k′∈Near(k,Kb−1)

dk,k′ . (6)

We define the benign set identified by Rob-FCP, denoted as
BRob-FCP, as the set containing the indices of clients with the
lowest Kb maliciousness scores among {M(k)}Kk=1. Sub-
sequently, quantile estimation q̂α is carried out using the

characterization vectors from the clients within the benign
set BRob-FCP. The quantile estimation q̂α is then applied
to perform federated conformal prediction on the globally
trained model in a distributed manner. An overview of Rob-
FCP is presented in Figure 2, with the pseudocode detailed
in Algorithm 1 in Appendix F.

To impair the overall performance of global conformal pre-
dictions, malicious clients often submit conformity score
statistics that starkly contrast with those of benign clients.
This difference results in the characterization vectors of
malicious clients being distinct and separable from the ag-
gregation of benign vectors. The calculation of malicious-
ness scores, which is based on the average distance to the
Kb − 1 nearest neighbors, further accentuates this sepa-
ration. Specifically, malicious clients tend to have higher
maliciousness scores than benign clients, given the condi-
tion Kb > Km, a common assumption in Byzantine re-
silience studies (Blanchard et al., 2017)). Leveraging this
distinction, Rob-FCP effectively isolates and disregards the
skewed statistics introduced by malicious clients during the
conformal calibration process, thereby maintaining the va-
lidity of the conformal prediction set. A theoretical anal-
ysis of Rob-FCP, including rigorous coverage bounds, is
provided in Section 3.3.

Effectiveness of Rob-FCP against mimick attacks Ma-
licious clients with mimic attack (Karimireddy et al., 2022;
Shejwalkar & Houmansadr, 2021) transmit similar gra-
dients to benign clients in FL optimization, which is
stealthy and deteriorates the optimization process by over-
representing the mimicked clients in the setting with high
data heterogeneity. However, in FCP, for a collaboratively
trained model, we observe that the heterogeneity of dis-
tributions of non-conformity scores cannot be effectively
used by mimic attacks to disturb the FCP process. The ma-
jor difference between the setting in (Karimireddy et al.,
2022; Shejwalkar & Houmansadr, 2021) and FCP is that
the former considers the FL optimization, where clients
perform multi-step local updates on local data distribution,
and thus the gradients among clients can show a pretty high
heterogeneity due to the data heterogeneity and also the
high dimensionality of the gradients. This makes a great
opportunity for the attackers to hide in and still distort the
FL optimization effectively. However, in the FCP setting,
the model is well-trained and converges well. Thus, the
heterogeneity in the space of nonconformity score vectors
is not as great as the heterogeneity in the high-dimensional
gradient space during optimization. Note that in Rob-
FCP, we do not have assumptions that the malicious clients
should be very different from benign clients. The princi-
ple of the effectiveness of Rob-FCP is that (1) if the score
vector of malicious clients is close to the benign clients,
although Rob-FCP may identify it as benign, it can only
make a limited and bounded difference on the FCP results,
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and (2) if the score vector is far from the benign cluster,
although it is effective to distort FCP, Rob-FCP will filter it
out in this case. We provide the empirical validation results
of the observation in Table 7 in Appendix G.2.

3.3. Coverage guarantee of Rob-FCP

We rigorously analyze the lower and upper bounds of the
prediction coverage of Rob-FCP in the Byzantine setting in
Theorem 1. The analysis reveals that, with an adequately
large sample size of benign clients, Rob-FCP is capable of
reaching the desired coverage level. This finding under-
scores the effectiveness of Rob-FCP in maintaining reli-
able prediction coverage, even in the presence of Byzantine
clients.
Theorem 1 (Coverage guarantees of Rob-FCP in Byzan-
tine setting). Consider FCP setting with Kb benign clients
and Km malicious clients. The k-th client reports the char-
acterization vector v(k) and local sample size nk to the
server (k ∈ [Kb +Km]). Assume that the benign charac-
terization vector v(k) follows multinomial distribution Dk

with event probability v(k) for the k-th client (k ∈ [Kb]).
We use σ to quantify the heterogeneity of benign vectors
as σ = maxk1∈[Kb],k2∈[Kb] ∥v

(k1) − v(k2)∥1. Let ϵ be the
data sketching error as Equation (3). Under the assump-
tion that Km < Kb, the following coverage guarantee for
test instance (Xt, Yt) holds with probability 1− β:

P
[
Yt∈Ĉα(Xt)

]
≥ 1−α−Pbyz −

Nmσ

nb(1− τ)
− ϵnb + 1

nb +Kb

P
[
Yt∈Ĉα(Xt)

]
≤ 1−α+Pbyz +

Nmσ

nb(1− τ)
+

ϵnb + (ϵ+ 1)Kb

nb +Kb

where Pbyz =
HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
(7)

where τ = Km/Kb is the ratio between the number
of malicious clients and the number of benign clients,
Nm :=

∑
k∈[K]\[Kb]

nk is the total sample size of mali-
cious clients, nb := mink′∈[Kb] nk′ is the minimal sample
size of benign clients, and Φ−1(·) denotes the inverse of the
cumulative distribution function (CDF) of standard normal
distribution.
Remark. (R1) Equation (7) offers the lower and upper
bound of the prediction coverage with Rob-FCP in the
Byzantine setting. The coverage bounds are in relation
to (a) Byzantine coverage penalty Pbyz, (b) client dispar-
ity penalty Nmσ/nb(1−τ), and (c) data sketching penalty
ϵnb+1/nb+Kb or ϵnb+(ϵ+1)Kb/nb+Kb. (R2) The Byzantine
coverage penalty Pbyz is induced by the presence of ma-
licious clients. It can be exacerbated by a large ratio of
malicious clients (a large τ ) and a large total sample size
of malicious clients (a large Nm). However, the Byzantine
coverage penalty Pbyz can be effectively reduced by a larger
benign sample size nb. (R3) The client disparity penalty is
induced by the data heterogeneity among clients. Similarly,

it can be exacerbated by a large τ and Nm, but reduced by
a large nb. We leverage the maximal pairwise vector norm
to quantify the client heterogeneity, which aligns with ex-
isting Byzantine analysis (Park et al., 2021; Data & Dig-
gavi, 2021). (R4) The data sketching penalty is induced by
the local approximation error ϵ as Equation (3), with more
details provided in (Lu et al., 2023). (R5) The assump-
tion Km < Kb (i.e., τ < 1) requires that the number of
malicious clients is less than the number of benign clients,
aligning with the break point of ⌈K/2⌉ in Byzantine analy-
sis (Blanchard et al., 2017; Yin et al., 2018; Guerraoui et al.,
2018). (R6) There exists a trade-off of selecting the char-
acterization granularity H . According to FCP (Lu et al.,
2023), with the histogram estimate, when H decreases, the
data sketching becomes rough and increases the approxi-
mation error ϵ. At the same time, a smaller H will decrease
the Byzantine coverage penalty Pbyz due to a better con-
centration rate. We empirically perform ablation studies on
the selection of H in Appendix G.2. (R7) We bound the
concentration of the characterization vectors with the bino-
mial proportion confidence interval (Wallis, 2013). We also
provide results with more advanced concentration bounds
DKW inequality (Dvoretzky et al., 1956) in Appendix D.
(R8) Asymptotically, as long as the benign sample size nb

is sufficiently large, both the coverage lower bound and the
upper bound reach the desired coverage level 1−α, demon-
strating the robustness of Rob-FCP.

Proof sketch. We first leverage statistical confidence in-
tervals and union bounds to conduct concentration analy-
sis of the characterization vectors v(k) for benign clients
(1 ≤ k ≤ Kb). Then we consider the maliciousness scores
of critical clients and relax the histogram statistics error.
We finally translate the error of aggregated statistics to the
error of the coverage bounds by algebra analysis. We pro-
vide complete proofs in Appendix C.1.

4. Rob-FCP with unknown numbers of
malicious clients

4.1. Malicious client number estimator

In the standard Byzantine framework (Blanchard et al.,
2017; Park et al., 2021; Liu et al., 2023), the defender is
often assumed to have prior knowledge of the quantity of
malicious clients Km. This number plays a pivotal role in
defense strategies: underestimating it results in the inclu-
sion of malicious clients, leading to a degradation in overall
performance, while overestimating it results in the exclu-
sion of benign clients, thereby causing a shift in the global
data distribution. However, in real-world applications, the
exact count of malicious clients is typically unknown to
the server. To address this gap and enhance the system’s
resilience in more complex Byzantine environments where
the number of malicious clients is uncertain, we introduce a
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novel estimator for malicious client numbers for Rob-FCP.

To accurately estimate the number of malicious clients Km,
we pivot to calculating the number of benign clients Kb,
given the total client count K is known. To achieve this,
we aim to maximize the likelihood of benign characteriza-
tion vectors while minimizing the likelihood of malicious
characterization vectors over the number of benign clients
K̂b. The likelihood computation necessitates a predefined
distribution for benign characterization vectors.

Considering that benign characterization vectors v(k) (k ∈
[Kb]) are sampled from a multinomial distribution, which,
for substantial sample sizes, can be closely approximated
by a multivariate normal distribution as (Severini, 2005),
we proceed under the assumption that the benign charac-
terization vectors are samples from a multivariate normal
distribution denoted asN (µ,Σ), where µ ∈ RH represents
the mean, and Σ ∈ RH×H denotes the covariance matrix.

Then, we use expectation–maximization (EM) algorithm
to effectively estimate the number of benign clients K̂b. In
the expectation (E) step, given the current estimate of be-
nign client number K̃b, we compute the expected Gaussian
mean and covariance by the observations of benign charac-
terization vectors, which can be identified by the Rob-FCP
algorithm in Section 3.2. In the maximization (M) step, we
maximize the likelihood of characterization vectors given
the estimated Gaussian mean and covariance in the E step.
Formally, let I(·) : [K] 7→ [K] be the mapping from the
rank of maliciousness scores by Rob-FCP to the client in-
dex. The EM optimization step can be formulated as:

K̂b =argmax
z∈[K]

[
1

z

z∑
k=1

log p(v(I(k)); µ̂(z), Σ̂(z))

− 1

K − z

K∑
k=z+1

log p(v(I(k)); µ̂(z), Σ̂(z))

] (8)

where µ̂(z) and Σ̂(z) are the expected mean and covari-
ance: µ̂(z) = 1/z

∑
k∈[z] v

(I(k)), Σ̂(z) = Ek∈[z][(v
(I(k))−

µ̂(z))T (v(I(k))− µ̂(z))], and p(v;µ,Σ) computes the like-
lihood of v given Gaussian N (µ,Σ) as p(v;µ,Σ) =
exp

(
−1/2(v − µ)TΣ−1(v − µ)

)
/
√

(2π)H |Σ|. The EM
optimization in Equation (8) essentially searches for K̂b

such that the characteristic vectors of K̂b clients with the
lowest maliciousness scores (higher probability of being
benign) exhibit a strong alignment with the benign normal
distribution, and conversely, the characteristic vectors of
the remaining clients (more likely to be malicious) show
a decreased likelihood of fitting the benign normal distri-
bution. Note that the derived estimate of K̂b can be utilized
as the input parameter K̃b in subsequent iterations, allow-
ing for the refinement of the estimation through recursive
applications of the EM optimization process.

4.2. Precision of malicious client number estimator

In this part, we theoretically show the precision of benign
client number estimate in Equation (8).

Theorem 2 (Precision of malicious client number estima-
tor). Assume v(k) (k ∈ [Kb]) are IID sampled from Gaus-
sian N (µ,Σ) with mean µ ∈ RH (H ≥ 2) and pos-
itive definite covariance matrix Σ ∈ RH×H . Let d =
mink∈[K]\[Kb] ∥v(k) − µ∥2. Consider EM optimization as
Equation (8) and an initial guess of benign client number
K̃b such that Km < K̃b ≤ Kb. Then we have:

P
[
K̂m = Km

]
≥1− (3K̃b −Km − 2)2Tr(Σ)

(K̃b −Km)2d2

− 2(K +Kb)Tr(Σ)σ2
max(Σ

−1/2)

σ2
min(Σ

−1/2)d2

(9)

where σmax(Σ
−1/2), σmin(Σ

−1/2) denote the maximal and
minimal eigenvalue of matrix Σ−1/2, and Tr(Σ) denotes
the trace of matrix Σ.

Remark. (R1) The lower bound in Equation (9) rises as the
minimal distance between the malicious characterization
vector to the benign mean µ (i.e., d) increases. The lower
bound asymptotically approaches 1 with a sufficiently large
d. It implies that when the malicious characterization vec-
tor is far away from the benign cluster (i.e., a large d),
the malicious client number estimator has a high precision.
(R2) The lower bound in Equation (9) also shows that when
the initial guess K̃b is closer to Kb, the lower bound of es-
timate precision is higher, demonstrating the effectiveness
of iterative EM optimization with Equation (8). (R3) Note
that the condition of the initial guess Km < K̃b < Kb is
satisfiable by simply setting K̃b = ⌈K/2⌉.

Proof sketch. We first analyze the tail bound of the multi-
variate normal distribution as (Vershynin, 2018), and then
derive the probabilistic relationships between the mali-
ciousness scores of benign clients and those of malicious
clients using the tail bounds. We finally upper bound the
probability of overestimation and underestimation by open-
ing up the probability formulations. We defer the complete
proof to Appendix C.2.

5. Experiments
5.1. Experiment setup

Datasets We evaluate Rob-FCP on a variety of stan-
dard datasets, including MNIST (Deng, 2012), CIFAR-10
(Krizhevsky et al.), and Tiny-ImageNet (Le & Yang, 2015).
Our evaluation of Rob-FCP also cover two realistic health-
care datasets: the Sleep Heart Health Study (SHHS) dataset
(Zhang et al., 2018) and a pathology dataset PathMNIST
(Yang et al., 2023).

6



Certifiably Byzantine-Robust Federated Conformal Prediction

Table 1: Marginal coverage / average set size under different Byzantine attacks with 40% (Km/K = 40%) malicious
clients. The desired marginal coverage is 0.9. The Dirichlet parameter β is 0.5. Results that more closely align with those
observed in an all-benign-client scenario (provided in Table 3 in Appendix G.2) are highlighted in bold.

Byzantine Attack Coverage Attack Efficiency Attack Gaussian Attack
Method FCP Rob-FCP FCP Rob-FCP FCP Rob-FCP

MNIST 0.805 / 1.284 0.899 / 1.783 1.000 / 10.00 0.902 / 1.804 0.941 / 2.227 0.923 / 2.182
CIFAR-10 0.829 / 1.758 0.897 / 2.319 1.000 / 10.00 0.892 / 2.351 0.970 / 3.863 0.921 / 2.623

Tiny-ImageNet 0.825 / 27.84 0.903 / 43.47 1.000 / 200.0 0.904 / 43.68 0.942 / 61.50 0.928 / 54.91
SHHS 0.835 / 1.095 0.901 / 1.365 1.000 / 6.000 0.901 / 1.366 0.937 / 1.609 0.900 / 1.359

PathMNIST 0.837 / 1.055 0.900 / 1.355 1.000 / 9.000 0.900 / 1.344 1.000 / 6.935 0.926 / 1.585

Data partition in federated conformal prediction Our
approach of data partition adheres to the standard feder-
ated learning evaluation framework by using the Dirich-
let distribution to create different label ratios across clients
(Yurochkin et al., 2019; Lin et al., 2020; Wang et al., 2020;
Gao et al., 2022). Concretely, we sample pc,j ∼ Dir(β)
and allocate a portion of pc,j instances with class c to the
client j, where Dir(·) denotes the Dirichlet distribution and
β is a concentration parameter (β > 0), controlling the de-
gree of data heterogeneity among clients. A lower β value
results in a more heterogeneous data distribution. By de-
fault, we set β to 0.5 to establish a consistent level of data
heterogeneity. Additionally, we explore alternative meth-
ods for generating heterogeneous data that reflect demo-
graphic variations. We segment the SHHS dataset based on
five attributes (wake time, N1, N2, N3, REM), distributing
instances to clients based on differing attribute intervals,
thereby introducing another dimension of data diversity.

Byzantine attacks To evaluate the robustness of Rob-
FCP in the Byzantine setting, we conducted comparisons
with the baseline FCP (Lu et al., 2023) under three types
of Byzantine attacks: (1) coverage attack (CovAttack) in-
volves malicious clients reporting maximized conformity
scores (e.g., 1 for LAC score (Sadinle et al., 2019)) to arti-
ficially inflate the conformity score at the targeted quantile,
resulting in reduced coverage; (2) efficiency attack (EffAt-
tack) involves malicious clients submitting minimized con-
formity scores (e.g., score of 0 for LAC score) to lower
the conformity score at the quantile, thereby expanding the
prediction set; (3) Gaussian Attack (GauAttack) involves
malicious clients dispersing random Gaussian noise with a
standard deviation of 0.5 into the scores, thereby disrupting
the conformal calibration process.

Evaluation metric We consider the global test data set
Dtest = {(Xi, Yi)}Ntest

i=1 . We notate Cα(Xi) as the confor-
mal prediction set given test sample Xi and consider the de-
sired coverage level 1−α. We evaluate with the metrics of
marginal coverage

∑Ntest
i=1 I [Yi ∈ Cα(Xi)] /Ntest and aver-

age set size
∑Ntest

i=1 |Cα(Xi)| /Ntest. Without specification,
the desired coverage level 1−α is set 0.9. We provide more
details of experiment setups in Appendix G.1.

The codes to reproduce all the evaluation results
are publicly available at https://github.com/
kangmintong/Rob-FCP.

5.2. Evaluation results

Byzantine robustness of Rob-FCP We evaluate Rob-
FCP in terms of marginal coverage and average set size
under coverage attack, efficiency attack, and Gaussian at-
tacks, and compare these results against the baseline FCP.
We present the results of FCP and Rob-FCP in the existence
of 40% (Km/K = 40%) malicious clients on MNIST,
CIFAR-10, Tiny-ImageNet, SHHS, and PathMNIST in Ta-
ble 1. Under Byzantine attacks, FCP shows a significant
deviation from the targeted coverage level of 0.9 and the
expected benign set size. In contrast, Rob-FCP maintains
comparable levels of marginal coverage and average set
size, underlining its robustness. Note that while a smaller
prediction set is generally preferred for efficiency, the pri-
mary objective here is to accurately meet the targeted cov-
erage level of 0.9. Further results on the resilience of Rob-
FCP against different portions of malicious clients (30%,
20%, and 10%) are provided in Table 9 in Appendix G.2.
In Table 7 of Appendix G.2, we empirically demonstrate
the robustness of Rob-FCP against mimick attacks (Karim-
ireddy et al., 2022), which operate under a more restricted
threat model that relies on knowing the score statistics of
agents.

Rob-FCP with unknown numbers of malicious clients
In Section 4, we explore a complex Byzantine scenario
where the exact count of malicious clients is not known
to the defender. To address this challenge, we introduce
an estimator designed to predict the number of malicious
participants accurately, with theoretical guarantee as Theo-
rem 2. Our evaluation focuses on assessing the precision of
this malicious client number estimator and examining the
conformal prediction performance of Rob-FCP within this
uncertain environment. The results in Figure 3 reveal that
our estimator (K̂m) closely approximates the actual num-
ber of malicious clients (Km), leading to a marginal cover-
age and average set size close to the benign level. Further
results across all five datasets, under a variety of Byzantine
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Figure 3: Results of malicious client number estimation and conformal prediction performance in the setting with unknown
numbers of malicious clients. The green horizontal line denotes the benign conformal performance. Rob-FCP estimates
the number of malicious clients faithfully, and provides an empirical coverage rate matching the target (benign level).

Figure 4: Upper and lower bounds of prediction coverage
of Rob-FCP by Theorem 1 on Tiny-ImageNet.

attacks, are detailed in Table 10 in Appendix G.2, confirm-
ing the effectiveness of the malicious client number estima-
tor.

Validation of coverage bounds of Rob-FCP In Theo-
rem 1, we provide both the lower and upper bound of the
coverage rate of Rob-FCP, considering the ratio of mali-
cious clients (τ = Km/Kb) and the sample sizes across
clients. In Figure 4, we compare these theoretical bounds
of coverage rate against the observed empirical marginal
coverage under Gaussian attacks on Tiny-ImageNet. The
results demonstrate the validity and tightness of the certi-
fied coverage bounds in Theorem 1.

5.3. Ablation study

Robustness of Rob-FCP across varying levels of data
heterogeneity Data heterogeneity among clients poses
significant challenges to achieving precise federated con-
formal prediction. To assess the resilience of Rob-FCP to
this issue, we conducted evaluations using various values
of the Dirichlet parameter β, which modulates the degree
of data heterogeneity among clients. The results in Table 2
show that Rob-FCP reliably maintains marginal coverage
and average set size at levels close to the benign levels,
underscoring its robustness in the face of data heterogene-

ity. Furthermore, we investigate additional approaches to
create heterogeneous data that mirror demographic differ-
ences. This involves dividing the SHHS dataset according
to five specific attributes (wake time, N1, N2, N3, REM)
and allocating instances to clients based on varying in-
tervals of these attributes. The results in Table 4 in Ap-
pendix G.2 highlight Rob-FCP’s capability to effectively
handle diverse forms of data heterogeneity.

Ablation study on conformity score distribution char-
acterization methods A pivotal aspect of Rob-FCP in-
volves the characterization of the conformity score distri-
bution through empirical data. Our primary method uti-
lizes histogram statistics as outlined in Equation (4). Alter-
natively, one could represent score samples using cluster
centers derived from clustering algorithms like KMeans,
or employ a parametric method such as fitting the score
samples to a Gaussian distribution and characterizing them
by the mean and variances of the Gaussian. Our empirical
comparison of these methods, presented in Figure 5 and
Figure 12 within Appendix G.2, reveals that the histogram
statistics approach yields superior performance. Additional
ablation studies focusing on various distance measurement
techniques are provided in Figure 13 in Appendix G.2.

Robustness of Rob-FCP with various conformity scores
Besides applying LAC nonconformity scores, we also eval-
uate Rob-FCP with APS conformity scores (Romano et al.,
2020). The results in Figures 6 to 11 in Appendix G.2
demonstrate the resilience of Rob-FCP to the selection of
conformity scores. We also evaluate the runtime and show
the efficiency of Rob-FCP in Table 5 in Appendix G.2.

6. Related work
Conformal prediction is a statistical tool to construct the
prediction set with guaranteed prediction coverage (Jin
et al., 2023; Solari & Djordjilović, 2022; Yang & Kuchib-
hotla, 2021; Romano et al., 2020; Barber et al., 2021; Kang
et al., 2024b;a), assuming exchangeable data. Recently,
federated conformal prediction (FCP) (Lu & Kalpathy-
Cramer, 2021; Lu et al., 2023) adapts the conformal predic-
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Table 2: Marginal coverage / average set size across varying levels of data heterogeneity, controlled by different Dirichlet
parameter β. The evaluation is done under coverage attack with 40% (Km/K = 40%) malicious clients. The desired
coverage level is 0.9. Results that more closely align with those observed in an all-benign-client scenario (provided in
Table 3) are highlighted in bold.

Dataset Method β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9

MNIST FCP 0.780 / 1.173 0.817 / 1.318 0.833 / 1.384 0.805 / 1.265 0.828 / 1.363
Rob-FCP 0.899 / 1.806 0.905 / 1.809 0.903 / 1.827 0.898 / 1.781 0.893 / 1.768

CIFAR-10 FCP 0.806 / 1.641 0.821 / 1.717 0.836 / 1.791 0.823 / 1.744 0.824 / 1.723
Rob-FCP 0.899 / 2.260 0.907 / 2.405 0.892 / 2.243 0.904 / 2.396 0.910 / 2.416

Tiny-ImageNet FCP 0.840 / 28.625 0.830 / 28.192 0.833 / 28.340 0.821 / 27.140 0.831 / 28.751
Rob-FCP 0.913 / 45.872 0.910 / 44.972 0.898 / 42.571 0.887 / 41.219 0.898 / 43.298

PathMNIST FCP 0.850 / 1.106 0.839 / 1.065 0.837 / 1.055 0.839 / 1.065 0.832 / 1.043
Rob-FCP 0.895 / 1.311 0.900 / 1.355 0.900 / 1.355 0.899 / 1.354 0.901 / 1.363

tion to the federated learning and provides a rigorous guar-
antee of the distributed uncertainty quantification frame-
work. DP-FCP (Plassier et al., 2023) proposes federated
CP with differential privacy guarantees and provides valid
coverage bounds under label shifting among clients. Hum-
bert et al. propose a quantile-of-quantiles estimator for fed-
erated conformal prediction with a one-round communica-
tion and provide a locally differentially private version.
WFCP (Zhu et al., 2023) applies FCP to wireless commu-
nication. However, no prior works explore the robustness
of FCP against Byzantine agents which can report mali-
cious statistics to downgrade the conformal prediction per-
formance. We are the first to propose a robust FCP method
with valid and tight coverage guarantees.

Byzantine learning (Driscoll et al., 2003; Awerbuch et al.,
2002; Lamport et al., 2019) refers to methods that can
robustly aggregate updates from potentially malicious or
faulty worker nodes in the distributed setting. Specifi-
cally, a line of works (Guerraoui et al., 2018; Pillutla et al.,
2022; Data & Diggavi, 2021; Karimireddy et al., 2020;
Yi et al., 2022) studies the resilience to Byzantine fail-
ures of distributed implementations of Stochastic Gradi-
ent Descent (SGD) and proposes different metrics to iden-
tify malicious gradients such as gradient norm (Blanchard
et al., 2017) and coordinate-wise trimmed mean (Yin et al.,
2018). However, the metrics are designed for the stability
and convergence of distributed optimization and cannot be
applied to the Byzantine FCP setting to provide rigorous
coverage guarantees. In contrast, we propose Rob-FCP to
perform Byzantine-robust distributed uncertainty quantifi-
cation and provide valid and tight coverage bounds theoret-
ically.

7. Conclusion
In this paper, we propose Rob-FCP, a certifiably
Byzantine-robust federated conformal prediction algorithm
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Figure 5: Marginal coverage / average set size under cover-
age attack with 40% malicious clients on Tiny-ImageNet.
The green horizontal line denotes the benign marginal cov-
erage and average set size without any malicious clients.

with rigorous coverage guarantees. Rob-FCP sketches the
local samples of conformity scores with characterization
vectors and detects the malicious clients in the vector space.
We empirically show the robustness of Rob-FCP against
Byzantine failures on five datasets and validate the theoret-
ical coverage bounds.
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A. Limitations and future works
One possible limitation of Rob-FCP may lie in the restriction of the targeted Byzantine threat model. We mainly consider
the Byzantine setting where a certain ratio of malicious clients reports arbitrary conformity score statistics. In such a
Byzantine case, the break point is ⌈K/2⌉, indicating that any algorithm cannot tolerate ⌈K/2⌉ or more malicious clients.
However, in practice, malicious clients have the flexibility of only manipulating partial conformity scores. In this case,
the potential break point is a function of the maximal ratio of manipulated scores for each client and can be larger than
⌈K/2⌉. Therefore, it is interesting for future work to analyze the break point of robust FCP algorithms with respect to
the total manipulation sizes and budgets of manipulation sizes for each client. Another threat model worthy of exploration
in future work is the adversarial setting in FCP. In the adversarial setting, malicious clients can only manipulate the data
samples instead of the conformity scores to downgrade the FCP performance. Therefore, potential defenses can consider
adversarial conformal training procedures to collaboratively train a robust FCP model against perturbations in the data
space.

To provide differential privacy guarantees of Rob-FCP, one practical approach is to add privacy-preserving noises to the
characterization vectors before uploading them to the server. Essentially, we can view the characterization vector as the
gradient in the setting of FL with differential privacy (DP) and add Gaussian noises to the characterization vector with
differential privacy guarantees as a function of the scale of noises, which can be achieved by drawing analogy from the
FL with DP setting (Zheng et al., 2021; Andrew et al., 2021; Zhang et al., 2022). Therefore, practically implementing the
differential-private version of Rob-FCP is possible and straightforward.

B. Additional related work
Byzantine learning (Driscoll et al., 2003; Awerbuch et al., 2002; Lamport et al., 2019) refers to methods that can robustly
aggregate updates from potentially malicious or faulty worker nodes in the distributed setting. Specifically, a line of
works (Guerraoui et al., 2018; Pillutla et al., 2022; Data & Diggavi, 2021; Karimireddy et al., 2020; Yi et al., 2022)
studies the resilience to Byzantine failures of distributed implementations of Stochastic Gradient Descent (SGD) and
proposes different metrics to identify malicious gradients such as gradient norm (Blanchard et al., 2017) and coordinate-
wise trimmed mean (Yin et al., 2018). However, the metrics are designed for the stability and convergence of distributed
optimization and cannot be applied to the Byzantine FCP setting to provide rigorous coverage guarantees. In contrast, we
propose Rob-FCP to perform Byzantine-robust distributed uncertainty quantification and provide valid and tight coverage
bounds theoretically.

C. Omitted proofs
C.1. Proof of Theorem 1

Before proving Theorem 1, we first prove the following lemma.
Lemma C.1. For K clients including Kb benign clients and Km := K − Kb malicious clients, each client reports a
characterization vector v(k) ∈ ∆H (k ∈ [K]) and a quantity nk ∈ Z+ (k ∈ [K]) to the server. Suppose that the reported
characterization vectors of benign clients are sampled from the same underlying multinomial distribution D, while those
of malicious clients can be arbitrary. Let ϵ be the estimation error of the data sketching by characterization vectors as
illustrated in Equation (3). Under the assumption that Km < Kb, the following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
− HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
.

(10)

where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients, Nm :=
∑

k∈[K]\[Kb]
nk

is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the minimal sample size of benign clients, and Φ−1(·)
denotes the inverse of the cumulative distribution function (CDF) of standard normal distribution.

Proof. The proof consists of 3 parts: (a) concentration analysis of the characterization vectors v(k) for benign clients
(1 ≤ k ≤ Kb), (b) analysis of the algorithm of the identification of malicious clients, and (c) analysis of the error of the
coverage bound.
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Part (a): concentration analysis of the characterization vectors v(k) for benign clients (1 ≤ k ≤ Kb).

Let v(k)
h be the h-th element of vector v(k). By definition, since v(k) is sampled from a multinomial distribution, v(k)

h de-
notes the success rate estimate of a Bernoulli distribution. We denote the event probabilities of the multinomial distribution
D as v. Therefore, the true success rate of the Bernoulli distribution at the h-th position is vh. According to the binomial
proportion confidence interval (Wallis, 2013), we have:

P
[∣∣∣v(k)

h − vh

∣∣∣ > Φ−1(1− β/2HKb)

√
nksnkf

nk
√
nk

]
≤ β/HKb, (11)

where β/HKb is the probability confidence, Φ−1(·) denotes the inverse of the CDF of the standard normal distribution,
and nks and nkf := nk − nks are the number of success and failures in nk Bernoulli trials, respectively. Applying the
inequality nksnkf ≤ n2

k/4 in Equation (11), the following holds:

P
[∣∣∣v(k)

h − vh

∣∣∣ > Φ−1(1− β/2HKb)

2
√
nk

]
≤ β/HKb. (12)

Applying the union bound for H elements in vector v(k) and Kb characterization vectors of benign clients, the following
holds with probability 1− β: ∣∣∣v(k)

h − vh

∣∣∣ ≤ Φ−1(1− β/2HKb)

2
√
mink′∈[Kb] nk′

, ∀k ∈ [Kb], ∀h ∈ [H], (13)

from which we can derive the bound of difference for ℓ1 norm distance as:∥∥∥v(k) − v
∥∥∥
1
≤ r(β) :=

HΦ−1(1− β/2HKb)

2
√

mink′∈[Kb] nk′
, ∀k ∈ [Kb], (14)

where r(β) is the perturbation radius of random vector v given confidence level 1−β. ∀k1, k2 ∈ [Kb], the following holds
with probability 1− β due to the triangular inequality:∥∥∥v(k1) − v(k2)

∥∥∥
1
≤
∥∥∥v(k1) − v

∥∥∥
1
+
∥∥∥v(k2) − v

∥∥∥
1
≤ 2r(β). (15)

Furthermore, due to the fact that ∥v∥p ≤ ∥v∥1 for any integer p ≥ 1, the following holds with probability 1− β:∥∥∥v(k) − v
∥∥∥
p
≤
∥∥∥v(k) − v

∥∥∥
1
≤ r(β), (16)∥∥∥v(k1) − v(k2)

∥∥∥
p
≤
∥∥∥v(k1) − v(k2)

∥∥∥
1
≤ 2r(β). (17)

Part (b): analysis of the algorithm of the identification of malicious clients.

Let N(k, n) be the set of the index of n nearest clients to the k-th client based on the metrics of ℓp norm distance in the
space of characterization vectors. Then the maliciousness scores M(k) for the k-th client (k ∈ [K]) can be defined as:

M(k) :=
1

Kb − 1

∑
k′∈N(k,Kb−1)

∥∥∥v(k) − v(k′)
∥∥∥
p
. (18)

Let B be the set of the index of benign clients identified by Algorithm 1 by selecting the clients associated with the lowest
Kb maliciousness scores. We will consider the following cases separately: (1) B contains exactly Kb benign clients, and
(2) B contains at least one malicious client indexed by m.

Case (1): B (|B| = Kb) contains exactly Kb benign clients. We can derive as follows:∥∥∥∥∥
Kb∑
k=1

nk

Nb
v(k) − v

∥∥∥∥∥
p

≤
Kb∑
k=1

nk

Nb

∥∥∥v(k) − v
∥∥∥
p

[triangular inequality] (19)

≤
Kb∑
k=1

nk

Nb
r(β) [by Equation (16)] (20)

= r(β), (21)
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where Nb :=
∑

k∈[Kb]
nk is the total sample size of benign clients.

Case (2): B (|B| = Kb) contains at least one malicious client indexed by m. Since we assume Km < Kb, there are at most
Kb − 1 malicious clients in B. Therefore, there is at least 1 benign client in [K]\B indexed by b. We can derive the lower
bound of the maliciousness score for the m-th client M(m) as:

M(m) =
1

Kb − 1

∑
k′∈N(m,Kb−1)

∥∥∥v(m) − v(k′)
∥∥∥
p

(22)

≥ 1

Kb − 1

∑
k′∈N(m,Kb−1),k′∈[Kb]

∥∥∥v(m) − v(k′)
∥∥∥
p
. (23)

Since there are at least Kb −Km benign clients in B (there are at most Km malicious clients in B), there exists one client
indexed by bb (bb ∈ B) such that: ∥∥∥v(m) − v(bb)

∥∥∥
p
≤ (Kb − 1)M(m)

Kb −Km
(24)

We can derive the upper bound of the maliciousness score for the b-th benign client M(b) as:

M(b) =
1

Kb − 1

∑
k′∈N(b,Kb−1)

∥∥∥v(b) − v(k′)
∥∥∥
p

(25)

≤ 2r(β) [by Equation (17)] (26)

Since the m-th client is included in B and identified as a benign client, while the b-th client is not in B, the following holds
according to the procedure in Algorithm 1:

M(b) ≥M(m), (27)

from which we can derive the following by combining Equation (24) and Equation (26):∥∥∥v(m) − v(bb)
∥∥∥
p
≤ (Kb − 1)2r(β)

Kb −Km
(28)

Then, we can derive the upper bound of
∥∥v(m) − v

∥∥
p
, ∀m ∈ B and Kb < m ≤ K as follows:∥∥∥v(m) − v

∥∥∥
p
≤
∥∥∥v(m) − v(bb)

∥∥∥
p
+
∥∥∥v(bb) − v

∥∥∥
p

(29)

≤ 2(Kb − 1)r(β)

Kb −Km
+ r(β) (30)

Finally, we can derive as follows:∥∥∥∥∥∑
k∈B

nk

NB
v(k) − v

∥∥∥∥∥
p

≤
∑
k∈B

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(31)

≤
∑

k∈B,k∈[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p
+

∑
k∈B,k∈[K]\[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(32)

≤
∑

k∈B,k∈[Kb]

nk

NB
r(β) +

∑
k∈B,k∈[K]\[Kb]

nk

NB

[
2(Kb − 1)r(β)

Kb −Km
+ r(β)

]
(33)

≤ r(β) +
∑

k∈B,k∈[K]\[Kb]

nk

NB

2(Kb − 1)r(β)

Kb −Km
(34)

≤ r(β)

(
1 +

Nm

mink′∈[Kb] nk′

2

1− τ

)
, (35)
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where Nm :=
∑

k∈[K]\[Kb]
nk is the total sample size of malicious clients, NB is the total sample size of clients in B, and

τ :=
Km

Kb
is the ratio of the number of malicious clients to the number of benign clients.

Combining case (1) and case (2), we can conclude that:∥∥∥∥∥∑
k∈B

nk

NB
v(k) − v

∥∥∥∥∥
p

≤ max

{
1, 1 +

Nm

mink′∈[Kb] nk′

2

1− τ

}
r(β) (36)

=

(
1 +

Nm

mink′∈[Kb] nk′

2

1− τ

)
r(β) (37)

Part (c): analysis of the error of the coverage bound. In this part, we attempt to translate the error of aggregated vectors
induced by malicious clients to the error of the bound of marginal coverage. Let F1(q,v) :=

∑H
j=1 I [aj < q]vj , where

q ∈ [0, 1] and aj is the j-th partition point used to construct the characterization vector v ∈ ∆H . Let F2(q,v) :=∑H
j=1 I [aj−1 < q]vj . Then by definition, we know that F1(qα,v) ≤ P

[
Ytest ∈ Ĉα(Xtest)

]
≤ F2(qα,v), where qα is the

true (1−α) quantile value of the non-conformity scores, v is the event probability of the multinormial distribution D, and
Ĉα(Xtest) is the conformal prediction set of input Xtest using the true benign calibrated conformity score qα and statistics
of score distribution v.

Let q̂α be the quantile estimate during calibration. FCP (Lu et al., 2023) proves that if the rank of quantile estimate q̂α is
between (1− α− ϵ)(N +K) and (1− α+ ϵ)(N +K), then we have:

F1(q̂α,v) ≥ 1− α− ϵNB + 1

NB +Kb
, F2(q̂α,v) ≤ 1− α+ ϵ+

Kb

NB +Kb
. (38)

Now we start deriving the error of F1(·, ·) induced by the malicious clients. Let v̂ :=
∑

k∈B
nk

N
v(k) be the estimated mean

of characterization vector. Based on the results in part (b), we can derive as follows:

|F1(q̂α,v)− F1(q̂α, v̂)| =

∣∣∣∣∣∣
H∑
j=1

I [aj < q̂α]vj −
H∑
j=1

I [aj < q̂α] v̂j

∣∣∣∣∣∣ (39)

≤
H∑
j=1

I [aj < q̂α] |vj − v̂j | (40)

≤ ∥v − v̂∥1 (41)

≤
(
1 +

Nm

mink′∈[Kb]nk′

2

1− τ

)
r(β) (42)

From triangular inequalities, we have:

F1(q̂α,v)− |F1(q̂α,v)− F1(q̂α, v̂)| ≤ F1(q̂α, v̂) ≤ P
[
Ytest ∈ Ĉα(Xtest)

]
. (43)

Similarly, we can derive that |F2(q̂α,v)− F2(q̂α, v̂)| ≤
(
1 +

Nm

mink′∈[Kb]nk′

2

1− τ

)
r(β) and have:

F2(q̂α,v) + |F2(q̂α,v)− F2(q̂α, v̂)| ≥ F2(q̂α, v̂) ≥ P
[
Ytest ∈ Ĉα(Xtest)

]
. (44)

Plugging in the terms in Equations (38) and (42) and leveraging the fact NB ≥ nb, we finally conclude that the following
holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
− HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
.

(45)

17



Certifiably Byzantine-Robust Federated Conformal Prediction

where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients, Nm :=∑
k∈[K]\[Kb]

nk is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the minimal sample size of benign
clients, and Φ−1(·) denotes the inverse of the cumulative distribution function (CDF) of standard normal distribution.

Next, we start proving Theorem 1.
Theorem 3 (Restatement of Theorem 1). Consider FCP setting with Kb benign clients and Km malicious clients. The
k-th client reports the characterization vector v(k) and local sample size nk to the server. Assume that the benign char-
acterization vector v(k) is sampled from multinomial distribution Dk with the event probability v(k) for the k-th client
(k ∈ [Kb]). We use σ to quantify the heterogeneity of benign vectors as σ = maxk1,k2∈[Kb] ∥v

(k1) − v(k2)∥1. Let ϵ be the
data sketching error as Equation (3). Under the assumption that Km < Kb, the following holds for test instance (Xt, Yt)
with probability 1− β:

P
[
Yt∈Ĉα(Xt)

]
≥ 1−α−Pbyz −

Nmσ

nb(1− τ)
− ϵnb + 1

nb +Kb

P
[
Yt∈Ĉα(Xt)

]
≤ 1−α+Pbyz +

Nmσ

nb(1− τ)
+

ϵnb + (ϵ+ 1)Kb

nb +Kb

where Pbyz =
HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

) (46)

where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients, Nm :=
∑

k∈[K]\[Kb]
nk

is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the minimal sample size of benign clients, and Φ−1(·)
denotes the inverse of the cumulative distribution function (CDF) of standard normal distribution.

Proof. The general structure of the proof follows the proof of Lemma C.1. We will omit similar derivation and refer to the
proof of Lemma C.1 for details. The proof consists of 3 parts: (a) concentration analysis of the characterization vectors
v(k) for benign clients (1 ≤ k ≤ Kb), (b) analysis of the algorithm of the identification of malicious clients, and (c)
analysis of the error of the coverage bound.

Part (a): concentration analysis of the characterization vectors v(k) for benign clients (1 ≤ k ≤ Kb).

Let v(k) be the event probability of the multinormial distribution D(k) for k ∈ [Kb]. By applying binomial proportion
approximate normal confidence interval and union bound as in Part (a) in the proof of Lemma C.1, with confidence 1− β,
we have: ∥∥∥v(k) − v(k)

∥∥∥
1
≤ r(β) :=

HΦ−1(1− β/2HKb)

2
√

mink′∈[Kb] nk′
, ∀k ∈ [Kb], (47)

where r(β) is the perturbation radius of random vector v(k) given confidence level 1 − β. ∀k1, k2 ∈ [Kb], we can upper
bound the ℓp norm distance between v(k1) and v(k2) as:∥∥∥v(k1) − v(k2)

∥∥∥
p
≤
∥∥∥v(k1) − v(k1)

∥∥∥
p
+
∥∥∥v(k1) − v(k2)

∥∥∥
p
+
∥∥∥v(k2) − v(k1)

∥∥∥
p

(48)

≤
∥∥∥v(k1) − v(k1)

∥∥∥
1
+
∥∥∥v(k1) − v(k2)

∥∥∥
p
+
∥∥∥v(k2) − v(k1)

∥∥∥
1

(49)

≤ 2r(β) + σ, (50)

where Equation (50) holds by Equation (47).

Part (b): analysis of the algorithm of the identification of malicious clients.

Let N(k, n) be the set of the index of n nearest clients to the k-th client based on the metrics of ℓp norm distance in the
space of characterization vectors. Then the maliciousness scores M(k) for the k-th client (k ∈ [K]) can be defined as:

M(k) :=
1

Kb − 1

∑
k′∈N(k,Kb−1)

∥∥∥v(k) − v(k′)
∥∥∥
p
. (51)

Let B be the set of the index of benign clients identified by Algorithm 1 by selecting the clients associated with the lowest
Kb maliciousness scores. We will consider the following cases separately: (1) B contains exactly Kb benign clients, and
(2) B contains at least one malicious client indexed by m.
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Case (1): B (|B| = Kb) contains exactly Kb benign clients. We can derive as follows:∥∥∥∥∥
Kb∑
k=1

nk

Nb
v(k) −

Kb∑
k=1

nk

Nb
v(k)

∥∥∥∥∥
p

≤
Kb∑
k=1

nk

Nb

∥∥∥v(k) − v(k)
∥∥∥
p

(52)

≤
Kb∑
k=1

nk

Nb
r(β) (53)

= r(β), (54)

where Nb :=
∑

k∈[Kb]
nk is the total sample size of benign clients.

Case (2): B (|B| = Kb) contains at least one malicious client indexed by m. Since we assume Km < Kb, there are at
most Kb − 1 malicious clients in B. Therefore, there is at least 1 benign client in [K]\B indexed by b. From the fact that
M(m) ≤ M(b) and expanding the definitions the maliciousness score as Part (b) in the proof of Lemma C.1, we get that
∃bb ∈ B, bb ∈ [Kb]: ∥∥∥v(m) − v(bb)

∥∥∥
p
≤ (Kb − 1)(2r(β) + σ)

Kb −Km
(55)

Therefore, we can upper bound the distance between the estimated global event probability vector
∑

k∈B
nk

NB
v(k) and the

benign global event probability vector
∑

k∈[Kb]

nk

Nb
v(k).

We first show that ∀k ∈ [Kb], we have:∥∥∥∥∥∥v(k) −
∑

k∈[Kb]

nk

Nb
v(k)

∥∥∥∥∥∥
p

≤
∑

k∈[Kb]

nk

Nb

∥∥∥v(k) − v(k)
∥∥∥
p
≤ r(β). (56)

Then, we can derive as follows:∥∥∥∥∥∥
∑
k∈B

nk

NB
v(k) −

∑
k∈[Kb]

nk

Nb
v(k)

∥∥∥∥∥∥
p

(57)

≤
∑

k∈B,k∈[Kb]

nk

NB

∥∥∥∥∥∥v(k) −
∑

k∈[Kb]

nk

Nb
v(k)

∥∥∥∥∥∥
p

+
∑

k∈B,k∈[K]\[Kb]

nk

NB

∥∥∥∥∥∥v(k) −
∑

k∈[Kb]

nk

Nb
v(k)

∥∥∥∥∥∥
p

(58)

≤
∑

k∈B,k∈[Kb]

nk

NB
r(β) +

∑
k∈B,k∈[K]\[Kb]

nk

NB

∥∥∥v(k) − v(bb)
∥∥∥
p
+

∥∥∥∥∥∥v(bb) −
∑

k∈[Kb]

nk

Nb
v(k)

∥∥∥∥∥∥
p

 (59)

≤
∑

k∈B,k∈[Kb]

nk

NB
r(β) +

∑
k∈B,k∈[K]\[Kb]

nk

NB

[
(Kb − 1)(2r(β) + σ)

Kb −Km
+ r(β)

]
(60)

≤r(β) +
∑

k∈B,k∈[K]\[Kb]

nk

NB

(Kb − 1)(2r(β) + σ)

Kb −Km
(61)

≤r(β)
(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
. (62)

Part (c): analysis of the error of the coverage bound.

Let F1(q,v) :=
∑H

j=1 I [aj < q]vj , where q ∈ [0, 1] and aj is the j-th partition point used to construct the characterization

vector v ∈ ∆H . Let F2(q,v) :=
∑H

j=1 I [aj−1 < q]vj . This part follows the same procedure to translate the error of
aggregated vectors induced by malicious clients to the error of the bound of marginal coverage. The only difference is that
considering data heterogeneity, the error of aggregated vectors formulated in Equation (62) needs additional correction by
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the client data disparity. Therefore, by analyzing the connection between characterization vector and coverage similarly in
Part (3) in the proof of Lemma C.1, we have:

|F1(q̂α,v)− F1(q̂α, v̂)| ≤ r(β)

(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
, (63)

|F2(q̂α,v)− F2(q̂α, v̂)| ≤ r(β)

(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
, (64)

where v :=
∑

k∈[Kb]

nk

Nb
v(k) and v̂ :=

∑
k∈B

nk

NB
v(k). On the other hand, from triangular inequalities, we have:

F1(q̂α,v)− |F1(q̂α,v)− F1(q̂α, v̂)| ≤ F1(q̂α, v̂) ≤ P
[
Ytest ∈ Ĉα(Xtest)

]
, (65)

F2(q̂α,v) + |F2(q̂α,v)− F2(q̂α, v̂)| ≥ F2(q̂α, v̂) ≥ P
[
Ytest ∈ Ĉα(Xtest)

]
. (66)

Plugging in the terms, we finally conclude that the following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
− HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
− Nm

nb

σ

1− τ
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
.

(67)

where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients, Nm :=∑
k∈[K]\[Kb]

nk is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the minimal sample size of benign
clients, and Φ−1(·) denotes the inverse of CDF of the standard normal distribution.

C.2. Proof of Theorem 2

Theorem 4 (Restatement of Theorem 2). Assume v(k) (k ∈ [Kb]) are IID sampled from Gaussian N (µ,Σ) with mean
µ ∈ RH and positive definite covariance matrix Σ ∈ RH×H . Let d := mink∈[K]\[Kb] ∥v(k) − µ∥2. Suppose that we use
ℓ2 norm to measure vector distance and leverage the malicious client number estimator with an initial guess of a number
of benign clients K̃b such that Km < K̃b ≤ Kb. Then we have:

P
[
K̂m = Km

]
≥ 1− (3K̃b −Km − 2)2Tr(Σ)

(K̃b −Km)2d2
− 2(K +Kb)Tr(Σ)σ2

max(Σ
−1/2)

σ2
min(Σ

−1/2)d2
, (68)

where σmax(Σ
−1/2), σmin(Σ

−1/2) denote the maximal and minimal eigenvalue of matrix Σ−1/2, and Tr(Σ) denotes the
trace of matrix Σ.

Proof. From the concentration inequality of multivariate Gaussian distribution (Vershynin, 2018), the following holds for
v(k) ∼ N (µ,Σ):

P

[
∥v(k) − µ∥2 ≤

√
1

δ
Tr(Σ)

]
≥ 1− δ. (69)

Applying union bound for all benign clients k ∈ [Kb], the following concentration bound holds:

P

[
∥v(k) − µ∥2 ≤

√
Kb

δ
Tr(Σ), ∀k ∈ [Kb]

]
≥ 1− δ, (70)

Let the perturbation radius r :=
K̃b −Km

3K̃b −Km − 2
d. Then we can derive that:

P

[
∥v(k) − µ∥2 ≤ r :=

K̃b −Km

3K̃b −Km − 2
d, ∀k ∈ [Kb]

]
≥ 1− (3K̃b −Km − 2)2Tr(Σ)

(K̃b −Km)2d2
:= 1− δ. (71)
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The following discussion is based on the fact that ∥v(k) − µ∥2 ≤ r :=
K̃b −Km

3K̃b −Km − 2
d, ∀k ∈ [Kb], and the confidence

1 − δ will be incorporated in the final statement. Let N(k, n) be the index set of n nearest neighbors of client k in the
characterization vector space with the metric of ℓ2 norm distance. We consider the maliciousness score M(b) of any benign
client b ∈ [Kb]:

M(b) =
1

K̃b − 1

∑
k′∈N(b,K̃b−1)

∥∥∥v(b) − v(k′)
∥∥∥
2

(72)

≤ max
k′∈[Kb]

∥∥∥v(b) − v(k′)
∥∥∥
2

(73)

≤ max
k′∈[Kb]

{∥∥∥v(b) − µ
∥∥∥
2
+
∥∥∥µ− v(k′)

∥∥∥
2

}
(74)

≤ 2(K̃b −Km)

3K̃b −Km − 2
d. (75)

Equation (73) holds since the average of distances to K̃b − 1 nearest vectors is upper bounded by the average of distances
to arbitrary K̃b − 1 benign clients, which is upper bounded by the maximal distance to benign clients. Equation (75) holds
by plugging in the results in Equation (71).

We consider the maliciousness score M(m) of any malicious client m ∈ [K]\[Kb]:

M(m) =
1

K̃b − 1

∑
k′∈N(m,K̃b−1)

∥∥∥v(m) − v(k′)
∥∥∥
2

(76)

≥ 1

K̃b − 1

∑
k′∈N(m,K̃b−1),k′∈[Kb]

∥∥∥v(m) − v(k′)
∥∥∥
2

(77)

≥ 1

K̃b − 1

∑
k′∈N(m,K̃b−1),k′∈[Kb]

[∥∥∥v(m) − µ
∥∥∥
2
−
∥∥∥µ− v(k′)

∥∥∥
2

]
(78)

≥ 1

K̃b − 1
(K̃b −Km)

(
d− K̃b −Km

3K̃b −Km − 2
d

)
(79)

≥ 2(K̃b −Km)

3K̃b −Km − 2
d. (80)

Equation (79) holds since d := mink∈[K]\[Kb] ∥v(k)−µ∥2 by definition. Therefore, from Equation (75) and Equation (80),
we can conclude that with probability 1 − δ, M(m) ≥ M(b), ∀b ∈ [Kb],m ∈ [K]\[Kb], which implies that ∀k ∈
[Kb], I(k) ∈ [Kb] and ∀k ∈ [K]− [Kb], I(k) ∈ [K]\[Kb].

Recall that the estimate of the number of benign clients K̂b is given by:

K̂b = argmax
z∈[K]

[
1

z

z∑
k=1

log p(v(I(k));µ,Σ)− 1

K − z

K∑
k=z+1

log p(v(I(k));µ,Σ)

]
. (81)

For ease of notation, let T (z) :=
1

z

∑z
k=1 log p(v

(I(k));µ,Σ) − 1

K − z

∑K
k=z+1 log p(v

(I(k));µ,Σ) for z ∈ [K] and

dk := v(I(k)) − µ for k ∈ [K]. Then we can upper bound the probability of an underestimate of the number of malicious
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clients P
[
K̂b < Kb

]
as follows:

P
[
K̂b < Kb

]
(82)

=P
[
T (K̂b) > T (Kb)

]
(83)

≤P

−(Kb − K̂b)

KbK̂b

K̂b∑
k=1

log p(v(I(k))) +
K − K̂b +Kb

Kb(K − K̂b)

Kb∑
k=K̂b+1

log p(v(I(k)))

<
Kb − K̂b

(K −Kb)(K − K̂b)

K∑
k=Kb+1

log p(v(I(k)))

]
(84)

≤P

K − K̂b +Kb

Kb(K − K̂b)

Kb∑
k=K̂b+1

−dTkΣ−1dk <
Kb − K̂b

(K −Kb)(K − K̂b)

K∑
k=Kb+1

−dTkΣ−1dk

 (85)

≤P

 Kb − K̂b

(K −Kb)

K∑
k=Kb+1

∥dTkΣ−1/2∥22 <
K − K̂b +Kb

Kb

Kb∑
k=K̂b+1

∥dTkΣ−1/2∥22

 (86)

≤P

 Kb − K̂b

(K −Kb)

K∑
k=Kb+1

σ2
min(Σ

−1/2)∥dTk ∥22 <
K − K̂b +Kb

Kb

Kb∑
k=K̂b+1

σ2
max(Σ

−1/2)∥dTk ∥22

 (87)

≤P

[
σ2

min(Σ
−1/2)d2 <

K − K̂b +Kb

Kb
σ2

max(Σ
−1/2) max

k∈[Kb]
∥dTk ∥22

]
(88)

≤P

[
max
k∈[Kb]

∥dTk ∥2 >

√
Kb

K +Kb

σmin(Σ
−1/2)d

σmax(Σ−1/2)

]
(89)

≤ (K +Kb)Tr(Σ)σ2
max(Σ

−1/2)

σ2
min(Σ

−1/2)d2
(90)

Equation (84) holds by plugging in the definitions in Equation (81) and rearranging the terms. Equation (85) holds by

dropping the positive term
−(Kb − K̂b)

KbK̂b

∑K̂b

k=1 log p(v
(I(k))) and rearranging log-likelihood terms of multivariate Gaus-

sian with dk. Equation (87) holds by leveraging the fact that σmin(Σ
−1/2)∥dTk ∥2 ≤ ∥dTkΣ−1/2∥2 ≤ σmax(Σ

−1/2)∥dTk ∥2.

Similarly, we can upper bound the probability of overestimation of the number of malicious clients P
[
K̂b > Kb

]
as:

P
[
K̂b > Kb

]
≤ (K +Kb)Tr(Σ)σ2

max(Σ
−1/2)

σ2
min(Σ

−1/2)d2
. (91)

We can finally conclude that:

P
[
K̂b = Kb

]
≥ 1− (3K̃b −Km − 2)2Tr(Σ)

(K̃b −Km)2d2
− 2(K +Kb)Tr(Σ)σ2

max(Σ
−1/2)

σ2
min(Σ

−1/2)d2
. (92)
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D. Improvements with DKW inequality
D.1. Improvement of Lemma C.1 with DKW inequality

Theorem 5 (Improvement of Lemma C.1). For K clients including Kb benign clients and Km := K − Kb malicious
clients, each client reports a characterization vector v(k) ∈ ∆H (k ∈ [K]) and a quantity nk ∈ Z+ (k ∈ [K]) to
the server. Suppose that the reported characterization vectors of benign clients are sampled from the same underlying
multinomial distribution D, while those of malicious clients can be arbitrary. Let ϵ be the estimation error of the data
sketching by characterization vectors as illustrated in Equation (3). Under the assumption that Km < Kb, the following
holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
−H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
,

(93)

where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients, Nm :=
∑

k∈[K]\[Kb]
nk

is the total sample size of malicious clients, and nb := mink′∈[Kb] nk′ is the minimal sample size of benign clients.

Proof. The proof structure follows the proof of Lemma C.1 and consists of 3 parts: (a) concentration analysis of the
characterization vectors v(k) for benign clients (1 ≤ k ≤ Kb), (b) analysis of the algorithm of the identification of
malicious clients, and (c) analysis of the error of the coverage bound. Part (b) and (c) are exactly the same as the proof
Lemma C.1 and the only difference lies in the use of a more advanced concentration bound in part (a), which provides
concentration analysis of the characterization vectors v(k) for benign clients (1 ≤ k ≤ Kb). Let v(k)

h be the h-th element
of vector v(k). According to the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality, we have:

P
[∣∣∣v(k)

h − vh

∣∣∣ > β
]
≤ 2 exp

{
−2Hβ2

}
, ∀h ∈ {1, 2, ..,H}. (94)

Applying the union bound for Kb characterization vectors of benign clients, the following holds with probability 1− β:∣∣∣v(k)
h − vh

∣∣∣ ≤
√

ln(2Kb/β)

2nb
, ∀k ∈ [Kb], ∀h ∈ [H], (95)

from which we can derive the bound of difference for ℓ1 norm distance as:∥∥∥v(k) − v
∥∥∥
1
≤ r(β) := H

√
ln(2Kb/β)

2nb
, ∀k ∈ [Kb], (96)

where r(β) is the perturbation radius of random vector v given confidence level 1−β. ∀k1, k2 ∈ [Kb], the following holds
with probability 1− β due to the triangular inequality:∥∥∥v(k1) − v(k2)

∥∥∥
1
≤
∥∥∥v(k1) − v

∥∥∥
1
+
∥∥∥v(k2) − v

∥∥∥
1
≤ 2r(β). (97)

Furthermore, due to the fact that ∥v∥p ≤ ∥v∥1 for any integer p ≥ 1, the following holds with probability 1− β:∥∥∥v(k) − v
∥∥∥
p
≤
∥∥∥v(k) − v

∥∥∥
1
≤ r(β), (98)∥∥∥v(k1) − v(k2)

∥∥∥
p
≤
∥∥∥v(k1) − v(k2)

∥∥∥
1
≤ 2r(β). (99)

Then following the part (b) and (c) in the proof of Lemma C.1, we can finally conclude that:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
−H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
,

(100)
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D.2. Improvement of Theorem 1 with DKW inequality

Theorem 6 (Improvement of Theorem 1 with DKW inequality). Under the same definitions and conditions in Lemma C.1,
the following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
−H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
− Nm

nb

σ

1− τ
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
.

(101)

Proof. We conclude the proof by leveraging the concentration analysis in the proof of Theorem 5 and part (b) and part (c)
in the proof of Theorem 1.

E. Analysis of Rob-FCP with an overestimated number of benign clients K ′
b

Theorem 7 (Lemma C.1 with an overestimated number of benign clients). For K clients including Kb benign clients and
Km := K − Kb malicious clients, each client reports a characterization vector v(k) ∈ ∆H (k ∈ [K]) and a quantity
nk ∈ Z+ (k ∈ [K]) to the server. Suppose that the reported characterization vectors of benign clients are sampled from
the same underlying multinomial distribution D, while those of malicious clients can be arbitrary. Let ϵ be the estimation
error of the data sketching by characterization vectors as illustrated in Equation (3). Let K ′

b > Kb be the overestimated
number of benign clients. We also assume benign clients and malicious clients have the same sample sizes. Under the
assumption that Km < Kb, the following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
−

[
1− Kb

K′
b

(
1− HΦ−1(1− β/2HKb)

2
√
nb

)]
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

[
1− Kb

K′
b

(
1− HΦ−1(1− β/2HKb)

2
√
nb

)]
,

(102)

where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients, Nm :=
∑

k∈[K]\[Kb]
nk

is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the minimal sample size of benign clients, and Φ−1(·)
denotes the inverse of the cumulative distribution function (CDF) of standard normal distribution.

Proof. The proof consists of 3 parts: (a) concentration analysis of the characterization vectors v(k) for benign clients
(1 ≤ k ≤ Kb), (b) analysis of the algorithm of the identification of malicious clients, and (c) analysis of the error of the
coverage bound. Part (a) and (c) follow that of Lemma C.1, and thus, we provide the details of part (b) here. Let N(k, n)
be the set of the index of n nearest clients to the k-th client based on the metrics of ℓp norm distance in the space of
characterization vectors. Then the maliciousness scores M(k) for the k-th client (k ∈ [K]) can be defined as:

M(k) :=
1

Kb − 1

∑
k′∈N(k,Kb−1)

∥∥∥v(k) − v(k′)
∥∥∥
p
. (103)

Let B be the set of the index of benign clients identified by Algorithm 1 by selecting the clients associated with the lowest
K ′

b maliciousness scores. We will consider the following cases separately: (1) B contains exactly Kb benign clients, and
(2) B contains at least one malicious client indexed by m. Case (1): B (|B| = K ′

b) contains all Kb benign clients. We can
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derive as follows:∥∥∥∥∥∑
k∈B

nk

NB
v(k) − v

∥∥∥∥∥
p

≤
∑
k∈B

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(104)

≤
∑

k∈B,k∈[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p
+

∑
k∈B,k∈[K]\[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(105)

≤
∑

k∈B,k∈[Kb]

nk

NB
r(β) +

∑
k∈B,k∈[K]\[Kb]

nk

NB
× 1 (106)

=
Kb

K ′
b

r(β) +

(
1− Kb

K ′
b

)
(107)

= 1− Kb

K ′
b

(1− r(β)) (108)

Case (2): B (|B| = K ′
b) does not contain all benign clients, which implicates that for any malicious client m ∈ B, we can

derive the lower bound of the maliciousness score for the m-th client M(m) as:

M(m) =
1

K ′
b − 1

∑
k′∈N(m,K′

b−1)

∥∥∥v(m) − v(k′)
∥∥∥
p

(109)

≥ 1

K ′
b − 1

∑
k′∈N(m,K′

b−1),k′∈[Kb]

∥∥∥v(m) − v(k′)
∥∥∥
p
. (110)

Since there are at least K ′
b −Km benign clients in B (there are at most Km malicious clients in B), there exists one client

indexed by bb (bb ∈ B) such that: ∥∥∥v(m) − v(bb)
∥∥∥
p
≤ (K ′

b − 1)M(m)

K ′
b −Km

(111)

We can derive the upper bound of the maliciousness score for the b-th benign client (one benign client not in B) M(b) as:

M(b) =
1

K ′
b − 1

∑
k′∈N(b,K′

b−1)

∥∥∥v(b) − v(k′)
∥∥∥
p

(112)

≤ Kb − 1

K ′
b − 1

2r(β) +
Kb −K ′

b

K ′
b − 1

(113)

Since the m-th client is included in B and identified as a benign client, while the b-th client is not in B, the following holds
according to the procedure in Algorithm 1:

M(b) ≥M(m), (114)
Then, we can derive the upper bound of

∥∥v(m) − v
∥∥
p
, ∀m ∈ B and Kb < m ≤ K as follows:∥∥∥v(m) − v

∥∥∥
p
≤
∥∥∥v(m) − v(bb)

∥∥∥
p
+
∥∥∥v(bb) − v

∥∥∥
p

(115)

≤ (Kb − 1)2r(β) +Kb −K ′
b

K ′
b −Km

(116)

Finally, we can derive as follows:∥∥∥∥∥∑
k∈B

nk

NB
v(k) − v

∥∥∥∥∥
p

≤
∑
k∈B

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(117)

≤
∑

k∈B,k∈[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p
+

∑
k∈B,k∈[K]\[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(118)

≤
∑

k∈B,k∈[Kb]

nk

NB
r(β) +

∑
k∈B,k∈[K]\[Kb]

nk

NB

(Kb − 1)2r(β) +Kb −K ′
b

K ′
b −Km

(119)

≤ Kb

K ′
b

r(β) +
K ′

b −Kb

K ′
b

(Kb − 1)2r(β) +Kb −K ′
b

K ′
b −Km

(120)
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Algorithm 1 Malicious client identification

1: Input: number of clients K, number of benign clients Kb, sets of scores for K clients
{
s
(k)
j

}
j∈[nk],k∈[K]

, parameter

p in ℓp norm distance.
2: Output: set of benign clients BRob-FCP.
3: for k = 1 to K do
4: Characterize the conformity score observations

{
s
(k)
j

}
j∈[nk]

with a vector v(k) for client k as Equation (4).

5: end for
6: for k1 = 1 to K do
7: for k2 = 1 to K do
8: Compute the vector distance dk1,k2

← ∥v(k1) − v(k2)∥p.
9: end for

10: end for
11: for k = 1 to K do
12: Compute the set of index of Kb − 1 nearest neighbors for client k: Near(k,Kb − 1).

13: Compute maliciousness scores of client k as M(k)← 1

Kb − 1

∑
k′∈Near(k,Kb−1) dk,k′ .

14: end for
15: Compute the index set of benign clients BRob-FCP as the associated index of the lowest Kb maliciousness scores in
{M(k))}Kk=1.

Combining case (1) and case (2), we can conclude that:∥∥∥∥∥∑
k∈B

nk

NB
v(k) − v

∥∥∥∥∥
p

≤ max

{
1− Kb

K′
b

(1− r(β)) ,
Kb

K′
b

r(β) +
K′

b −Kb

K′
b

(Kb − 1)2r(β) +Kb −K′
b

K′
b −Km

}

= 1− Kb

K′
b

(1− r(β))

(121)

Finally, by applying the analysis of part (a) and (c) in the proof of Lemma C.1, we can conclude that:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
−

[
1− Kb

K′
b

(
1− HΦ−1(1− β/2HKb)

2
√
nb

)]
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

[
1− Kb

K′
b

(
1− HΦ−1(1− β/2HKb)

2
√
nb

)]
,

(122)

F. Algorithm of Rob-FCP
We provide the complete pseudocodes of malicious client identification in Rob-FCP in Algorithm 1. First, we characterize
the conformity scores {s(k)j }j∈[nk] with a vector v(k) ∈ RH for client k (k ∈ [K]) via histogram statistics as Equation (4).
Then, we compute the pairwise ℓp-norm (p ∈ Z+) vector distance and the maliciousness scores for clients, which are the
averaged vector distance to the clients in the Kb − 1 nearest neighbors, where Kb is the number of benign clients. Finally,
the benign set identified by Rob-FCP BRob-FCP is the set of the index of the clients with the lowest Kb maliciousness scores
in {M(k)}Kk=1.

G. Experiments
G.1. Experiment setup

Datasets. We evaluate Rob-FCP on computer vision datasets including MNIST (Deng, 2012), CIFAR-10 (Krizhevsky
et al.), and Tiny-ImageNet (T-ImageNet) (Le & Yang, 2015). We additionally evaluate Rob-FCP on two realistic healthcare
datasets, including SHHS (Zhang et al., 2018) and PathMNIST (Yang et al., 2023). The MNIST dataset consists of a
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Table 3: Benign conformal prediction results (marginal coverage / average set size) without any malicious clients.

Data Partition β = 0.0 β = 0.5

MNIST 0.898 / 0.900 0.902 / 1.828
CIFAR-10 0.901 / 1.597 0.898 / 2.308

Tiny-ImageNet 0.901 / 21.92 0.899 / 42.35
SHHS 0.898 / 1.352 0.897 / 1.351

PathMNIST 0.904 / 1.242 0.901 / 1.361

collection of 70,000 handwritten digit images, each of which is labeled with the corresponding digit (0 through 9) that the
image represents. CIFAR-10 consists of 60,000 32x32 color images, each belonging to one of the following 10 classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Tiny-ImageNet consists of 200 different classes,
each represented by 500 training images, making a total of 100,000 training images. Additionally, it has 10,000 validation
images and 10,000 test images, with 50 images per class for both validation and test sets. Each image in Tiny-ImageNet is a
64x64 colored image. SHHS (the Sleep Heart Health Study) is a large-scale multi-center study to determine consequences
of sleep-disordered breathing. We use the EEG recordings from SHHS for the sleep-staging task, where every 30-second-
epoch is classified into Wake, N1, N2, N3 and REM stages. 2,514 patients (2,545,869 samples) were used for training the
DNN, and 2,514 patients (2,543,550 samples) were used for calibration and testing. PathMNIST is a 9-class classification
dataset consisting of 107,180 hematoxylin and eosin stained histological images. 89,996 images were used to train the
DNN and 7,180 were used for calibration and testing.

Training and evaluation strategy. Except for SHHS, we partition the datasets by sampling the proportion of each label
from Dirichlet distribution parameterized by β for every agent, following the literature (Li et al., 2022a). For SHHS, we
assign the patients to different clients according to the proportion of their time being awake. The parameter of the Dirichlet
distribution is fixed as 0.5 across the evaluations. We pretrain the models with standard FedAvg algorithm (McMahan
et al., 2016). We use the same collaboratively pretrained model for conformal prediction for different methods for fair
comparisons. We perform conformal prediction with nonconformity scores LAC (Sadinle et al., 2019) and APS (Romano
et al., 2020). Without specification, we use the LAC score by default across evaluations. Given a pretrained estimator
π̂ : Rd 7→ ∆C with d-dimensional input and C classes, the LAC non-conformity score is formulated as:

SLAC
π̂y

(x, y) = 1− π̂y(x). (123)

The APS non-conformity score is formulated as:

SAPS
π̂y

(x, y) =
∑

j∈Y
π̂j(x)I[π̂j(x) > π̂y(x)] + π̂y(x)u, (124)

where I[·] is the indicator function and u is uniformly sampled over the interval [0, 1].

Byzantine attacks. To evaluate the robustness of Rob-FCP in the Byzantine setting, we compare Rob-FCP with the
baseline FCP (Lu et al., 2023) under three types of Byzantine attacks: (1) coverage attack (CovAttack) which reports the
largest conformity scores to induce a larger conformity score at the desired quantile and a lower coverage accordingly,
(2) efficiency attack (EffAttack) which reports the smallest conformity scores to induce a lower conformity score at the
quantile and a larger prediction set, and (3) Gaussian Attack (GauAttack) which injects random Gaussian noises to the
scores to perturb the conformal calibration. The gaussian noises are sampled from a univariate Gaussian N (0, 0.5) with
zero mean and 0.5 variance.

G.2. Additional evaluation results

Robustness of Rob-FCP across varying levels of data heterogeneity Data heterogeneity among clients poses signifi-
cant challenges to achieving precise federated conformal prediction. To assess the resilience of Rob-FCP to this issue, we
conducted evaluations using various values of the Dirichlet parameter β, which modulates the degree of data heterogeneity
among clients. The results in Table 2 show that Rob-FCP reliably maintains marginal coverage and average set size at
levels close to those anticipated, underscoring its robustness in the face of data skewness. Furthermore, we investigate
additional approaches to create heterogeneous data that mirror demographic differences. This involves dividing the SHHS
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Table 4: Marginal coverage / average set size on SHHS with heterogeneous data partition based on different attributes: wake
time, N1, N2, N3, REM. The evaluation is done under different Coverage attack with 40% (Km/K = 40%) malicious
clients. The desired marginal coverage is 0.9.

wake time N1 N2 N3 REM

FCP (SHHS) 0.835 / 1.098 0.841 / 1.104 0.841 / 1.104 0.837 / 1.105 0.840 / 1.107
Rob-FCP (SHHS) 0.901 / 1.367 0.902 / 1.358 0.902 / 1.355 0.902 / 1.375 0.900 / 1.356

Table 5: Runtime of RobFCP quantile computation with 40% malicious clients. The valuation is done on a RTX A6000
GPU.

MNIST CIFAR-10 Tiny-ImageNet SHHS PathMNIST

Runtime (seconds) 0.5284 0.5169 0.5563 0.2227 0.3032

dataset according to five specific attributes (wake time, N1, N2, N3, REM) and allocating instances to clients based on
varying intervals of these attributes. The findings, detailed in Table 4, highlight Rob-FCP’s capability to effectively handle
diverse forms of data heterogeneity.

Runtime of Rob-FCP We evaluate the runtime of quantile computation in Rob-FCP in Table 5, which indicates the
efficiency of federated conformal prediction with Rob-FCP.

Results with an overestimate or underestimate of the number of malicious clients In Table 6, we provided evalu-
ations of Rob-FCP with incorrect numbers of malicious clients. The results show that either underestimated numbers or
overestimated numbers would harm the performance to different extents. Specifically, an underestimate of the number of
malicious clients will definitely lead to the inclusion of malicious clients in the identified set B and downgrade the quality
of conformal prediction. On the other hand, an overestimated number will lead to the exclusion of some benign clients.
The neglect of non-conformity scores of those clients will lead to a distribution shift from the true data distribution in
the calibration process, breaking the data exchangeability assumption of conformal prediction, and a downgraded perfor-
mance. Therefore, correctly estimating the number of malicious clients is of significance, and this is why we propose the
malicious client number estimator, which is sound both theoretically and empirically to achieve the goal.

Benign conformal performance The benign conformal prediction performance (marginal coverage / average set size)
without any malicious clients is provided in Table 3. As expected, the coverage of the prediction sets is very close to the
target (0.9). In the setting with data heterogeneity across clients (i.e., β = 0.5), the predictive performance of the base
global model is typically worse, leading to a larger average size of the prediction sets.

Byzantine robustness of Rob-FCP with known Km We evaluate the marginal coverage and average set size of Rob-
FCP under coverage, efficiency, and Gaussian attack and compare the results with the baseline FCP. We present results of
FCP and Rob-FCP in existence of 10%, 20%, 30% (Km/K = 10%, 20%, 30%) malicious clients on MNIST, CIFAR-10,
Tiny-ImageNet (T-ImageNet), SHHS, and PathMNIST in Table 9. The coverage of FCP deviates drastically from the
desired coverage level 0.9 under Byzantine attacks, along with a deviation from the benign set size. In contrast, Rob-FCP
achieves comparable marginal coverage and average set size to the benign conformal performance.

Byzantine robustness of Rob-FCP with unknown Km Similar to above, we evaluate the marginal coverage and aver-
age set size of Rob-FCP under verious attacks and compare the results with the FCP. We present results in existence of
10%, 20%, 30%, 40% (Km/K = 10%, 20%, 30%, 40%) malicious clients in Table 10, where the number of the malicious
clients is unknown to the algorithm. Again, the coverage of FCP as well as the size of the prediction set deviates drasti-
cally from the benign set setting, but Rob-FCP achieves comparable marginal coverage and average set size to the benign
performance.

Robustness of Rob-FCP against mimic attacks We also evaluate the performance of Rob-FCP against the mimic attack
strategy (Karimireddy et al., 2022), wherein malicious clients replicate the score statistics of a randomly chosen benign
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Table 6: Marginal coverage / average set size under different Coverage attack with underestimated and overestimated
numbers of malicious clients on TinyImageNet. The true ratio of malicious clients is 40% (Km/K = 25%), while
we evaluate Rob-FCP with different ratios of malicious clients K ′

m/K ranging from 5% to 45%. The desired marginal
coverage is 0.9.

K′
m/K 5% 10% 15% 20% 25% 30% 35% 40% 45%

Coverage 0.8682 0.8756 0.8812 0.8884 0.9078 0.8936 0.8921/ 0.8834 0.8803
Set Size 35.875 37.130 38.372 40.643 44.578 42.173 42.023 38.346 38.023

Table 7: Marginal coverage / average set size on Tiny-ImageNet with the desired level 0.9. The evaluation is conducted
with different ratios of malicious clients Km/K and different degrees of data heterogeneity β under mimic attack (MA).
Mimic attack can not effectively distort the coverage for different data heterogeneity; Rob-FCP also maintains the coverage
robustly.

β = 0.0 β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9
Benign 0.898 / 21.728 0.896 / 43.038 0.903 / 43.864 0.899 / 42.352 0.902 / 43.843 0.904 / 43.919

MA (Km/K = 10%) 0.900 / 22.251 0.904 / 44.684 0.905 / 44.701 0.891 / 42.277 0.898 / 42.939 0.906 / 44.240
MA + Rob-FCP (Km/K = 10%) 0.903 / 23.823 0.893 / 41.994 0.899 / 43.169 0.901 / 43.734 0.909 / 44.811 0.897 / 42.632

MA (Km/K = 20%) 0.895 / 22.243 0.894 / 42.738 0.894 / 42.412 0.893 / 41.633 0.904 / 44.878 0.906 / 43.941
MA + Rob-FCP (Km/K = 20%) 0.902 / 22.651 0.895 / 41.575 0.901 / 42.770 0.905 / 44.124 0.899 / 43.793 0.897 / 42.589

MA (Km/K = 30%) 0.905 / 23.414 0.910 / 46.940 0.883 / 37.411 0.899 / 42.766 0.888 / 41.012 0.896 / 41.846
MA + Rob-FCP (Km/K = 30%) 0.898 / 22.839 0.912 / 47.390 0.906 / 44.882 0.893 / 41.481 0.906 / 45.372 0.897 / 42.813

MA (Km/K = 40%) 0.892 / 19.629 0.901 / 44.468 0.896 / 42.526 0.908 / 46.017 0.911 / 46.445 0.914 / 47.553
MA + Rob-FCP (Km/K = 40%) 0.899 / 20.952 0.904 / 45.023 0.905 / 43.368 0.908 / 46.518 0.915 / 47.023 0.892 / 40.561

client. It’s critical to note that such strategies presuppose that the attackers have knowledge of the benign clients’ score
statistics, implying a more restricted threat model. We conduct the evaluations on Tiny-ImageNet with 1 − α = 0.9
with different ratios of malicious clients Km/K. The results in Table 7 show that (1) across various degrees of data
heterogeneity, merely approximating the scores of benign clients is insufficient to significantly impair the performance of
conformal prediction; and (2) Rob-FCP still maintains the desired coverage under such attacks.

Robustness of Rob-FCP with different conformity scores Besides applying LAC nonconformity scores, we also eval-
uate Rob-FCP with APS scores (Romano et al., 2020). The results in Figures 6 to 11 demonstrate the Byzantine robustness
of Rob-FCP with APS scores.

Ablation study of different conformity score distribution characterization One key step in Rob-FCP is to characterize
the conformity score distribution based on empirical observations. We adopt the histogram statistics approach as Equa-
tion (4). Rob-FCP also flexibly allows for alternative approaches to characterizing the empirical conformity score samples
with a real-valued vector v. We can fit a parametric model (e.g., Gaussian model) to the empirical scores and concatenate
the parameters as the characterization vector v. Another alternative is to characterize the score samples with exemplars
approximated by clustering algorithms such as KMeans. We empirically compare different approaches in Figure 12 and
show that the histogram statistics approach achieves the best performance.

Ablation study of the distance measurement In Rob-FCP, we need to compute the distance between characterization
vectors with measurement d(·, ·). We evaluate Rob-FCP with ℓ1, ℓ2, ℓ∞-norm based vector distance as Equation (5) and
an alternative Cosine similarity in Figure 13. The results show that the effectiveness of Rob-FCP is agnostic to these
commonly used distance measurements. We adopt ℓ2-norm vector distance for consistency across evaluations.

Table 8: Marginal coverage / average set size of Rob-FCP on Tiny-ImageNet with the desired level 0.9 under Gaussian
Attack with standard deviation 0.5 inexistence of 40% malicious clients.

H 2 10 100 1000 10000
Marginal coverage / average set size 0.718 / 12.293 0.888 / 40.250 0.901 / 43.349 0.907 / 44.677 0.803 / 26.343
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Figure 6: Marginal coverage / average set size under coverage attack with 40% malicious clients with β = 0.0 on CIFAR-
10. The green horizontal line represents the benign marginal coverage and average set size without any malicious clients.

Ablation study of the selection of histogram granularity H We also add empirical evaluations to validate the trade-off
of the selection of H in Table 8. The results in Table 8 demonstrate the empirical trade-off of the selection of dimensionality
H and show that Rob-FCP remains effective for a broad range of H (H = 10 to H = 1000).
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Figure 7: Marginal coverage / average set size under coverage attack with 40% malicious clients with β = 0.5 on CIFAR-
10. The green horizontal line represents the benign marginal coverage and average set size without any malicious clients.
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Figure 8: Marginal coverage / average set size under efficiency attack with 40% malicious clients with β = 0.0 on CIFAR-
10. The green horizontal line represents the benign marginal coverage and average set size without any malicious clients.
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Table 9: Marginal coverage / average set size under different Byzantine attacks with 10%, 20%, and 30% malicious
clients. Rob-FCP consistently recovers the coverage (and average size of prediction set) of benign conformal prediction
(Table 3), while the performance of FCP generally deteriorates as the percentage of malicious clients increases. β denotes
the Dirichlet parameter for the partition of client data.

Attack Coverage Attack Efficiency Attack Gaussian Attack
Method FCP Rob-FCP FCP Rob-FCP FCP Rob-FCP

Km/K = 10%

β
=

0
.0

MNIST 0.896 / 0.898 0.899 / 0.900 0.999 / 4.034 0.904 / 0.909 0.947 / 0.960 0.905 / 0.910
CIFAR-10 0.887 / 1.499 0.900 / 1.588 1.000 / 7.991 0.892 / 1.556 0.906 / 1.633 0.892 / 1.565

T-ImageNet 0.873 / 18.44 0.901 / 22.36 0.999 / 148.7 0.895 / 21.28 0.916 / 23.98 0.909 / 23.80
SHHS 0.889 / 1.303 0.900 / 1.359 0.999 / 5.338 0.900 / 1.359 0.909 / 1.409 0.900 / 1.360

PathMNIST 0.892 / 1.184 0.905 / 1.249 1.000 / 6.271 0.902 / 1.235 0.941 / 1.504 0.903 / 1.240

β
=

0
.5

MNIST 0.892 / 1.747 0.897 / 1.813 1.000 / 9.319 0.896 / 1.813 0.892 / 1.798 0.902 / 1.794
CIFAR-10 0.887 / 1.209 0.894 / 2.287 1.000 / 8.808 0.908 / 2.347 0.918 / 2.515 0.911 / 2.378

T-ImageNet 0.892 / 41.03 0.905 / 44.81 0.997 / 146.7 0.902 / 44.29 0.917 / 47.47 0.900 / 44.74
SHHS 0.889 / 1.304 0.900 / 1.358 1.000 / 5.981 0.900 / 1.359 0.909 / 1.412 0.901 / 1.361

PathMNIST 0.892 / 1.290 0.902 / 1.361 0.996 / 5.149 0.900 / 1.348 0.938 / 1.739 0.904 / 1.374

Km/K = 20%

β
=

0
.0

MNIST 0.873 / 0.876 0.893 / 0.897 1.000 / 10.00 0.895 / 0.899 0.967 / 0.988 0.900 / 0.905
CIFAR-10 0.869 / 1.398 0.888 / 1.532 1.000 / 10.00 0.913 / 1.659 0.916 / 1.725 0.903 / 1.633

T-ImageNet 0.874 / 17.787 0.900 / 22.23 1.000 / 200.0 0.903 / 22.50 0.908 / 23.12 0.904 / 22.94
SHHS 0.876 / 1.243 0.900 / 1.359 1.000 / 5.984 0.900 / 1.356 0.918 / 1.467 0.900 / 1.360

PathMNIST 0.880 / 1.134 0.905 / 1.251 1.000 / 8.335 0.904 / 1.244 0.983 / 2.434 0.903 / 1.236

β
=

0
.5

MNIST 0.857 / 1.534 0.896 / 1.765 1.000 / 9.089 0.902 / 1.836 0.915 / 1.945 0.912 / 1.904
CIFAR-10 0.866 / 2.038 0.896 / 2.314 1.000 / 10.00 0.908 / 2.366 0.938 / 2.895 0.892 / 2.256

T-ImageNet 0.860 / 33.99 0.902 / 44.69 1.000 / 199.0 0.904 / 44.72 0.922 / 49.44 0.912 / 48.27
SHHS 0.874 / 1.236 0.901 / 1.363 1.000 / 5.985 0.901 / 1.363 0.917 / 1.463 0.900 / 1.358

PathMNIST 0.876 / 1.210 0.901 / 1.355 1.000 / 7.395 0.902 / 1.366 0.980 / 2.905 0.900 / 1.348

Km/K = 30%

β
=

0
.0

MNIST 0.851 / 0.854 0.908 / 0.914 1.000 / 10.00 0.911 / 0.917 0.977 / 1.009 0.900 / 0.905
CIFAR-10 0.852 / 1.307 0.895 / 1.583 1.000 / 10.00 0.894 / 1.563 0.909 / 1.672 0.903 / 1.602

T-ImageNet 0.862 / 15.66 0.904 / 22.61 1.000 / 200.0 0.907 / 22.85 0.907 / 23.89 0.906 / 24.15
SHHS 0.859 / 1.176 0.901 / 1.364 1.000 / 6.000 0.900 / 1.356 0.926 / 1.526 0.900 / 1.359

PathMNIST 0.863 / 1.064 0.906 / 1.252 1.000 / 9.000 0.903 / 1.241 1.000 / 6.531 0.906 / 1.255

β
=

0
.5

MNIST 0.849 / 1.451 0.913 / 1.890 1.000 / 10.00 0.875 / 1.650 0.925 / 2.010 0.919 / 1.958
CIFAR-10 0.844 / 1.870 0.900 / 2.294 1.000 / 10.00 0.912 / 2.408 0.950 / 3.152 0.901 / 2.327

T-ImageNet 0.864 / 33.41 0.895 / 43.12 1.000 / 200.0 0.906 / 43.46 0.923 / 52.23 0.932 / 55.78
SHHS 0.857 / 1.169 0.900 / 1.358 1.000 / 6.000 0.900 / 1.358 0.927 / 1.530 0.898 / 1.350

PathMNIST 0.860 / 1.141 0.900 / 1.344 1.000 / 9.000 0.903 / 1.368 1.000 / 6.287 0.903 / 1.373
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Table 10: Marginal coverage / average set size under different Byzantine attacks with 10%, 20%, 30% and 40% malicious
clients with unknown numbers of malicious clients. Rob-FCP consistently recovers the coverage (and average size of
prediction set) of benign conformal prediction (Table 3), while the performance of FCP generally deteriorates as the
percentage of malicious clients increases. β denotes the Dirichlet parameter for the partition of client data.

Attack Coverage Attack Efficiency Attack Gaussian Attack
Method FCP Rob-FCP FCP Rob-FCP FCP Rob-FCP

Km/K = 10%

β
=

0
.0

MNIST 0.896 / 0.898 0.901 / 0.905 0.999 / 4.034 0.890 / 0.895 0.947 / 0.960 0.895 / 0.900
CIFAR-10 0.887 / 1.499 0.903 / 1.612 1.000 / 7.991 0.920 / 1.689 0.906 / 1.633 0.890 / 1.543

T-ImageNet 0.873 / 18.44 0.908 / 22.52 0.999 / 148.7 0.890 / 20.93 0.916 / 23.98 0.897 / 21.64
SHHS 0.889 / 1.303 0.902 / 1.365 0.999 / 5.338 0.903 / 1.368 0.909 / 1.409 0.902 / 1.367

PathMNIST 0.892 / 1.184 0.899 / 1.237 1.000 / 6.271 0.905 / 1.253 0.905 / 1.253 0.901 / 1.239

β
=

0
.5

MNIST 0.892 / 1.747 0.895 / 1.798 1.000 / 9.319 0.900 / 1.780 0.892 / 1.798 0.896 / 1.800
CIFAR-10 0.887 / 1.209 0.890 / 2.221 1.000 / 8.808 0.900 / 2.304 0.918 / 2.515 0.905 / 2.418

T-ImageNet 0.892 / 41.03 0.903 / 43.94 0.997 / 146.7 0.898 / 43.01 0.917 / 47.47 0.915 / 47.35
SHHS 0.889 / 1.304 0.902 / 1.367 1.000 / 5.981 0.902 / 1.364 0.909 / 1.412 0.900 / 1.357

PathMNIST 0.892 / 1.290 0.909 / 1.394 0.996 / 5.149 0.901 / 1.376 0.905 / 1.387 0.907 / 1.375

Km/K = 20%

β
=

0
.0

MNIST 0.873 / 0.876 0.898 / 0.903 1.000 / 10.00 0.906 / 0.912 0.967 / 0.988 0.904 / 0.908
CIFAR-10 0.869 / 1.398 0.888 / 1.512 1.000 / 10.00 0.902 / 1.603 0.916 / 1.725 0.905 / 1.623

T-ImageNet 0.874 / 17.787 0.904 / 22.47 1.000 / 200.0 0.907 / 22.76 0.908 / 23.12 0.904 / 22.88
SHHS 0.876 / 1.243 0.902 / 1.365 1.000 / 5.984 0.902 / 1.366 0.918 / 1.467 0.902 / 1.363

PathMNIST 0.880 / 1.134 0.900 / 1.229 1.000 / 8.335 0.902 / 1.241 0.909 / 1.273 0.898 / 1.229

β
=

0
.5

MNIST 0.857 / 1.534 0.901 / 1.832 1.000 / 9.089 0.881 / 1.713 0.915 / 1.945 0.908 / 1.889
CIFAR-10 0.866 / 2.038 0.900 / 2.344 1.000 / 10.00 0.897 / 2.312 0.938 / 2.895 0.929 / 2.702

T-ImageNet 0.860 / 33.99 0.905 / 44.38 1.000 / 199.0 0.894 / 42.30 0.922 / 49.44 0.906 / 46.38
SHHS 0.874 / 1.236 0.901 / 1.362 1.000 / 5.985 0.903 / 1.369 0.917 / 1.463 0.902 / 1.365

PathMNIST 0.876 / 1.210 0.907 / 1.388 1.000 / 7.395 0.903 / 1.362 0.905 / 1.382 0.902 / 1.362

Km/K = 30%

β
=

0
.0

MNIST 0.851 / 0.854 0.905 / 0.912 1.000 / 10.00 0.907 / 0.913 0.977 / 1.009 0.903 / 0.908
CIFAR-10 0.852 / 1.307 0.904 / 1.612 1.000 / 10.00 0.891 / 1.544 0.909 / 1.672 0.903 / 1.578

T-ImageNet 0.862 / 15.66 0.902 / 21.92 1.000 / 200.0 0.903 / 22.19 0.907 / 23.89 0.906 / 23.77
SHHS 0.859 / 1.176 0.903 / 1.372 1.000 / 6.000 0.902 / 1.366 0.926 / 1.526 0.903 / 1.368

PathMNIST 0.863 / 1.064 0.902 / 1.239 1.000 / 9.000 0.898 / 1.221 0.907 / 1.263 0.905 / 1.246

β
=

0
.5

MNIST 0.849 / 1.451 0.920 / 1.947 1.000 / 10.00 0.900 / 1.779 0.925 / 2.010 0.911 / 1.943
CIFAR-10 0.844 / 1.870 0.899 / 2.360 1.000 / 10.00 0.891 / 2.264 0.950 / 3.152 0.896 / 2.300

T-ImageNet 0.864 / 33.41 0.895 / 42.79 1.000 / 200.0 0.908 / 44.74 0.923 / 52.23 0.920 / 50.70
SHHS 0.857 / 1.169 0.902 / 1.368 1.000 / 6.000 0.904 / 1.374 0.927 / 1.530 0.903 / 1.370

PathMNIST 0.860 / 1.141 0.895 / 1.337 1.000 / 9.000 0.902 / 1.376 0.910 / 1.418 0.899 / 1.352

Km/K = 40%

β
=

0
.0

MNIST 0.832 / 0.834 0.891 / 0.892 1.000 / 10.00 0.895 / 0.901 0.979 / 1.025 0.899 / 0.904
CIFAR-10 0.831 / 1.189 0.913 / 1.666 1.000 / 10.00 0.902 / 1.608 0.916 / 1.733 0.905 / 1.612

T-ImageNet 0.830 / 12.97 0.888 / 21.45 1.000 / 200.0 0.905 / 22.99 0.918 / 25.69 0.903 / 23.42
SHHS 0.834 / 1.093 0.902 / 1.363 1.000 / 6.000 0.903 / 1.369 0.937 / 1.611 0.902 / 1.368

PathMNIST 0.840 / 0.997 0.901 / 1.246 1.000 / 9.000 0.898 / 1.237 0.914 / 1.302 0.899 / 1.250

β
=

0
.5

MNIST 0.805 / 1.284 0.911 / 1.929 1.000 / 10.00 0.910 / 1.906 0.941 / 2.227 0.929 / 2.084
CIFAR-10 0.829 / 1.758 0.893 / 2.270 1.000 / 10.00 0.888 / 2.203 0.970 / 3.863 0.923 / 2.635

T-ImageNet 0.825 / 27.84 0.906 / 45.18 1.000 / 200.0 0.903 / 42.62 0.942 / 61.50 0.937 / 59.61
SHHS 0.835 / 1.095 0.902 / 1.364 1.000 / 6.000 0.904 / 1.375 0.937 / 1.609 0.903 / 1.371

PathMNIST 0.837 / 1.055 0.903 / 1.378 1.000 / 9.000 0.909 / 1.398 0.915 / 1.464 0.914 / 1.488
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Figure 9: Marginal coverage / average set size under efficiency attack with 40% malicious clients with β = 0.5 on CIFAR-
10. The green horizontal line represents the benign marginal coverage and average set size without any malicious clients.
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Figure 10: Marginal coverage / average set size under Gaussian attack with 40% malicious clients with β = 0.0 on CIFAR-
10. The green horizontal line represents the benign marginal coverage and average set size without any malicious clients.
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Figure 11: Marginal coverage / average set size under Gaussian attack with 40% malicious clients with β = 0.5 on CIFAR-
10. The green horizontal line represents the benign marginal coverage and average set size without any malicious clients.
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Figure 12: Marginal coverage / average set size under coverage attack with 40% malicious clients with β = 0.5 on Tiny-
ImageNet. The green horizontal line represents the benign marginal coverage and average set size without any malicious
clients.
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Figure 13: Marginal coverage / average set size under coverage attack with 40% malicious clients with β = 0.0 on Tiny-
ImageNet. The green horizontal line represents the benign marginal coverage and average set size without any malicious
clients.
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