
Neural Tangent Kernels for Axis-Aligned Tree Ensembles

Ryuichi Kanoh 1 2 Mahito Sugiyama 1 2

Abstract
While axis-aligned rules are known to induce an
important inductive bias in machine learning mod-
els such as typical hard decision tree ensembles,
theoretical understanding of the learning behavior
is largely unrevealed due to the discrete nature of
rules. To address this issue, we impose the axis-
aligned constraint on soft trees, which relax the
splitting process of decision trees and are trained
using a gradient method, and present their Neural
Tangent Kernel (NTK), which enables us to ana-
lytically describe the training behavior. We study
two cases: imposing the axis-aligned constraint
throughout the entire training process, and only
at the initial state. Moreover, we extend the NTK
framework to handle various tree architectures
simultaneously, and prove that any axis-aligned
non-oblivious tree ensemble can be transformed
into axis-aligned oblivious tree ensembles with
the same NTK. One can search for suitable tree
architecture via Multiple Kernel Learning (MKL),
and our numerical experiments show a variety
of suitable features depending on the type of con-
straints. Our NTK analysis highlights both the the-
oretical and practical impacts of the axis-aligned
constraint in tree ensemble learning.

1. Introduction
One of the most practical machine learning techniques used
in real-world applications is ensemble learning. It combines
the outputs of multiple predictors, often referred to as weak
learners, to obtain reliable results for complex prediction
problems. A hard decision tree is commonly used as a weak
learner. Its inductive bias caused by the axis-aligned split-
ting of a feature space is considered to be important. For
example, Grinsztajn et al. (2022) experimentally demon-
strated that the presence or absence of rotational invariance

1National Institute of Informatics 2The Graduate University
for Advanced Studies, SOKENDAI. Correspondence to: Ryuichi
Kanoh <kanoh@nii.ac.jp>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

due to the axis-aligned constraint has a significant impact on
generalization performance, especially for tabular datasets.
However, although a number of machine learning models
have been proposed that are aware of axis-aligned partition-
ing (Chang et al., 2022; Humbird et al., 2019), it has not
been theoretically clear what properties emerge when the
axis-aligned constraints are imposed.

In this paper, we consider ensemble learning of soft trees
to realize a differentiable analysis of axis-aligned splitting.
The concept of a soft tree is characterized by its ability to
adjust the parameters of the entire model through gradient-
based optimization. Ensembles of soft trees are recognized
for their high empirical performance (Kontschieder et al.,
2015; Popov et al., 2020; Hazimeh et al., 2020). Further-
more, the differentiability of soft trees allows for integration
with various deep learning methodologies, such as fine-
tuning (Ke et al., 2019), pre-training (Arik & Pfister, 2021),
dropout (Srivastava et al., 2014), and various stochastic gra-
dient descent methods (Kingma & Ba, 2015; Foret et al.,
2021), resulting in desirable traits in real-world settings. An-
other advantage of soft trees is their interpretability (Frosst
& Hinton, 2017; Chang et al., 2022). Soft trees have also
been implemented in well-known open-source software such
as PyTorch Tabular (Joseph, 2021), and their practical appli-
cation is thriving.

Recently, there has been progress in the theoretical analysis
of soft tree ensembles (Kanoh & Sugiyama, 2022; 2023)
using the Neural Tangent Kernel (NTK) framework (Jacot
et al., 2018), which provides analytical descriptions of en-
semble learning with infinitely many soft trees, yielding
several non-trivial properties such as the existence of tree
architectures that have exactly the same training behavior
even if they are non-isomorphic. However, the current NTK
analysis assumes all the input features to be taken into ac-
count in each splitting process of soft trees, resulting in
oblique splitting boundaries. Therefore, it cannot directly
incorporate the axis-aligned constraint in its current state.

In this paper, we extend the NTK concept to the axis-aligned
soft tree ensembles to uncover the theoretical properties
of the axis-aligned constraint. We have revised the basic
training methodology and gained several insights that go
beyond mere extensions of Kanoh & Sugiyama (2022; 2023)
through examining the obtained novel kernels.

1



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

Our contributions can be summarized as follows:

• Closed-form NTK induced by two axis-aligned train-
ing formulation.

We succeed in extending the prior work of Kanoh &
Sugiyama (2022; 2023) to axis-aligned trees and success-
fully formulate a closed-form kernel induced by infinitely
many axis-aligned tree ensembles. Using this kernel, we
are able to analytically obtain the behavior of the train-
ing of axis-aligned trees (Theorem 3.1). We conducted a
theoretical analysis on two cases: one in which the axis-
aligned constraint is always imposed during training, and
the other in which only the initial model is axis-aligned
and training is conducted freely from there (Figure 1).

• Deriving the NTK of ensembles of various tree archi-
tectures.

Prior studies (Kanoh & Sugiyama, 2022; 2023) were lim-
ited to the scenario of an infinite number of weak learners
with identical architectures, which is not practical. This
limitation is particularly unrealistic for axis-aligned trees,
where a single feature is used at each split (for example,
the second feature is always used at the first node in all
trees, and the third feature is not used at all). This may
cause a lack of representation power. We successfully
address this limitation by decomposing the NTK induced
by a model into the sum of the NTKs induced by its
sub-models (Proposition 3.1), which is applicable to any
ensemble models such as Generalized Additive Models
(GAM) (Hastie & Tibshirani, 1986).

• Sufficiency of the oblivious tree for architecture search.
The oblivious tree is a perfect binary tree with shared
splitting rules at each depth, resulting in efficient com-
putation. We show that any axis-aligned non-oblivious
tree ensemble, including those with non-perfect binary
tree architectures, can be transformed into a set of axis-
aligned oblivious tree ensembles that induce exactly the
same NTK (Proposition 4.1). This proposition enables
us to substantially reduce the number of potential tree
architecture patterns.

• Finding suitable tree architecture via Multiple Kernel
Learning (MKL).

We employ MKL (Gönen & Alpaydın, 2011; Aiolli &
Donini, 2015), which determines the weights of a linear
combination of multiple kernels during training, to an-
alyze the effect of the axis-aligned constraint in feature
selection. The learned weights of the linear combination
of NTKs induced by various tree architectures can be in-
terpreted, using Proposition 3.1, as the proportion of the
presence of each tree architecture. Our empirical experi-
ments suggest that the suitable features vary depending

on the type of training constraints. We empirically inves-
tigate the properties of the axis-aligned tree models with
respect to the type of constraints (axis-aligned or oblique)
and training (gradient descent or greedy search) via our
NTK.

2. Preliminaries
This section covers the introduction of the soft tree ensemble
and the NTK.

2.1. Soft Tree Ensembles

We formulate regression using soft decision trees based on
the literature (Kontschieder et al., 2015). Let x ∈ RF×N be
input data consisting of N samples with F features. Assume
that there are M soft decision trees and each tree has N
splitting nodes and L leaf nodes. For each tree m ∈ [M ] =
{1, . . . ,M}, we denote trainable parameters of the m-th
soft decision tree as wm ∈ RF×N and bm ∈ R1×N for
splitting nodes, which correspond to feature selection and
splitting threshold in typical decision trees, and πm ∈ R1×L

for leaf nodes.

Unlike typical hard decision trees, each leaf node ℓ ∈
[L] = {1, . . . ,L} in soft decision trees holds a value
µm,ℓ(xi,wm, bm) ∈ [0, 1] that represents the probability
of input data reaching the leaf ℓ:

µm,ℓ(xi,wm, bm)

=

N∏
n=1

σ(w⊤
m,nxi+βbm,n)︸ ︷︷ ︸
flow to the left

1ℓ↙n
(1−σ(w⊤

m,nxi+βbm,n))︸ ︷︷ ︸
flow to the right

1n↘ℓ
,

(1)

where wm,n ∈ RF and bm,n ∈ R are splitting node pa-
rameters for an n-th node in an m-th tree. β ∈ R+ is
a hyperparameter that adjusts the influence of the split-
ting threshold, and 1ℓ↙n(1n↘ℓ) is an indicator function
that returns 1 if the ℓ-th leaf is on the left (right) side
of a node n and 0 otherwise. Internal nodes use a deci-
sion function σ : R → [0, 1] that resembles the sigmoid.
This function is rotationally symmetric about the point
(0, 1/2) and satisfies the conditions: limc→∞ σ(c) = 1,
limc→−∞ σ(c) = 0, and σ(0) = 0.5 for c ∈ R. Exam-
ples of such functions include the two-class sparsemax
function given as σ(c) = sparsemax([αc, 0]) (Martins
& Astudillo, 2016), and the two-class entmax function
given as σ(c) = entmax([αc, 0]) (Peters et al., 2019). In
this paper, we mainly consider the scaled error function:
σ(c) = 1

2 erf(αc) +
1
2 = 1

2

(
2√
π

∫ αc

0
e−t2 dt

)
+ 1

2 . As the

scaling factor α ∈ R+ (Frosst & Hinton, 2017) tends to-
wards infinity, sigmoid-like decision functions become step
functions that correspond to (hard) Boolean operation. If we
replace the right-flow term (1− σ(w⊤

m,nxi + βbm,n)) with

2



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

0 in Equation (1), we obtain a rule set, which is represented
by a linear graph architecture.

It is possible to handle both continuous and categorical
variables within the same formulation. The most straightfor-
ward approach for categorical variables is to use One-Hot en-
coding. Additionally, previous studies often employed trans-
formed categorical variables using target encoding (Popov
et al., 2020; Chang et al., 2022). These procedures can be
naturally applied as is, even in the axis-aligned splitting that
will be formulated later.

The function fm : RF × RF×N × R1×N × R1×L → R
that returns the prediction of the m-th tree is given by
the weighted sum of leaf-specific parameters πm,ℓ ∈ R,
weighted by the probability that the input data xi reaches
each leaf:

fm(xi,wm, bm,πm) =
L∑

ℓ=1

πm,ℓµm,ℓ(xi,wm, bm). (2)

Furthermore, the output of the ensemble model with M
trees for each input xi is formulated as a function f : RF ×
RM×F×N × RM×1×N × RM×1×L → R as follows:

f(xi,w, b,π) =
1√
M

M∑
m=1

fm(xi,wm, bm,πm). (3)

In general, parameters w = (w1, . . . ,wM ), b =
(b1, . . . , bM ), and π = (π1, . . . ,πM ) are randomly initial-
ized using independently and identically distributed normal
distributions with mean 0 and variance 1 and updated using
gradient descent. In this paper, the term “tree architecture”
refers to both the graph topological structure of the tree and
a parameter initialization method at each node. Even if the
graph topology is identical, those architectures are consid-
ered to be distinct when different parameter initialization
methods are adopted.

2.2. Neural Tangent Kernels

We introduce the NTK based on the gradient flow using
training data x ∈ RF×N , the prediction target y ∈ RN ,
trainable parameters θτ ∈ RP at time τ , and an arbitrary
model function g(xi,θτ ) : RF × RP → R. With the
learning rate η and the mean squared error loss function L,
the gradient flow equation is given as

∂θτ

∂τ
= −η

∂L(θτ )

∂θτ

= − η

N

N∑
i=1

(g(xi,θτ )− yi)
∂g(xi,θτ )

∂θτ
. (4)

Considering the formulation of the gradient flow in the
function space using Equation (4), we obtain

∂g(xj ,θτ )

∂τ

=− η

N

N∑
i=1

(g(xi,θτ )− yi)

〈
∂g(xi,θτ )

∂θτ
,
∂g(xj ,θτ )

∂θτ

〉
︸ ︷︷ ︸

Neural Tangent Kernel: Θ̂τ (xi,xj)

.

(5)

Here, we can see the NTK Θ̂τ (xi,xj). With two input
datasets x ∈ RF×N and x′ ∈ RF×N ′

, the NTK ma-
trix Ĥτ (x,x

′) with the shape of RN×N ′
is formulated as

[Ĥτ (x,x
′)]i,j = Θ̂τ (xi,x

′
j).

From Equation (5), if the NTK does not change during
training, the formulation of the gradient flow in the func-
tion space becomes a simple ordinary differential equation,
and it becomes possible to analytically calculate how the
model’s output changes during training. When the NTK is
positive definite, it is known that the kernel does not change
from its initial value during the gradient descent with an
infinitesimal step size when considering an infinite number
of soft trees (Lee et al., 2019; Kanoh & Sugiyama, 2022)
under the formulation described in Section 2.1.

Although the NTK itself is derived from the training with the
squared error loss function, insights gained using the NTK
extend to various tasks including classification tasks. For
example, it has been shown that the Support Vector Machine
(SVM) (Hearst et al., 1998) using the NTK is equivalent to
the training of the model which induces the same NTK with
a soft margin loss function (Chen et al., 2021b).

The NTK induced by a typical soft tree ensemble with in-
finitely many trees is known to be obtained in closed-form
at initialization.

Theorem 2.1 (Kanoh & Sugiyama (2023)). Assume that
all M trees have the same tree architecture. Let Q : N →
N ∪ {0} be a function that takes the depth as input and
returns the number of leaves connected to internal nodes at
that depth. For any given tree architecture, as the number of
trees M goes to infinity, the NTK probabilistically converges
to the following deterministic limiting kernel:

ΘOblique(xi,xj)

:= lim
M→∞

Θ̂Oblique
0 (xi,xj)

=

D∑
d=1

Q(d)
(
d Σ{i,j}T d−1

{i,j}Ṫ{i,j} + T d
{i,j}

)
, (6)

where T{i,j} = E[σ(u⊤xi + βv)σ(u⊤xj + βv)], Ṫ{i,j} =

E[σ̇(u⊤xi+βv)σ̇(u⊤xj+βv)], and Σ{i,j} = x⊤
i xj+β2.

Here, the values of the vector u ∈ RF and the scalar

3



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

Initial model Trained model

(a) (b) (c)

Figure 1. Splitting boundaries. (a): AAA, Always Axis-Aligned,
(b): AAI, Axis-Aligned at Initialization, but not during training,
(c): Oblique splitting conducted by typical soft trees.

v ∈ R are sampled from zero-mean i.i.d. Gaussians with
unit variance. Furthermore, if the decision function is
the scaled error function, by denoting x⊤

i xj + β2 as
A{i,j}, T{i,j},s and Ṫ{i,j},s are obtained in closed-form

as T{i,j} = 1
2π arcsin

(
α2A{i,j}√

(α2A{i,i}+0.5)(α2A{j,j}+0.5)

)
+ 1

4 ,

Ṫ{i,j} = α2

π
1√

(1+2α2A{i,i})(1+2α2A{j,j})−4α4A2
{i,j}

.

This kernel has rotational invariance with respect to input
data.

3. The Theory of the NTK Induced by
Axis-Aligned Trees

We first formulate the axis-aligned splitting (Section 3.1),
and consider the NTK induced by axis-aligned soft tree
ensembles, composed of weak learners with identical ar-
chitectures, as assumed in Theorem 2.1 (Section 3.2). We
then extend it to handle different tree architectures simul-
taneously (Section 3.3). Detailed proofs can be found in
Appendices A and B.

3.1. Setup on Axis-Aligned Splitting

In Equation (1), input to the decision function σ includes
the inner product of F -dimensional vectors wm,n and xi.
Since wm,n is typically initialized randomly, which is also
assumed in Theorem 2.1, the splitting is generally oblique.
Thus, Theorem 2.1 cannot directly treat axis-aligned tree
ensembles.

To overcome this issue, we analyze the NTK when all the
elements except one are set to be zero for every randomly
initialized vector wm,n. This setting means that the corre-
sponding features are eliminated from consideration of the
splitting direction. This is technically not straightforward,
as Gaussian random initialization is generally assumed in
the existing NTK approaches. Parameters b and π are ini-
tialized with random values, as is common practice.

We conduct a theoretical analysis of two cases: one where
the parameters with zero initialization are not updated dur-
ing training, as illustrated in Figure 1(a), and the other where
they are updated during training in Figure 1(b). These two
cases are referred to as AAA (“A”lways “A”xis-“A”ligned)
and AAI (“A”xis-“A”ligned at “I”nitialization, but not dur-
ing training) in this paper.

The learning process of decision trees can be divided into
the two following components:

1. Selecting tree topological structure and splitting features.
2. Tuning parameters for splitting thresholds at internal

nodes and leaves.

Our NTK-based theoretical analysis of AAA and AAI in the
next subsection accounts for the second component. The
place of the non-zero element of wm,n, which corresponds
to the feature assigned to a node in a tree, needs to be
predetermined before tuning parameters. Since it can be
combined with any method for the first component, the
entire model is no longer restrictive in practice. For example,
similar to the typical decision trees, it is possible to grow a
tree by trying out several splitting patterns and adopting the
ones with better performance. In Section 4.2, we address the
first component by combining multiple kernels for multiple
tree architectures via MKL.

3.2. The NTK Induced by Axis-Aligned Soft Trees

For an input vector xi, let xi,s ∈ R be the s-th component of
xi. For both AAA and AAI conditions, at initialization, we
derive the NTK induced by axis-aligned soft tree ensembles
in a closed-form as the number of trees M → ∞.
Theorem 3.1. Assume that all M trees have the same tree
architecture. Let {a1, . . . , aℓ, . . . , aL} denote the set of
decomposed paths of the trees from the root to the leaves,
and let h(aℓ) ⊂ N be the set of feature indices used in
splits of the input path aℓ. For any tree architecture, as the
number of trees M goes to infinity, the NTK probabilistically
converges to the following deterministic limiting kernel:

ΘAxisAligned(xi,xj)

:= lim
M→∞

Θ̂AxisAligned
0 (xi,xj)

=

L∑
ℓ=1

∑
s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t


︸ ︷︷ ︸

contribution from internal nodes

+

L∑
ℓ=1

∏
u∈h(aℓ)

T{i,j},u︸ ︷︷ ︸
contribution from leaves

, (7)

where T{i,j},s = E[σ(uxi,s + βv)σ(uxj,s + βv)] and
Ṫ{i,j},s = E[σ̇(uxi,s + βv)σ̇(uxj,s + βv)]. Here, scalars

4



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

1.5

2.0

2.5

K
er

ne
l v

al
ue

AAA, Tree architecture=(A)

Oblique

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

1.5

2.0

2.5
AAA, Tree architecture=(B)

Oblique

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5

K
er

ne
l v

al
ue

AAI, Tree architecture=(A)

Oblique

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

Figure 2. The rotation angle dependency of ΘAxisAligned(xi,xj)
with α = 2.0 and β = 0.5. Different training procedures, AAA
and AAI, are listed vertically, and two settings of tree architectures
are listed horizontally. The dotted lines show the limiting NTK
induced by typical oblique soft tree ensembles defined in Theo-
rem 2.1, which is rotational invariant.

u, v ∈ R are sampled from zero-mean i.i.d. Gaus-
sians with unit variance. For Σ{i,j},s, it is xi,sxj,s +

β2 when AAA is used, and x⊤
i xj + β2 when AAI

is used. Furthermore, if the decision function is the
scaled error function, by denoting xi,sxj,s + β2 as
A{i,j},s, T{i,j},s and Ṫ{i,j},s are obtained in closed-form as

T{i,j},s= 1
2π arcsin

(
α2A{i,j},s√

(α2A{i,i},s+0.5)(α2A{j,j},s+0.5)

)
+1

4 ,

Ṫ{i,j},s = α2

π
1√

(1+2α2A{i,i},s)(1+2α2A{j,j},s)−4α4A2
{i,j},s

.

Since we are considering axis-aligned constraints, only a
single feature is used at each split for every input path aℓ.
It is straightforward to extend this formulation and allow
multiple features at each split. In an extreme case, if all
features are always used at every split, this formula matches
the formulation for arbitrary soft trees without axis-aligned
constraints in Theorem 2.1.

The difference between AAA and AAI is whether partial
features of inputs are used or all features are used in Σ{i,j},s.
In AAA, the impact of features that are not used for splitting
is completely ignored, while in AAI, the kernel is affected
by all features through the inner product of the inputs.

0 500 1000
 (iteration)

2

1

0

1

2

M
od

el
 o

ut
pu

t

AAA

Analytical M = 16 M = 1024

0 500 1000
 (iteration)

2

1

0

1

2
AAI

Figure 3. Output dynamics of test data points for axis-aligned soft
tree ensembles with two conditions. (Left): AAA, (Right): AAI.
Each data point is represented by a different line color. Both sides
of the figure are created using exactly the same training and test
data.

Figure 2 shows ΘAxisAligned(xi,xj). We set α = 2.0 and
β = 0.5. We calculated the kernel values for two rotated
vectors: xi = (cos(ω), sin(ω)), xj = (cos(ω+ϕ), sin(ω+
ϕ)) where ω ∈ [0, π/2] and ϕ ∈ [0, π]. The line colors show
ω, and the x-axis shows ϕ. We use a perfect binary tree with
depth 2, where we use the first feature at both depths 1 and
2 for the architecture (A) (left column), and we use the
first feature at depth 1 and the second feature at depth 2 for
(B) (right column). We can see that rotational invariance
for the input has disappeared, which is different from the
NTK induced by typical soft tree ensembles, shown by the
dotted lines (Theorem 2.1). Moreover, when we compare
the left and right plots, we can see that the kernel varies
depending on the features used for splitting. Appendices E.1
and E.2 show how the NTK induced by a finite number of
trees converges to the limiting NTK as the number of trees
increases, and the visualization of the kernel when changing
hyperparameters.

Figure 3 shows that, for both AAA and AAI, as the num-
ber of trees increases, the trajectory obtained analytically
from the limiting kernel and the trajectory during gradient
descent training become more similar. This result validates
the use of the NTK framework for analyzing training be-
havior. For our experiment, we consider an ensemble of
perfect binary trees with α = 2.0, β = 0.5, where the
first feature is used for splitting at depth 1 and the second
feature at depth 2. The training and test datasets contain
10 randomly generated F = 2 dimensional points each.
The prediction targets are also randomly generated. The
models with M = 16 and 1024 are trained using full-
batch gradient descent with a learning rate of 0.1. The
initial outputs are shifted to zero (Chizat et al., 2019).
Based on Lee et al. (2019), to derive analytical trajectories,
we use the limiting kernel (Theorem 3.1), as f(ν,θτ ) =
H(ν,x)H(x,x)−1(I − exp[−ηH(x,x)τ ])y, where H
is a function that returns the limiting NTK matrix for two
input matrices, and I represent an identity matrix. The input

5



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

Figure 4. Ensemble of trees with different tree architectures. The
color of tree nodes indicates a feature used for splitting.

vector ν ∈ RF×1 is arbitrary, and the training dataset and
targets are denoted by x ∈ RF×N and y ∈ RN , respec-
tively. The behavior of the prediction trajectory changes
depending on the configurations (AAA or AAI), even when
exactly the same training and test data are used. In Ap-
pendix E.3, we present results from a real-world dataset,
where a similar trend can be seen.

3.3. The NTK Induced by Ensembles of Various Trees

In Section 3.2, we have followed the prior work (as per
Theorem 2.1) and assumed that soft tree ensembles consist
of weak learners with identical architectures, as shown on
the top side of Figure 4. However, it is more practical if tree
structures and features for splitting vary within an ensemble,
as illustrated on the bottom side of Figure 4. To address this
issue, we theoretically analyze ensembles with various tree
architectures mixed together. Assuming the existence of an
infinite number of trees for each architecture in an ensemble,
the NTK can be computed analytically using the amount
(ratio) of each architecture in the ensemble.

Proposition 3.1. For any input xi, let p(xi,θτ ) be the
sum of two model functions q(xi,θ

′
τ ) and r(xi,θ

′′
τ ), where

θ′
τ ∈ RP ′

and θ′′
τ ∈ RP ′′

are trainable parameters and
θτ is the concatenation of θ′

τ and θ′′
τ used as trainable

parameters of p. For any input pair xi and xj , the NTK
induced by p is equal to the sum of the NTKs of q and r:
Θ̂

(p)
τ (xi,xj) = Θ̂

(q)
τ (xi,xj) + Θ̂

(r)
τ (xi,xj).

For example, let q and r be functions that represent perfect
binary tree ensemble models with a depth of 1 and 2, re-
spectively. In this case, the NTK induced by mixed trees
with depths of 1 and 2 is the sum of the NTK induced by
trees with a depth of 1 and the NTK induced by trees with a
depth of 2. Note that one can straightforwardly generalize it
to ensembles containing various tree architectures.

Proposition 3.1 is particularly relevant in the context of axis-
aligned trees, as it is impractical to have identical features
for splitting across all trees. In addition, this proposition is
applicable not only to tree ensembles, but also to various
other models. For example, the Neural Additive Model
(NAM) (Agarwal et al., 2021), which is a GAM using neural
networks, can be treated using this proposition.

4. Insights Derived from the NTK Induced by
Axis-Aligned Trees

We further investigate the properties of the NTK induced
by the axis-aligned tree ensembles based on our theoretical
analysis (Section 4.1) and real-world datasets (Section 4.2)
to elucidate the insights of our contribution.

4.1. Sufficiency of the Oblivious Tree for Architecture
Candidates

The oblivious tree architecture is a practical perfect binary
tree design in which the decision rules for tree splitting
are shared across the same depth. This approach reduces
the number of required splitting calculations from an ex-
ponential time and space complexity of O(2D) to a linear
complexity of O(D), where D represents the depth of the
perfect binary tree. This property makes the oblivious tree
architecture a popular choice in open-source libraries such
as CatBoost (Prokhorenkova et al., 2018) and NODE (Popov
et al., 2020). Kanoh & Sugiyama (2022) demonstrated that
parameter sharing used in oblivious trees does not affect the
NTK of soft tree ensembles. However, their analysis does
not offer any insights in the context of axis-aligned setups.
In addition, they only show the equivalence between perfect
binary trees without parameter sharing and their correspond-
ing oblivious trees with the same topological structure.

With Theorem 3.1 and Proposition 3.1, we show that we can
always convert axis-aligned non-oblivious tree ensembles,
including those with non-perfect binary tree architectures,
into axis-aligned oblivious tree ensembles that induce ex-
actly the same limiting NTK.

Proposition 4.1. For any ensemble of infinitely many axis-
aligned trees with the same architecture, one can always
construct a set of ensembles of axis-aligned oblivious trees
that induce the same limiting NTK, up to constant multiples.

Detailed proof is provided in Appendix C.

This proposition means that there is no need to consider
combinations of complex trees, and it is sufficient to con-
sider only combinations of oblivious trees. Although various
trial-and-error processes are necessary for model selection
to determine features used at each node, this finding can
reduce the number of processes by excluding non-oblivious
trees from the search space, leading to the potential for
faster model architecture determination. Although the NTK
values differ by a constant factor, this does not, theoretically,
have a significant impact. As Equation (5) shows, even if
two kernels are different only up to a constant, adjusting the
learning rate η can make their training behavior the same.

Figure 5 shows the empirical validation of Proposition 4.1.
We consider an asymmetric non-oblivious tree architecture,
where the first feature is used for splitting at depth 1 and

6



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

0 250 500 750 1000
 (iteration)

2

1

0

1

2

M
od

el
 o

ut
pu

t

AAA (M = 16)

0 250 500 750 1000
 (iteration)

2

1

0

1

2
AAA (M = 1024)

0 250 500 750 1000
 (iteration)

2

1

0

1

2

M
od

el
 o

ut
pu

t

AAI (M = 16)

0 250 500 750 1000
 (iteration)

2

1

0

1

2
AAI (M = 1024)

Non-Oblivious Oblivious

Figure 5. Output dynamics of test data points for axis-aligned soft
tree ensembles under four conditions. (Top left): AAA with M =
16, (Top right): AAA with M = 1024, (Bottom left): AAI with
M = 16, (Bottom right): AAI with M = 1024. Dashed and solid
lines represent the asymmetric tree model and the oblivious trees
converted using Proposition 4.1, respectively. Each data point is
represented by a different line color. All plots are created using
exactly the same training and test data.

the second feature is used for splitting at depth 2. The
left child of the first splitting node is not a splitting node
but a leaf node. For this architecture, with Proposition 4.1,
combining two oblivious tree architectures induces the same
limiting NTK. Detailed conversion procedure is provided in
Appendix C. Using Figure 5, for M = 16 and M = 1024,
we can verify whether the trajectories trained under the
conditions of AAA and AAI match those obtained using the
converted oblivious trees using Proposition 4.1. The results
show that if there are a total of 1024 trees, the behavior
before and after the conversion is consistent. Note that in the
case of oblivious trees, since there are two tree architectures
after conversion, each tree architecture has 8 and 512 trees,
respectively, so that the total number of trees is 16 and 1024,
respectively. The method for training a finite number of
trees and the process for generating datasets are the same as
those in Figure 3.

4.2. Empirical Investigation via MKL

We examine the behavior of the NTK on real-world datasets
in terms of feature selection and generalization performance.
Our theoretical analysis in Section 3 assumes that features
used at nodes are predetermined. To alleviate this limita-
tion and include feature selection, we use MKL (Gönen
& Alpaydın, 2011), which determines the weights of a lin-
ear combination of multiple kernels via training. Using
NTKs induced by various tree architectures in MKL, we

can learn how much each tree architecture should contribute
(Proposition 3.1), which can be also interpreted as Neural
Architecture Search (NAS) (Elsken et al., 2019; Chen et al.,
2021a; Xu et al., 2021; Mok et al., 2022).

We use EasyMKL (Aiolli & Donini, 2015), a convex ap-
proach that identifies kernel combinations maximizing the
margin between classes. Figure 6 displays the weights ob-
tained by EasyMKL on the entire tic-tac-toe dataset pre-
processed by Fernández-Delgado et al. (2014). Tic-tac-toe
is a two-player game in which the objective is to form a
line of three consecutive symbols (either “X” or “O”) hor-
izontally, vertically, or diagonally on a 3 × 3 grid. The
tic-tac-toe dataset consists of F = 3× 3 = 9 features, each
of which indicates the status, “X”, “O”, or blank, of the
corresponding position on the game board, and the task is a
classification of the outcome based on this data. We enumer-
ate all the combination patterns from the first to the third
order and use EasyMKL to determine the linear combina-
tion of

(
F
1

)
+

(
F
2

)
+

(
F
3

)
= 129 kernels with α = 2.0 and

β = 0.5. The number of potential tree architectures exceeds
129 when considering the order of splits within the tree.
However, as indicated in Proposition 4.1, it is sufficient to
focus on only the oblivious tree, which allows us to ignore
the order of splits. Hence, those 129 patterns encompass all
the valid configurations, which is one of the advantages of
our approach.

As shown in Figure 6, for AAA, interactions that are essen-
tial to determine the outcome of the game carry significant
weights. In contrast, for AAI, weights tend to be more uni-
form. This suggests that AAA is more sensitive to the nature
of data than AAI, while a simple approach that randomly
selects diverse tree architectures can be effective for AAI
in practice. Such a trend appears to hold true not only for
the tic-tac-toe dataset, but across a wide range of datasets.
Details can be found in Appendix E.5.

We also analyze the generalization performance on the tic-
tac-toe dataset. Three types of the limiting NTKs induced
by the soft tree ensembles are employed: AAA, AAI (The-
orem 3.1) and Oblique (Theorem 2.1), as shown in Fig-
ure 1. For the oblique kernel, we assumed a perfect binary
tree structure and, since AAA and AAI consider interac-
tions up to the third order, we set the tree depth to 3. The
SVM with these kernels was used for classification. Ker-
nel parameters were set with α in {0.5, 1.0, 2.0, 4.0} and
β in {0.1, 0.5, 1.0}. We used the regularization strength
C = 1.0 in SVMs. For both AAA and AAI, a total of(
F
1

)
+

(
F
2

)
+

(
F
3

)
= 129 kernels were prepared and three

types of weights for the linear combination of these kernels
were tested. The weight of the first type, called “MKL”, is
obtained by EasyMKL. The second, called “Optimal”, is
1/8 if the interaction determines the outcome of the tic-tac-
toe game (there are eight such interactions) and 0 otherwise.

7



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

0 1 2
3 4 5
6 7 8

Figure 6. Weights of a linear combination of multiple kernels obtained using EasyMKL. The interactions highlighted by red dotted vertical
lines indicate the feature combinations that determine the outcome of the tic-tac-toe game. The correspondence between the game board
and the feature indices is displayed on the left side of the figure.

0.5 1.0 2.0 4.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

AAA (MKL)
AAA (Optimal)
AAA (Benchmark)
AAI (MKL)
AAI (Optimal)
AAI (Benchmark)
Oblique
RF (max_depth=3)
RF (max_depth= )
GBDT (max_depth=3)
GBDT (max_depth= )

Figure 7. Classification accuracy on the tic-tac-toe dataset. The
performance of RF/GBDT does not depend on α, and is repre-
sented by the horizontal line. Since RF/GBDT have randomness,
its standard deviation of the four-fold cross-validation accuracy in
12 executions is shown by a semi-transparent band.

The third type of weight, called “Benchmark”, is uniform
for all kernels. Additionally, as reference information, we
present the performance of Random Forest (RF) and Gradi-
ent Boosting Decision Trees (GBDT).

Figure 7 displays the results of four-fold cross-validation,
where 25 percent of the total amount of data were used for
training and the remainder for evaluation. No significant
variations were observed when adjusting β, so we present
results with β = 0.5. For RF/GBDT, the number of weak
learners is set to 1000. Detailed experimental results, in-
cluding those obtained by modifying β and comparisons
with forest models under diverse configurations, are pro-
vided in Appendices E.4 and E.6. It is evident from the
results that setting appropriate weights for each interaction
improves generalization performance. This improvement is
particularly remarkable in AAA; that is, AAA (MKL) and
AAA (Optimal) are superior to AAA (Benchmark) across
all α. For AAI, the performance is comparable between
AAI (Optimal) and AAI (Benchmark), which is consistent
with the insights obtained from Figure 6.

Since axis-aligned models and gradient methods have their
own inductive biases, using them could improve general-
ization performance in different ways. By considering the
tic-tac-toe dataset as a case study, we explore the benefit of
training axis-aligned models using gradient methods.

Axis-Aligned / Oblique. Under the optimal hyperparame-
ters, the performance was ranked in the order of AAA, AAI,

and then Oblique. Thus a stronger inductive bias leads to
more accurate results on this dataset. This emphasizes the
relevance of axis-aligned models in practical situations.

Gradient Descent / Greedy Search. The comparison be-
tween AAA and RF/GBDT suggests that gradient descent-
based learning even without MKL, referred to as “Bench-
mark”, is more effective than a greedy approach for this
dataset. The outcome of the tic-tac-toe game, the output
variable of this dataset, is determined only by the third-order
interactions of features, and it seems that greedy approaches
are not appropriate to pick up such interactions.

This example highlights the importance of considering axis-
aligned models trained by gradient descent, as treated in
our study and literature (Popov et al., 2020; Chang et al.,
2022). Although discussions about generalization perfor-
mance are always data-dependent and do not immediately
apply to other datasets, axis-aligned models trained with
a gradient-based method perform well not only on the tic-
tac-toe dataset, but also on several datasets as described
in Appendix E.6. Our insights, such as the sufficiency of
oblivious trees in tree architecture search (Section 4.1) and
the tight connection between feature selection and the type
of constraints on training (Section 4.2), can serve as a basis
of further development of large tree models.

5. Conclusion
In this paper, we have formulated the NTK induced by
the axis-aligned soft tree ensembles, and have succeeded
in describing the analytical training trajectory. We have
theoretically analyzed two scenarios: one where the axis-
aligned constraint is applied throughout the training process,
and the other where the initial model is axis-aligned and
training proceeds without any constraints. We have also
presented a theoretical framework to deal with non-identical
tree architectures simultaneously and used it to provide
theoretical support for the validity of using oblivious trees.
Furthermore, using MKL, we have shown that the suitable
features for AAA and AAI can be different from each other.
Our work highlights how tree architecture and constraints
affect the model behavior and provides insights into the
design of tree-based models.

8



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

Acknowledgements
This work was supported by JSPS, KAKENHI Grant Num-
ber JP21H03503, Japan and JST, CREST Grant Number
JPMJCR22D3, Japan.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich,

B., Caruana, R., and Hinton, G. Neural Additive Mod-
els: Interpretable Machine Learning with Neural Nets.
In Advances in Neural Information Processing Systems,
2021.

Aiolli, F. and Donini, M. EasyMKL: a scalable multiple
kernel learning algorithm. Neurocomputing, 2015.

Aiolli, F., Da San Martino, G., and Sperduti, A. A Kernel
Method for the Optimization of the Margin Distribution.
In Artificial Neural Networks, 2008.

Arik, S. Ã. and Pfister, T. TabNet: Attentive Interpretable
Tabular Learning. Proceedings of the AAAI Conference
on Artificial Intelligence, 2021.

Arora, S., Du, S. S., Li, Z., Salakhutdinov, R., Wang, R.,
and Yu, D. Harnessing the Power of Infinitely Wide Deep
Nets on Small-data Tasks. In International Conference
on Learning Representations, 2020.

Chang, C.-H., Caruana, R., and Goldenberg, A. NODE-
GAM: Neural generalized additive model for inter-
pretable deep learning. In International Conference on
Learning Representations, 2022.

Chen, W., Gong, X., and Wang, Z. Neural Architecture
Search on ImageNet in Four GPU Hours: A Theoretically
Inspired Perspective. In International Conference on
Learning Representations, 2021a.

Chen, Y., Huang, W., Nguyen, L., and Weng, T.-W. On the
Equivalence between Neural Network and Support Vector
Machine. In Advances in Neural Information Processing
Systems, 2021b.

Chizat, L., Oyallon, E., and Bach, F. On Lazy Training
in Differentiable Programming. In Advances in Neural
Information Processing Systems, 2019.

Elsken, T., Metzen, J. H., and Hutter, F. Neural Architec-
ture Search: A Survey. Journal of Machine Learning
Research, 2019.

Fernández-Delgado, M., Cernadas, E., Barro, S., and
Amorim, D. Do we Need Hundreds of Classifiers to
Solve Real World Classification Problems? Journal of
Machine Learning Research, 2014.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware Minimization for Efficiently Improving
Generalization. In International Conference on Learning
Representations, 2021.

Frosst, N. and Hinton, G. E. Distilling a Neural Network
Into a Soft Decision Tree. CoRR, 2017.

Gönen, M. and Alpaydın, E. Multiple kernel learning al-
gorithms. Journal of Machine Learning Research, 12,
2011.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do tree-
based models still outperform deep learning on typical
tabular data? In Thirty-sixth Conference on Neural In-
formation Processing Systems Datasets and Benchmarks
Track, 2022.

Hastie, T. and Tibshirani, R. Generalized Additive Models.
Statistical Science, 1986.

Hazimeh, H., Ponomareva, N., Mol, P., Tan, Z., and
Mazumder, R. The Tree Ensemble Layer: Differentiabil-
ity meets Conditional Computation. In Proceedings of
the 37th International Conference on Machine Learning,
2020.

Hearst, M., Dumais, S., Osuna, E., Platt, J., and Scholkopf,
B. Support vector machines. IEEE Intelligent Systems
and their Applications, 1998.

Humbird, K. D., Peterson, J. L., and Mcclarren, R. G. Deep
Neural Network Initialization With Decision Trees. IEEE
Transactions on Neural Networks and Learning Systems,
2019.

Jacot, A., Gabriel, F., and Hongler, C. Neural Tangent Ker-
nel: Convergence and Generalization in Neural Networks.
In Advances in Neural Information Processing Systems,
2018.

Joseph, M. PyTorch Tabular: A Framework for Deep Learn-
ing with Tabular Data. CoRR, 2021.

Kanoh, R. and Sugiyama, M. A Neural Tangent Kernel
Perspective of Infinite Tree Ensembles. In International
Conference on Learning Representations, 2022.

Kanoh, R. and Sugiyama, M. Analyzing Tree Architectures
in Ensembles via Neural Tangent Kernel. In International
Conference on Learning Representations, 2023.

9



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

Ke, G., Xu, Z., Zhang, J., Bian, J., and Liu, T.-Y. Deep-
GBM: A Deep Learning Framework Distilled by GBDT
for Online Prediction Tasks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019.

Kingma, D. and Ba, J. Adam: A Method for Stochastic
Optimization. In International Conference on Learning
Representations, 2015.

Kontschieder, P., Fiterau, M., Criminisi, A., and BulÃš, S. R.
Deep Neural Decision Forests. In IEEE International
Conference on Computer Vision, 2015.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-
Dickstein, J., and Pennington, J. Wide Neural Networks
of Any Depth Evolve as Linear Models Under Gradient
Descent. In Advances in Neural Information Processing
Systems, 2019.

Martins, A. and Astudillo, R. From Softmax to Sparsemax:
A Sparse Model of Attention and Multi-Label Classifica-
tion. In Proceedings of The 33rd International Confer-
ence on Machine Learning, 2016.

Mok, J., Na, B., Kim, J.-H., Han, D., and Yoon, S. De-
mystifying the Neural Tangent Kernel from a Practical
Perspective: Can it be trusted for Neural Architecture
Search without training? In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2022.

Peters, B., Niculae, V., and Martins, A. F. T. Sparse
Sequence-to-Sequence Models. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, 2019.

Popov, S., Morozov, S., and Babenko, A. Neural Oblivious
Decision Ensembles for Deep Learning on Tabular Data.
In International Conference on Learning Representations,
2020.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. CatBoost: unbiased boosting with cat-
egorical features. In Advances in Neural Information
Processing Systems, 2018.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. Journal of Machine
Learning Research, 2014.

Xu, J., Zhao, L., Lin, J., Gao, R., Sun, X., and Yang, H.
KNAS: Green Neural Architecture Search. In Proceed-
ings of the 38th International Conference on Machine
Learning, 2021.

10



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

A. Proof of Theorem 3.1
Theorem 3.1. Assume that all M trees have the same tree architecture. Let {a1, . . . , aℓ, . . . , aL} denote the set of
decomposed paths of the trees from the root to the leaves, and let h(aℓ) ⊂ N be the set of feature indices used in splits of the
input path aℓ. For any tree architecture, as the number of trees M goes to infinity, the NTK probabilistically converges to
the following deterministic limiting kernel:

ΘAxisAligned(xi,xj) := lim
M→∞

Θ̂AxisAligned
0 (xi,xj)

=

L∑
ℓ=1

 ∑
s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t +
∏

s∈h(aℓ)

T{i,j},s

 , (A.1)

where T{i,j},s = E[σ(uxi,s + βv)σ(uxj,s + βv)] and Ṫ{i,j},s = E[σ̇(uxi,s + βv)σ̇(uxj,s + βv)]. Here, scalars u, v ∈ R
are sampled from zero-mean i.i.d. Gaussians with unit variance. For Σ{i,j},s, it is xi,sxj,s + β2 when AAA is used, and
x⊤
i xj + β2 when AAI is used. Furthermore, if the decision function is the scaled error function, T{i,j},s and Ṫ{i,j},s are

obtained in closed-form as

T{i,j},s =
1

2π
arcsin

 α2(xi,sxj,s + β2)√
(α2(x2

i,s + β2) + 0.5)(α2(x2
j,s + β2) + 0.5)

+
1

4
, (A.2)

Ṫ{i,j},s =
α2

π

1√(
1 + 2α2(x2

i,s + β2)
)
(1 + 2α2(x2

j,s + β2))−4α4(xi,sxj,s + β2)2
. (A.3)

Proof. Based on the independence of parameters at each leaf and the symmetry of the decision function, Kanoh & Sugiyama
(2023) showed that the NTK induced by arbitrary soft tree ensembles can be decomposed into the sum of the NTKs induced
by the rule sets, which are constructed by paths from the tree root to leaves. This property also holds in our formulation
(Section 2.1). Therefore, we formulate the NTK induced by rule sets and use it to derive the NTK induced by axis-aligned
soft tree ensembles.

For simplicity, we first assume β = 0 in Equation (1). Let Dℓ be the depth of a rule set, which is a path from the root to
a leaf ℓ. We consider the contribution from internal nodes Θ(Dℓ,Rule,nodes) and the contribution from leaves Θ(Dℓ,Rule,leaves)

separately, such that

Θ(Dℓ,Rule) (xi,xj) = Θ(Dℓ,Rule,nodes) (xi,xj) + Θ(Dℓ,Rule,leaves) (xi,xj) . (A.4)

As for internal nodes, when we treat the axis-aligned case (Section 3.1), only a single parameter in wm,n is non-zero at
initialization. When calculating the NTK as shown in Equation (5), the parameter derivatives in terms of trainable parameters
are considered. In the cases of AAA and AAI, they are given as follows at initialization:

∂f (Dℓ,Rule) (xi,w,π)

∂wm,n,kn

=
1√
M

xi,kn
σ̇(wm,n,kn

xi,kn
)f (Dℓ−1,Rule)

m (xi,wm,−n,πm) , (AAA) (A.5)

∂f (Dℓ,Rule) (xi,w,π)

∂wm,n
=

1√
M

xiσ̇(wm,n,knxi,kn)f
(Dℓ−1,Rule)
m (xi,wm,−n,πm) , (AAI) (A.6)

where xi,kn and wm,n,kn are kn-th feature in xi and kn-th parameter in wm,n, respectively, and wm,−n denotes the internal
node parameter matrix except for the parameters of the node n.

As a preliminary step for calculating the NTK, we obtain the following equation at initialization:

Em

[
f (Dℓ,Rule)
m (xi,wm,πm) f (Dℓ,Rule)

m (xj ,wm,πm)
]

= Em

[
σ(w⊤

m,1xi)σ(w
⊤
m,1xj) · · ·σ(w⊤

m,Dxi)σ(w
⊤
m,Dxj)π

2
m,ℓ

]
= Em

σ(wm,1,k1
xi,k1

)σ(wm,1,k1
xj,k1

)︸ ︷︷ ︸
→T{i,j},k1

· · ·σ(wm,Dℓ,kDℓ
xi,kDℓ

)σ(wm,Dℓ,kDℓ
xj,kDℓ

)︸ ︷︷ ︸
→T{i,j},kDℓ

π2
m,ℓ︸︷︷︸
→1


11



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

=
∏

t∈h(aℓ)

T{i,j},t, (A.7)

where the symbol “→” denotes the expected value of the corresponding term will take. The transition from the second line
to the third line in Equation (A.7) uses the equality σ(w⊤

m,nxi) = σ(wm,n,kn
xi,kn

) at initialization. When the decision
function is the scaled error function, Equations (A.2) and (A.3) are obtained using the conventional formulas introduced in
Kanoh & Sugiyama (2022), which are also applied in Theorem 2.1.

Using Equation (A.7), the limiting NTK contribution from the n-th node is

lim
M→∞

1

M

M∑
m=1

(
Σ{i,j},kn

× σ̇(wm,n,kn
xi,kn

)σ̇(wm,n,kn
xj,kn

)

× f (Dℓ−1,Rule)
m (xi,wm,πm) f (Dℓ−1,Rule)

m (xj ,wm,πm)

)

=Σ{i,j},kn
× Em

σ̇(wm,n,knxi,kn)σ̇(wm,n,knxj,kn)︸ ︷︷ ︸
→Ṫ{i,j},kn



× Em

f (Dℓ−1,Rule)
m (xi,wm,πm) f (Dℓ−1,Rule)

m (xj ,wm,πm)︸ ︷︷ ︸
→

∏
t∈h(aℓ)\{kn} T{i,j},t

 , (A.8)

where Σ{i,j},kn
= xi,knxj,kn when AAA is used, and Σ{i,j},kn

= x⊤
i xj when AAI is used. Since there are Dℓ possible

locations for n, we obtain

Θ(Dℓ,Rule,nodes) (xi,xj) =
∑

s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t

 . (A.9)

For leaves, since

∂f (Dℓ,Rule) (xi,w,π)

∂πm,ℓ
=

1

πm,ℓ

√
M

f (Dℓ,Rule)
m (xi,wm,πm) , (A.10)

with Equation (A.7), we have

Θ(Dℓ,Rule,leaves) (xi,xj) =
∏

s∈h(aℓ)

T{i,j},s. (A.11)

Combining Equation (A.9) and Equation (A.11), we obtain

Θ(Dℓ,Rule) (xi,xj) =
∑

s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t

+
∏

s∈h(aℓ)

T{i,j},s. (A.12)

When we sum up this NTK over multiple rule sets constructed by multiple leaves, it becomes the NTK of the axis-aligned
soft tree ensembles:

ΘAxisAligned(xi,xj) =

L∑
ℓ=1

 ∑
s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t +
∏

s∈h(aℓ)

T{i,j},s

 . (A.13)

Up to this point, we have been considering the case of β = 0. It is straightforward to take the case β ̸= 0 into account
because, in the case of soft tree ensemble, the bias term can be represented by using an extra feature that takes a constant
value β as input. This allows us to generally express the bias term’s contribution by adding β2 to the section where the
product of the inputs is calculated.

By redefining h(aℓ) ⊂ N as h(aℓ) ⊂ P(N), where P denotes the power set, and changing the component xi,sxj,s to
x⊤
i,Sxj,S , where S is the set of feature indices used in a splitting node, we can handle multiple features at each split.

12



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

B. Proof of Proposition 3.1
Proposition 3.1. For any input xi, let p(xi,θτ ) be the sum of two model functions q(xi,θ

′
τ ) and r(xi,θ

′′
τ ), where

θ′
τ ∈ RP ′

and θ′′
τ ∈ RP ′′

are trainable parameters and θτ is the concatenation of θ′
τ and θ′′

τ used as trainable parameters
of p. For any input pair xi and xj , the NTK induced by p is equal to the sum of the NTKs of q and r: Θ̂

(p)
τ (xi,xj) =

Θ̂
(q)
τ (xi,xj) + Θ̂

(r)
τ (xi,xj).

Proof. The NTK induced by this model can be decomposed into the sum of the NTKs of each tree architecture as follows:

Θ̂(p)
τ (xi,xj) =

〈
∂p(xi,θτ )

∂θτ
,
∂p(xj ,θτ )

∂θτ

〉

=
(

∂p(xi,θτ )
∂θ′

τ,1
· · · ∂p(xi,θτ )

∂θ′
τ,P ′

∂p(xi,θτ )
∂θ′′

τ,1
· · · ∂p(xi,θτ )

∂θ′′
τ,P ′′

)


∂p(xj ,θτ )
∂θ′

τ,1

...
∂p(xj ,θτ )
∂θ′

τ,P ′
∂p(xj ,θτ )

∂θ′′
τ,1

...
∂p(xj ,θτ )
∂θ′′

τ,P ′′



=
(

∂q(xi,θ
′
τ )

∂θ′
τ,1

· · · ∂q(xi,θ
′
τ )

∂θ′
τ,P ′

∂r(xi,θ
′′
τ )

∂θ′′
τ,1

· · · ∂r(xiθ
′′
τ )

∂θ′′
τ,P ′′

)


∂q(xj ,θ
′
τ )

∂θ′
τ,1

...
∂q(xj ,θ

′
τ )

∂θ′
τ,P ′

∂r(xj ,θ
′′
τ )

∂θ′′
τ,1

...
∂r(xj ,θ

′′
τ )

∂θ′′
τ,P ′′



=
(

∂q(xi,θ
′
τ )

∂θ′
τ,1

· · · ∂q(xi,θ
′
τ )

∂θ′
τ,P ′

)
∂q(xj ,θ

′
τ )

∂θ′
τ,1

...
∂q(xj ,θ

′
τ )

∂θ′
τ,P ′

+
(

∂r(xi,θ
′′
τ )

∂θ′′
τ,1

· · · ∂r(xi,θ
′′
τ )

∂θ′′
τ,P ′′

)
∂r(xj ,θ

′′
τ )

∂θ′′
τ,1

...
∂r(xj ,θ

′′
τ )

∂θ′′
τ,P ′′


=

〈
∂q(xi,θ

′)

∂θ′ ,
∂q(xj ,θ

′)

∂θ′

〉
︸ ︷︷ ︸

Θ̂
(q)
τ (xi,xj)

+

〈
∂r(xi,θ

′′)

∂θ′′ ,
∂r(xj ,θ

′′)

∂θ′′

〉
︸ ︷︷ ︸

Θ̂
(r)
τ (xi,xj)

. (B.1)

Here, since q is not a function of θ′′ and r is not a function of θ′, the property that their respective derivatives are zero is
used in the transition from the second line to the third line in Equation (B.1).

The NTK decomposition for any number of sub-models follows by repeatedly using this property.

C. Proof of Proposition 4.1
Proposition 4.1. For any ensemble of infinitely many axis-aligned trees with the same architecture, one can always construct
a set of ensembles of axis-aligned oblivious trees that induce the same limiting NTK, up to constant multiples.

Proof. We prove this proposition using Figure A.1 as an instance. It is straightforward to generalize the following discussion
to any trees. As shown in Theorem 3.1, the limiting NTK is characterized by the root-to-leaf paths. Therefore, the limiting
NTK induced by an infinite number of trees shown at 1⃝ in Figure A.1 is identical to the limiting NTK induced by an infinite
number of rule sets shown at 2⃝ in Figure A.1. For any root-to-leaf path with the length Dℓ, one can always construct
a single perfect binary tree architecture that induces exactly the same NTK using 2Dℓ rule sets composed of the same

13



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

Decompose to rule sets 2D-1 copies

Convert to perfect binary trees

① ② ③ ④

Figure A.1. A procedure to convert any arbitrary binary tree ensemble into a set of perfect binary trees that use the same feature at each
depth with the exactly same limiting NTK up to a constant multiple.

features with the path. Since we consider binary splitting at every node, the number of children at each node is 2. Therefore,
for the maximum depth D of a tree, by having 2D−1 copies of the same tree ensembles ( 2⃝→ 3⃝ in Figure A.1), we can
convert them into perfect binary trees that use the same feature at each depth ( 3⃝→ 4⃝ in Figure A.1). Here, each copy
is identical in terms of its graph topological structure and the features used during the initialization of splitting nodes,
but their randomly initialized parameters are independent. Note that when there are D copies, the NTK also becomes
D times larger. This can be understood using Equation (B.1) by considering the case in Proposition 3.1, where we have
p(xi,θτ ) = q(xi,θ

′
τ ) + q(xi,θ

′′
τ ).

Until now, even though the same features are used for splitting at each depth, there has been no discussion regarding
parameter sharing. Next, we show that axis-aligned oblivious trees and perfect binary trees that do not share parameters
shown at 4⃝ induce the same NTK. For simplicity, we first assume β = 0. For a soft Boolean operation, because of the
symmetry of the decision function and independence of parameters at each leaf, even if 1− σ(w⊤

m,nxi) is replaced with
σ(w⊤

m,nxi), the resulting NTK remains unchanged (Kanoh & Sugiyama, 2023). When all 1 − σ(w⊤
m,nxi) for all n are

replaced with σ(w⊤
m,nxi), the function converted from the oblivious tree ensemble with depth D becomes:

f (D,Converted) (xi,w,π) =
1√
M

M∑
m=1

 D∏
d=1

σ
(
w⊤

m,dxi

) 2D∑
ℓ=1

πm,ℓ

 . (C.1)

We now calculate the NTK for Equation (C.1). For internal nodes at initialization, we obtain

∂f (D,Converted)(xi,w,π)

∂wm,d,kd

=
1√
M

xi,kd
σ̇
(
wm,d,kd

xi,kd

) ∏
s∈{1,2,3,...,D}\{d}

σ
(
wm,s,ksxi,ks

) 2D∑
ℓ=1

πm,ℓ, (AAA) (C.2)

∂f (D,Converted)(xi,w,π)

∂wm,d
=

1√
M

xiσ̇
(
wm,d,kd

xi,kd

) ∏
s∈{1,2,3,...,D}\{d}

σ
(
wm,s,ksxi,ks

) 2D∑
ℓ=1

πm,ℓ. (AAI) (C.3)

Since πm,ℓ is initialized as zero-mean i.i.d. Gaussians with unit variances,

Em [πm,ℓπm,ℓ′ ] =

{
0 if ℓ ̸= ℓ′,
1 otherwise. (C.4)

Therefore,

Em

[
(πm,1 + πm,2 + · · ·+ πm,2D )

2
]
= 2D. (C.5)

The limiting NTK contribution from the parameters at depth d is

lim
M→∞

1

M

M∑
m=1

(
Σ{i,j},kd

× σ̇(wm,d,kd
xi,kd

)σ̇(wm,d,kd
xj,kd

)

14



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

×
∏

s∈{1,2,3,...,D}\{d}

σ
(
wm,s,ksxi,ks

) ∏
s∈{1,2,3,...,D}\{d}

σ
(
wm,s,ksxj,ks

)

×
2D∑
ℓ=1

πm,ℓ

2D∑
ℓ=1

πm,ℓ

)

=Σ{i,j},kd
× Em

σ̇(wm,d,kd
xi,kd

)σ̇(wm,d,kd
xj,kd

)︸ ︷︷ ︸
→Ṫ{i,j},kd



× Em


∏

s∈{1,2,3,...,D}\{d}

σ
(
wm,s,ksxi,ks

) ∏
s∈{1,2,3,...,D}\{d}

σ
(
wm,s,ksxj,ks

)
︸ ︷︷ ︸

→
∏

t∈h(a)\{kd} T{i,j},t



× Em


2D∑
ℓ=1

πm,ℓ

2D∑
ℓ=1

πm,ℓ︸ ︷︷ ︸
→2D

 , (C.6)

where a is the root-to-leaf path which is common for all leaves in an oblivious tree. Since there are D possible locations for
d, we obtain

Θ(D,Oblivious, nodes)(xi,xj) = Θ(D,Converted, nodes)(xi,xj) = 2D
∑

s∈h(a)

Σ{i,j},sṪ{i,j},s
∏

t∈h(a)\{s}

T{i,j},t

 . (C.7)

For leaves at initialization,

∂f (D,Converted)(xi,w,π)

∂πm,ℓ
=

1√
M

∏
s∈{1,2,3,...,D}

σ
(
wm,s,ks

xi,s

)
. (C.8)

Since there are 2D leaves, we obtain

Θ(D,Oblivious, leaves)(xi,xj) = Θ(D,Converted, leaves)(xi,xj) = 2D
∏

s∈h(a)

T{i,j},s. (C.9)

Summation of Equation (C.7) and (C.9) is consistent to Equation (A.1) with perfect binary tree architecture that use the
same feature at each depth.

Up until this point, our discussion has focused on the scenario where β = 0. Since we can incorporate the bias term by
introducing an additional feature that consistently takes the value β as its input, the contribution of the bias term can be
represented by adding β2 to the inner product of the inputs in Σ{i,j},s when β ̸= 0.

D. Computational Complexity of MKL procedures
First, we analyze the computational cost of kernel matrix computation. To obtain a single kernel matrix, a calculation
defined in Equation (7) is performed N2 times, where N is the size of an input dataset. When we denote the number of
leaves as L and the depth of the tree as D, the overall computational complexity is O(N2LD2). Note that if there are
duplicates in the output of h(aℓ) for all ℓ ∈ [L], the computational cost can be reduced by aggregating and computing these
duplicates together, so the actual computational cost is often less than this. For example, when considering oblivious trees,
the computational complexity reduces to O(N2D2). Second, we consider the computational cost of MKL. Since MKL uses
multiple kernels, it repeats the calculation of kernel matrices for all the kernel matrices, while parallelization is possible in
this process. The cost to calculate the weights of the kernels by EasyMKL depends on the number of kernels. Specifically,
the EasyMKL uses Kernelized Optimization of the Margin Distribution (KOMD) (Aiolli et al., 2008), and its computational
cost is known to be linear with respect to the number of kernels (Aiolli & Donini, 2015).

15



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5

K
er

ne
l v

al
ue

 (A
A

A
)

xi = (1, 0), Tree architecture=(A)

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1/ 2 , 1/ 2 ), Architecture=(A)

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1, 0), Tree architecture=(B)

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1/ 2 , 1/ 2 ), Architecture=(B)

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5

K
er

ne
l v

al
ue

 (A
A

I)

xi = (1, 0), Tree architecture=(A)

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1/ 2 , 1/ 2 ), Architecture=(A)

AAA
M = 16
M = 64

M = 256
M = 1024

M = 4096
M =

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1, 0), Tree architecture=(B)

AAI
M = 16
M = 64

M = 256
M = 1024

M = 4096
M =

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1/ 2 , 1/ 2 ), Architecture=(B)

Figure A.2. An empirical demonstration of convergence of Θ̂0(xi,xj) to the fixed limit Θ(xi,xj) as M increases. Two conditions
(AAA/AAI) are listed vertically, and settings of vectors and tree architectures for computing the kernel are listed horizontally.

E. Additional Experiments
The implementation we used in our numerical experiments is available online1.

E.1. Convergence of the NTK with AAA/AAI

Figure A.2 shows the convergence of the NTK with AAA or AAI cases as the number M of trees increases on the same
datasets and tree architectures used in Figure 2. We set α = 2.0 and β = 0.5. The kernels induced by finite trees
M = {16, 64, 256, 1024, 4096} are computed numerically by re-initializing the parameters 10 times. We plot two cases:
xi = (1, 0),xj = (cos(ω), sin(ω)) with ω ∈ [0, π], and xi = ( 1√

2
, 1√

2
),xj = (cos(ω), sin(ω)) with ω ∈ [π4 ,

5π
4 ]. We

employ a perfect binary tree of depth 2. For architecture (A), the first feature is used at both depths 1 and 2. For architecture
(B), the first feature is used at depth 1 and the second feature at depth 2. This visualization confirms that as the number of
trees increases, the kernel asymptotically approaches the formula defined in Theorem 3.1.

E.2. Visualization of the NTK with AAA/AAI for each hyperparameter

We performed the same visualization as in Figure 2 with varying hyperparameters. The results are shown in Figures A.3,
A.4, A.5, and A.6.

E.3. Output dynamics with a real-world dataset

Figure A.7 demonstrates that for both AAA and AAI, as the number of trees increases, the trajectory derived analytically
from the limiting kernel becomes more aligned with the trajectory observed during gradient descent training. The protocol
used to create this figure is the same as that for Figure 3. In this experiment, we used the diabetes dataset2, a commonly
used real-world dataset for regression tasks that predicts a quantitative measure of disease progression one year after the
baseline. The diabetes dataset consists of F = 10 features, including body mass index, average blood pressure, age, sex,
and six blood serum measurements. All features and prediction targets have been standardized to have zero mean and unit
variance. We considered an ensemble of perfect binary trees with parameters α = 2.0 and β = 0.5. The body mass index
was chosen for splitting at depth 1, while the average blood pressure was used for depth 2 during initialization. We selected
50 random training samples and 10 test samples for this study.

1https://github.com/ryuichi0704/aa-tntk
2https://archive.ics.uci.edu/dataset/34/diabetes

16

https://github.com/ryuichi0704/aa-tntk
https://archive.ics.uci.edu/dataset/34/diabetes


Neural Tangent Kernels for Axis-Aligned Tree Ensembles

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

K
er

ne
l v

al
ue

AAA, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

AAA, Tree architecture=(B)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

K
er

ne
l v

al
ue

AAI, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

=1.0, =0.5

Figure A.3. The rotation angle dependency of ΘAxisAligned(xi,xj) with α = 1.0 and β = 0.5. The protocol for creating the figure is the
same as Figure 2.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

K
er

ne
l v

al
ue

AAA, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

AAA, Tree architecture=(B)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

K
er

ne
l v

al
ue

AAI, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

=4.0, =0.5

Figure A.4. The rotation angle dependency of ΘAxisAligned(xi,xj) with α = 4.0 and β = 0.5. The protocol for creating the figure is the
same as Figure 2.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

K
er

ne
l v

al
ue

AAA, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

AAA, Tree architecture=(B)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

K
er

ne
l v

al
ue

AAI, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

=2.0, =0.1

Figure A.5. The rotation angle dependency of ΘAxisAligned(xi,xj) with α = 2.0 and β = 0.1. The protocol for creating the figure is the
same as Figure 2.

17



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2
K

er
ne

l v
al

ue

AAA, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

AAA, Tree architecture=(B)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

K
er

ne
l v

al
ue

AAI, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

=2.0, =1.0

Figure A.6. The rotation angle dependency of ΘAxisAligned(xi,xj) with α = 2.0 and β = 1.0. The protocol for creating the figure is the
same as Figure 2.

0 200 400 600 800 1000
 (iteration)

2

1

0

1

2

M
od

el
 o

ut
pu

t

AAA

0 200 400 600 800 1000
 (iteration)

2

1

0

1

2
AAI

Analytical M = 16 M = 1024

Figure A.7. Output dynamics of test data points for axis-aligned soft tree ensembles with two conditions. The protocol used to create the
figure is identical to that of Figure 3.

18



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

100 101 102 1030.7

0.8

0.9

1.0

A
cc

ur
ac

y

AAA (Benchmark)

RF(max_depth=3)
RF(max_depth= )
GBDT(max_depth=3)
GBDT(max_depth= )

0.4 0.2 0.0 0.2 0.4
c

0.0

0.2

0.4

0.6

0.8

1.0

(c
)

= 100

= 101

= 102

= 103

Figure A.8. Accuracy of AAA (Benchmark) on the tic-tac-toe dataset when varying α, with β = 0.5.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy

max_depth=3, n_estimators=125
max_depth=3, n_estimators=250
max_depth=3, n_estimators=500

max_depth=3, n_estimators=1000
max_depth=3, n_estimators=2000
max_depth=3, n_estimators=4000

max_depth=5, n_estimators=125
max_depth=5, n_estimators=250
max_depth=5, n_estimators=500

max_depth=5, n_estimators=1000
max_depth=5, n_estimators=2000
max_depth=5, n_estimators=4000

max_depth=7, n_estimators=125
max_depth=7, n_estimators=250
max_depth=7, n_estimators=500

max_depth=7, n_estimators=1000
max_depth=7, n_estimators=2000
max_depth=7, n_estimators=4000
max_depth= , n_estimators=125
max_depth= , n_estimators=250
max_depth= , n_estimators=500

max_depth= , n_estimators=1000
max_depth= , n_estimators=2000
max_depth= , n_estimators=4000

Pa
ra

m
et

er
s

AAA (Benchmark)
AAI (Benchmark)
RF
GBDT

Figure A.9. Performance of RF and GBDT on the tic-tac-toe dataset for each max_depth and n_estimators. The procedure of the
experiment is the same as that in Figure 7.

E.4. Comparison with RF and GBDT

We further examine the performance of RF and GBDT on the tic-tac-toe dataset and discuss the effectiveness of AAA
reported in Figure 7.

Even when feature selection is not explicitly conducted (“AAA (Benchmark)” in Figure 7), the performance of the AAA
model calculated using the NTK is superior to that of a typical RF and GBDT. In addition, as shown in Figure A.8, even
if α increases to the extent that the splitting function is nearly equivalent to a step function, the performance of AAA
(Benchmark) remains superior to that of RF and GBDT. These results suggest that factors other than the feature selections
and the softness of the splitting are important. This comparison of AAA (Benchmark) and RF/GBDT means that such a
gradient descent-based learning is more effective than a greedy learning approach of RF/GBDT for the tic-tac-toe dataset.
The output variable in the tic-tac-toe dataset, the game’s outcome, is determined only by the third-order interactions of
features, and it seems that greedy approaches are not appropriate to pick up such interactions.

Moreover, as shown in Figure A.9, even when max_depth and n_estimators are tuned, the performance of RF and
GBDT does not reach that of AAA (Benchmark). In terms of trained models, if the splitting function is replaced with a
step function, AAA, RF, and GBDT all have the same format, which indicates that there is no difference in the expressive
power due to tree architectures. These observations indirectly support the fact that how to learn parameters in the tree is a
contributing factor.

19



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

E.5. MKL weights obtained from various datasets

Table A.1. Summary of dataset characteristics for binary classifica-
tion.

Name N (Instances) F (Features)
acute-inflammation 120 6

acute-nephritis 120 6
balloons 16 4

blood 748 4
breast-cancer 286 9

breast-cancer-wisc 699 9
echocardiogram 131 10

fertility 100 9
haberman-survival 306 3
ilpd-indian-liver 583 9
mammographic 961 5

pima 768 8
pittsburg-bridges-T-OR-D 102 7

tic-tac-toe 958 9
vertebral-column-2clases 310 6

To investigate how MKL behaves on datasets other than
the tic-tac-toe dataset, we selected and used additional
14 binary classification datasets from Fernández-Delgado
et al. (2014) with fewer than 1000 data points and 10 fea-
tures. See Table A.1 for details. The literature on kernel
methods often uses smaller datasets are often used due
to the high computational cost. However, it is known
that such small domains have become important for lever-
aging NTKs (Arora et al., 2020). We constructed ker-
nels considering interactions up to the second order, re-
sulting in

(
F
1

)
+

(
F
2

)
kernels. Figure A.10 shows the

weights obtained in a manner similar to Figure 6. Sim-
ilar to the tic-tac-toe dataset, AAI yields weights that
are relatively close to a uniform distribution, while AAA
tends to produce larger weights for specific interactions.
To quantitatively analyze such trends, we compared the
KL (Kullback-Leibler) divergence between the obtained
weights and a uniform distribution to examine how it
behaves under AAA or AAI. Results are shown in Fig-
ure A.11. From this figure, it can be observed that the KL divergence for AAA is larger, indicating a tendency to deviate
from a uniform distribution, and this holds true across various datasets.

E.6. Generalization performance on various datasets

All the results about the generalization performances are shown in Figures A.12, A.13, A.14, and A.15. As shown in
Figure A.12, the accuracy trend on the tic-tac-toe dataset as shown in Figure 7 in the main text does not largely depend on β.
This trend is observed in a variety of datasets, which are also used in Appendix E.5, as shown in Figures A.13, A.14, and
A.15. Overall, the performance depends on datasets and it is not fundamental to make a general claim that AAA and AAI
are better or worse than other models in terms of generalization performance compared to other models. This is a natural
consequence and orthogonal to our claim in this paper.

F. Limitations
NTK-based analyses have limitations, being effective in specific conditions like lazy training (Chizat et al., 2019). Therefore,
a theoretical gap still exists between NTK-based analyses and practical models.

In addition, the positive definiteness of the kernel depends on the combination of the dataset and the features used for
splitting. Under certain conditions, such as when only a single feature is used for splitting and this feature is insufficient to
fully separate the data, the kernel may not maintain its positive definiteness and may become positive semidefinite. Although
it is possible to address this by deepening the decision tree or using a variety of tree architectures to enhance the features
used for splitting, we need to note that positive definiteness is not always guaranteed. Upon numerically verifying whether
the kernel is positive definite across the 15 datasets used in Table A.1, excluding duplicate records and considering up to
third-order interactions, both AAA (Benchmark) and AAI (Benchmark) are found to be positive definite for all folds of the all
dataset. When interactions are limited up to the second order, rank deficiency occurred in the tic-tac-toe, breast-cancer-wisc,
and mammographic datasets.

Applying a temperature-scaled entmax for weights wm,n might be an interesting formulation for selecting features used for
splitting during training, although it is not addressed in this paper due to the difficulty of deriving a closed NTK (Popov
et al., 2020; Chang et al., 2022). We will leave these challenges for future investigation.

G. Relationship to the Multi-Layer Perceptron
NTK-based analysis using the 1/

√
M scaling defined in Equation (3), primarily targeting neural networks, has produced

various insights. We argue that the tree structure of a model does not mean its situation is special compared to neural

20



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{3
, 4

}

{3
, 5

}

{4
, 5

}

0.0

0.1

W
ei

gh
t

acute-inflammation

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{3
, 4

}

{3
, 5

}

{4
, 5

}

0.0

0.1

W
ei

gh
t

acute-nephritis

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{1
, 2

}

{1
, 3

}

{2
, 3

}

0.00

0.25

W
ei

gh
t

balloons

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{1
, 2

}

{1
, 3

}

{2
, 3

}

0.00

0.25

W
ei

gh
t

blood

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{8
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{0
, 8

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{1
, 8

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{2
, 8

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{3
, 8

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{4
, 8

}

{5
, 6

}

{5
, 7

}

{5
, 8

}

{6
, 7

}

{6
, 8

}

{7
, 8

}

0.0

0.1

W
ei

gh
t

breast-cancer

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{8
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{0
, 8

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{1
, 8

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{2
, 8

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{3
, 8

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{4
, 8

}

{5
, 6

}

{5
, 7

}

{5
, 8

}

{6
, 7

}

{6
, 8

}

{7
, 8

}

0.00

0.05

W
ei

gh
t

breast-cancer-wisc

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{8
}

{9
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{0
, 8

}

{0
, 9

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{1
, 8

}

{1
, 9

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{2
, 8

}

{2
, 9

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{3
, 8

}

{3
, 9

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{4
, 8

}

{4
, 9

}

{5
, 6

}

{5
, 7

}

{5
, 8

}

{5
, 9

}

{6
, 7

}

{6
, 8

}

{6
, 9

}

{7
, 8

}

{7
, 9

}

{8
, 9

}

0.00

0.05

W
ei

gh
t

echocardiogram

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{8
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{0
, 8

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{1
, 8

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{2
, 8

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{3
, 8

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{4
, 8

}

{5
, 6

}

{5
, 7

}

{5
, 8

}

{6
, 7

}

{6
, 8

}

{7
, 8

}

0.00

0.05

W
ei

gh
t

fertility

AAA
AAI

{0
}

{1
}

{2
}

{0
, 1

}

{0
, 2

}

{1
, 2

}

0.00

0.25

W
ei

gh
t

haberman-survival

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{8
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{0
, 8

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{1
, 8

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{2
, 8

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{3
, 8

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{4
, 8

}

{5
, 6

}

{5
, 7

}

{5
, 8

}

{6
, 7

}

{6
, 8

}

{7
, 8

}

0.0

0.1

W
ei

gh
t

ilpd-indian-liver

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{2
, 3

}

{2
, 4

}

{3
, 4

}

0.0

0.2

W
ei

gh
t

mammographic

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{5
, 6

}

{5
, 7

}

{6
, 7

}

0.00

0.05

W
ei

gh
t

pima

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{4
, 5

}

{4
, 6

}

{5
, 6

}

0.0

0.2

W
ei

gh
t

pittsburg-bridges-T-OR-D

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{3
, 4

}

{3
, 5

}

{4
, 5

}

0.0

0.1

W
ei

gh
t

vertebral-column-2clases

AAA
AAI

Figure A.10. Weights of a linear combination of multiple kernels obtained by EasyMKL on 14 UCI dataset.

21



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

0.0 0.2 0.4 0.6 0.8
AAA

0.0

0.2

0.4

0.6

0.8

A
A

I

Kullback Leibler divergence between obtained weights by MKL and uniform weights

Figure A.11. The KL divergence from the weights obtained by MKL to the uniform distribution under AAA or AAI. Each point on the
scatter plot corresponds to a specific dataset.

0.5 1.0 2.0 4.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

=0.1

0.5 1.0 2.0 4.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00
=0.5

0.5 1.0 2.0 4.0

0.75

0.80

0.85

0.90

0.95

1.00
=1.0

AAA (MKL)
AAA (Benchmark)
AAA (Optimal)

AAI (MKL)
AAI (Benchmark)
AAI (Optimal)

Oblique
RF (max_depth=3)
RF (max_depth= )

GBDT (max_depth=3)
GBDT (max_depth= )

Figure A.12. Classification accuracy on the tic-tac-toe dataset with β = {0.1, 0.5, 1.0}. The procedure of the experiment is the same as
that in Figure 7.

22



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

acute-inflammation

0.96

0.98

1.00
acute-nephritis

0.50

0.55

0.60

0.65
balloons

0.72

0.74

0.76

0.78
blood

0.66

0.68

0.70

0.72

breast-cancer

0.955

0.960

0.965

breast-cancer-wisc

0.70

0.75

0.80

0.85
echocardiogram

0.5 1.0 2.0 4.0

0.84

0.86

0.88

A
cc

ur
ac

y

fertility

0.5 1.0 2.0 4.0
0.68

0.70

0.72

0.74

haberman-survival

0.5 1.0 2.0 4.0

0.650

0.675

0.700

0.725
ilpd-indian-liver

0.5 1.0 2.0 4.0

0.78

0.80

0.82

mammographic

0.5 1.0 2.0 4.0
0.70

0.72

0.74

0.76

pima

0.5 1.0 2.0 4.0

0.82

0.84

0.86

pittsburg-bridges-T-OR-D

0.5 1.0 2.0 4.0

0.75

0.80

0.85
vertebral-column-2clases

=0.1

AAA (MKL)
AAA (Benchmark)

AAI (MKL)
AAI (Benchmark)

Oblique
RF (max_depth=3)

RF(max_depth= )
GBDT (max_depth=3)

GBDT(max_depth= )

Figure A.13. Classification accuracy on 14 UCI dataset with β = 0.1. The procedure of the experiment is the same as that in Figure 7.
Interactions are considered up to the second order.

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

acute-inflammation

0.96

0.97

0.98

0.99

1.00
acute-nephritis

0.50

0.55

0.60

0.65
balloons

0.72

0.74

0.76

0.78
blood

0.66

0.68

0.70

0.72

breast-cancer

0.955

0.960

0.965

breast-cancer-wisc

0.70

0.75

0.80

0.85
echocardiogram

0.5 1.0 2.0 4.0

0.84

0.86

0.88

A
cc

ur
ac

y

fertility

0.5 1.0 2.0 4.0
0.68

0.70

0.72

0.74

haberman-survival

0.5 1.0 2.0 4.0

0.68

0.70

0.72

ilpd-indian-liver

0.5 1.0 2.0 4.0

0.78

0.80

0.82

mammographic

0.5 1.0 2.0 4.0

0.72

0.74

0.76

pima

0.5 1.0 2.0 4.0
0.82

0.84

0.86

pittsburg-bridges-T-OR-D

0.5 1.0 2.0 4.0

0.75

0.80

0.85
vertebral-column-2clases

=0.5

AAA (MKL)
AAA (Benchmark)

AAI (MKL)
AAI (Benchmark)

Oblique
RF (max_depth=3)

RF(max_depth= )
GBDT (max_depth=3)

GBDT(max_depth= )

Figure A.14. Classification accuracy on 14 UCI dataset with β = 0.5. The procedure of the experiment is the same as that in Figure 7.
Interactions are considered up to the second order.

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

acute-inflammation

0.96

0.98

1.00
acute-nephritis

0.50

0.55

0.60

0.65
balloons

0.72

0.74

0.76

0.78
blood

0.66

0.68

0.70

0.72

breast-cancer

0.955

0.960

0.965

breast-cancer-wisc

0.70

0.75

0.80

0.85
echocardiogram

0.5 1.0 2.0 4.0

0.84

0.86

0.88

A
cc

ur
ac

y

fertility

0.5 1.0 2.0 4.0
0.68

0.70

0.72

0.74

haberman-survival

0.5 1.0 2.0 4.0
0.66

0.68

0.70

0.72

ilpd-indian-liver

0.5 1.0 2.0 4.0

0.78

0.80

0.82

mammographic

0.5 1.0 2.0 4.0

0.72

0.74

0.76

pima

0.5 1.0 2.0 4.0
0.82

0.84

0.86

pittsburg-bridges-T-OR-D

0.5 1.0 2.0 4.0

0.75

0.80

0.85
vertebral-column-2clases

=1.0

AAA (MKL)
AAA (Benchmark)

AAI (MKL)
AAI (Benchmark)

Oblique
RF (max_depth=3)

RF(max_depth= )
GBDT (max_depth=3)

GBDT(max_depth= )

Figure A.15. Classification accuracy on 14 UCI dataset with β = 1.0. The procedure of the experiment is the same as that in Figure 7.
Interactions are considered up to the second order.

23



Neural Tangent Kernels for Axis-Aligned Tree Ensembles

networks, as there are clear correspondences between Multi-Layer Perceptron (MLP) and tree ensemble models. The
formulation of a tree ensemble with depth 1 is:

f(w, b,π) =
1√
M

M∑
m=1

(
σ
(
w⊤

m,1xi + βbm,1

)
πm,1 +

(
1− σ

(
w⊤

m,1xi + βbm,1

))
πm,2

)
=

1√
M

M∑
m=1

(
(πm,1 − πm,2)σ

(
w⊤

m,1xi + βbm,1

)
+ πm,2

)
. (G.1)

When we consider the correspondence between πm,1 − πm,2 in tree ensembles and second layer weights in the two-layer
perceptron, the tree ensembles model coincides with the two-layer perceptron. Making the tree deeper corresponds to
making the first layer of the two-layer perceptron more complex. Therefore, NTK-based analysis for trees is an extension of
the NTK-based analysis that has been conducted on neural networks.

24


