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Abstract
Knowledge distillation (KD) aims to transfer
knowledge from larger (teacher) to smaller (stu-
dent) networks. Previous studies focus on point-
to-point or pairwise relationships in embedding
features as knowledge and struggle to efficiently
transfer relationships of complex latent spaces. To
tackle this issue, we propose a novel KD method
called TopKD, which considers the global topol-
ogy of the latent spaces. We define global topol-
ogy knowledge using the persistence diagram (PD)
that captures comprehensive geometric structures
such as shape of distribution, multiscale struc-
ture and connectivity, and the topology distilla-
tion loss for teaching this knowledge. To make
the PD transferable within reasonable computa-
tional time, we employ approximated persistence
images of PDs. Through experiments, we support
the benefits of using global topology as knowl-
edge and demonstrate the potential of TopKD.
Code is available at https://github.com/
jekim5418/TopKD

1. Introduction
Large-scale deep learning models with numerous training
parameters have recently demonstrated outstanding perfor-
mance. However, the massive computational demands pose
limitations for on-device applications (Chen et al., 2021b;c).
Thus, model compression has become an active research
field. A primary approach in this field, knowledge distilla-
tion (KD), aims to improve the performance of a smaller
network, referred to as a student, by transferring knowledge
acquired from a well-trained larger network, known as a
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Figure 1: Topology-informed knowledge distillation. The
proposed approach transfers the global topology of the entire
embedding features from the teacher to the student model.

teacher (Hinton et al., 2015).

The most critical part of KD is determining which teacher
knowledge to transfer. In the initial study, vanilla KD (Hin-
ton et al., 2015) uses soft logits of the teacher network as the
knowledge. To better imitate the teacher network, feature-
based KD methods were introduced to mimic the internal
feature representations. For instance, FitNet (Romero et al.,
2015) improved performance by matching the feature values
of the intermediate layers between the teacher and student
networks in a point-to-point manner using the L2 loss. This
leads to excessively large loss values, making effective guid-
ance challenging.

Meanwhile, relation-based KD methods aim to identify in-
tricate relationships across embedding features (Peng et al.,
2019; Park et al., 2019; Huang et al., 2022). Determin-
ing these relationships mainly involves defining similarity
measures between distinct embedding features (Peng et al.,
2019; Huang et al., 2022; Yang et al., 2022a) or assessing
the structure between two or three pairs of embedding fea-
tures within the latent space (Yim et al., 2017; Park et al.,
2019). RKD (Park et al., 2019) defined the structure of the
embedding features based on the distance and angle. These
methods teach the model the full relationship via interac-
tions between a few embedding features; however, relying
on partial information to understand the entire structure
is limited. Therefore, transferable knowledge that teaches
the broader context of relationships between all embedding
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features should be defined. However, it is difficult to con-
sider all arbitrarily multiple relationships of the features
simultaneously. To address this problem, we consider a
topology-based method.

Persistent homology (PH), a primary method in topologi-
cal data analysis (TDA), provides an efficient method of
calculating the global topology of data. In addition, PH
systematically analyzes homological variations across mul-
tiple scales and discerns their persistence over different
resolutions. This process unveils comprehensive structural
information regarding the given data, including shape of dis-
tribution, multiscale structure, and connectivity. Moreover,
PH visualizes such information in a persistence diagram
(PD) that summarizes the birth and death of the topological
features with the resolution. Despite these advantages, PH
has only been employed as a preprocessing step for raw data
in KD (Du et al., 2022; Jeon et al., 2024). However, if PH
is integrated directly into the intermediate layers, it could
offer valuable insight into the structure of the embedding
features in the latent space.

In this context, we propose topology-informed KD (TopKD),
a novel approach that leverages the global topology knowl-
edge, comprising the comprehensive and entire structure
of all embedding features (Fig. 1). For TopKD, we define
global topology knowledge using the PD and the topol-
ogy distillation loss for teaching this knowledge. However,
directly computing PDs at each learning iteration is imprac-
tical or impossible with reasonable computational complex-
ity. To render it possible, we replace PDs with persistence
images (PIs) (Adams et al., 2017b) approximated using
RipsNet (de Surrel et al., 2022). That is, TopKD matches
the approximated PIs of the teacher and student networks
with the topology distillation loss. To evaluate TopKD, we
conduct extensive experiments on image classification with
the CIFAR-100 and ImageNet-1K datasets. In addition, we
provide ablation studies to explore TopKD, error analyses of
approximated PIs, and topological visualization of results.
The main contributions of our TopKD are as follows:

• We propose a topology-based KD method by defining
the global topology knowledge as a PD that reflects the
comprehensive and entire structure of all embedding
features. To the best of our knowledge, this is the first
study to use TDA in the latent space in KD.

• TopKD efficiently enables learning by replacing im-
practical and computationally demanding PDs with
approximated PIs. We also present its validity through
experiments and analyses. This can address the limi-
tations of previous research in which PDs were used
only in preprocessing.

• Through extensive experiments, we confirm that
TopKD surpasses vanilla KD, thereby showing the ef-
fectiveness of global topology, and its potential through

competitive performance with other KD methods.

2. Related Works
2.1. Knowledge Distillation

KD aims to enhance performance by transferring knowledge
obtained from a pretrained high-performing large model to a
smaller one (Hu et al., 2023). Numerous KD models can be
categorized as logit-based (Hinton et al., 2015; Zhao et al.,
2022; Huang et al., 2022), feature-based (Romero et al.,
2015; Ahn et al., 2019; Heo et al., 2019; Yang et al., 2022b;
Deng et al., 2022; Zong et al., 2022; Liu et al., 2023), or
relation-based KD methods. The vanilla KD (Hinton et al.,
2015) and FitNet (Romero et al., 2015) are representative
logit-based and feature-based methods, respectively.

Rather than depending on fixed representations, relation-
based KD focuses on relationships and interactions between
embedding features (Zagoruyko & Komodakis, 2016; Pas-
salis & Tefas, 2018; Tung & Mori, 2019; Peng et al., 2019;
Yang et al., 2020; Li et al., 2020; Chen et al., 2021a;c; Wang
et al., 2023). Contrastive learning (Tian et al., 2019; Zhu
et al., 2021) and diverse similarity matrices, such as the
Pearson correlation coefficient (Huang et al., 2022), acti-
vation similarity matrix (Tung & Mori, 2019), attention
matrix (Zagoruyko & Komodakis, 2016; Guo et al., 2023),
Gaussian radial basis function (Li et al., 2020), and cosine
similarity (Park et al., 2019; Wang et al., 2023) have been
used to quantify the relation between embedding features.

Furthermore, some studies have assessed the structural prox-
imity between embedding features (Yim et al., 2017; Park
et al., 2019; Liu et al., 2019). To measure the distance be-
tween embedding features, FSP (Yim et al., 2017) calculated
the flow of solution procedure matrix to determine the direc-
tion of features. In addition, a study has defined distance by
constructing an instance relation graph, where the feature
values are represented as vertices, and the Euclidean dis-
tances between pairs are depicted as edges (Liu et al., 2019).
The RKD (Park et al., 2019) proposed distance-wise and
angle-wise distillation losses to measure the proximity of
two or three pairs of embedding features. No previous stud-
ies have used topological characteristics to identify the over-
all structure of embedding features as knowledge. Instead,
most have tried to teach the entire relationship through frag-
mented pairwise relationships of a single type. In contrast,
TopKD identifies the comprehensive and overall structures,
including shape of distribution, multiscale structure, and
connectivity, by exploiting the topology of all embedding
features in the latent space.

2.2. Persistent Homology in Deep Learning

Numerous efforts have been made to integrate topological
information, particularly PH, into machine learning for ge-
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ometric data analysis (Pachauri et al., 2011; Reininghaus
et al., 2015; Anirudh et al., 2016; Som et al., 2018; Nawar
et al., 2020; Barannikov et al., 2021b;a; Trofimov et al.,
2022). Despite the solid theoretical background of PH, it is
not straightforward to feed PD into deep neural networks
(DNNs) because they are defined as multisets that could
have varying sizes across samples. There have been several
efforts to convert a PD into a fixed-size vector to address this
problem, including the Betti sequence (Umeda, 2017), per-
sistence landscape (Bubenik et al., 2015), and PIs (Adams
et al., 2017a). Serving as alternative data representations
or additional input modalities for DNNs, such vectoriza-
tion methods have been applied across fields, including
time-series analyses (Umeda, 2017), astrophysics (Bresten
& Jung, 2019), and medical imaging (Hajij et al., 2021).
Numerous previous studies have limited the numerical ex-
periment to domain-specific datasets (Stucki et al., 2023;
Hu et al., 2022) or small-scale datasets such as CIFAR-
10 (Barannikov et al., 2021b; Purvine et al., 2023) and
MNIST (Barannikov et al., 2021b; Trofimov et al., 2022;
Davies et al., 2023; Von Rohrscheidt & Rieck, 2023). How-
ever, we evaluate TopKD on a widely used large-scale bench-
mark such as ImageNet-1K.

Despite active research and the advantages of PH, in KD, PH
has only been used for extracting information to augment
the input data to the network (Du et al., 2022; Peng et al.,
2024; Jeon et al., 2024). In other words, PH is employed
solely to extract additional information from the input. In
contrast, this study takes a step further by directly leveraging
the topology as knowledge.

3. Background of Persistent Homology
Topological characteristics, such as connected components,
loops, void spaces, and the Betti numbers, represent con-
sistent properties of space that persist through continuous
transformations, providing insights into the structure, shape,
connectivity, and overall distribution within datasets. Specif-
ically, the connected components signify clusters of asso-
ciated points, loops indicate the presence of boundaries or
closed paths within a dataset, and void spaces depict regions
or areas without points. The Betti numbers quantitatively
encapsulate all these characteristics. PH is a method that
analyzes the creation and destruction of these topological
characteristics by exploring the homology of spaces across
different scales. A PD is a visual tool that illustrates the
results of PH (Dey & Wang, 2022).

Barcode and Persistence Diagrams. For a topological
space X , a real-valued function f : X → R is defined
on the space X . For α ∈ R, the α-sublevel set Xα of
(X , f) is defined as {x ∈ X : f(x) ≤ α}. As α goes
from −∞ to ∞, Xα starts with the empty set and ends with
the entire space X . This nested sequence of sublevel sets

Ø = Xα0=−∞ ↪→ Xα1
↪→ Xα2

↪→ · · · ↪→ Xαn
= X

is called the filtration Ff induced by f . We compute the
homology of each sublevel set to observe how it changes
across the filtration. For example, a new k-dimensional
(dim) hole appears in Xαb

and merges with Xαd
, where

αb ≤ αd. These values of αb and αd are referred to as the
birth time and death time, respectively, of the k-dim homol-
ogy, and this homology persists on the interval [αb, αd] and
αd − αb called persistence. The family of these intervals
is the persistence barcode of (X , f), a multiset of points
in {(x, y) ∈ R2 | x ≤ y}, where R := R ∪ {±∞}. The
PD visualizes the barcode, as illustrated in Fig. 6(b) in the
appendix.

Filtrations for point clouds. For a point set P in a met-
ric space (M,d) (e.g., (Rn, du), where du is the Euclidean
distance), a real-valued function f : M → R is defined as
v 7→ minx∈P d(v, x). Then, the α-sublevel set of (M,f)
represents the union of closed balls Bx(α) centered at
x ∈ P with a radius of α. Computing singular homol-
ogy groups is cumbersome. In the case of point cloud data
(PCD), the union of balls can be replaced with simplicial
complexes such as the Čech, Vietoris-Rips (Rips), and al-
pha complexes, which are commonly used. Due to the
computational costs of the Čech complex and the potential
transformation of an empty interval (Maria et al., 2014) of
the alpha complex, we chose the Rips complex VRr(P ), an
approximation of the Čech complex, defined as VRr(P ) =
{σ = {p0, ..., pk}|du(pi, pj) ≤ 2r for any pi, pj ∈ σ} for
PCD P and pi ∈ P . Then, the Rips filtration R(P ) is given
by {VRα(P ) ↪→ VRα′

(P )}α≤α′ . Such filtration enables
us to examine multiscale relationships across all data by
varying α, which is the distance threshold between two
points.

Vectorization of the PD. Integrating the PD into DNNs
requires vectorization. Among the various vectorization
methods, we selected PIs due to the possibility of steering
persistence, which is critical for global topology knowledge.
PIs (Adams et al., 2017a) transform a barcode into a vector
while reflecting the persistence and density of points in
the barcode. First, a barcode B is rotated via the map
T : R2 → R2, (b, d) 7→ (b, d − b). Next, the persistence
surface ρB : R2 → R corresponding to B is defined as
ρB(z) =

∑
u∈T (B) w(u)gu(z), where w : R2 → R is a

weight function controlling the effect of persistence (Fig. 6
(c) in the appendix) and gu : R2 → R is a Gaussian function
defined as gu(z) = 1

2πσ2 exp (− ||z−u||2
2σ2 ) with a mean u and

variance σ2. The weight function w(x, y) = 10(tanh(y) +
ln(100x+1)) is designed to increase the influence of points
with long persistence and reflect the global structure by
weighting points according to the birth time. Last, PIs are
realized by discretizing the surface via integration ρB over
each subdomain. We let ⊔iPi be the partition of a compact
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Figure 2: The overall training process for TopKD involving two stages: (a) training RipsNet and (b) training the student
model. RipsNet is trained with the PCD and PIs generated from the featurizer output of the teacher network. The pretrained
RipsNet is frozen and used to extract PIs from both networks to mimic the global topology. The student network is updated
with LCE , LKD, and LTop.

subset A ⊆ R2 (in practice, a rectangular domain divided
into n× n pixels). The PIs (I(ρB)Pi)i are the collection of
pixels, where I(ρB)Pi

=
∫∫

P
ρBdz.

4. Method
This section revisits conventional KD and introduces the
proposed TopKD based on global topology knowledge, PI
approximation, and topology distillation loss.

4.1. Preliminaries

Notation. Given pretrained teacher (T ) and student (S)
models, each model consists of a featurizer and classifier.
For the teacher model, the output of any layer of the fea-
turizer for a training sample xi is represented as fT (xi),
and the preactivated output of the classifier, referred to as
logits, is indicated as zT (xi). Similarly, the outputs of
the featurizer and classifier of the student network are ex-
pressed as fS(xi) and zS(xi), respectively. Furthermore,
the softmax function is denoted as σ, and the temperature
is represented as τ . If X = {x1, x2, · · · , xN} is a set of
input samples where Y = {y1, y2, · · · , yN} is a set of true
labels comprising C categories with N samples, the student
model for image classification is trained by minimizing the
cross-entropy (CE) loss, LCE =

∑
xi∈X

CE(σ(zS(xi)), yi).

Conventional knowledge distillation. In vanilla KD (Hin-
ton et al., 2015), the KD loss function, denoted as LKD, is a
Kullback–Leibler (KL) divergence designed to minimize the
soft logits of the teacher and student as training progresses:

LKD =
∑
xi∈X

KL(σ(zT (xi)/τ), σ(z
S(xi)/τ)). (1)

Therefore, in conventional KD, the student model is trained

with the final loss denoted as L = αLCE + βLKD, where
the hyperparameters α and β control the significance of
LCE and LKD, respectively.

4.2. Topology-informed Knowledge Distillation

What knowledge should be distilled? As described in Sec-
tion 3, the PH can offer a comprehensive and multifaceted
explanation of the latent space of the teacher network. To
transfer the PH of the embedding features, we define the
PD of the embedding features as the global topology knowl-
edge. These PDs provide topological summaries of the
embedding features encompassing structural details about
the similarity between data points, their overall distribution,
and interactions and distances between them. For the ef-
fective integration of PDs, we use the PI as a vectorization,
which can strengthen the global features by steering the
influence of persistence.

Approximating PIs. Accurately calculating PDs and PIs
for each batch requires heavy computational demands. Thus,
TopKD approximates PIs using RipsNet to address this prob-
lem. While such approximation enables rapid calculation
of PIs, it necessitates training specific to the task at hand.
First, we created PCDs from the training data X using a
pretrained teacher model T , as depicted in Fig. 2(a). We let
Xm be a set of m-tuples of distinct samples in X . In this
case, m is the batch size. For Xm, the set of PCDs PT is
generated as follows:

PT = {(fT (x1), .., f
T (xm)) | (x1, .., xm) ∈ Xm}. (2)

If the output size of the featurizer is [h,w] with c channels,
we consider fT (xi) as a point in Rh×w×c or a point in Rc

by passing through the pooling layer. We use the Gudhi
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Table 1: Top-1 accuracy (%) comparison on CIFAR-100 with other KD approaches. Teacher and student networks have
the same architectural style. Blue inverted triangles indicate lower performance than KD; red triangles signify better
performance than KD. “-” indicates the absence of any available results. Relation denotes the relationships between a
specific number of points (e.g., pairwise or triple-wise) to extract knowledge.

Distillation
Mechanism

Knowledge Relation

Teacher ResNet56 ResNet110 ResNet110 ResNet32×4 WRN-40-2 WRN-40-2 VGG13
Acc. 72.34 74.31 74.31 79.42 75.61 75.61 74.64

Student ResNet20 ResNet20 ResNet32 ResNet8×4 WRN-16-2 WRN-40-1 VGG8
Acc. 69.06 69.06 71.14 72.50 73.26 71.98 70.36

Logit Soft logits - KD 70.66 70.67 73.08 73.33 74.92 73.54 72.98

Feature

Feature value - FitNet 69.21 ▼ 68.99 ▼ 71.06 ▼ 73.50 ▲ 73.58 ▼ 72.24 ▼ 71.02 ▼
Attention map - AT 70.55 ▼ 70.22 ▼ 72.31 ▼ 73.44 ▲ 74.08 ▼ 72.77 ▼ 71.43 ▼

Variational distribution - VID 70.38 ▼ 70.16 ▼ 72.61 ▼ 73.09 ▼ 74.11 ▼ 73.30 ▼ 71.23 ▼
Preactivation feature - OFD 70.98 ▲ - 73.23 ▲ 74.95 ▲ 75.24 ▲ 74.33 ▲ 73.95 ▲

Relation

Correlation coefficient Pair CC 69.63 ▼ 69.48 ▼ 71.48 ▼ 72.97 ▼ 73.56 ▼ 72.21 ▼ 70.71 ▼
Similarity matrix Pair SP 69.67 ▼ 70.04 ▼ 72.69 ▼ 72.94 ▼ 73.83 ▼ 72.43 ▼ 72.68 ▼

Direction Pair FSP 69.95 ▼ 70.11 ▼ 71.89 ▼ 72.62 ▼ 72.91 ▼ - 70.23 ▼
Distance&angle Pair/triple RKD 69.61 ▼ 69.25 ▼ 71.82 ▼ 71.90 ▼ 73.35 ▼ 72.22 ▼ 71.48 ▼

Probability of features Pair PKT 70.34 ▼ 70.25 ▼ 72.61 ▼ 73.64 ▲ 74.54 ▼ 73.45 ▼ 72.88 ▼
Contrastive learning Pair CRD 71.16 ▲ 71.46 ▲ 73.48 ▲ 75.51 ▲ 75.48 ▲ 74.14 ▲ 73.94 ▲
Contrastive learning Pair CRCD 73.21 ▲ 72.33 ▲ 74.98 ▲ 76.42 ▲ 76.67 ▲ 75.95 ▲ 74.97 ▲

Topology Global topology All Ours 71.58 ▲ 71.47 ▲ 73.77 ▲ 75.40 ▲ 75.75 ▲ 74.43 ▲ 74.01 ▲

Table 2: Top-1 accuracy (%) comparison on CIFAR-100 with other KD approaches. These teacher and student networks
have different architectural styles.

Distillation
Mechanism

Knowledge Relation

Teacher VGG13 ResNet50 ResNet50 ResNet32×4 ResNet32×4 WRN-40-2
Acc. 74.64 79.34 79.34 79.42 79.42 75.61

Student MobileNetV2 MobileNetV2 VGG8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1
Acc. 64.60 64.60 70.36 70.50 71.82 70.50

Logit Soft logits - KD 67.37 67.35 73.81 74.07 74.45 74.83

Feature

Feature value - FitNet 64.14 ▼ 63.16 ▼ 70.69 ▼ 73.59 ▼ 73.54 ▼ 73.73 ▼
Attention map - AT 59.40 ▼ 58.58 ▼ 71.84 ▼ 71.73 ▼ 72.73 ▼ 73.32 ▼

Variational distribution - VID 65.56 ▼ 67.57 ▲ 70.30 ▼ 73.38 ▼ 73.40 ▼ 73.61 ▼
Preactivation feature - OFD 69.48 ▲ 69.04 ▲ - 75.98 ▲ 76.82 ▲ 75.85 ▲

Relation

Correlation coefficient Pair CC 64.86 ▼ 65.43 ▼ 70.25 ▼ 71.14 ▼ 71.29 ▼ 71.38 ▼
Similarity matrix Pair SP 66.30 ▼ 68.08 ▲ 73.34 ▼ 73.48 ▼ 74.56 ▲ 74.52 ▼
Distance&angle Pair/triple RKD 64.52 ▼ 64.43 ▼ 71.50 ▼ 72.28 ▼ 73.21 ▼ 72.21 ▼

Probability of features Pair PKT 67.13 ▼ 66.52 ▼ 73.01 ▼ 74.10 ▲ 74.69 ▲ 73.89 ▼
Contrastive learning Pair CRD 69.73 ▲ 69.11 ▲ 74.30 ▲ 75.11 ▲ 75.65 ▲ 76.05 ▲

Topology Global topology All Ours 68.83 ▲ 69.12 ▲ 74.25 ▲ 75.04 ▲ 76.33 ▲ 76.18 ▲

library (Maria et al., 2014) to compute the PDs and PIs.
The PDs are calculated by using the Rips complex. To
compute PIs, we set the grid size to 20 × 20 and the weight
function w(x, y) to 10(tanh(y) + ln(100x + 1)). For the
other parameters, we refer to the experiments on RipsNet.
The standard deviation of the Gaussian kernel is determined
by the distance between the points of the PD, specifically
the first five quantiles. The birth-death time ranges are set
from the minimum to the maximum across all PDs. For the
given PCD (t1, .., tm) in PT , the exact PI is represented
as pi(t1, .., tm), and the approximated PI is represented as
p̂i(t1, .., tm). We approximate the PIs minimizing the L2

loss function defined as follows:

LRN =
∑

(t1,..,tm)∈PT

L2(p̂i(t1, .., tm), pi(t1, .., tm)). (3)

When the training is completed, RipsNet is frozen during the
training of the student network to approximate PIs of the em-
bedding features from the teacher and student networks, de-
noted as p̂i(t1, .., tm) and p̂i(s1, .., sm), respectively, where

ti = fT (xi) and si = fS(xi).

Topology distillation loss. To enable the student to mimic
PIs of the teacher, we define the topology distillation loss
function LTop as follows:

LTop =
∑

(x1,..,xm)∈Xm

L2(p̂i(t1, .., tm), p̂i(s1, .., sm)). (4)

The L2-norm was chosen because PIs are elements of Rn,
and the most natural metric in this context is the Euclidean
distance. If the channel dimensions of ti and si differ, a
1× 1 convolution is applied to si. The logits represent high-
level task-relevant knowledge; therefore, to use it further,
we define the final loss function for TopKD by combining
the vanilla KD loss with the topology distillation loss, as
follows:

LTotal = αLCE + βLKD + γLTop (5)

where α, β, and γ are the hyperparameters that control the
weights of LCE , LKD, and LTop, respectively. Fig. 2(b)
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Table 3: Top-1 and top-5 accuracy (%) (Acc.) comparison on the ImageNet-1K validation dataset with ResNet34 as the
teacher and ResNet18 as the student network. The best accuracy values are bolded, and “-” indicates the absence of any
available results.

Acc. Teacher Student AT KD SemCKD OFD CRD CAT-KD RKD ReviewKD DKD SRRL MGD DistPro NORM Ours
Top-1 73.31 70.00 70.59 70.68 70.87 71.08 71.17 71.26 71.34 71.61 71.70 71.73 71.80 71.89 72.14 73.60
Top-5 91.42 89.60 89.73 90.16 - - 90.13 90.45 90.37 90.51 90.41 - 90.40 - - 90.50

Table 4: Top-1 and top-5 accuracy (%) on the ImageNet-1K validation dataset with ResNet50 as the teacher and MobileNetV2
as the student network.

Acc. Teacher Student AT KD OFD CRD CAT-KD RKD ReviewKD DKD SRRL MGD DistPro NORM Ours
Top-1 76.16 66.20 69.56 68.58 71.25 71.37 72.24 71.32 72.56 72.05 72.49 72.59 73.26 74.26 76.80
Top-5 92.86 85.80 89.33 88.98 90.34 90.41 91.13 - 91.00 91.05 - 90.94 - - 92.80

reveals that the student network is updated using a newly
defined topology distillation loss, aiming to mimic the PIs
of the teacher, and the existing vanilla KD loss.

5. Experiments
5.1. Datasets and Implementation Details

Baselines. Consistent with previous studies (Tian et al.,
2019; Chen et al., 2021c; Guo et al., 2023), we compare
TopKD with representative KD models for each distilla-
tion mechanism including KD (Hinton et al., 2015), Fit-
Net (Romero et al., 2015), AT (Zagoruyko & Komodakis,
2016), SP (Tung & Mori, 2019), CC (Peng et al., 2019),
VID (Ahn et al., 2019), RKD (Park et al., 2019), PKT (Pas-
salis & Tefas, 2018), FSP (Yim et al., 2017), CRD (Tian
et al., 2019), CRCD (Zhu et al., 2021), SemCKD (Chen
et al., 2021a), OFD (Heo et al., 2019), DKD (Zhao et al.,
2022), ReviewKD (Chen et al., 2021c), SRRL (Yang et al.,
2021), MGD (Yang et al., 2022b), DistPro (Deng et al.,
2022), DPK (Zong et al., 2022), NORM (Liu et al., 2023),
and CAT-KD (Guo et al., 2023).

CIFAR-100 (Krizhevsky et al.) is a 32 × 32 pixel color
image dataset, comprising 50K training and 10K test images,
for a total of 60K images. It consists of 100 classes, each
with 600 images, grouped into 20 superclasses, with each
image annotated for a specific class and the corresponding
superclass.

ImageNet-1K (Deng et al., 2009) is a large-scale image
dataset consisting of 1K categories, 1.28M training images,
and 50K validation images.

The training details of the student model and RipsNet are
described in Appendix B and F.

5.2. Main Results

Results on CIFAR-100. Tables 1 and 2 present the accu-
racy for pairs when the teacher and student networks have
the same and different structures on CIFAR-100, respec-

tively. For a fair comparison, we followed the experimental
settings for CRD, as in previous studies, and compared the
current results with the values specified in paper (Chen et al.,
2021c; Deng et al., 2022; Zong et al., 2022; Liu et al., 2023;
Guo et al., 2023). TopKD surpasses both the student model
and vanilla KD by a large margin, demonstrating the ef-
fectiveness of using the global topology as knowledge. In
addition, TopKD displays competitive results compared to
other representative models of existing KD mechanisms.
These results highlight the potential of TopKD. Notably,
TopKD, mimics the PD that includes information on the
similarity, distance, and distribution between embedding
features, outperforms CC, SP, RKD, PKT, and FSP, which
mimic only fragmented information. The presented perfor-
mance results from approximating the PI, and we anticipate
that the performance will be further enhanced if the actual
PIs or improved approximated PIs are used.

Results on ImageNet-1K. We evaluate the proposed
method on the ImageNet-1K validation set to demonstrate
its effectiveness on a large-scale dataset. Similar to the
previous experimental setup, Tables 3 and 4 reveal top-1
and top-5 accuracy when the teacher and student structures
are homogeneous and heterogeneous, respectively. Further,
TopKD achieves the best results in top-1 accuracy compared
to other baselines. Moreover, TopKD surpasses the top-1
performance of the teacher. The results imply that TopKD
enhances the performance of the student model regardless
of the dataset scale.

5.3. Ablation Study

In this section, to conduct ablation studies, we set ResNet56
as the teacher network and ResNet20 as the student network
on CIFAR-100.

Dimension of PD. As described in Section 3, k-dim PDs ex-
ist based on the creation and disappearance of k-dim holes
(e.g., connected components, loops, etc.) in the PCD. Each
dim PD exhibits distinct topological characteristics. There-
fore, we perform ablation experiments on the homology
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dimension of PDs. As 0 and 1-dim PD are generally used
due to the computational cost, we considered only those.
Specifically, 0-dim PDs identify connected components, and
1-dim PDs detect loop structures. In Table 5, matching 0-
dim PDs yields the best results. This observation can be
attributed to the fact that 0-dim PDs contain information
about clusters (Güzel & Kaygun, 2022), making it more
beneficial for classification tasks. 0 and 1-dim PDs yield
better results than 1-dim PDs but lower results than 0-dim
PDs. This is because when generating PIs using both 0 and
1-dim PDs, the creation time of all 0-dim homology classes
is 0. Therefore, unlike when generating only 0-dim PD
(Fig. 4), the information of the 0-dim PD is encoded only
on the left side of the PI (Fig. 6 in Appendix) as x-axis in
the PI indicates the filtration value. Consequently, 0-dim
characteristics occupy the small region of the PI, which im-
pedes the distillation of information about clusters in the
latent space.

Table 5: Ablation results on the homology dimension of
persistent diagrams.

Dimension 0 1 0&1
Accuracy 71.58 71.22 71.36

Number of points in PCD. In general, with sufficient data,
the underlying manifold within the data is approximated
more accurately, resulting in less noisy PDs (Chazal et al.,
2014). Thus, we conduct an ablation analysis on the number
of points in PCD by varying batch size, doubling it from 8 to
256. As illustrated in Fig. 3, TopKD underperforms the stu-
dent at batch size 8. This can be interpreted as insufficient
data to adequately learn the global topology, thus leading
to topology distillation loss interfering with the training.
However, as the number of points exceeds 16, TopKD con-
sistently outperforms the student network. This implies that
there needs to be an adequate number of points to accurately
discern the underlying all embedding features of topology,
including the distribution and geometric characteristics.
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Figure 3: TopKD performance by batch size.

Effect of TopKD loss components. We assess the individ-

ual influence of each component comprising the total loss
of TopKD through experiments. Table 6 summarizes the ac-
curacy and variance results. Each row in the table indicates
the performance with the gradual addition of KD loss and
the proposed topology distillation loss to the classification
loss. Adding LTop to LCE improves the performance com-
pared to using LCE alone, but this result is inferior to that of
vanilla KD. However, using both LKD and LTop together
offers better performance than using them separately and
even surpasses it by a large margin. This outcome reveals
that the topology distillation loss creates a benefical synergy
with the KD loss.

Table 6: Performance comparison based on the presence or
absence of elements comprising the TopKD loss (Eq. (5)).
The coefficients of the loss are set to 1, 2, and 5, respectively.

LCE LKD LTop Accuracy (Variance)
✓ 69.06 (0.2275)
✓ ✓ 70.66 (0.2642)
✓ ✓ 69.72 (0.5939)
✓ ✓ ✓ 71.58 (0.1885)

Optimal stages for TopKD. To identify the best interme-
diate layer features for TopKD, we evaluate the effect of
matching the output features of each stage across four stages
between the teacher and student models. Table 7 reveals
that, when mimicking the PIs of the output features from the
fourth stage of both networks, the model exhibits the best
results. In addition, irrespective of which stage’s features
are matched, performance improved substantially compared
to vanilla KD, suggesting that TopKD operates effectively
without being sensitive to the level of features.

Table 7: Results of TopKD from various stages of teacher
and student networks. The accuracy of the student model
trained from scratch and vanilla KD is 69.1 and 70.66, re-
spectively.

Teacher stage
1 2 3 4

St
ud

en
ts

ta
ge 1 71.27 71.51 71.48 71.36

2 71.43 71.24 71.51 71.26
3 71.38 71.05 71.07 71.34
4 71.24 71.33 71.36 71.58

6. Analysis
6.1. Analysis Regarding Approximated PIs

LTop as an upper bound of the exact loss. To verify
the topology distillation loss, we demonstrate how match-
ing the approximated PIs for the embedding features of
the teacher and student networks affects the actual dis-
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tance between their exact PIs. Here, we use the nota-
tion piT = pi(t1, . . . , tm) and piS = pi(s1, . . . , sm) for
brevity. Similarly, we define p̂iT = p̂i(t1, . . . , tm) and
p̂iS = p̂i(s1, . . . , sm). Then, the L2 distance between piT
and piS has the following upper bound:

∥piT − piS∥2 ≤ ∥piT − p̂iT ∥2 + ∥p̂iT − p̂iS∥2 + ∥piS − p̂iS∥2. (6)

In the upper bound, the second term represents the topologi-
cal distillation loss. The first and last terms on the right-hand
side represent the approximation errors for the teacher and
the student, respectively. Thus, the approximation capability
is crucial for matching the exact PI of the student to that
of the teacher network. The first term is typically small
because RipsNet is trained on (t1, . . . , tm) with the loss
function in Eq. (3). However, the last term is not directly
minimized throughout the training process of the student.

Table 8: Approximation errors on CIFAR-100. LRN de-
notes the training error for the teacher as in Eq. (3). The val-
ues are averaged across minibatches of the training dataset.
The bolded value indicates the smallest error.

Teacher Student
LRN

(∥piT − p̂iT ∥2)

∥piS − p̂iS∥2

Student
Student Student
w/ KD w/ TopKD

VGG13 MobileNetV2 0.00229 0.02335 0.03408 0.02103
ResNet50 MobileNetV2 0.00218 0.00997 0.00734 0.00740
ResNet50 VGG8 0.00218 0.11178 0.01961 0.01679

ResNet32×4 ShuffleNetV1 0.00248 0.05301 0.05114 0.04084
ResNet32×4 ShuffleNetV2 0.00248 0.06427 0.07016 0.00434
WRN-40-2 ShuffleNetV1 0.00164 0.06591 0.05419 0.05001

Error analysis. We evaluate the approximation errors on
the embedding features of the student and teacher networks
using the CIFAR-100 dataset, and Table 8 presents the re-
sults. The experimental setup is detailed in Appendix G.1.
The RipsNet approximates the exact PIs for the teacher net-
work with errors of a magnitude around 2× 10−3, whereas
the approximated PIs for the student networks exhibit larger
errors. Our method has smaller errors compared to the
students trained from scratch or with KD. This effectively
tightens the upper bound in Eq. (6). Since RipsNet is trained
on the embedding features of the teacher network, it pro-
duces more accurate approximations for embedding features
with a similar structure to the teacher. Thus, we conjecture
that the smaller errors observed in TopKD suggest that our
method produces embedding features more closely aligned
with the teacher network than other student networks. Fig. 4
presents the visualization of the exact and approximated
PIs of 0-dim homology. Among the various methods, the
teacher network achieves the most accurate approximations
of PIs. We observe that TopKD produces more realistic PIs
than others. On the other hand, the generated PIs across em-
bedding features of student networks appear nearly identical.
We speculate that this low variability in the approximated
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Figure 4: Exact and approximated PIs for the embedding
features of minibatches extracted from the teacher (VGG13)
and student (MobileNetV2) networks. Each column corre-
sponds to a minibatch with a size of 64. The PIs exhibit
straight-line shapes because the birth-times of 0-dim homol-
ogy are zeros.

PIs results from the difference in the scale of embedding
features between the teacher and student networks.

6.2. Visualization of Overall Topology

Fig. 5 visualizes the topological structure of the embed-
ding features of the teacher (top left), student (top right),
vanilla KD-trained student (bottom left), and TopKD-trained
student (bottom right) through uniform manifold approxi-
mation and projection (UMAP) (McInnes et al., 2018) to
present qualitative results. The teacher model displays a
well-defined class clustering, suggesting an organized latent
space conducive to strong performance. The vanilla KD and
TopKD exhibit an enhanced clustering compared to the stu-
dent network, yet these models still fall short of achieving
the level of the teacher network. However, TopKD more
effectively gathers points by class than vanilla KD, making
clearer distinctions between classes, such as beaver, bee,
aquarium fish, bear, and beetle. The quantitative analysis
for the UMAP visualizations is presented in Appendix G.3.

7. Conclusion
In this paper, we proposed TopKD, a novel topological KD
methodology based on PD, to teach comprehensive relation-
ships of all embedding features. TopKD enables learning
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Figure 5: Visualization of embedding features of featurizer
using UMAP, a dimension reduction technique based on
topology and geometry. VGG13 is used for the teacher
network, and MobileNetV2 for the student network. We
extracted the first 10 out of 100 classes from the test data of
CIFAR-100 for visualization.

PDs by replacing computationally demanding PDs with
approximated PIs. Through experiments, we showed that
utilizing global topology as knowledge is effective, achiev-
ing promising and competitive performance with baselines.
Notably, TopKD successfully operated on the large-scale
dataset ImageNet-1K and outperformed the teacher. To en-
hance TopKD in future work, we plan to integrate additional
topological features such as Betti sequences and persistence
landscapes. We believe that the TopKD methodology will
serve as the cornerstone for research in distilling the topo-
logical characteristics of the latent space.
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A. Examples of Persistent Homology
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Figure 6: Examples of persistent homology (PH). (a) Point cloud data (PCD) consisting of two circles and one disk, forming
three connected components and two one-dimensional holes. (b) Persistent diagram of the PCD, with three points in 0
dimensions and two points in 1 dimension away from a diagonal line. In (b), the x-axis represents the“birth” times, indicating
when specific topological features were born, while the y-axis corresponds to the “death” times, indicating when these
features cease to exist. Points far from a diagonal line reflect the global structure of PCD. Points close to the diagonal line
reflect the local structure of the PCD and are regarded as noise in this case. (c) A persistence image of the one-dimensional
barcode of (b) with a resolution of (50, 50) and a weight function defined by (death− birth)2 to emphasize persistence.

B. Training Details
CIFAR-100. We trained the teacher and student networks from scratch using the He initializer (He et al., 2015). The student
networks were trained with the stochastic gradient descent optimizer with a minibatch size of 64 over 240 epochs, and the
weight decay was set to 5e−4 with a momentum of 0.9. For MobileNet (Sandler et al., 2018) and ShuffleNet (Ma et al.,
2018), the learning rate was set to 0.01, and for the remaining models, it was set to 0.05, with a decay by a factor of 10 at
150, 180, and 210 epochs. The temperature was set to 4, determined as the optimal value through experiments. We set α to 1
and performed a grid search on β (ranging from 1 to 10) and γ (ranging from 1 to 50) in Eq. (5). All experimental results
are reported as the average of five repetitions.

ImageNet-1K. We use the pretrained model provided by PyTorch1 as the teacher network. The student networks were
trained with a minibatch size of 256 over 120 epochs, with the weight decay set to 1e−4. The initial learning rate was set to
0.1, decreasing by a factor of 10 every 30 epochs. The results on ImageNet-1K are based on a single experimental run. The
training details that are not mentioned are consistent with those used for CIFAR-100.

RipsNet. For training RipsNet, 200K PCDs were generated from CIFAR-100 and 20K from ImageNet-1K, with 0.25% used
for validation. Additionally, RipsNet was trained over 25K epochs using the Adamax optimizer (Kingma & Ba, 2014), a
minibatch size of 64, and a learning rate of 5e−4. An early stopping was used with a patience of 50. The architecture of
RipsNet consists of seven layers, with the rectified linear units activation function for the initial six layers and the sigmoid
for the final layer. An operator of RipsNet was chosen with better performance for the mean and sum. The layers within
RipsNet can be separated into two distinct segments: layers preceding or subsequent to the operator. The size of the layers
in the second segment is the same across all datasets and model pairs, whereas in the first segment, it is determined by the
dimensions of the latent space of the teacher network.

C. Extension
To demonstrate the scalability of TopKD, we perform two additional tasks: object detection and transfer learning. In
object detection, we evaluate the widely used MS COCO (Lin et al., 2014) dataset, and for transfer learning, we conduct
experiments on STL-10 (Coates et al., 2011) and Tiny-ImageNet (Le & Yang, 2015).

1https://pytorch.org/vision/main/models.html
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C.1. Object Detection

When applying TopKD to the object detection task, we incorporate LTop for the detector backbone output and LKD for the
box classifier output into the existing loss. The coefficients of each loss are set to 1 and 1.2, respectively. Table 9 presents
the results comparing the performance of TopKD on the MS COCO dataset, with the KD, FitNet, FGFI (Wang et al., 2019),
DKD, and Review KD models set as the baselines. Consistent with earlier findings, TopKD improves the average precision
(AP) performance of the student model by 1.07 on average. In addition, compared to vanilla KD, there are average increases
of 0.93, 1.56, and 0.91 for AP, AP50, and AP75, respectively. The experiments are conducted with a batch size of 8 for a
fair comparison. This result indicates that the global topology is mimicked using markedly fewer data compared to image
classification. Nevertheless, this approach significantly enhances the performance of vanilla KD. The mentioned results
suggest that a more pronounced improvement in performance can be attained by designing the object detection task to
capture the topology characteristics of the embedding features better.

Table 9: Object detection results based on the Faster R-CNN (Girshick, 2015) with FPN (Lin et al., 2017) on the MS COCO
dataset, with AP evaluated in val2017. Tteacher and student pairs are set as ResNet101 (R101) with ResNet18 (R18),
ResNet101 with ResNet50 (R50), and ResNet50 with MobileNetV2 (MV2).

R101 & R18 R101 & R50 R50 & MV2
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Teacher 42.04 62.48 45.88 42.05 62.48 45.88 40.55 61.02 43.81
Student 33.26 53.61 35.26 37.93 58.84 41.05 29.47 48.87 30.90

KD 33.97 54.66 36.62 38.35 59.41 41.71 30.13 50.28 31.35
FitNet 34.13 54.16 36.71 38.76 59.62 41.80 30.00 49.80 31.69
FGFI 35.44 55.51 38.17 39.44 60.27 43.04 31.16 50.68 32.92
DKD 35.05 56.60 37.54 39.25 60.90 42.73 32.34 53.77 34.01

ReviewKD 36.75 56.72 34.00 40.36 60.97 44.08 33.71 53.15 36.13
Ours 34.59 55.54 37.15 39.01 60.54 42.27 31.64 52.69 32.98

C.2. Transfer Learning

We perform transfer learning to assess the generalizability of the feature representation trained with TopKD. In this
experiment, we set MobileNetV2 as the student network and ResNet50 as the teacher network. The featurizer of the student
model, which was trained on CIFAR-100, is frozen, and only the classifier is finetuned to adapt to the target dataset. The
training details are set the same as CIFAR-100. As presented in Table 10, TopKD significantly outperforms vanilla KD,
demonstrating its effectiveness in terms of transferability. In addition, TopKD achieves comparable results on both datasets.

Table 10: Comparison of transfer learning from CIFAR-100 to STL-10 and Tiny-ImageNet (Tiny). RevKD denotes
ReviewKD.

Baseline KD AT CRD RevKD DKD CAT-KD Ours
CIFAR-100 −→ STL-10 64.39 67.81 65.10 71.46 66.16 71.05 73.20 72.93

CIFAR-100 −→ Tiny 30.85 32.37 29.13 38.75 32.65 36.48 39.87 35.36

D. Additional Ablation Studies
D.1. Hyperparameters

We conduct grid search to find the optimal coefficients (α, β, γ in Eq. 5) for each component of the total loss. At this
time, we fix α to 1 and only adjust the values of β and γ. Tables 11 and 12 present a performance comparison based on
these hyperparameters, using ResNet56 as the teacher and ResNet20 as the student, consistent with the ablation studies in
Section 5.3. In this setting, the optimal values for β and γ are 2 and 5, respectively. We confirm that performance improved
over vanilla KD unless the β value is excessively large. Therefore, we can conclude that TopKD is not sensitive to the
weights of each component of the loss function.
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Table 11: Performance according to γ (coefficient of LTop).

Teacher 72.34
Student 69.06

Vanilla KD 70.66

TopKD
β

γ

1 2 5 7 10 25 50
2 71.39 71.36 71.58 71.17 71.27 71.32 71.25

Table 12: Performance according to β (coefficient of LKD)

Teacher 72.34
Student 69.06

Vanilla KD 70.66

TopKD
γ

β

1 2 3 5 7 10
5 71.16 71.58 71.25 71.15 70.79 70.34

E. Algorithm of TopKD
We present the training algorithms for RipsNet and the student network, as shown in Algorithms 1 and 2.

Algorithm 1 RipsNet training algorithm

1: Input: The set of PCDs, PT = {p1, p2, · · · , pn};
Gudhi library for the computation of the exact persistence image, pi;
RipsNet model p̂i with He initialized weights θ̂r;
Max iterations Iter, batch size m

2: Output: RipsNet model p̂i trained with the target dataset
3: for it = 1 · · · Iter do
4: Sample a random batch (p1, p2, · · · , pm) and the exact persistence images pi(p1, .., pm) from training data PT ;
5: Extract the approximated persistence images of (p1, p2, · · · , pm) from RipsNet, p̂i(p1, p2, · · · , pm);
6: Compute the exact persistence images of (p1, p2, · · · , pm) from Gudhi, pi(p1, p2, · · · , pm);
7: Train the RipsNet model using L2 loss:

∇θs(
∑

(p1,..,pm)∈(PT )m
L2(p̂i(p1, .., pm), pi(p1, .., pm)));

8: end for

Algorithm 2 Student model training algorithm

Input: Training dataset, X = {x1, x2, · · · , xn};
Labels of training dataset, y = y1, y2, · · · , yn;
Teacher model FT with pretrained weights θt;
Student model F̂S with He-initialized weights θ̂s;
RipsNet model p̂i with pretrained weights θr;
Max epoch Epochs, batch size m, weight of classification loss α, weight of KD loss β, weight of topology distillation loss γ

2: Output: Student model F s trained with optimized weights θs;
for e = 1 · · ·Epochs do

4: Sample a random batch Xm and the corresponding labels Y m from training data X and y;
Extract the embedding features from the teacher featurizer, (t1, t2, · · · , tm) = fT (Xm; θt);

6: Extract the embedding features and logits from the student featurizer, (s1, s2, · · · , sm) = fS(Xm; θs);
Extract the persistence images of (t1, t2, · · · , tm) from the pretrained RipsNet, p̂i(t1, t2, · · · , tm) = p̂i;

8: Extract the persistence images of (s1, s2, · · · , sm) from the pretrained RipsNet, p̂i(s1, s2, · · · , sm) = p̂i;
Transfer the persistence images of the teacher model to the student model by using the stochastic gradient descent from LTop:

∇θs(γ
∑

(x1,..,xm)∈Xm

L2(p̂i(t1, .., tm), p̂i(s1, .., sm)));

10: Train the student model using the classification loss and vanilla KD loss:

∇θs(αLCE + βLKD);

end for
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F. Computational Complexity and Training Results of RipsNet
F.1. Computational Complexity of RipsNet

To incorporate PH into KD, TopKD includes three additional steps: generating a training dataset composed of PIs for training
RipsNet, training RipsNet, and calculating PIs through the pretrained RipsNet during the student model’s training. First,
the execution time required to produce on PI (Table 13 (1)) depends on the batch size, as the complexity of Vietoris-Rips
complex is O(2n) (Somasundaram et al., 2021), where n represents the number of points. Moreover, since we use only
0-dimensional homology, the initial computation of PD is not computationally demanding. Subsequently, the training time
for RipsNet (Table 13 (2)) is merely several minutes. The reduced training time for ImageNet-1K is due to early stopping.
Once RipsNet is trained, it serves solely for calculating PIs during the student model’s training. Additionally, we calculate
the floating point operations (FLOPs) of RipsNet (Table 13 (3)). By approximating PIs, we enable the incorporation of PD
into the training loop, thus circumventing the prohibitively large computational complexity required for exact PIs. This
ensures that distillation with the topology distillation loss operates successfully without imposing heavy computational
overhead.

Table 13: (1) An execution time to produce one PI on AMD Epyc 7742. (2) The training time of RipsNet on an A100 GPU.
(3) FLOPs of RipsNet.

Dataset CIFAR-100 ImageNet-1K
(Teacher, Batch size) (ResNet56, 64) (ResNet34, 256)
(1) Gudhi 1.07ms 22.83ms
(2) Training RipsNet 65.75min 24.80min
(3) FLOPs of RipsNet 1.131M 235.1M

F.2. Training Results of RipsNet

This section provides a description of the hyperparameters used for RipsNet and presents the corresponding training results.
Tables 14, 16, 17, and 19 present the results of the CIFAR-100 dataset. Table 15 is based on ImageNet-1K, and Table 18
utilizes the MS COCO dataset. The “unit list” refers to the hidden layer dimensions of RipsNet, and “PD dim” denotes the
dimension of the PD used for training RipsNet. The operator (mean or sum) is selected based on achieving lower loss. The
“location” indicates the latent space targeted for transfer. As illustrated in Fig. 2(b), the student is trained so that its outputs
from the fourth stage match those of the teacher. The corresponding training results are shown in Tables 1, 2, 3 and 4.

Table 14: Training results of RipsNet used in Tables 1 and 2.

Teacher model Location Batch Size PD dim Operator Unit list Best loss
ResNet56 Stage 4 64 0 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.001176
ResNet56 Stage 4 64 0 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.001179

ResNet110 Stage 4 64 0 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.001221
ResNet110 Stage 4 64 0 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.001229
ResNet32x4 Stage 4 64 0 Mean [256, 256, 128, 128, 50, 100, 200, 400] 0.001127
ResNet32x4 Stage 4 64 0 Sum [256, 256, 128, 128, 50, 100, 200, 400] 0.001128
WRN-40-2 Stage 4 64 0 Mean [128, 128, 64, 64, 50, 100, 200, 400] 0.001155
WRN-40-2 Stage 4 64 0 Sum [128, 128, 64, 64, 50, 100, 200, 400] 0.001149

VGG13 Stage 4 64 0 Mean [512, 512, 256, 256, 50, 100, 200, 400] 0.001325
VGG13 Stage 4 64 0 Sum [512, 512, 256, 256, 50, 100, 200, 400] 0.001313

ResNet50 Stage 4 64 0 Mean [2048, 1024, 512, 256, 50, 100, 200, 400] 0.001288
ResNet50 Stage 4 64 0 Sum [2048, 1024, 512, 256, 50, 100, 200, 400] 0.001262
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Table 15: Training results of RipsNet used in Tables 3 and 4.

Teacher model Location Batch size PD dim Operator Unit list Best loss
ResNet50 Stage 4 256 0 Mean [2048, 1024, 512, 256, 50, 100, 200, 400] 0.000814
ResNet50 Stage 4 256 0 Sum [2048, 1024, 512, 256, 50, 100, 200, 400] 0.000810
ResNet50 Stage 4 256 0 Mean [512, 512, 256, 256, 50, 100, 200, 400] 0.000655
ResNet50 Stage 4 256 0 Sum [512, 512, 256, 256, 50, 100, 200, 400] 0.000660

Table 16: Training results of RipsNet used in Table 5.

Teacher model Location Batch size PD dim Operator Unit list Best loss
ResNet56 Stage 4 64 0 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.001176
ResNet56 Stage 4 64 0 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.001179
ResNet56 Stage 4 64 1 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.000323
ResNet56 Stage 4 64 1 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.000323
ResNet56 Stage 4 64 0+1 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.000073
ResNet56 Stage 4 64 0+1 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.000072

Table 17: Training results of RipsNet used in Fig. 3.

Teacher model Location Batch size PD dim Operator Unit list Best loss
ResNet56 Stage 4 8 0 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.002935
ResNet56 Stage 4 8 0 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.002960
ResNet56 Stage 4 16 0 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.002372
ResNet56 Stage 4 16 0 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.002391
ResNet56 Stage 4 32 0 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.001455
ResNet56 Stage 4 32 0 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.001467
ResNet56 Stage 4 64 0 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.001176
ResNet56 Stage 4 64 0 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.001179
ResNet56 Stage 4 128 0 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.000831
ResNet56 Stage 4 128 0 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.000833
ResNet56 Stage 4 256 0 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.000570
ResNet56 Stage 4 256 0 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.000568

Table 18: Training results of RipsNet used in Table 9.

Teacher- Location Batch size PD dim Operator Unit list Best loss
Student models

R101-R18 Backbone 8 0 Mean [256, 256, 128, 128, 50, 100, 200, 400] 0.000418
R101-R18 Backbone 8 0 Sum [256, 256, 128, 128, 50, 100, 200, 400] 0.000431
R101-R50 Backbone 8 0 Mean [256, 256, 128, 128, 50, 100, 200, 400] 0.000569
R101-R50 Backbone 8 0 Sum [256, 256, 128, 128, 50, 100, 200, 400] 0.000595
R50-MV2 Backbone 8 0 Mean [256, 256, 128, 128, 50, 100, 200, 400] 0.000501
R50-MV2 Backbone 8 0 Sum [256, 256, 128, 128, 50, 100, 200, 400] 0.000535

Table 19: Training results of RipsNet used in Table 7.

Teacher model Location Batch size PD dim Operator Unit list Best loss
ResNet56 Stage 1 64 0 Mean [16, 16, 16, 16, 50, 100, 200, 400] 0.000916
ResNet56 Stage 1 64 0 Sum [16, 16, 16, 16, 50, 100, 200, 400] 0.000927
ResNet56 Stage 2 64 0 Mean [16, 16, 16, 16, 50, 100, 200, 400] 0.000842
ResNet56 Stage 2 64 0 Sum [16, 16, 16, 16, 50, 100, 200, 400] 0.000847
ResNet56 Stage 3 64 0 Mean [32, 32, 16, 16, 50, 100, 200, 400] 0.000876
ResNet56 Stage 3 64 0 Sum [32, 32, 16, 16, 50, 100, 200, 400] 0.000885
ResNet56 Stage 4 64 0 Mean [64, 64, 32, 32, 50, 100, 200, 400] 0.001176
ResNet56 Stage 4 64 0 Sum [64, 64, 32, 32, 50, 100, 200, 400] 0.001179
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G. Additional Results of Numerical Analysis
G.1. Experimental Setting for Measuring Approximation Errors of RipsNet

We evaluate the approximation errors of RipsNet for both the teacher and student networks. For each minibatch of 64
training samples, we measure the L2 distance between the exact and approximated PIs of embedding features. Here, we
note that even though RipsNet is trained using embedding features of training samples from the teacher network, it never
observes the embedding features of the student network. Hence, it is crucial for RipsNet to accurately approximate PIs for
the training samples throughout the training process of the student network. For this reason, we present the approximation
errors for training samples in Table 8.

G.2. Similarity Between PDs of Teacher and Student Networks

Even though we define PD of embedding features as global topology knowledge over a minibatch, our method aims to
reduce the L2 distance between the approximated PIs of the teacher and student networks for practical implementation.
However, there is no theoretical guarantee that the converged student network produces embedding features that have
similar PDs to those of the teacher network. Therefore, we measure the ∞-Wasserstein distance between the 0-dim PDs of
embedding features from the teacher and student networks. We use the input activations of the classifiers for each minibatch
of 32 test samples from the CIFAR-100 dataset. As indicated in Table 20, our method does not consistently reduce the
Wasserstein distance between the PDs of the teacher and student networks. Nonetheless, the results suggest that further
performance improvement could be achieved by investigating a way of directly matching the PDs of embedding features
from the teacher and student networks.

Table 20: Wasserstein distance between the PDs of embedding features from the teacher and student networks. For
each minibatch of 32 test samples from CIFAR-100, we compute the ∞-Wasserstein distance between 0-dim PDs of the
embedding features from the teacher and student networks. The values are averaged across minibatches. For each setting,
the value closest to the teacher network is bolded.

Teacher Student Student Student Student
w/ KD w/ TopKD

ResNet56 ResNet20 1.1737 2.3912 0.6971
ResNet110 ResNet20 3.6203 1.3735 2.4723
ResNet110 ResNet32 0.5689 0.2757 0.4606
ResNet32x4 ResNet8x4 1.2387 1.0938 1.5949
WRN-40-2 WRN-16-2 3.1489 1.1091 1.0184
WRN-40-2 WRN-40-1 1.5055 1.7722 1.3374

VGG13 VGG8 1.0598 1.8062 0.9832
VGG13 MobileNetV2 5.4027 0.9630 3.5622

ResNet50 MobileNetV2 2.2088 3.0111 2.3972
ResNet32x4 ShuffleNetV1 4.3594 3.3245 5.0185
ResNet32x4 ShuffleNetV2 3.1055 4.1220 3.4549
WRN-40-2 ShuffleNetV1 2.2203 2.7840 3.2101

G.3. Quantitative Analysis for UMAP Visualizations

In this section, we conduct a quantitative analysis of the UMAP visualizations presented in Fig. 5. To assess the separability
of the embedding features across various classes, we adopt three widely used metrics for evaluating clustering algorithms:
Silhouette (Rousseeuw, 1987), Calinski-Harabasz index (Caliński & Harabasz, 1974), and Davies-Bouldin index (Davies
& Bouldin, 1979). These metrics compare within-cluster distances and between-cluster distances. For the evaluation, we
randomly select 10 classes from the CIFAR-100 test dataset and compute these metrics for the 2-dimensional vectors
generated by the UMAP algorithms. This procedure is repeated 10 times with different seeds, and the results are summarized
in Table 21, which presents the mean and standard deviation of the three metrics. Notably, our TopKD demonstrates superior
discriminability across different classes in the UMAP visualizations.
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Table 21: Quantitative analysis of the UMAP visualizations. VGG13 is used for the teacher network, and MobileNetV2 for
the student network. Higher values indicate better performance for the Silhouette score and the Calinski-Harabasz index,
while lower values are preferable for the Davies-Bouldin index.

Silhouette(↑) Calinski-Harabasz index(↑) Davies-Bouldin index(↓)
Teacher 0.336 (0.034) 654.618 (94.885) 1.139 (0.188)
Student 0.251 (0.046) 460.893 (70.930) 1.598 (0.599)

Student w/ KD 0.208 (0.050) 374.757 (53.336) 1.732 (0.546)
Student w/ TopKD 0.297 (0.050) 542.665 (95.834) 1.404 (0.427)

G.4. Additional Comparisons of Exact and Approximated PIs with Different Settings

Figs. 7 and 8 show the exact and approximated PIs for the embedding features of minibatches extracted from the teacher
and student networks. Each column corresponds to a minibatch consisting of 64 test samples randomly sampled from the
CIFAR-100 dataset.
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Figure 7: Exact and approximated PIs for the embedding
features of minibatches extracted from the teacher network
(ResNet50) and the student network (VGG8). Each column
corresponds to a minibatch with a size of 64.
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Figure 8: Exact and approximated PIs for the embedding
features of minibatches extracted from the teacher network
(WRN-40-2) and the student network (ShuffleNetV1). Each
column corresponds to a minibatch with a size of 64.

G.5. Additional Visualizations of Overall Topology

To provide further insights through visualization, we perform the additional UMAP visualization experiments on CIFAR-100
and ImageNet-1K datasets. In these experiments, we sampled 10 classes randomly each time. Figs. 9 and 10 display the
results for CIFAR-100, while Figs. 11 and 12 present the results for ImageNet-1K. Consistently, TopKD exhibits superior
performance in clustering compared to the student network and vanilla KD and the boundaries between each class are clear.
In the case of the ImageNet-1K experiments, TopKD shows a greater concentration of embedding features for each class.
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Figure 9: UMAP visualizations of embedding features
of featurizers of the teacher (VGG13) and student (Mo-
bileNetV2) networks. We randomly select 10 classes from
the test data of CIFAR-100.
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Figure 10: UMAP visualizations of embedding features
of featurizers of the teacher (VGG13) and student (Mo-
bileNetV2) networks. We randomly select 10 classes from
the test data of CIFAR-100.
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Figure 11: UMAP visualizations of embedding features of
featurizers of the teacher (ResNet34) and student (ResNet18)
networks. We randomly select 10 classes from the test data
of ImageNet-1K.
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Figure 12: UMAP visualizations of embedding features of
featurizers of the teacher (ResNet34) and student (ResNet18)
networks. We randomly select 10 classes from the test data
of ImageNet-1K.
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