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Abstract
The unsupervised outlier detection (UOD) prob-
lem refers to a task to identify inliers given train-
ing data which contain outliers as well as inliers,
without any labeled information about inliers and
outliers. It has been widely recognized that us-
ing fully-trained likelihood-based deep genera-
tive models (DGMs) often results in poor perfor-
mance in distinguishing inliers from outliers. In
this study, we claim that the likelihood itself could
serve as powerful evidence for identifying inliers
in UOD tasks, provided that DGMs are carefully
under-fitted. Our approach begins with a novel
observation called the inlier-memorization (IM)
effect–when training a deep generative model with
data including outliers, the model initially memo-
rizes inliers before outliers. Based on this finding,
we develop a new method called the outlier de-
tection via the IM effect (ODIM). Remarkably,
the ODIM requires only a few updates, making
it computationally efficient–at least tens of times
faster than other deep-learning-based algorithms.
Also, the ODIM filters out outliers excellently,
regardless of the data type, including tabular, im-
age, and text data. To validate the superiority and
efficiency of our method, we provide extensive
empirical analyses on close to 60 datasets.

1. Introduction
Outlier detection Outlier (also anomaly) is an observa-
tion that differs significantly from other observations, and
outlier detection (OD) is the task of identifying outliers in a
given dataset. OD has wide applications such as fraud detec-
tion, fault detection, and defect detection in images. OD is
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Figure 1. An illustration of the ODIM method.

also used as a pre-processing step in supervised learning to
filter out anomalous training samples, which may degrade
the performance of a predictive model.

OD problems can be categorized into three areas in general:
1) Supervised outlier detection (SOD) requires label infor-
mation about whether each training sample is inlier (also
normal) or outlier and solves the two-class classification
task. 2) Semi-supervised outlier detection (SSOD) refers
to methods that assume all training data being inliers and
construct patterns or models based only on the inliers. 3)
Unsupervised outlier detection (UOD) deals with the most
realistic situations where training data include some outliers
but no label information about anomalousness is available.
Most anomaly detection tasks in practice are involved in
UOD since the information of outliers in massive data is
hardly known in advance.

Likelihood-based approaches in OD To detect outliers
from data, a fundamental approach might involve using a
deep generative model (DGM) and regarding each sample as
either an inlier or not based on its likelihood value. However,
it is widely recognized that the likelihood value itself using
fully trained DGMs is by no means a reasonable indicator
to identify outliers, particularly in out-of-distribution (OOD)
tasks (or SSOD tasks) where none of the outliers are present
in training data. The likelihood values of outliers with a
fully trained DGM are often higher than those of inliers
(Nalisnick et al., 2019b; Nalisnick et al.; Lan & Dinh, 2021).

Overview of our method In this study, we claim that
likelihood could serve as an effective score in UOD tasks,
provided we employ carefully trained under-fitting DGMs.

Our algorithm is motivated by the so called memorization
effect that is observed in noisy label problems (Arpit et al.,
2017; Jiang et al., 2018). The goal of noisy label problems is
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to learn an accurate classifier when some of the class labels
in the training data are contaminated.

When standard supervised learning algorithms are applied
to such mislabeled data, an interesting phenomenon known
as the memorization effect is observed. In this effect, cor-
rectly labeled data are learned earlier than mislabeled ones
in the training phase of deep neural networks. The memo-
rization effect makes it possible to detect mislabeled data
by comparing per-sample losses in the early training phase.

Building upon the effect, our primary goal is to apply this
concept to the field of UOD. We start with finding a new
and interesting observation that the memorization effect is
also observed in learning DGMs. That is, when we train
a deep generative model with training data that include
outliers, the inliers’ loss values reduce prior to those of
outliers at early updates. We call this observation the inlier-
memorization (IM) effect. The IM effect occurs because, in
the early training phase, decreasing the loss values of inliers
rather than outliers is a more beneficial direction to reduce
the overall loss, which will be discussed in Section 3.

Based on the IM effect, we propose a simple yet powerful
UOD solver called the outlier detection via the IM effect
(ODIM). We train a DGM with a log-likelihood-based ap-
proach such as the VAE (Kingma & Welling, 2013) or IWAE
(Burda et al., 2016) for a few updates, and we regard data
with large loss values compared to the per-sample loss distri-
bution as outliers. Figure 1 provides a visual representation
of our method.

A previous study has explored the use of the memorization
effect for UOD problems (Wang et al., 2019). In their work,
the authors found that the memorization effect can also be
observed in the self-supervised learning framework when
using artificially and carefully designed pseudo-labels. They
successfully applied this approach to accurately detect out-
liers in image domains. However, it is challenging to extend
their method to other data domains such as tabular data
and sequential data due to the unavailability of a suitable
pseudo-labeling strategy for these domains.

On the other hand, the ODIM is domain-agnostic and thus
can be applied to various data domains, including tabular,
image, and sequential data, as it does not rely on specific
pseudo-labeling strategies. By analyzing nearly 60 datasets
from various domains, we demonstrate that the ODIM con-
sistently yields state-of-the-art or competitive results in iden-
tifying outliers across a wide range of data types.

Additionally, the ODIM offers significant computational
efficiency. In fact, the ODIM requires only a few training
updates, often less than a single epoch, in the training phase
to detect outliers. Thus, the ODIM is at least tens of times
faster than other recent deep-learning-based UOD solvers,
such as Ruff et al. (2018b), requiring a larger number of

training updates, for example, 200 epochs.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief review of related research on OD
problems. Detailed descriptions of the ODIM algorithm
with discussions of the IM effect are given in Section 3.
Results of various experiments including performance tests
and ablation studies follow in Section 4. Finally, further dis-
cussions and concluding remarks are respectively presented
in Section 5 and 6. The key contributions of this work are:

• We find a new phenomenon called the IM effect that
DGMs memorize inliers prior to outliers at early train-
ing updates.

• We develop a simple and powerful likelihood-based
UOD solver called the ODIM based on the IM effect
and other improving techniques.

• We empirically demonstrate the superiority and effi-
ciency of our method by analyzing extensive bench-
mark datasets.

• We conduct additional experiments to cover a couple
of extensions where our method can be applied.

2. Related works
We review algorithms for both SSOD and UOD since the
former algorithms are often used in UOD tasks as well.

Semi-supervised outlier detection A popular technique
for SSOD is the one class classification approach which
transforms data into a feature space and distinguishes out-
liers from inliers by their radii from the center on the feature
space. The OCSVM (Schölkopf et al., 2001) and SVDD
(Tax & Duin, 2004) are two representative algorithms, which
use kernel techniques to construct the feature space.

Succeeding their ideas, plenty of SSOD algorithms using
deep neural networks have been developed. The DeepSVDD
(Ruff et al., 2018a) extends the SVDD by utilizing a deep
autoencoder (AE) for learning a feature map, and the Deep-
SAD (Ruff et al., 2020) modifies the DeepSVDD to incor-
porate labeled outliers to training data. Modifications of the
DeepSVDD have been developed by Zong et al. (2018b);
Mahmood et al. (2021); Xia et al. (2015). In addition to AE,
deep generative models are also popularly used for SSOD
(Ryu et al., 2018; Nalisnick et al., 2019a; Jiang et al., 2022).

There are methods for SSOD other than the one class clas-
sification approach. The SimCLR (Chen et al., 2020b) and
BERT (Devlin et al., 2019) utilize self-supervised learning
to obtain a desirable feature map, and various algorithms
based on this idea have been developed (Golan & El-Yaniv,
2018; Bergman & Hoshen, 2020; Tack et al., 2020; Sehwag
et al., 2021). When some labels (not related to inliers or out-
liers) are available, several studies have found that feature

2



ODIM: Outlier Detection via Likelihood of Under-Fitted Generative Models

maps for classification of those labels can improve outlier
detection (Hendrycks & Gimpel, 2017; Liang et al., 2018;
Gomes et al., 2022).

There have been attempts to use the likelihood to detect
outliers. As mentioned in Section 1, the likelihood itself per-
forms poorly in the SSOD, thus, certain transformations or
indirect uses of the likelihood have been studied (Nalisnick
et al., 2019b; Nalisnick et al.; Lan & Dinh, 2021).

Unsupervised outlier detection As for traditional ap-
proaches, the LOF (Breunig et al., 2000a) compares the
density of a given datum compared to the densities of its
neighborhoods, and the IF (Liu et al., 2008a) utilizes the fact
that outliers can be separated out by random trees with rela-
tively small sizes. The UOCL (Liu et al., 2014) solves UOD
problems by employing pseudo soft labels and training them
jointly with the one-class classification model.

There are various methods to solve UOD problems with
deep learning models. The RDA (Zhou & Paffenroth, 2017)
combines the robust PCA and AE to detect outliers. The
DSEBM (Zhai et al., 2016) utilizes the energy-based model
for density estimation and uses the energy score or recon-
struction error to identify outliers. The RSRAE (Lai et al.,
2020) devises a new hidden layer called RSR, inserting it be-
tween encoder and decoder of a deep AE to separate inliers
and outliers effectively. The E3-Outlier (Wang et al., 2019)
trains a deep neural network by self-supervised learning and
identifies outliers based on how fast the loss decreases as
the training proceeds. Recently, diffusion models (Ho et al.,
2020) have also been leveraged to detect outliers in both
SSOD and UOD tasks (Livernoche et al., 2023).

3. Proposed method
3.1. Notations and definitions

For a given input vector x ∈ RD, we denote its anomalous-
ness by yo ∈ {0, 1}, that is, yo = 0 if x is an inlier and
yo = 1 otherwise. Note that only x is observable but yo

is not under the UOD regime. Let U tr = {x1, . . . ,xn} be
unlabeled training data. Our goal is to detect outlier samples,
i.e. x with yo = 1, from U tr as accurately as possible.

Let p(x|z; θ) and q(z|x;ϕ) be given decoder and encoder
parameterized by θ and ϕ, respectively, where z ∈ Rd (gen-
erally assuming d < D) is a latent vector. We construct the
distribution of the input random vector X ∈ RD as follows:

X ∼ p(x|Z; θ),

where Z ∼ N (0d, Id) denotes a latent random vector.

For a given p ∈ N, we denote the lp-norm of a vector a by
∥a∥p. For two real-valued functions defined on R>0, f(t)
and g(t), f(t) is said to be Θ(g(t)) if there exist positive

constants C1, C2, and T such that C1 · g(t) ≤ f(t) ≤
C2 · g(t) holds for all t ≥ T .

3.2. Motivation: inlier-memorization effect

Suppose that we are training a likelihood-based DGM with a
certain learning framework where the training data contain
both inliers and outliers. To illustrate the IM effect, we
analyze Cardio dataset and train a DGM using the VAE
method (Kingma & Welling, 2013).

To prepare the data, we normalize each variable of Cardio
to a range between 0 and 1. The encoder and decoder archi-
tectures are 2-layered deep neural networks (DNNs) with
d = 5 and 50 hidden nodes for each hidden layer. Our fo-
cus is to analyze the distribution of per-sample VAE loss
as updates proceed. We train the decoder and encoder by
minimizing the VAE loss function for up to 500 updates.

The panels in Figure 2, excluding the last one, display the
empirical distribution of per-sample loss values for the train-
ing data at different updates. We can observe that the dis-
crepancy in loss distributions between inliers and outliers
becomes clearer as updates progress in the early training
phase. However, as the DGM is sufficiently trained, the two
distributions become overlapped, making it almost impossi-
ble to distinguish them based solely on their loss values. We
call this phenomenon the inlier-memorization (IM) effect.

The IM effect is not surprising conceptually. When the per-
sample loss function is continuous, reducing the loss in
dense regions is beneficial for overall loss reduction (e.g.
the negative log-likelihood). As inliers tend to be located
in dense regions and outliers in sparse regions, reasonable
learning algorithms prioritize dense regions in the early
training phase, leading to the IM effect. It is important to
note that the IM effect is observed only in the early training
phase, as the learned model memorizes both inliers and
outliers later.

3.3. Theoretical analysis

We provide a theoretical explanation of the occurence of
the IM effect with a simple example where we train a linear
factor model using the VAE. That is, p(x|z; θ) is the density
function of Wz + b + ϵ, where W ∈ RD×d, b ∈ RD are
the loading matrix and bias vector and ϵ ∼ N(0D, σ2ID) is
a noise random vector. And we set q(z|x;ϕ) as the density
function of Ux + v + τ , where U ∈ Rd×D, v ∈ Rd, and
τ ∼ N (0d, η

2Id). For simplicity, we fix σ and η and only
train W, b, U, and v. That is, the learnable parameters θ
and ϕ become (W, b) and (U, v), respectively. Note that the
objective function of the VAE for a given input vector x is
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Figure 2. (1st to 5th) The distributions of the per-sample (normalized) VAE loss values of Cardio after 10, 20, 30, 40, and 500 training
updates, respectively. For each panel, we depict the histograms of inliers and outliers separately. (Last) The positive relationship between
the Wasserstein distance and identifying performance (AUC) on Cardio.

given as

LVAE(θ, ϕ;x) := E
z∼q(z|x;ϕ)

[
log

(
p(x|z; θ)p(z)
q(z|x;ϕ)

)]
,

where p(z) is the density function ofN (0d, 1d). We assume
that each element in W, b, U, and v is randomly initialized
by the i.i.d. uniform distribution on [−1, 1]. Then we have
the following result whose proof is given in Appendix A.
Proposition 3.1. 1 For an input vector x, the following
holds:

Eθ,ϕ

∥∥∥∥ ∂

∂θ
LVAE(θ, ϕ;x)

∥∥∥∥2
2

= Θ
(
∥x∥41

)
.

Proposition 3.1 indicates that in the early phases of learning,
the magnitude of the gradient of the VAE is proportional
to the l1-norm of the input vector on average. This implies
that when the norms of inliers and outliers are similar, the
initial update direction of θ is influenced by the inliers, as
they are much more prevalent than outliers in the training
dataset. Consequently, during the initial training phase, the
generative model is trained towards memorizing the inliers
before the outliers, resulting in the IM effect.

Of course, Proposition 3.1 may not hold after initial updates.
However, we empirically found that this tendency persists
for a while, and the loss distributions between inliers and
outliers becomes more distinguishable (See Figure 2).
Remark 3.2. As mentioned in the overview of our method in
Section 1, the behavior of parameter update in early training
steps is frequently utilized, particularly in addressing noisy
label problems (Arpit et al., 2017; Jiang et al., 2018), yet
it lacks rigorous theoretical validation. To the best of our
knowledge, our study offers the first theoretical insights
about parameter updates during the initial learning step,
particularly in relation to the norms of data. Exploring this
aspect further could be a promising research avenue.
Remark 3.3. Besides the ELBO, such as VAE, there is an-
other widely-used likelihood-based approach, normalizing

1Since the generative model p(x; θ) is related only with the
parameter θ, we only consider the gradient with respect to θ.

Figure 3. Distributions of per-sample (Left) input l1-norm values
and (Right) gradient l2-norm values of VAE loss on Cardio. We
consider two pre-processing schemes to normalize each feature: 1)
(Upper) min-max scaling, and 2) (Lower) standardization.

flows (Kobyzev et al., 2020). Among the normalizing flows
methods, we consider GLOW (Kingma & Dhariwal, 2018)
to investigate whether the IM effect also occurs in other
likelihood-based DGMs. We observe that the IM effect
clearly appears during the GLOW training. This finding
supports the claim that the IM effect is a universal phe-
nomenon in likelihood-based models. Detailed descriptions
of this experiment are provided in Appendix B.

3.4. Choice of pre-processing technique

Proposition 3.1 suggests that ODIM performs well when
the norms of inliers and outliers are similar. However, it
should be noted that the norm of a datum depends on the
choice of a pre-processing. Therefore, careful selection of
pre-processing is essential for the success of ODIM. A pre-
processing which makes the norms of inliers and outleris be
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similar would be a good choice.

As potential pre-processing candidates, we compare two
widely used techniques, 1) min-max scaling and 2) standard-
ization. The min-max scaling transforms each variable to
have a distribution ranged between zero and one, and the
standardization makes each variable to have zero mean and
unit variance.

We explore how these techniques affect the performance of
the ODIM. Intuitively, we can infer that, since the majority
of data are inliers, the process of shifting the entire data
towards the origin in the standardization technique would
likely result in small norms for the inliers, potentially weak-
ening the IM effect. This conjecture can be supported by
the following simple proposition, whose proof is provided
in Appendix A.
Proposition 3.4. Let Xin and Xout be inlier and out-
lier random vectors with zero mean, i.e., E(Xin) =
E(Xout) = 0. Suppose that their respective supports are
Supp(Xin) = Ain and Supp(Xout) = Aout, where Ain

is a bounded convex set and Aout is a set wrapping Ain,
i.e., Ain ∩Aout = ∅ and conv(Aout) ⊋ Ain. Define Xin

mm

and Xout
mm as pre-processed inlier and outlier random vec-

tors using the min-max scaling. Similarly, we define Xin
st

and Xout
st obtained by the standardization. Then, we have

E∥Xin
mm∥1 = E∥Xout

mm∥1, while E∥Xin
st∥1 < E∥Xout

st ∥1.

We note that the condition that the supports of inliers and
outliers do not overlap in the above proposition is not strictly
necessary for the proof. But we maintain this, as the defi-
nition of an outlier is an observation significantly different
from inliers.

Figure 3 visually validates our theoretical result. We again
note the implication of Proposition 3.1 that if the norm of a
particular sample is large, its gradient would have a more
significant impact on the parameter update. Thus, when the
standardization is applied, the input norms of inliers are
larger than those of outliers, which leads to potentially bi-
ased parameter update towards memorizaing outliers, even
if inliers are more prevalent than outliers. This phenomenon
hinders a DGM from training inliers at early learning up-
dates, and thus, diminishes the strength of the IM effect.

From these findings, we use the min-max scaling throughout
our experiments, instead of the standardization. We empiri-
cally observe that the ODIM with the min-max scaled data
has better results on most of the tabular datasets analyzed in
the experiment. More results about comparing the min-max
and standardization are provided in the ablation studies and
Appendix C.

While the min-max scaling is better than the standardization,
we do not claim that it is the optimal choice for the IM effect.
We leave the optimal choice of pre-processing as a future
research topic.

3.5. Algorithm description

The IM effect can be used for outlier detection by utilizing
the per-sample loss value of a deep generative model during
early training phases. In this section, we propose a new UOD
solver called the outlier detection via IM effect (ODIM).
The ODIM consists of three steps: 1) applying the min-max
scaling to the data, 2) training a DGM for a specified number
of updates, and 3) identifying a sample as an outlier if its
corresponding loss value is relatively large. To implement
this approach, additional considerations are required, which
are explained below.

Choice of the learning algorithm for a DGM Select-
ing a learning algorithm for a DGM carefully is crucial to
make the IM effect appear more clearly. There exist numer-
ous algorithms to train likelihood-based DGMs, which can
be roughly divided into two approaches: 1) the ELBO ap-
proach, which calculates the lower bound of log-likelihood,
(Kingma & Welling, 2013; Burda et al., 2016; Ho et al.,
2020) and 2) normalizing flows approach, which calculates
the exact log-likelihood (Dinh et al., 2015; 2017; Kingma
& Dhariwal, 2018). In this study, we conclude to employ
the importance weighted autoencoder (IWAE, Burda et al.
(2016)), one of the ELBO approach. Detailed discussions
can be found in Appendix B.

The objective function of the IWAE is given as:

LIWAE(θ, ϕ;x)

:= − E
z1,...,zK∼q(z|x;ϕ)

[
log

(
1

K

K∑
k=1

p(x|zk; θ)p(zk)
q(zk|x;ϕ)

)]
,

where p(z) is the density of the standard multivariate Gaus-
sian distribution and K is the number of samples. Note
that the IWAE reduces to the VAE when K = 1. We train
the encoder and decoder simultaneously by minimizing the
negative empirical expectation, given as

Ex∼UtrLIWAE(θ, ϕ;x) (1)

with respect to θ and ϕ using an SGD-based optimizer.

Selection of the optimal number of updates We empiri-
cally found out that the IM effect often emerges very early
in the training phase, often even within a single epoch, and
its magnitude (i.e., the difference of the loss distributions
between inliers and outliers) is highly sensitive to the num-
ber of model updates. And as the model memorizes outliers
as well as inliers gradually, the model becomes no longer
capable of distinguishing inliers from outliers (See the 5th
panel in Figure 2). Thus, it would be a key for the success
of the ODIM algorithm to choose the optimal number of
updates data adaptively.
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We devise a heuristic but powerful strategy to decide the
number of updates where the IM effect is maximized. At
each update of the model, we evaluate the degree of bi-
modality of the per-sample loss distribution and select the
optimal number of updates where the degree of bimodality
is maximized.

We observe that the two per-sample loss distributions, one
for inliers and the other for outliers, seemingly follow Gaus-
sian distributions (See the first four panels in Figure 2).
Therefore, to quantify the degree of bimodality, we fit a two-
component Gaussian mixture model (GMM-2), denoted
as π1N (µ1, σ

2
1) + π2N (µ2, σ

2
2), to the (normalized) per-

sample loss values using the currently estimated genera-
tive model. We then measure the discrepancy between the
two normal distributions in the fitted GMM-2 using the
Wasserstein distance. This discrepancy measure serves as
an indicator of the degree of bimodality.

The rightmost panel in Figure 2 illustrates the values of AUC
on the training data of Cardio at the first 10×m updates
for m = 1, . . . , 50 and their corresponding Wasserstein
distances. We can clearly see that the Wasserstein distance
is a useful measure for selecting the optimal number of
updates.

In practice, we calculate the Wasserstein distance at every
Nu update and stop the update process if the largest Wasser-
stein distance has not been improved for Npat consecutive
times. And the optimal number of updates is determined
as the one that maximizes the Wasserstein distance. We
set Nu and Npat to 10 in all numerical experiments, unless
otherwise specified.

Incorporating multiple ODIM scores Our method in-
cludes several random components, such as parameter ini-
tialization and mini-batch arrangement, resulting in stochas-
tic outcomes. To stabilize and enhance our method, we em-
ploy an ensemble strategy. Multiple models with different
initial values are trained in parallel to obtain the multiple
best models by use of the ODIM.

Let (θ∗(b), ϕ∗(b)), b = 1, . . . , B be B pairs of estimated
parameters, each of which is trained independently using
the IWAE and our early stopping rule, where B is the
number of ensembled models. Then, for a given datum
x, the formulation of the ensembled ODIM score becomes∑B

b=1 L
IWAE(θ∗(b), ϕ∗(b);x)/B. We consider the input x as

an inlier when its score is low and vise versa. In our ex-
periments, the number of multiple models is fixed at 10,
i.e., B = 10, unless otherwise specified. It is worth noting
that the ODIM algorithm runs quickly, so implementing an
ensemble is still computationally efficient. We provide the
ODIM’s pseudo algorithm in Algorithm 1.

Algorithm 1 ODIM
In practice, we set (K,Nu, Npat) = (50, 10, 10).

Input: Training dataset U tr = {x1, ...,xn}
Require: : Decoder and encoder: p(x|z; θ) and q(z|x;ϕ),

GMM-2 model: π1N (µ1, σ
2
1) + π2N (µ2, σ

2
2), Mini-

batch size: nmb, Optimizer: O, Number of samples in
IWAE: K, Update unit number: Nu, Maximum patience:
Npat

1: for b in (1 : B) do
2: Initialize (θ(b), ϕ(b)) and set dmax

WD to 0.
3: while npat < Npat do
4: for k in (1 : Nu) do
5: Drawn nmb samples, {xi}nmb

i=1, from U tr.
6: Apply the min-max scaling to {xi}nmb

i=1.
7: Update (θ(b), ϕ(b)) using the IWAE with

{xi}nmb
i=1 and O.

8: {l̃i}nmb
i=1←MinMax({LIWAE(xi)}nmb

i=1).
9: Fit the parameters in GMM-2 using {l̃i}nmb

i=1 and
calculate the WD distance dWD.

10: if dWD > Dmax
WD then

11: dmax
WD ← dWD

12: (θ∗(b), ϕ∗(b))← (θ(b), ϕ(b))
13: npat ← 0
14: else
15: npat ← npat + 1
16: end if
17: end for
18: end while
19: end for

Calculate ODIM scores:

l∗i ←
1

B

B∑
b=1

LIWAE(θ∗(b), ϕ∗(b);xi), i = 1, . . . , n

Output: ODIM scores {l∗i }ni=1

4. Numerical experiments
We demonstrate the superiority of our proposed method
through extensive experiments. We analyze a wide range
of datasets across tabular, image, and text types. Across all
data types, we show that ODIM outperforms other competi-
tors, including state-of-the-art methods, in terms of outlier
detection performance and computational cost. Additionally,
we discuss an extension of ODIM in two situations: 1) when
a small amount of anomalous information is available and
2) when we consider a differential privacy regime.

For all the experiments, we report the averaged results based
on five implementations with randomly initialized param-
eters. We utilize the Pytorch framework to run our al-
gorithm using a single NVIDIA TITAN XP GPU. The im-
plementation code for our method is publicly available at
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https://github.com/jshwang0311/ODIM.

Dataset description As aforementioned above, we ana-
lyze 57 benchmark datasets for OD covering tabular, images,
and texts, all of which are sourced from ADBench2 (Han
et al., 2022a).

We consider 36 tabular datasets that are frequently analyzed
in the OD literature. These datasets originate from diverse
domains, such as healthcare, finance, and astronomy.

For images, we analyze six datasets from ADBench:
MNIST, MNIST-C, FMNIST, CIFAR10, SVHN, and
MVTec-AD. We utilize the feature vectors extracted by the
ViT model (Dosovitskiy et al., 2021), which are available in
ADBench.

We additionally include five more benchmark datasets com-
monly employed in natural language processing (NLP) do-
mains: Amazon, 20news, Agnews, Imdb, and Yelp.
For these datasets, we employ our method using the embed-
ding features provided by either BERT (Devlin et al., 2019)
or RoBERTa (Liu et al., 2019), also available in ADBench.

For each dataset, we perform the min-max scaling. We re-
fer to Appendix C and Han et al. (2022b) for the detailed
descriptions of all the datasets.

Baseline For baselines to be compared with the ODIM,
we refer to Livernoche et al. (2023) and the baselines they
considered. To be more detailed, we first consider all the
UOD solvers, 16 in total, including deep-learning-based
ones, described in ADBench: PCA (Shyu et al., 2003),
OCSVM, (Schölkopf et al., 2001), LOF (Breunig et al.,
2000b), CBLOF (He et al., 2003), COF (Tang et al., 2002),
HBOS (Goldstein & Dengel, 2012), kNN (Ramaswamy
et al., 2000), SOD (Kriegel et al., 2009), COPOD (Li et al.,
2020), ECOD (Li et al., 2022), IF (Liu et al., 2008b), LODA
(Pevnỳ, 2016), FeatureBagging (Lazarevic & Kumar, 2005),
MCD (Fauconnier & Haesbroeck, 2009), DeepSVDD (Ruff
et al., 2018b), and DAGMM (Zong et al., 2018a).

Furthermore, we consider four recent UOD methods out-
side of ADBench: DROCC (Goyal et al., 2020), GOAD
(Bergman & Hoshen, 2020), ICL (Shenkar & Wolf, 2022),
and DTE (Livernoche et al., 2023).

We exclude likelihood-based methods specifically devel-
oped for SSOD, such as Nalisnick et al. (2019b), as we have
observed their poor performance in UOD tasks (Please read
Appendix D for empirical evidence.).

Architecture & learning schedule We use two hidden
layered DNN architectures for building the encoder and
decoder and set K, the number of samples drawn from the

2https://github.com/Minqi824/ADBench

Table 1. Averaged AUC and PR scores over 46 tabular datasets.
Method OCSVM COPOD ECOD DeepSVDD ICL DDPM DTE ODIM
AUC 0.740 0.730 0.729 0.543 0.652 0.712 0.730 0.757
PR 0.360 0.339 0.349 0.182 0.201 0.332 0.321 0.366

Table 2. Averaged AUC and PR scores over 6 image datasets.
Method OCSVM COPOD ECOD DeepSVDD ICL DDPM DTE ODIM
AUC 0.744 0.508 0.511 0.580 0.655 0.738 0.757 0.813
PR 0.271 0.090 0.091 0.176 0.172 0.267 0.282 0.429

encoder used for constructing the IWAE objective function,
to 50. We minimize the IWAE objective function in (1) with
the Adam optimizer (Kingma & Ba, 2014) with a mini-batch
size of 128 and a learning rate of 5e-4. To run the ODIM,
we fix the two hyper-parameters, Nu and Npat, to 10. For
ensemble learning, we train 10 pairs of encoder and decoder,
each of which is trained independently.

4.1. Performance for outlier identification

We begin by comparing ODIM with baseline methods to as-
sess its performance in identifying outliers within a training
dataset. To do this, we examine the area under receiver op-
erating characteristic (AUC), a standard measure that most
other studies have used. Additionally, to provide solid evi-
dence of our method’s superior performance, we evaluate
the area under precision-recall (PR), which summarizes the
precision-recall curve.

As we compare tens of baselines with ODIM, we provide
selected results in our main manuscript, with detailed results
of all methods for each dataset in Appendix C. We note that
all the baseline results are referenced from Appendix in
Livernoche et al. (2023).

Results for tabular data Table 1 provides a summary of
the averaged AUC and PR scores for 46 tabular datasets. The
ODIM achieves the highest averaged scores in terms of both
AUC and PR, indicating its superior performance in outlier
detection for tabular data. These superior results imply that
the ODIM can be readily used as a reliable method for
outlier detection in tabular data.

Results for image data Table 2 showcases the averaged
AUC and PR scores for 6 image datasets. The results clearly
show that ODIM provides outstanding results with large
margins compared to other competitors in most cases.

Results for text data The performance results for 5 text
datasets are also summarized in Table 3. Once again, the
ODIM stands out as the best-performing method across
text datasets on average. It is worth highlighting that the
ODIM has demonstrated superior and consistent perfor-
mance across different data types throughout the aforemen-
tioned empirical experiments, making it an effective method
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Table 3. Averaged AUC and PR scores over 5 text datasets.
Method OCSVM COPOD ECOD DeepSVDD ICL DDPM DTE ODIM
AUC 0.566 0.554 0.537 0.504 0.546 0.548 0.598 0.659
PR 0.062 0.060 0.057 0.054 0.058 0.059 0.070 0.097

Table 4. Running time comparison for the ODIM and other com-
petitors. All records are measured in seconds.

Method OCSVM LoF IF DeepSVDD ODIM
Cover 2164.270 24.959 6.192 3463.821 7.735
Mammography 2.482 0.221 0.408 135.958 4.057
Pendigits 1.247 1.899 0.350 83.944 5.595
Satellite 1.152 1.735 0.369 78.876 4.949
Shuttle 63.146 4.426 0.987 594.589 6.306
FMNIST 52.114 15.446 4.298 744.652 12.293
WM-811K 11498.385 910.600 89.499 4561.028 9.498
Agnews 25.877 3.348 3.156 138.114 7.506

for outlier detection tasks. Therefore, the ODIM can be used
as an off-the-shelf tool for outlier detection.

Implementation time comparison Recall our claim men-
tioned in Section 1 that our method is computationally effi-
cient compared to other deep-learning-based baselines and
even other conventional competitors. To validate this claim,
we conduct a comparative analysis of the running times on
multiple datasets, as summarized in Table 4.

As expected, the two deep learning methods are consider-
ably slower compared to other methods. On the other hand,
the ODIM demonstrates remarkable efficiency. This signifi-
cant improvement in computational efficiency makes ODIM
a highly practical and scalable method for OD tasks.

4.2. Ablation study

We conduct additional experiments to cover how the ODIM
behaves with respect to the choice of the hyper-parameters,
whose results are given in Figure 4. The followings are the
summary of our ablation studies, whose detailed explana-
tions are in Appendix C.

1. Increasing the value of K leads to better performance,
and the improvement saturates when K ≥ 50.

2. Large value of Npat is beneficial, though the extent of
improvement diminishes when Npat ≥ 10.

3. Using a larger value of B generally improves the outlier
identification performance.

4. The ODIM is stable with respect to reasonable learning
rates, highlighting the ease of applicability in practice.

Furthermore, we apply two pre-processing techniques, min-
max scaling and standardization, and compare their corre-
sponding results for the ODIMs on 30 tabular datasets. We
observe that the standardization yields the averaged AUC
score of 0.760, which is worse than that when the min-max

Table 5. Averaged results of training AUC (and PR) scores with
various values of l. We consider l, l = 0.0, 0.3, 0.5.

l 0.0 0.3 0.5
AUC (PR) 0.885 (0.647) 0.947 (0.871) 0.958 (0.891)

Table 6. Averaged results of training AUC (and PR) scores when
applying the DP-SGD algorithm. We iterate the DP-SGD until
ϵ = 10 while fixing δ = 10−5.

Method DeepSVDD ODIM
AUC (PR) 0.614 (0.152) 0.710 (0.234)

scaling is used, 0.790. The result for each dataset can be
found in Appendix C.

5. Further discussions
ODIM with partially labeled outliers Our method can
be extended to a scenario where partially labeled data are
additionally given. That is, we assume that besides U tr, a
few labeled outlier dataset Ltr = {(xl

1, 1), . . . , (x
l
m, 1)} is

also available.

We simply adopt the idea of Daniel et al. (2019), which
encourages the log-likelihood of known outliers to decrease
with the variational upper bound, called χ upper bound
(CUBO). And we modify the loss function of the ODIM by
adding the expected CUBO on Ltr from the original IWAE.

Table 5 summarizes the averaged training AUC and PR re-
sults of the modified method across various tabular datasets
for different proportions of labeled outliers. Please refer to
Appendix D for detailed results of each dataset. It is clearly
seen that using label information helps to enhance identify-
ing performance by a large margin. Rigorous descriptions
of this modification and further discussions are provided in
Appendix D.

Differentially private ODIM As the ODIM typically re-
quires far fewer updates, combining our method with differ-
entially private algorithms is expected to yield a synergic
benefits. We impose privacy protection to our method by
simply applying DP-SGD (Abadi et al., 2016), instead of
conventional SGD-based methods, when minimizing the
loss function (1). To guarantee differential privacy (DP),
DP-SGD deforms gradient of each sample by clipping and
adding noise, and parameters are trained based on this mod-
ified quantity.

As a measure of DP, we adopt (ϵ, δ)-DP (Dwork, 2006),
which is the de facto standard in this field. We iterate DP-
SGD to train DGMs for obtaining the ODIM scores, until
the privacy budget ϵ first exceeds a pre-specified value while
fixing δ = 10−5. Detailed explanations for (ϵ, δ)-DP and
DP-SGD, and the calculation of privacy budget when utiliz-
ing DP-SGD is provided in Appendix D.
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Figure 4. (From left to right) 1) AUC results on tabular datasets with various values of K. 2) AUC results on tabular datasets with various
values of Npat. 3) AUC results on tabular datasets with various values of B. 4) AUC results on FMNIST for each class with various
learning rates. We vary the learning rate from 1e-4 to 1e-1.

Table 6 shows the averaged AUC and PR scores of our
method and DeepSVDD across several tabular dataset, both
trained until ϵ = 10. Detailed results for each dataset can be
found in Appendix D. We note that we exclude non-SGD-
based methods such as OCSVM and IF since they DP-SGD
is not applicable to them. Large margins in AUC and PR
between our method and DeepSVDD indicates the strong
potential of the ODIM when publishing OD algorithms with
privacy guarantee.

6. Concluding remarks
This paper proposed a powerful yet efficient UOD method
called the ODIM. The ODIM is inspired by a new observa-
tion called the IM effect, that deep generative models tend
to memorize inliers first during early training. Combined
with the technique to select the optimal number of train-
ing updates and the ensemble method, we showed that the
ODIM provides consistently superior results in identifying
outliers, regardless of data types, with significantly faster
running times. Exploring the optimal pre-processing tech-
nique for the ODIM and developing new methods discussed
in Section 5 would be promising future works.

Impact Statement
Our proposed method called ODIM enhances the accuracy
and efficiency of anomaly detection across various domains,
including healthcare, finance, and astronomy. ODIM’s ef-
fectiveness and versatility can extend its applicability, ben-
efiting a wide range of sectors and contributing to societal
advancements in safety, security, and operational efficiency.
Additionally, its computational efficiency also makes it ac-
cessible for real-time applications, promoting its use in dy-
namic environments such as industrial monitoring.
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A. Proof of Propositions
A.1. Proof of Proposition 1

Note that the objective function of the VAE is given as:

LVAE(θ, ϕ;x) :=

∫
z

log

(
p(x|z; θ)p(z)
q(z|x;ϕ)

)
· q(z|x;ϕ)dz.

Thus, we have the equations:

∂

∂wij
LVAE(θ, ϕ;x) =

∫
z

∂

∂wij
log (p(x|z; θ)) · q(z|x;ϕ)dz,

and

∂

∂bi
LVAE(θ, ϕ;x) =

∫
z

∂

∂bi
log (p(x|z; θ)) · q(z|x;ϕ)dz,

where wij and bi for i ∈ [D] and j ∈ [d] are the (i, j) element of W and the i-th element of b, respectively. Here, we define
[L] := {1, . . . , L} for L ∈ N. Note that

Eθ,ϕ

∥∥∥∥ ∂

∂θ
LVAE(θ, ϕ;x)

∥∥∥∥2
2

=
∑
i

∑
j

Eθ,ϕ

[
∂

∂wij
LVAE(θ, ϕ;x)

]2
+
∑
i

Eθ,ϕ

[
∂

∂bi
LVAE(θ, ϕ;x)

]2
.

We are going to characterize the two terms, Eθ,ϕ

[
∂

∂wij
LVAE(θ, ϕ;x)

]2
and Eθ,ϕ

[
∂
∂bi

LVAE(θ, ϕ;x)
]2

, and combine them
to make the final conclusion.

w.r.t. wij

Since X|(Z = z) ∼ N
(
Wz+ b, σ2

)
holds, we have

log p(x|z; θ) = − 1

2σ2

D∑
i=1

(xi −w′
iz− bi)

2
+ const = − 1

2σ2

D∑
i=1

xi −
d∑

j=1

wijzj − bi

2

+ const,

where wi is the i-th row of W and const is a constant not depending on θ. Therefore, we can obtain the following result of
the log-likelihood with respect to wij :

∂

∂wij
log (p(x|z; θ)) = 1

σ2
(xi −w′

iz− bi) · zj =
1

σ2

xizj − wijz
2
j −

∑
j′ ̸=j

wij′zjzj′ − bizj

 .

Hence, the first derivative of the VAE objective function with respect to wij becomes:

∂

∂wij
LVAE(θ, ϕ;x) =

∫
z

1

σ2

(xi − bi)zj − wijz
2
j −

∑
j′ ̸=j

wij′zjzj′ − bizj

 · q(z|x;ϕ)dz

=
1

σ2

(xi − bi)(u
′
jx+ vj)− wij

((
u′
jx+ vj

)2
+ η2

)
−
(
u′
jx+ vj

)∑
j′ ̸=j

wij′
(
u′
j′x+ vj′

)
=

1

σ2

(xi − bi)(u
′
jx+ vj)−

(
u′
jx+ vj

)∑
j′

wij′
(
u′
j′x+ vj′

)
− wijη

2

 ,
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where uj is the j-th row of U . By squaring the above term, we have[
∂

∂wij
LVAE(θ, ϕ;x)

]2
=

1

σ4

(xi − bi)
2
(
u′
jx+ vj

)2
+
(
u′
jx+ vj

)2∑
j′

w2
ij′
(
u′
j′x+ vj′

)2
+ w4

ijη
4

+2
(
u′
jx+ vj

)2 ∑
j′′>j′

wij′wij′′(u
′
j′x+ vj′)(u

′
j′′x+ vj′′)

+2wijη
2
(
u′
jx+ vj

)∑
j′

wij′
(
u′
j′x+ vj′

)
− 2wijη

2(xi − bi)
(
u′
jx+ vj

)

−2(xi − bi)
(
u′
jx+ vj

)2∑
j′

wij′
(
u′
j′x+ vj′

) .

Now, we will calculate the expected value of the above equation with respect to θ and ϕ. To do this, we will take the
expectation for each term in the RHS of the above equation. Note that, for a random variable X ∼ Unif [−1, 1], E [X] = 0,
E
[
X2
]
= 1/3, and E

[
X4
]
= 1/5. Thus, we have

Eθ,ϕ

[
(xi − bi)

2
(
u′
jx+ vj

)2]
= Eθ,ϕ

[
(x2

i − 2xibi + b2i )
(
(u′

jx)
2 + v2j + 2vju

′
jx
)]

= Eθ,ϕ

[
(x2

i + b2i )

(∑
i′

u2
ji′x

2
i′ + v2j

)]
=

(
x2
i +

1

3

)
·
(
1

3
∥x∥22 +

1

3

)
,

Eθ,ϕ

(u′
jx+ vj

)2∑
j′

w2
ij′
(
u′
j′x+ vj′

)2 = Eθ,ϕ

(∑
i′

uji′xi′ + vj

)2∑
j′

w2
ij′

(∑
i′

uj′i′xi′ + vj′

)2


=
1

3
Eθ,ϕ

(∑
i′

uji′xi′ + vj

)4

+

(∑
i′

uji′xi′ + vj

)2 ∑
j′ ̸=j

(∑
i′

uj′i′xi′ + vj′

)2


=
1

3
Eθ,ϕ

(∑
i′

uji′xi′

)4

+ 6

(∑
i′

uji′xi′

)2

v2j + v4j +

(∑
i′

uji′xi′ + vj

)2 ∑
j′ ̸=j

(∑
i′

uj′i′xi′ + vj′

)2


=
1

3
Eθ,ϕ

∑
i′

u4
ji′x

4
i′ + 6

∑
i′′>i′

u2
ji′uji′′x

2
i′x

2
i′′ + 6

(∑
i′

u2
ji′x

2
i′

)
v2j + v4j +

(∑
i′

u2
ji′x

2
i′ + v2j

)∑
j′ ̸=j

(∑
i′

u2
j′i′x

2
i′ + v2j′

)
=

1

3

1
5

∑
i′

x4
i +

2

3

∑
i′′>i′

x2
i′x

2
i′′ +

2

3

∑
i′

x2
i′ +

1

5
+

(
1

3

∑
i′

x2
i′

)∑
j′ ̸=j

(
1

3

∑
i′

x2
i′

)
=

1

3

[
1

3
∥x∥42 −

2

15
∥x∥44 +

2

3
∥x∥22 +

1

5
+ (d− 1)

(
1

3
∥x∥22 +

1

3

)]
,

Eθ,ϕw
2
ijη

4 = η4Eθw
2
ij =

1

3
η4,

Eθ,ϕ

2 (u′
jx+ vj

)2 ∑
j
′′
>j′

wij′wij′′(u
′
j′x+ vj′)(u

′
j′′x+ vj′′)

 = 0,

Eθ,ϕ

2wijη
2
∑
j′

wij′
(
u′
jx+ vj

) (
u′
j′x+ vj′

) = 2Eθ,ϕ

[
w2

ijη
2
(
u′
jx+ vj

)2]
=

2

3
η2Eϕ

(∑
i′

uji′xi′ + vj

)2


=
2

3
η2Eϕ

[∑
i′

u2
ji′x

2
i′ + v2j

]
=

2

9
η2
(
∥x∥22 + 1

)
,
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Eθ,ϕ

[
−2wijη

2(xi − bi)
(
u′
jx+ vj

)]
= 0,

and

Eθ,ϕ

−2(xi − bi)
(
u′
jx+ vj

)2∑
j′

wij′
(
u′
j′x+ vj′

) = 0.

By integrating all the above expected values and using the property ∥x∥2 ≥ ∥x∥4, we arrive at the following result:

Eθ,ϕ

[
∂

∂wij
LVAE(θ, ϕ;x)

]2
= Θ

(
∥x∥42

)
.

w.r.t. bi

We have

∂

∂bi
log p(x|z; θ) = 1

σ2

xi −
d∑

j=1

wijzj − bi

 ,

thus,

∂

∂bi
LVAE(θ, ϕ;x) =

∫
z

1

σ2

xi −
d∑

j=1

wijzj − bi

 · q(z|x;ϕ)dz =
1

σ2

(xi − bi)−
∑
j

wij(u
′
jx+ vj)

 .

By squaring the above term,[
∂

∂bi
LVAE(θ, ϕ;x)

]2
=

1

σ4

(xi − bi)
2 +

∑
j

w2
ij(u

′
jx+ vj)

2 + 2
∑
j′>j

wijwij′(u
′
jx+ vj)(u

′
j′x+ vj′)− 2(xi − bi)

∑
j

wij(u
′
jx+ vj)

 .

Here, we calculate the expected value of each term in the above RHS. We have

Eθ,ϕ

[
(xi − bi)

2
]
= x2

i +
1

3
,

Eθ,ϕ

∑
j

w2
ij(u

′
jx+ vj)

2

 =
1

3

∑
j

Eθ,ϕ

[∑
i′

u2
ji′x

2
i′ + v2j

]
=

d

9
∥x∥22 +

d

9
,

Eθ,ϕ

2∑
j′>j

wijwij′(u
′
jx+ vj)(u

′
j′x+ vj′)

 = 0,

and

Eθ,ϕ

2(xi − bi)
∑
j

wij(u
′
jx+ vj)

 = 0.

Combining the above expectations, we have

Eθ,ϕ

[
∂

∂bi
LVAE(θ, ϕ;x)

]2
= Θ

(
∥x∥22

)
.
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Final conclusion Combining the above results, we have

Eθ,ϕ

∥∥∥∥ ∂

∂θ
LVAE(θ, ϕ;x)

∥∥∥∥2
2

=
∑
i

∑
j

Eθ,ϕ

[
∂

∂wij
LVAE(θ, ϕ;x)

]2
+
∑
i

Eθ,ϕ

[
∂

∂bi
LVAE(θ, ϕ;x)

]2
=
∑
i

∑
j

Θ
(
∥x∥42

)
+
∑
i

Θ
(
∥x∥22

)
= Θ

(
∥x∥42

)
.

Thus, the proof is completed by using the inequality D−1/2∥x∥1 ≤ ∥x∥2 ≤ ∥x∥1

A.2. Proof of Proposition 2

Due to the second condition of the Proposition 2, there exist four real numbers −∞ < aj < bj < cj < dj < ∞ and a
small positive number ϵ > 0 such that Xin

j ∈ [bj , cj ] and Xout
j ∈ [aj , bj − ϵ] ∪ [cj + ϵ, dj ] for all j ∈ [D]. Suppose that

infXin
j = aj and supXin

j = dj for j ∈ [D]. And we define Xin
j,+ = max{0, Xin

j } and Xin
j,− = max{0,−Xin

j } so that
Xin

j = Xin
j,+ −Xin

j,−. Similarly we define Xout
j,+ and Xout

j,− .

About min-max Since EXin
j = EXout

j = 0 for j ∈ [D], it is trivial to show that E|Xin
mm,j | = E|Xout

mm,j | = −aj/(dj −
aj).

About standardization It is sufficient to show that E|Xin
j | < E|Xout

j | since EXin
j = EXout

j = 0. Note that 0 ≤ Xin
j,+ ≥

cj < cj + ϵ ≥ Xin
j,+ < dj , so we can have EXin

j,+ < EXout
j,+ . In a similar manner, we can also derive EXin

j,− < EXout
j,− . By

considering that |Xin
j | = Xin

j,− +Xin
j,+ and |Xout

j | = Xout
j,− +Xout

j,+ , the proof is completed.
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B. Why do we choose the IWAE method as a learning framework?
In training DGMs with likelihood regimes, two primary approaches are commonly used: 1) employing the lower bound of
the log-likelihood, often called ELBO, (Kingma & Welling, 2013; Burda et al., 2016; Tomczak & Welling, 2018; Kim et al.,
2020), and 2) normalizing flows which calculate the exact log-likelihood (Dinh et al., 2015; 2017; Kingma & Dhariwal,
2018).

Two things need to be considered when selecting a DGM framework for exploiting the IM effect: 1) the clarity of the IM
effect during learning and 2) computational efficiency. Among the normalizing flows methods, we considered the GLOW
(Kingma & Dhariwal, 2018). We trained GLOW on the FMNIST dataset and monitored the per-sample loss values, i.e.,
negative log-likelihood, of inliers and outliers during the early learning phases. The results, illustrated in Figure B.1, shows
that the IM effect clearly appears during GLOW training.

Although the IM effect occurs when using GLOW, we ultimately chose the IWAE method, one of the ELBO methods,
because the performance of ODIM using GLOW was insufficient compared to IWAE. Additionally, ELBO-based methods
are relatively flexible in choosing the encoder and decoder, while normalizing flows are somewhat limited in this regard.
And the advantage of IWAE in comparison with VAE is described in Section 4.2 of the main manuscript.

In fact, there is another line of work, called auto-regressive models (van den Oord et al., 2016; Salimans et al., 2017), that
utilizes an exact log-likelihood. We note that we excluded auto-regressive models from the exact likelihood approach since
they are generally very computationally burdensome.

Figure B.1. (Left to Right) The distributions of the per-sample (normalized) negative log-likelihood values of GLOW on FMNIST after
10, 20, 30, and 40 updates, respectively. For each panel, we depict the histograms of inliers and outliers separately.
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C. Numerical experiments
C.1. Data description

We examine a total of 46 tabular datasets, 6 image datasets, and 5 sequential datasets. All of these datasets are taken from a
source called ADBench (Han et al., 2022b). The basic information of all datasets we analyze is summarized in Table C.1.

Table C.1. Description of ADBench datasets
Number Data # Samples # Features # Anomaly % Anomaly

1 ALOI 49534 27 1508 3.04
2 Annthyroid 7200 6 534 7.42
3 Backdoor 95329 196 2329 2.44
4 Breastw 683 9 239 34.99
5 Campaign 41188 62 4640 11.27
6 Cardio 1831 21 176 9.61
7 Cardiotocography 2114 21 466 22.04
8 Celeba 202599 39 4547 2.24
9 Census 299285 500 18568 6.20
10 Cover 286048 10 2747 0.96
11 Donors 619326 10 36710 5.93
12 Fault 1941 27 673 34.67
13 Fraud 284807 29 492 0.17
14 Glass 214 7 9 4.21
15 Hepatitis 80 19 13 16.25
16 Http 567498 3 2211 0.39
17 InternetAds 1966 1555 368 18.72
18 Ionosphere 351 32 126 35.90
19 Landsat 6435 36 1333 20.71
20 Letter 1600 32 100 6.25
21 Lymphography 148 18 6 4.05
22 Magic.gamma 19020 10 6688 35.16
23 Mammography 11183 6 260 2.32
24 MNIST 7603 100 700 9.21
25 Musk 3062 166 97 3.17
26 Optdigits 5216 64 150 2.88
27 PageBlocks 5393 10 510 9.46
28 Pendigits 6870 16 156 2.27
29 Pima 768 8 268 34.90
30 Satellite 6435 36 2036 31.64
31 Satimage-2 5803 36 71 1.22
32 Shuttle 49097 9 3511 7.15
33 Skin 245057 3 50859 20.75
34 Smtp 95156 3 30 0.03
35 SpamBase 4207 57 1679 39.91
36 Speech 3686 400 61 1.65
37 Stamps 340 9 31 9.12
38 Thyroid 3772 6 93 2.47
39 Vertebral 240 6 30 12.50
40 Vowels 1456 12 50 3.43
41 Waveform 3443 21 100 2.90
42 WBC 223 9 10 4.48
43 WDBC 367 30 10 2.72
44 Wilt 4819 5 257 5.33
45 Wine 129 13 10 7.75
46 WPBC 198 33 47 23.74
47 Yeast 1484 8 507 34.16
48 CIFAR10 5263 512 263 5.00
49 FMNIST 6315 512 315 5.00
50 MNIST-C 10000 512 500 5.00
51 MVTec-AD 5354 512 1258 23.5
52 SVHN 5208 512 260 5.00
53 Agnews 10000 768 500 5.00
54 Amazon 10000 768 500 5.00
55 Imdb 10000 768 500 5.00
56 Yelp 10000 768 500 5.00
57 20news 10000 768 500 5.00
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C.2. Detailed AUC and PR results over tabular datasets (training data)

Tables C.2.1-C.2.2 and C.3.1-C.3.2 provide a comparison of inlier identification performance for each method and dataset in
terms of AUC and PR.

Table C.2.1. Training AUC value comparisons on tabular datasets
Data CBLOF FeatureBagging HBOS IForest kNN LODA LOF MCD PCA DAGMM DROCC GOAD PlanarFlow
Aloi 0.556 0.792 0.531 0.542 0.613 0.495 0.767 0.520 0.549 0.517 0.500 0.497 0.520
Annthyroid 0.676 0.788 0.608 0.816 0.761 0.453 0.710 0.918 0.676 0.548 0.631 0.453 0.966
Backdoor 0.897 0.790 0.740 0.725 0.826 0.515 0.764 0.848 0.888 0.752 0.500 0.587 0.787
Breastw 0.961 0.408 0.984 0.983 0.980 0.970 0.446 0.985 0.946 0.811 0.847 0.845 0.965
Campaign 0.738 0.594 0.768 0.704 0.750 0.493 0.614 0.775 0.734 0.580 0.500 0.443 0.566
Cardio 0.832 0.579 0.839 0.922 0.830 0.856 0.551 0.815 0.949 0.625 0.655 0.908 0.796
Cardiotocography 0.561 0.538 0.595 0.681 0.503 0.708 0.527 0.500 0.747 0.546 0.449 0.624 0.643
Celeba 0.753 0.514 0.754 0.707 0.736 0.600 0.432 0.803 0.792 0.627 0.726 0.432 0.703
Census 0.664 0.538 0.611 0.607 0.671 0.454 0.562 0.731 0.662 0.491 0.443 0.488 0.604
Cover 0.922 0.571 0.707 0.873 0.866 0.922 0.568 0.696 0.934 0.742 0.747 0.124 0.417
Donors 0.808 0.691 0.743 0.771 0.829 0.566 0.629 0.765 0.825 0.558 0.747 0.225 0.899
Fault 0.665 0.591 0.506 0.544 0.715 0.478 0.579 0.505 0.480 0.495 0.668 0.546 0.469
Fraud 0.954 0.616 0.945 0.950 0.955 0.856 0.548 0.911 0.952 0.857 0.500 0.724 0.895
Glass 0.855 0.659 0.820 0.790 0.870 0.624 0.618 0.795 0.715 0.630 0.743 0.545 0.766
Hepatitis 0.635 0.469 0.768 0.683 0.669 0.557 0.468 0.721 0.748 0.600 0.582 0.637 0.654
Http 0.996 0.288 0.991 0.999 0.051 0.060 0.338 0.999 0.997 0.838 0.500 0.996 0.994
Internetads 0.616 0.494 0.696 0.686 0.616 0.541 0.587 0.660 0.609 0.515 0.500 0.614 0.608
Ionosphere 0.892 0.876 0.544 0.833 0.922 0.788 0.864 0.951 0.777 0.641 0.766 0.829 0.884
Landsat 0.548 0.540 0.575 0.474 0.614 0.382 0.549 0.607 0.366 0.533 0.626 0.506 0.464
Letter 0.763 0.886 0.589 0.616 0.812 0.537 0.878 0.804 0.524 0.503 0.780 0.598 0.689
Lymphography 0.994 0.523 0.995 0.999 0.995 0.900 0.636 0.989 0.997 0.840 0.878 0.995 0.940
Magic.gamma 0.725 0.700 0.709 0.721 0.795 0.655 0.678 0.699 0.667 0.584 0.728 0.442 0.742
Mammography 0.795 0.726 0.838 0.860 0.852 0.867 0.702 0.690 0.888 0.719 0.779 0.414 0.782
Musk 1.000 0.575 1.000 0.998 0.964 0.993 0.581 0.999 1.000 0.912 0.575 1.000 0.748
Optdigits 0.785 0.539 0.868 0.696 0.395 0.493 0.538 0.413 0.518 0.408 0.565 0.657 0.492
Pageblocks 0.893 0.758 0.779 0.897 0.919 0.712 0.703 0.923 0.907 0.753 0.914 0.609 0.908
Pendigits 0.864 0.518 0.925 0.947 0.828 0.895 0.534 0.834 0.936 0.548 0.520 0.592 0.780
Pima 0.655 0.573 0.704 0.674 0.723 0.595 0.563 0.686 0.651 0.522 0.542 0.606 0.615
Satellite 0.742 0.545 0.762 0.695 0.721 0.614 0.550 0.804 0.601 0.675 0.608 0.702 0.671
Satimage-2 0.999 0.526 0.976 0.993 0.992 0.981 0.539 0.995 0.977 0.911 0.579 0.996 0.970
Shuttle 0.621 0.493 0.986 0.997 0.732 0.389 0.526 0.990 0.990 0.898 0.500 0.208 0.852
Skin 0.675 0.534 0.588 0.670 0.720 0.442 0.550 0.892 0.447 0.554 0.708 0.579 0.773
Smtp 0.863 0.794 0.809 0.905 0.933 0.819 0.899 0.948 0.856 0.868 0.500 0.915 0.784
Spambase 0.541 0.424 0.664 0.637 0.566 0.480 0.453 0.446 0.548 0.488 0.490 0.496 0.528
Speech 0.471 0.509 0.473 0.476 0.480 0.466 0.512 0.494 0.469 0.522 0.483 0.458 0.496
Stamps 0.660 0.502 0.904 0.907 0.870 0.831 0.512 0.838 0.909 0.719 0.760 0.774 0.838
Thyroid 0.909 0.707 0.948 0.979 0.965 0.819 0.657 0.986 0.955 0.719 0.889 0.574 0.992
Vertebral 0.463 0.473 0.317 0.362 0.379 0.294 0.487 0.389 0.378 0.470 0.425 0.468 0.409
Vowels 0.884 0.933 0.679 0.763 0.951 0.705 0.932 0.732 0.604 0.464 0.738 0.791 0.888
Waveform 0.701 0.715 0.694 0.707 0.750 0.594 0.693 0.572 0.635 0.523 0.674 0.592 0.640
Wbc 0.977 0.388 0.987 0.996 0.982 0.992 0.607 0.988 0.993 0.821 0.821 0.949 0.934
Wdbc 0.990 0.867 0.989 0.988 0.980 0.980 0.849 0.969 0.988 0.715 0.347 0.983 0.985
Wilt 0.396 0.666 0.348 0.451 0.511 0.313 0.678 0.859 0.239 0.432 0.400 0.555 0.794
Wine 0.453 0.323 0.907 0.786 0.470 0.822 0.330 0.975 0.819 0.513 0.621 0.734 0.390
Wpbc 0.487 0.436 0.548 0.516 0.512 0.501 0.447 0.534 0.486 0.449 0.483 0.467 0.483
Yeast 0.461 0.465 0.402 0.394 0.396 0.461 0.453 0.406 0.418 0.503 0.396 0.503 0.442
Average 0.746 0.596 0.742 0.759 0.738 0.641 0.600 0.769 0.734 0.629 0.616 0.623 0.721
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Table C.2.2. Training AUC value comparisons on tabular datasets
Data OCSVM COPOD ECOD DeepSVDD ICL DDPM DTE ODIM
ALOI 0.549 0.515 0.531 0.514 0.548 0.532 0.645 0.531
Annthyroid 0.682 0.777 0.789 0.739 0.599 0.814 0.781 0.588
Backdoor 0.889 0.500 0.500 0.735 0.936 0.892 0.806 0.885
Breastw 0.935 0.994 0.990 0.625 0.807 0.766 0.976 0.991
Campaign 0.737 0.783 0.769 0.508 0.766 0.724 0.746 0.727
Cardio 0.934 0.921 0.935 0.498 0.461 0.723 0.777 0.907
Cardiotocography 0.691 0.664 0.784 0.488 0.372 0.579 0.493 0.610
Celeba 0.781 0.757 0.763 0.491 0.684 0.796 0.699 0.842
Census 0.655 0.500 0.500 0.527 0.668 0.659 0.672 0.662
Cover 0.952 0.882 0.919 0.580 0.681 0.808 0.838 0.899
Donors 0.770 0.815 0.888 0.511 0.739 0.806 0.832 0.808
Fault 0.537 0.455 0.468 0.522 0.661 0.562 0.726 0.567
Fraud 0.954 0.943 0.949 0.769 0.931 0.924 0.956 0.944
Glass 0.661 0.760 0.710 0.517 0.729 0.560 0.881 0.785
Hepatitis 0.704 0.807 0.737 0.361 0.616 0.461 0.631 0.764
Http 0.994 0.991 0.980 0.249 0.921 0.998 0.051 0.995
Internetads 0.615 0.676 0.677 0.583 0.592 0.614 0.634 0.625
Ionosphere 0.838 0.783 0.717 0.514 0.629 0.758 0.924 0.848
Landsat 0.423 0.422 0.368 0.631 0.649 0.496 0.602 0.462
Letter 0.598 0.560 0.573 0.517 0.737 0.847 0.850 0.636
Lymphography 0.996 0.996 0.995 0.681 0.884 0.958 0.989 0.998
Magic.gamma 0.673 0.681 0.638 0.604 0.676 0.763 0.801 0.745
Mammography 0.871 0.905 0.906 0.451 0.658 0.749 0.849 0.846
Musk 1.000 0.948 0.953 0.538 0.790 0.999 0.882 1.000
Optdigits 0.507 0.500 0.500 0.519 0.533 0.402 0.386 0.586
Pageblocks 0.914 0.875 0.914 0.592 0.768 0.820 0.906 0.882
Pendigits 0.929 0.906 0.927 0.383 0.650 0.700 0.786 0.951
Pima 0.631 0.662 0.604 0.510 0.524 0.537 0.707 0.719
Satellite 0.662 0.633 0.583 0.562 0.627 0.715 0.702 0.698
Satimage-2 0.997 0.975 0.965 0.551 0.898 0.996 0.980 0.998
Shuttle 0.992 0.995 0.993 0.576 0.642 0.975 0.698 0.986
Skin 0.547 0.471 0.490 0.548 0.265 0.461 0.718 0.662
Smtp 0.845 0.912 0.882 0.895 0.656 0.956 0.930 0.822
Spambase 0.534 0.688 0.656 0.584 0.459 0.510 0.545 0.550
Speech 0.466 0.489 0.470 0.512 0.512 0.466 0.487 0.475
Stamps 0.882 0.929 0.877 0.465 0.505 0.556 0.820 0.897
Thyroid 0.958 0.939 0.977 0.505 0.693 0.871 0.964 0.916
Vertebral 0.426 0.263 0.417 0.394 0.449 0.563 0.400 0.345
Vowels 0.779 0.496 0.593 0.514 0.784 0.903 0.964 0.823
Waveform 0.669 0.739 0.603 0.609 0.661 0.617 0.729 0.722
Wbc 0.987 0.994 0.994 0.503 0.853 0.948 0.979 0.992
Wdbc 0.984 0.993 0.971 0.602 0.738 0.965 0.975 0.977
Wilt 0.317 0.345 0.394 0.465 0.649 0.659 0.552 0.329
Wine 0.671 0.865 0.738 0.507 0.455 0.374 0.425 0.906
Wpbc 0.485 0.519 0.489 0.493 0.488 0.493 0.502 0.510
Yeast 0.420 0.380 0.443 0.520 0.466 0.463 0.400 0.394
Average 0.740 0.730 0.729 0.543 0.652 0.712 0.730 0.757
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Table C.3.1. Training PR value comparisons on tabular datasets
Data CBLOF FeatureBagging HBOS IForest kNN LODA LOF MCD PCA DAGMM DROCC GOAD PlanarFlow
Aloi 0.037 0.104 0.034 0.034 0.048 0.033 0.097 0.032 0.037 0.033 0.030 0.033 0.032
Annthyroid 0.169 0.206 0.228 0.312 0.224 0.098 0.163 0.503 0.196 0.109 0.185 0.131 0.654
Backdoor 0.546 0.217 0.052 0.045 0.479 0.101 0.358 0.121 0.531 0.250 0.025 0.347 0.336
Breastw 0.890 0.284 0.954 0.956 0.932 0.955 0.296 0.962 0.946 0.660 0.776 0.826 0.908
Campaign 0.287 0.145 0.352 0.279 0.289 0.131 0.158 0.325 0.284 0.163 0.113 0.105 0.191
Cardio 0.482 0.161 0.458 0.559 0.402 0.428 0.159 0.364 0.609 0.193 0.272 0.540 0.471
Cardiotocography 0.335 0.276 0.361 0.436 0.324 0.463 0.271 0.311 0.462 0.271 0.258 0.403 0.348
Celeba 0.069 0.024 0.089 0.063 0.061 0.047 0.018 0.092 0.112 0.044 0.047 0.021 0.066
Census 0.087 0.061 0.073 0.073 0.088 0.065 0.069 0.153 0.087 0.062 0.058 0.072 0.073
Cover 0.070 0.019 0.026 0.052 0.054 0.090 0.019 0.016 0.075 0.044 0.056 0.005 0.010
Donors 0.148 0.120 0.135 0.124 0.182 0.255 0.109 0.141 0.166 0.086 0.123 0.040 0.241
Fault 0.473 0.396 0.360 0.395 0.522 0.336 0.388 0.334 0.332 0.361 0.496 0.381 0.329
Fraud 0.145 0.003 0.209 0.145 0.169 0.146 0.003 0.488 0.149 0.084 0.002 0.257 0.447
Glass 0.144 0.151 0.161 0.144 0.167 0.090 0.144 0.113 0.112 0.111 0.159 0.075 0.113
Hepatitis 0.304 0.225 0.328 0.243 0.252 0.275 0.214 0.363 0.339 0.253 0.221 0.291 0.317
Http 0.464 0.047 0.302 0.886 0.010 0.004 0.050 0.865 0.500 0.368 0.004 0.441 0.363
Internetads 0.296 0.182 0.523 0.486 0.296 0.242 0.232 0.344 0.276 0.207 0.197 0.288 0.262
Ionosphere 0.881 0.821 0.353 0.779 0.911 0.741 0.807 0.947 0.721 0.473 0.728 0.781 0.824
Landsat 0.212 0.246 0.231 0.194 0.258 0.183 0.250 0.253 0.163 0.230 0.272 0.198 0.186
Letter 0.166 0.445 0.078 0.086 0.203 0.083 0.433 0.174 0.076 0.083 0.252 0.098 0.153
Lymphography 0.915 0.090 0.919 0.972 0.894 0.490 0.135 0.767 0.935 0.454 0.463 0.897 0.417
Magic.gamma 0.666 0.539 0.617 0.638 0.723 0.579 0.520 0.631 0.589 0.450 0.627 0.326 0.692
Mammography 0.139 0.070 0.132 0.218 0.181 0.218 0.085 0.036 0.204 0.111 0.114 0.046 0.074
Musk 1.000 0.139 0.999 0.945 0.708 0.842 0.118 0.992 1.000 0.500 0.196 1.000 0.391
Optdigits 0.059 0.036 0.192 0.046 0.022 0.029 0.035 0.022 0.027 0.026 0.032 0.039 0.027
Pageblocks 0.547 0.341 0.319 0.464 0.556 0.410 0.292 0.617 0.525 0.255 0.632 0.373 0.538
Pendigits 0.192 0.048 0.247 0.260 0.099 0.186 0.040 0.069 0.219 0.056 0.027 0.075 0.060
Pima 0.484 0.412 0.577 0.510 0.530 0.404 0.406 0.498 0.492 0.372 0.413 0.476 0.476
Satellite 0.656 0.378 0.688 0.649 0.582 0.613 0.381 0.768 0.606 0.527 0.465 0.658 0.595
Satimage-2 0.972 0.042 0.760 0.917 0.690 0.857 0.041 0.682 0.872 0.289 0.076 0.949 0.484
Shuttle 0.184 0.081 0.965 0.976 0.193 0.168 0.109 0.841 0.913 0.438 0.072 0.136 0.346
Skin 0.289 0.207 0.232 0.254 0.290 0.180 0.221 0.490 0.172 0.226 0.285 0.232 0.335
Smtp 0.403 0.001 0.005 0.005 0.415 0.312 0.022 0.006 0.382 0.179 0.000 0.358 0.006
Spambase 0.402 0.344 0.518 0.487 0.415 0.387 0.360 0.349 0.409 0.389 0.383 0.387 0.433
Speech 0.019 0.022 0.023 0.020 0.019 0.016 0.022 0.019 0.018 0.022 0.020 0.019 0.018
Stamps 0.211 0.143 0.332 0.347 0.317 0.280 0.153 0.257 0.364 0.198 0.241 0.285 0.284
Thyroid 0.272 0.069 0.501 0.562 0.392 0.189 0.077 0.702 0.356 0.126 0.338 0.318 0.734
Vertebral 0.123 0.124 0.091 0.097 0.095 0.089 0.130 0.101 0.099 0.134 0.117 0.123 0.111
Vowels 0.166 0.314 0.078 0.162 0.443 0.127 0.326 0.085 0.069 0.041 0.178 0.154 0.295
Waveform 0.122 0.078 0.048 0.056 0.133 0.040 0.071 0.040 0.044 0.032 0.150 0.042 0.150
Wbc 0.691 0.037 0.728 0.948 0.743 0.898 0.077 0.839 0.913 0.327 0.358 0.736 0.431
Wdbc 0.688 0.154 0.761 0.702 0.521 0.527 0.128 0.395 0.613 0.152 0.039 0.589 0.568
Wilt 0.040 0.081 0.039 0.044 0.049 0.036 0.083 0.153 0.032 0.047 0.041 0.065 0.115
Wine 0.170 0.061 0.412 0.207 0.081 0.250 0.064 0.737 0.264 0.120 0.126 0.229 0.086
Wpbc 0.227 0.206 0.241 0.237 0.234 0.226 0.210 0.257 0.229 0.214 0.234 0.214 0.236
Yeast 0.314 0.325 0.328 0.304 0.294 0.330 0.315 0.298 0.302 0.353 0.284 0.332 0.309
Average 0.351 0.184 0.349 0.377 0.337 0.292 0.188 0.382 0.366 0.220 0.221 0.313 0.316
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Table C.3.2. Training PR value comparisons on tabular datasets
Data OCSVM COPOD ECOD DeepSVDD ICL DDPM DTE ODIM
Aloi 0.039 0.031 0.033 0.034 0.046 0.036 0.056 0.041
Annthyroid 0.188 0.174 0.272 0.192 0.123 0.297 0.228 0.161
Backdoor 0.534 0.025 0.025 0.372 0.717 0.520 0.473 0.272
Breastw 0.897 0.989 0.982 0.482 0.635 0.537 0.921 0.988
Campaign 0.283 0.368 0.354 0.149 0.267 0.299 0.281 0.297
Cardio 0.536 0.576 0.567 0.177 0.108 0.278 0.376 0.564
Cardiotocography 0.408 0.403 0.502 0.252 0.188 0.338 0.312 0.389
Celeba 0.103 0.093 0.095 0.031 0.045 0.093 0.052 0.118
Census 0.085 0.062 0.062 0.075 0.095 0.086 0.090 0.084
Cover 0.099 0.068 0.113 0.048 0.022 0.046 0.048 0.032
Donors 0.139 0.209 0.265 0.112 0.119 0.143 0.188 0.124
Fault 0.401 0.313 0.326 0.375 0.473 0.392 0.532 0.444
Fraud 0.110 0.252 0.215 0.250 0.127 0.146 0.137 0.257
Glass 0.130 0.111 0.183 0.090 0.122 0.073 0.206 0.119
Hepatitis 0.278 0.389 0.295 0.170 0.231 0.165 0.238 0.315
Http 0.356 0.280 0.145 0.093 0.091 0.642 0.024 0.280
Internetads 0.291 0.505 0.505 0.252 0.237 0.295 0.290 0.234
Ionosphere 0.829 0.663 0.633 0.392 0.472 0.633 0.920 0.867
Landsat 0.175 0.176 0.164 0.362 0.329 0.200 0.255 0.179
Letter 0.113 0.068 0.077 0.099 0.208 0.367 0.256 0.121
Lymphography 0.885 0.907 0.894 0.254 0.264 0.731 0.805 0.967
Magic.gamma 0.625 0.588 0.533 0.499 0.548 0.651 0.730 0.693
Mammography 0.187 0.430 0.435 0.025 0.046 0.099 0.175 0.098
Musk 1.000 0.369 0.475 0.107 0.128 0.984 0.434 1.000
Optdigits 0.027 0.029 0.029 0.039 0.030 0.022 0.021 0.030
Pageblocks 0.531 0.370 0.520 0.288 0.285 0.493 0.530 0.509
Pendigits 0.226 0.177 0.270 0.022 0.045 0.056 0.089 0.302
Pima 0.477 0.536 0.484 0.366 0.385 0.400 0.528 0.491
Satellite 0.654 0.570 0.526 0.406 0.451 0.662 0.563 0.652
Satimage-2 0.965 0.797 0.666 0.052 0.102 0.783 0.507 0.949
Shuttle 0.907 0.962 0.905 0.149 0.135 0.779 0.187 0.947
Skin 0.220 0.179 0.183 0.221 0.173 0.175 0.290 0.239
Smtp 0.383 0.005 0.589 0.240 0.004 0.502 0.411 0.261
Spambase 0.402 0.544 0.518 0.456 0.370 0.384 0.407 0.410
Speech 0.019 0.019 0.020 0.018 0.020 0.020 0.019 0.018
Stamps 0.318 0.398 0.324 0.099 0.117 0.143 0.273 0.336
Thyroid 0.329 0.179 0.472 0.024 0.066 0.325 0.360 0.327
Vertebral 0.107 0.085 0.110 0.107 0.115 0.150 0.098 0.109
Vowels 0.196 0.034 0.083 0.037 0.219 0.311 0.504 0.375
Waveform 0.052 0.057 0.040 0.061 0.063 0.050 0.109 0.053
Wbc 0.813 0.883 0.882 0.069 0.211 0.758 0.722 0.710
Wdbc 0.539 0.760 0.493 0.063 0.065 0.482 0.465 0.612
Wilt 0.035 0.037 0.042 0.046 0.109 0.076 0.054 0.036
Wine 0.135 0.364 0.195 0.116 0.087 0.074 0.074 0.239
Wpbc 0.222 0.234 0.217 0.240 0.234 0.238 0.227 0.236
Yeast 0.303 0.308 0.332 0.350 0.318 0.320 0.294 0.287
Average 0.360 0.339 0.349 0.182 0.201 0.332 0.321 0.366
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C.3. Detailed AUC and PR results over image datasets (training data)

Tables C.4.1-C.4.2 and C.5.1-C.5.2 present the AUC and PR results on the image datasets.

Table C.4.1. Training AUC value comparisons on image datasets
Data CBLOF FeatureBagging HBOS IForest kNN LODA LOF MCD PCA DAGMM DROCC GOAD PlanarFlow
MNIST 0.843 0.664 0.574 0.811 0.867 0.564 0.658 0.856 0.848 0.631 0.615 0.698 0.645
MNIST-C 0.757 0.702 0.689 0.733 0.786 0.591 0.699 0.739 0.741 0.581 0.594 0.752 0.705
FMNIST 0.871 0.748 0.748 0.831 0.875 0.672 0.738 0.840 0.853 0.664 0.564 0.860 0.819
CIFAR10 0.663 0.687 0.572 0.629 0.659 0.591 0.686 0.639 0.659 0.530 0.503 0.659 0.621
SVHN 0.601 0.629 0.542 0.580 0.604 0.534 0.628 0.583 0.599 0.528 0.521 0.597 0.580
MVTec-AD 0.754 0.745 0.732 0.747 0.763 0.644 0.742 0.618 0.724 0.596 0.544 0.730 0.637
Average 0.748 0.696 0.643 0.722 0.759 0.599 0.692 0.712 0.737 0.588 0.557 0.716 0.668

Table C.4.2. Training AUC value comparisons on image datasets
Data OCSVM COPOD ECOD DeepSVDD ICL DDPM DTE ODIM
MNIST 0.849 0.500 0.500 0.605 0.691 0.816 0.853 0.836
MNIST-C 0.751 0.500 0.500 0.552 0.670 0.751 0.788 0.736
FMNIST 0.860 0.500 0.500 0.647 0.758 0.861 0.873 0.909
CIFAR10 0.663 0.548 0.567 0.555 0.557 0.663 0.660 0.922
SVHN 0.604 0.500 0.500 0.521 0.571 0.605 0.607 0.568
MVTec-AD 0.735 0.500 0.500 0.603 0.683 0.732 0.761 0.906
Average 0.744 0.508 0.511 0.580 0.655 0.738 0.757 0.813

Table C.5.1. Training PR value comparisons on image datasets
Data CBLOF FeatureBagging HBOS IForest kNN LODA LOF MCD PCA DAGMM DROCC GOAD PlanarFlow
MNIST 0.386 0.241 0.109 0.290 0.409 0.170 0.233 0.308 0.381 0.215 0.237 0.297 0.259
MNIST-C 0.173 0.128 0.126 0.178 0.191 0.101 0.127 0.166 0.170 0.092 0.096 0.177 0.154
FMNIST 0.329 0.194 0.269 0.320 0.346 0.180 0.188 0.245 0.319 0.138 0.106 0.328 0.297
CIFAR10 0.103 0.115 0.075 0.089 0.102 0.086 0.114 0.084 0.101 0.062 0.060 0.102 0.085
SVHN 0.079 0.083 0.063 0.073 0.079 0.064 0.083 0.068 0.078 0.059 0.060 0.078 0.074
MVTec-AD 0.570 0.536 0.546 0.570 0.580 0.464 0.532 0.451 0.540 0.362 0.317 0.546 0.454
Average 0.273 0.216 0.198 0.253 0.285 0.177 0.213 0.221 0.265 0.155 0.146 0.255 0.221

Table C.5.2. Training PR value comparisons on image datasets
Data OCSVM COPOD ECOD DeepSVDD ICL DDPM DTE ODIM
MNIST 0.385 0.092 0.092 0.253 0.232 0.374 0.400 0.462
MNIST-C 0.179 0.050 0.050 0.097 0.098 0.178 0.192 0.245
FMNIST 0.329 0.050 0.050 0.181 0.158 0.325 0.339 0.650
CIFAR10 0.102 0.065 0.067 0.073 0.070 0.102 0.104 0.530
SVHN 0.078 0.050 0.050 0.063 0.068 0.078 0.080 0.078
MVTec-AD 0.555 0.236 0.236 0.387 0.404 0.546 0.578 0.611
Average 0.271 0.090 0.091 0.176 0.172 0.267 0.282 0.429
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C.4. Detailed AUC and PR results over text datasets (training data)

Tables C.6.1-C.6.2 and C.7.1-C.7.2 present the AUC and PR results on the text datasets.

Table C.6.1. Training AUC value comparisons on text datasets
Data CBLOF FeatureBagging HBOS IForest kNN LODA LOF MCD PCA DAGMM DROCC GOAD PlanarFlow
Amazon 0.579 0.572 0.563 0.558 0.603 0.526 0.571 0.597 0.550 0.501 0.500 0.560 0.495
20news 0.564 0.610 0.537 0.550 0.567 0.539 0.610 0.583 0.545 0.518 0.496 0.553 0.513
Agnews 0.619 0.715 0.554 0.584 0.647 0.568 0.714 0.665 0.566 0.508 0.500 0.592 0.497
Imdb 0.496 0.499 0.499 0.489 0.494 0.466 0.500 0.504 0.478 0.487 0.500 0.486 0.493
Yelp 0.635 0.661 0.600 0.602 0.670 0.581 0.661 0.655 0.592 0.498 0.504 0.590 0.527
Average 0.579 0.611 0.550 0.557 0.596 0.536 0.611 0.601 0.546 0.502 0.500 0.556 0.505

Table C.6.2. Training AUC value comparisons on text datasets
Data OCSVM COPOD ECOD DeepSVDD ICL DDPM DTE ODIM
Amazon 0.565 0.571 0.541 0.464 0.528 0.551 0.603 0.597
20news 0.559 0.533 0.544 0.515 0.547 0.547 0.570 0.687
Agnews 0.601 0.551 0.552 0.494 0.591 0.571 0.652 0.805
Imdb 0.484 0.512 0.471 0.526 0.521 0.478 0.495 0.522
Yelp 0.621 0.605 0.578 0.524 0.545 0.594 0.671 0.682
Average 0.566 0.554 0.537 0.504 0.546 0.548 0.598 0.659

Table C.7.1. Training PR value comparisons on text datasets
Data CBLOF FeatureBagging HBOS IForest kNN LODA LOF MCD PCA DAGMM DROCC GOAD PlanarFlow
Amazon 0.067 0.087 0.061 0.062 0.069 0.062 0.088 0.072 0.062 0.054 0.055 0.063 0.056
20news 0.072 0.125 0.059 0.064 0.082 0.064 0.125 0.077 0.061 0.053 0.051 0.066 0.050
Agnews 0.061 0.058 0.059 0.058 0.062 0.054 0.058 0.062 0.057 0.049 0.050 0.058 0.050
Imdb 0.047 0.049 0.047 0.047 0.047 0.046 0.049 0.049 0.046 0.049 0.050 0.047 0.051
Yelp 0.073 0.085 0.070 0.070 0.083 0.067 0.085 0.075 0.069 0.049 0.051 0.068 0.056
Average 0.064 0.081 0.059 0.060 0.068 0.059 0.081 0.067 0.059 0.051 0.051 0.060 0.053

Table C.7.2. Training PR value comparisons on text datasets
Data OCSVM COPOD ECOD DeepSVDD ICL DDPM DTE ODIM
Amazon 0.064 0.061 0.062 0.058 0.063 0.063 0.072 0.063
20news 0.068 0.059 0.058 0.053 0.069 0.062 0.085 0.111
Agnews 0.059 0.060 0.055 0.046 0.052 0.057 0.062 0.176
Imdb 0.047 0.050 0.045 0.053 0.054 0.046 0.047 0.049
Yelp 0.073 0.072 0.065 0.058 0.054 0.069 0.085 0.086
Average 0.062 0.060 0.057 0.054 0.058 0.059 0.070 0.097
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C.8. Ablation studies

Number of samples used in the IWAE Table C.40 summarizes the AUC values on several tabular datasets with various
Ks from 1 to 100. Note that the IWAE with K = 1 equals the original VAE. As expected, a lower bound closer to the
log-likelihood tends to provide a more obvious IM effect, leading to better identification performances. We can also observe
that when the value of K becomes larger than 50, the enhancement seems saturated. For this reason, we set K = 50 in our
experiments.

Table C.40. AUC results of the ODIM with various values of K.
Data K = 1 K = 2 K = 5 K = 10 K = 20 K = 50 K = 70 K = 100
Glass 0.525 0.676 0.636 0.689 0.702 0.704 0.704 0.727
Mammography 0.565 0.794 0.807 0.835 0.841 0.852 0.852 0.853
Pendigits 0.847 0.930 0.922 0.955 0.959 0.950 0.950 0.950
Pima 0.626 0.663 0.682 0.706 0.696 0.706 0.706 0.705
Vowels 0.528 0.655 0.549 0.583 0.875 0.900 0.900 0.896
Wbc 0.866 0.929 0.915 0.919 0.937 0.935 0.935 0.939
Cardio 0.794 0.919 0.913 0.932 0.925 0.914 0.914 0.919
Thyroid 0.636 0.860 0.868 0.887 0.908 0.924 0.924 0.926
Average 0.673 0.803 0.787 0.813 0.855 0.861 0.861 0.864

Number of models to ensemble We vary the number of models used in the ensemble, i.e., B, from one to twenty and
compare the performances on several tabular datasets, whose results are presented in Table C.41. There is a general tendency
that using more models helps improve the identifying performance. The optimal number of models varies according to
datasets, but the performance is not sensitive to the number of models used in the ensemble unless it is too small.

Table C.41. AUC results of the ODIM with various numbers of generative models to take an ensemble.
Data B = 1 B = 2 B = 5 B = 10 B = 12 B = 15 B = 20
Glass 0.707 0.748 0.750 0.712 0.706 0.700 0.707
Mammography 0.825 0.836 0.844 0.856 0.857 0.858 0.859
Pendigits 0.885 0.900 0.945 0.955 0.954 0.960 0.962
Pima 0.686 0.690 0.699 0.703 0.704 0.705 0.705
Vowels 0.877 0.882 0.903 0.904 0.896 0.895 0.899
Wbc 0.922 0.922 0.931 0.936 0.935 0.938 0.937
Cardio 0.898 0.896 0.915 0.918 0.911 0.924 0.920
Thyroid 0.876 0.913 0.924 0.927 0.927 0.926 0.926
Average 0.835 0.848 0.864 0.864 0.861 0.863 0.864
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Number of patience We also examine the behavior of the ODIM with various values of the number of patience, Npat,
whose results are provided in Table C.42. Similar to the ensemble scenario, increasing the value of this hyper-parameter
generally leads to enhanced performance. However, it appears that the extent of improvement levels off when Npat ≥ 10.
A largeer value of Npat requires more computing time, therefore, we set Npat = 10 throughout all experiments in our
manuscript.

Table C.42. AUC results of the ODIM with various values of Npat.
Data Npat = 1 Npat = 2 Npat = 5 Npat = 10 Npat = 15
Glass 0.526 0.652 0.706 0.726 0.744
Mammography 0.587 0.815 0.853 0.851 0.846
Pendigits 0.914 0.940 0.954 0.946 0.934
Pima 0.482 0.617 0.707 0.705 0.706
Vowels 0.502 0.517 0.802 0.907 0.921
Wbc 0.528 0.740 0.869 0.941 0.941
Cardio 0.819 0.925 0.924 0.882 0.879
Thyroid 0.726 0.863 0.921 0.925 0.930
Average 0.636 0.759 0.842 0.860 0.863

Learning schedule We evaluate the robustness of the ODIM to the learning schedule. We consider the Adam optimizer
with various learning rates from 1e-4 to 1e-1, whose results on FMNIST are summarized in Table C.43. We present the
results of the 10 classes separately, where each class is regarded as the inlier class. Note that the identifying performances
rarely change until we use a learning rate larger than 1e-2. As we usually do not consider a learning rate much larger than
1e-3 when we apply the Adam optimizer, we can conclude that our method is stable with respect to the learning schedule,
which implies that our method can be used in practice without delicate tunnings.

Table C.43. (Train) AUC results of the ODIM with various values of learning rates on FMNIST.
Learning rate

Class 1e-4 2.5e-4 5e-4 1e-3 2.5e-3 5e-3 1e-2 2.5e-2 5e-2 1e-1
0 0.902 0.915 0.913 0.911 0.907 0.902 0.881 0.561 0.564 0.481
1 0.977 0.978 0.978 0.978 0.977 0.977 0.979 0.977 0.979 0.712
2 0.814 0.857 0.861 0.864 0.869 0.860 0.845 0.500 0.415 0.392
3 0.950 0.951 0.950 0.950 0.948 0.947 0.944 0.877 0.680 0.608
4 0.917 0.912 0.913 0.904 0.902 0.913 0.791 0.447 0.453 0.314
5 0.900 0.902 0.903 0.903 0.906 0.904 0.916 0.921 0.887 0.882
6 0.808 0.809 0.809 0.807 0.803 0.796 0.735 0.566 0.522 0.494
7 0.977 0.976 0.977 0.977 0.976 0.975 0.972 0.973 0.967 0.959
8 0.863 0.845 0.843 0.841 0.821 0.807 0.661 0.409 0.397 0.423
9 0.960 0.962 0.960 0.959 0.956 0.960 0.935 0.753 0.741 0.732
Average 0.907 0.911 0.911 0.909 0.907 0.904 0.866 0.698 0.661 0.660
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Min-max scaling v.s. Standardization We investigate which pre-processing technique is more suitable for our method.
The two pre-processing techniques are considered, min-max scaling and standardization. We compare their corresponding
results for ODIMs on 30 tabular dataset, which are provided in Table C.44. We can see that using the min-max scaling
usually gives better results than standardization. This supports our theoretical claim in Proposition 2.

Table C.44. Comparison of the two data pre-processing methods on 30 tabular datasets: 1) min-max and 2) standardization. We report the
AUCs.

Data Min-max Standardization
Annthyroid 0.591 0.700
Breastw 0.992 0.772
Cover 0.899 0.957
Glass 0.758 0.687
Ionosphere 0.926 0.862
Letter 0.706 0.619
Mammography 0.850 0.765
Musk 1.000 0.963
Pendigits 0.950 0.941
Pima 0.718 0.452
Speech 0.477 0.450
Vertebral 0.385 0.547
Vowels 0.896 0.596
Wbc 0.937 0.840
Arrhythmia 0.782 0.768
Cardio 0.862 0.948
Satellite 0.695 0.739
Satimage-2 0.999 0.971
Shuttle 0.986 0.994
Thyroid 0.935 0.966
ALOI 0.528 0.545
Backdoor 0.877 0.895
Campaign 0.732 0.753
Celeba 0.832 0.769
Fraud 0.921 0.956
Landsat 0.461 0.540
Magic.gamma 0.774 0.638
PageBlocks 0.879 0.919
Skin 0.648 0.597
Waveform 0.692 0.641
Average 0.790 0.760
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D. Further discussions
D.1. ODIM with partially labeled outliers

Some studies have utilized the availability of outlier labels to enhance the efficiency of outlier detection tasks (Ruff et al.,
2020; Daniel et al., 2019). But as far as we know, these existing works require that all outliers should be labeled, which is
equivalent to the SOD setting. The only difference of these studies compared to the conventional SOD solvers is that they
cast the problem into an one-class classification problem rather than a two-class one.

While it is very costly to obtain perfectly labeled data, partially labeled data are frequently met in practice. In this section, we
claim that the ODIM can be modified easily for such a situation by leveraging these labeled data. Assume that besides U tr, a
few labeled outlier dataset Ltr = {(xl

1, 1), . . . , (x
l
m, 1)} is also available. Again note that outliers are still present in U tr

We simply adopt the idea of Daniel et al. (2019), which encourages the log-likelihood of known outliers to decrease with the
variational upper bound. For u > 1, the upper bound, called χ upper bound (CUBO), is given as:

LCUBO(θ, ϕ;x)

:=
1

u
logEz∼q(z|x;ϕ)

[(
p(x|z; θ)p(z)
q(z|x;ϕ)

)u]
.

With the above CUBO term, we modify the loss function of the ODIM by adding the expected CUBO on Ltr from the
original IWAE loss function to have:

−Ex∼UtrLIWAE(θ, ϕ;x) + γ · Ex∼LtrLCUBO(θ, ϕ;x),

where γ > 0 is a tuning parameter controlling the degree of the CUBO loss. The CUBO loss generally increases the IWAE
per-sample loss values of outliers, encouraging the IM effect to occur more clearly. In our paper, we set u = 2 and γ = 1.

Table D.1 summarizes the averaged results of training AUC and PR scores across six tabular datasets for different proportions
of labeled outliers, representing the ratio of labeled outliers to the total number of outliers. It is clearly seen that using label
information helps to enhance identifying performance by a large margin.

Note that the proposed modification can be improved further. For instance, we could use the labeled information to select
the optimal number of updates. There would be other rooms to improve the ODIM with partially labeled data, which we
leave as future research directions.

Table D.1. Training AUC (and PR) scores with various values of l. We consider three values for l, l = 0.0, 0.3, 0.5.
l 0.0 0.3 0.5
Arrhythmia 0.800 (0.443) 0.837 (0.767) 0.888 (0.772)
Cardio 0.916 (0.564) 0.991 (0.934) 0.993 (0.943)
Satellite 0.690 (0.652) 0.868 (0.849) 0.881 (0.849)
Satimage-2 0.997 (0.949) 0.998 (0.954) 0.999 (0.958)
Shuttle 0.981 (0.947) 0.990 (0.977) 0.990 (0.979)
Thyroid 0.928 (0.327) 0.995 (0.844) 0.995 (0.845)
Average 0.885 (0.647) 0.947 (0.871) 0.958 (0.891)
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D.2. Differentially private ODIM

DP-SGD DP-SGD is a variant of SGD applied when updating parameters while imposing DP guarantee to the model. For
a per-sample loss for a given sample x, i.e., l(θ, ϕ;x), we calculate gradient vector ∇θ,ϕl(θ, ϕ;x). We conduct a clipping
operation with a given positive number C > 0, then add a noise from the Gaussian distribution N (0, σ2C2I) to have
a deformed gradient ∇̄θ,ϕl(θ, ϕ;x) = ∇θ,ϕl(θ, ϕ;x)/max

(
1,

∥∇θ,ϕl(θ,ϕ;x)∥2

C

)
+ N (0, σ2C2I), where σ > 0 is also a

pre-specified number. Then we update parameters (θ, ϕ) using this update information ∇̄θ,ϕl(θ, ϕ;x) using a conventional
SGD or variants such as Adam and RMSProp.

Here, the two hyper-parameters, C and σ need to be specified before implementing DP-SGD. In our experiment, we set
(C, σ) = (20, 1.02). The algorithm of DP-SGD is summarized in the following.

Algorithm 2 Differentially private SGD (We set (C, σ) = (20, 1.02).)

Require: : Training dataset U tr = {x1, ...,xn}, parameters: (θ, ϕ), loss function of a given sample: l(θ, ϕ;x), optimizer:
Opt(θ, ϕ,∇), group size: L, number of updates: T
Initialize (θ0, ϕ0)

1: for t in 1 : T do
2: Drawn a random sample indices A from [n] with sampling probability of L/n
3: For each i ∈ A, compute the gradient

gt−1(xi)← ∇θ,ϕl(θt−1, ϕt−1;x)
4: Clip the gradient and add Gaussian noise

ḡt−1(xi)← gt−1(xi)/max
(
1, ∥gt−1(xi)∥2

C

)
+N (0, σ2C2I)

5: Aggregate the gradients
ḡt−1 ← 1

L

∑
i∈A ḡt−1(xi)

6: Update parameters
(θt, ϕt)← Opt(θt−1, ϕt−1, ḡt−1)

7: end for
Output: (θT , ϕT )

(ϵ, δ)-DP (ϵ, δ-DP is one of the widely used measures to examine the amount of privacy protection for a given random
mechanism. The definition of (ϵ, δ)-DP is as follows:

Definition D.1. A randomized mechanismM with rangeR is (ϵ, δ)-DP, if

Pr[M(S) ∈ O] ≤ exp(ϵ) · Pr[M(S ′) ∈ O] + δ

holds for any subset of outputs O ⊆ R and for any neighboring datasets S and S ′, i.e., |S − S ′| = 1.

It can be easily inferred that a random mechanism with small values of ϵ and δ is believed to provide strict privacy protection.

Calculation of (ϵ, δ)-DP when applying DP-SGD It is well known that a single iteration of DP-SGD satisfies (ϵ, δ)-DP
for certain values of ϵ and δ. However, to train a given model, or parameters, we have to iterate DP-SGD multiple times. At
this point, the key lies in calculating ϵ and δ properly of composition of DP-SGD operations.

There have been numerous techniques to calculate tight ϵ when random mechanisms are sequentially composed (Abadi et al.,
2016; Mironov, 2017; Dong et al., 2019). Among them, we adopt the method of Mironov (2017) as other recent methods
followed this approach (Chen et al., 2020a; Zhao et al., 2023).
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Detailed experimental results We compare our method to DeepSVDD when DP-SGD is applied. As mentioned earlier,
we set δ = 10−5 and iterate DP-SGD to train each model and stopping the learning process when the privacy budget first
exceed 10, i.e., ϵ = 10. We note that applying DP-SGD to non-deep-learning-based methods is not possible, as they are not
trained using SGD-based optimizers.

We analyze four tabular dataset, whose results are presented in Table D.2.

Table D.2. Train AUC (and PR) value comparisons when DP-SGD is applied. We analyze four tabular datasets and set (ϵ, δ) = (10, 10−5).
Class DeepSVDD ODIM
Arrhythmia 0.585 (0.325) 0.626 (0.362)
Cardio 0.543 (0.132) 0.743 (0.321)
Thyroid 0.745 (0.109) 0.805 (0.155)
Vowels 0.582 (0.040) 0.666 (0.096)
Average 0.614 (0.152) 0.738 (0.234)
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D.3. Likelihood based methods have poor performances in UOD tasks

In the experimental section of the main manuscript, we have mentioned that the existing likelihood-based SSOD solvers often
struggle to distinguish inliers with outliers in UOD tasks. In this section, we evaluate the performance of a likelihood-based
SSOD method (Nalisnick et al., 2019b) and compare its effectiveness to our method on MNIST and FMNIST datasets. It is
worth noting that we attempted to implement other methods, such as Nalisnick et al.; Lan & Dinh (2021), but one of them
does not have an official GitHub code, and the other is based on an old version of Tensorflow, which is also not available.
Therefore, we have excluded them in our experiment.

Tables D.3 and D.4 provide a summary of the comparison results. It is evident that our method outperforms the competitor
across all considered scenarios. Notably, the AUC scores of Nalisnick et al.; Lan & Dinh (2021) often fall below 0.5,
indicating a failure to identifying inliers from a given dataset. Consequently, we can conclude that likelihood-based SSOD
methods are sub-optimal as UOD solvers.

Table D.3. Train AUC (and PR) value comparisons on MNIST (image data)
Class Nalisnick et al. (2019b)+GLOW ODIM
0 0.645 (0.951) 0.937 (0.990)
1 0.710 (0.723) 0.997 (0.999)
2 0.555 (0.928) 0.732 (0.957)
3 0.502 (0.916) 0.800 (0.969)
4 0.322 (0.882) 0.854 (0.978)
5 0.484 (0.924) 0.729 (0.964)
6 0.445 (0.910) 0.859 (0.976)
7 0.204 (0.840) 0.928 (0.990)
8 0.671 (0.954) 0.709 (0.953)
9 0.333 (0.881) 0.889 (0.983)
Average 0.387 (0.869) 0.843 (0.976)

Table D.4. Train AUC(and PR) value comparisons on FMNIST (image data)
Class Nalisnick et al. (2019b)+GLOW ODIM
0 0.460 (0.904) 0.905 (0.986)
1 0.059 (0.756) 0.976 (0.997)
2 0.589 (0.938) 0.858 (0.981)
3 0.265 (0.821) 0.943 (0.993)
4 0.593 (0.938) 0.890 (0.985)
5 0.222 (0.807) 0.899 (0.988)
6 0.645 (0.944) 0.802 (0.971)
7 0.101 (0.781) 0.980 (0.998)
8 0.633 (0.941) 0.839 (0.973)
9 0.361 (0.887) 0.958 (0.995)
Average 0.398 (0.886) 0.905 (0.987)
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