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Abstract
In nonconvex-nonconcave minimax optimization,
two-timescale gradient methods have shown their
potential to find local minimax (optimal) points,
provided that the timescale separation between
the min and the max player is sufficiently large.
However, existing two-timescale variants of gradi-
ent descent ascent and extragradient methods face
two shortcomings, especially when we search for
non-strict local minimax points that are prevalent
in modern overparameterized setting. In specific,
(i) these methods can be unstable at some non-
strict local minimax points even with sufficiently
large timescale separation, and even (ii) comput-
ing a proper amount of timescale separation is
infeasible in practice. To remedy these two is-
sues, we propose to incorporate two simple but
provably effective schemes, double-step alternat-
ing update and increasing timescale separation,
into the two-timescale extragradient method, re-
spectively. Under mild conditions, we show that
the proposed methods converge to non-strict lo-
cal minimax points that all existing two-timescale
methods fail to converge.

1. Introduction
The significance of minimax problems in the machine learn-
ing community has grown considerably, since generative
adversarial network (GAN) (Goodfellow et al., 2014), ad-
versarial training (Madry et al., 2018), multi-agent reinforce-
ment learning (Wai et al., 2018), fair classification (Martinez
et al., 2020) and sharpness-aware minimization (Foret et al.,
2021), are formulated as

min
x

max
y

f(x,y).
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However, solving a nonconvex-nonconcave minimax prob-
lem is known to be problematic, even when using a gradient
descent ascent (GDA) method that is a natural extension
of a gradient descent method in minimization. This stands
in stark contrast to the remarkable success of the gradient
descent method in machine learning, a success underpinned
by theoretical results; under mild assumptions, the gradient
descent finds local minimum and escapes strict saddle points
with probability one (Lee et al., 2016; 2019). Therefore,
the goal of this paper is to establish a comparable theory in
nonconvex-nonconcave minimax optimization.

Nonconvex-nonconcave minimax problems in most ma-
chine learning applications are sequential games and thus
have an intrinsic order between the min-player x and max-
player y (Fiez et al., 2020; Jin et al., 2020). While such order
is negligible in a convex-concave setting, if we disregard
this order in a nonconvex-nonconcave setting, for example
in GAN, the undesirable mode collapse phenomenon can
arise (Goodfellow, 2016). Nevertheless, a proper defini-
tion of local optimal point in minimax problems that takes
account of the intrinsic order between the players was not
widely recognized until (Fiez et al., 2020; Jin et al., 2020).
Accordingly, Jin et al. (2020) proposed the first proper no-
tion of local optimal points, named local minimax points,
for the sequential games, which differs from and includes
the commonly employed notion of Nash equilibrium in si-
multaneous games.

To find such local minimax (optimal) points, Jin et al. (2020)
considered a two-timescale GDA (Heusel et al., 2017) that
updates with different step sizes (timescales) for each vari-
able x and y. In specific, Jin et al. (2020) analyzed that the
GDA with a sufficiently large timescale separation can find
local minimax points, using dynamical system theory. How-
ever, it faces two challenges. The first limitation arises from
the non-degeneracy assumption on ∇2

yyf required in (Jin
et al., 2020), which neglects the non-strict local minimax
points that are ubiquitous in the modern overparameterized
setting (Cooper, 2021; Liu et al., 2022). The second is that
Jin et al. (2020) have not specified how large one should
choose an appropriate timescale separation to guarantee the
convergence to the local minimax points.

The partial answers to resolve the aforementioned two lim-
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itations were provided by Chae et al. (2024b) and Fiez &
Ratliff (2021); Li et al. (2022), respectively. First, Chae et al.
(2024b) removed the non-degeneracy assumption of ∇2

yyf ,
and demonstrated that, under mild assumptions, the two-
timescale extragradient (EG) method can converge to a set
of local minimax points, especially including the non-strict
local minimax points, that is larger than that of the two-
timescale GDA method. Nevertheless, Chae et al. (2024b)
state that there still exist some non-strict local minimax
points that two-timescale EG cannot converge to, due to its
insufficient stability. Second, Fiez & Ratliff (2021) and Li
et al. (2022) specified an appropriate timescale separation
needed to guarantee a local convergence to strict local mini-
max points. However, computing it is infeasible in general
as it requires the second-order derivative information of the
function f at the local minimax point, and even how one
can generalize their result to non-strict local minimax points
remains open.

This paper thus focuses on addressing these two issues of
existing two-timescale gradient methods, which are further
detailed in Section 4. This paper then proposes to integrate
two simple but provably effective schemes namely double-
step alternating update and increasing timescale separation,
in Sections 5 and 6, respectively. Sections 5 and 6 provide
improved local convergence analyses in terms of the local
minimax points, and these are generalized to a global state-
ment in Section 7. Our contributions via dynamical system
theory can be summarized as below.

• Local Convergence to Local Minimax Points

(a) Double-Step Alternating Update: In Section 5, we
present that updating the min and the max player alter-
natingly, which enhances stability from a dynamical
system perspective, proves particularly helpful in ad-
dressing the first issue of the (simultaneous-update)
two-timescale EG. We would like to highlight that
the resulting double-step alternating EG (Alt2-EG)
method, in Algorithm 1, entails a slight yet essential
deviation from the usual alternating scheme, which
will be detailed later. Built upon its spectral analysis,
we show that, under mild conditions, the Alt2-EG with
sufficiently large timescale separation is stable at non-
strict local minimax points, for those that are unstable
for other existing two-timescale methods.

(b) Increasing Timescale Separation: In Section 6, to
remedy the second issue, we suggest to simply increase
the timescale separation indefinitely as iteration goes.
In particular, we demonstrate that the Alt2-EG with
increasing timescale separation (Alt2-EG-ITS) is sta-
ble at non-strict local minimax points that are stable
for Alt2-EG with (sufficiently large) fixed timescale
separation (Alt2-EG-FTS) in Section 5. We would

like to emphasize here that, unlike the technique being
simple and straightforward, analyzing its stability via
dynamical system theory is rather complicated, since
the resulting system is non-autonomous.

• Global Convergence to Local Minimax Points

In Section 7, we show that both Alt2-EG-FTS and
Alt2-EG-ITS globally find first-order stationary points
under a star-convex-star-concave setting. Combined
with the aforementioned local convergence analyses,
we claim that, under mild conditions, both Alt2-EG-
FTS and Alt2-EG-ITS can globally converge to local
minimax points under the aforementioned nonconvex-
nonconcave setting, while our current analysis for the
latter has some limitation due to its non-autonomous
property.

2. Related Work
Two-Timescale Gradient Methods The vanilla gradient
descent ascent (GDA) method may not converge to local
minimax points (Daskalakis & Panageas, 2018; Jin et al.,
2020). To resolve this non-convergence, the two-timescale
GDA (Heusel et al., 2017) has been widely studied. For
example, under a nonconvex-strongly-concave setting, Lin
et al. (2020) established that the GDA with a timescale sep-
aration of the order Θ(κ2

y), where κy is a global condition
number for y, globally finds a first-order stationary point.
However, since the set of first-order stationary points is con-
siderably larger than that of the local minimax (optimal)
points, it is crucial for a method to only converge to local
minimax points.

After introducing the definition of the local minimax point
in their paper, Jin et al. (2020) showed that, under the non-
degeneracy assumption on ∇2

yyf , the two-timescale GDA
locally converges to strict local minimax points. Fiez &
Ratliff (2021) then specified a proper value of timescale
separation needed for such guarantee, which was missing
in (Jin et al., 2020). This was further refined in (Li et al.,
2022), which demonstrated that GDA with a timescale sepa-
ration of the order Θ(κ̃y) locally converges to strict local
minimax points. Here, κ̃y is a local condition number for y
at the local minimax point, which is not available in practice.

Recently, Chae et al. (2024b) generalized the local conver-
gence result of (Jin et al., 2020) by removing the crucial
non-degeneracy assumption needed in (Jin et al., 2020; Fiez
& Ratliff, 2021; Li et al., 2022). This forward step is es-
sential, given that non-strict optimal points are everywhere
in the modern overparameterized setting (Cooper, 2021;
Liu et al., 2022). In specific, Chae et al. (2024b) proved
that there exist non-strict local minimax points that the two-
timescale EG converges to, while the two-timescale GDA
cannot. However, as pointed out in (Chae et al., 2024b) there
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still exist non-strict local minimax points that two-timescale
EG does not converge to, due to its insufficient stability
from dynamical system perspective.

Alternating GDA The alternating gradient descent ascent
(Alt-GDA), which updates each variables x and y sequen-
tially, has been found to be more stable and sometimes faster
than the plain simultaneous update GDA (Sim-GDA) under
various settings (Mescheder et al., 2018; Zhang et al., 2022;
Lee et al., 2024). For instance, in a bilinear setting, Sim-
GDA moves far away from the optimal point indefinitely,
whereas Alt-GDA also does not converge but oscillates in
a stable cycle around the optimal point (Mescheder et al.,
2018). Moreover, under a strongly-convex-strongly-concave
setting, the Sim-GDA locally converges to the optimal point
with an iteration complexity of O(κ2), where κ is a con-
dition number, while the Alt-GDA achieves a better near-
optimal bound O(κ) (Zhang et al., 2022). Very recently and
concurrently, it is further demonstrated that the Alt-GDA
and its variant (called Alex-GDA) achieve faster rates even
globally, compared to that of Sim-GDA (Lee et al., 2024).
This paper utilizes these stabilizing effect of the alternating
update, from a dynamical system perspective, to improve
the stability guarantee of the two-timescale EG.

GDA with Increasing Timescale Separation Under a
nonconvex-strongly-concave setting, Li et al. (2023) studied
an AdaGrad-like parameter-free GDA method that adapts
step sizes for each min and max player, which has a prac-
tical importance in deep neural network training. Here,
the step sizes are determined by past gradient information,
without requiring problem parameters such as the condi-
tion number needed to determine the appropriate amount of
timescale separation in (Lin et al., 2020). In regard of (Lin
et al., 2020), the resulting adaptive GDA will likely suf-
fer from the non-convergence, since the adaptive step sizes
may not have sufficiently large timescale separation. There-
fore, Li et al. (2023) suggested to modify the adaptive step
size rule so that the timescale separation increases indef-
initely as iteration goes. Similar to (Lin et al., 2020), Li
et al. (2023) analyzed the global convergence to a first-order
stationary point under a nonconvex-strongly-concave set-
ting. Under a similar parameter-free but a more general
nonconvex-nonconcave setting, this paper establishes a lo-
cal convergence to the local minimax points, especially for
the Alt2-EG with increasing timescale separation, from a
non-autonomous dynamical system perspective.

3. Preliminaries
3.1. Notations and Problem Setting

We use the notation z := (x,y) to represent a concatenation
of the minimization variable x ∈ Rd1 and the maximization

variable y ∈ Rd2 . The saddle-gradient operator of the ob-
jective function f will be denoted by F := (∇xf,−∇yf).
For convenience, we denote the second derivatives of f by
A = ∇2

xxf , B = ∇2
yyf , and C = ∇2

xyf . Then, the
Jacobian of the saddle-gradient F can be expressed as

H := DF =

[
A C

−C⊤ −B

]
∈ R(d1+d2)×(d1+d2). (1)

Note that the second derivatives A, B, and C are matrix
valued functions of a (d1 + d2)-dimensional input point.
However, since the input vector will be clear from the con-
text, we simply use A, B, and C to denote the function
values. We denote the set of all eigenvalues of a square
matrix A by spec(A), the smallest eigenvalue of A by
λmin(A), and the spectral radius of A by ρ(A).

Most of the time, we will impose the following standard
smoothness assumption on f .

Assumption 1 (Smoothness of f ). Let f ∈ C1, and
there exist positive constants Lx and Ly such that, for all
(u,v), (x,y) ∈ Rd1+d2 ,

∥∇xf(u,v)−∇xf(x,y)∥ ≤ Lx∥(u,v)− (x,y)∥,
∥∇yf(u,v)−∇yf(x,y)∥ ≤ Ly∥(u,v)− (x,y)∥.

This implies that ∥F (z)− F (z′)∥ ≤ L∥z − z′∥ for L :=√
L2
x + L2

y and for all z, z′ ∈ Rd1+d2 .

For the global analysis in Section 7, we will further impose
the following nonconvex-nonconcave condition.

Assumption 2 (Star-convex-star-concave property of f ).
Let f ∈ C1, and f is star-convex-star-concave, i.e., there
exists a stationary point z∗ := (x∗,y∗) that satisfies

f(x∗,y) ≥ f(x,y) + ⟨∇xf(x,y),x
∗ − x⟩ ,

f(x,y) ≥ f(x∗,y) + ⟨∇xf(x
∗,y),x− x∗⟩ ,

f(x,y∗) ≤ f(x,y) + ⟨∇yf(x,y),y
∗ − y⟩ ,

f(x,y) ≤ f(x,y∗) + ⟨∇yf(x,y
∗),y − y∗⟩ .

for all x ∈ Rd1 and y ∈ Rd2 .

This implies that the Minty variational inequality (MVI)
condition (Minty, 1967), i.e., ⟨F (z), z − z∗⟩ ≥ 0 for all
z ∈ Rd1+d2 , holds.

3.2. Restricted Schur Complement

Chae et al. (2024b) defined the following matrix that reduces
to the standard Schur complement A − CB−1C⊤ if B
is non-degenerate. This is needed in next subsection for
expressing the property of the local minimax point.

Definition 1 (Chae et al. (2024b, Definition 4)). For f ∈ C2,
the restricted Schur complement is defined as Sres(H) :=
U⊤(A−CB†C⊤)U , with the matrix U defined below.
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Let r := rank(B). As B is symmetric, it is orthog-
onally diagonalizable into B = P∆P⊤, where ∆ =
diag{δ1, . . . , δr, 0, . . . , 0} and P is an orthogonal matrix.
Define C1 and C2 to be submatrices of CP , corresponding
to the r leftmost columns and d2 − r rightmost columns of
CP , respectively. Then, U is defined to be a matrix whose
columns form an orthonormal basis for R(C2)

⊥. The ma-
trix U is not unique in general, but since the spectrum of
Sres(H) only matters later, U is selected to be any one of
possible choices.

3.3. Local Minimax Point

Jin et al. (2020) introduced the following new notion of
local optimality for minimax problems.

Definition 2 (Jin et al. (2020, Definition 14)). A point
(x∗,y∗) is said to be a local minimax point if there ex-
ists δ0 > 0 and a function h satisfying h(δ) → 0 as δ → 0
such that, for any δ ∈ (0, δ0] and any (x,y) satisfying
∥x− x∗∥ ≤ δ and ∥y − y∗∥ ≤ δ, we have

f(x∗,y) ≤ f(x∗,y∗) ≤ max
y′ : ∥y′−y∗∥≤h(δ)

f(x,y′).

Nevertheless, most of the existing literature, such as (Fiez
& Ratliff, 2021; Jin et al., 2020; Wang et al., 2020), only
focused on finding a strict local minimax point that is a sta-
tionary point satisfying the second-order sufficient condition
of local minimax point (Jin et al., 2020):

[∇2
xxf −∇2

xyf(∇2
yyf)

−1∇2
yxf ](x

∗,y∗) ≻ 0,

and ∇2
yyf(x

∗,y∗) ≺ 0.

Considering that non-strict solutions are prevalent in mod-
ern overparameterized model training (Cooper, 2021; Liu
et al., 2022), Chae et al. (2024a) recently studied construct-
ing a gradient method that can find a non-strict (local) min-
imax point. More precisely, Chae et al. (2024a) (and also
this paper) modestly1 aim to find a stationary point that sat-
isfies the following second-order necessary condition given
in (Chae et al., 2024b, Proposition 3.2):

• (Second-order necessary) For f ∈ C2, any local mini-
max point z∗ satisfies ∇2

yyf(x
∗,y∗) ⪯ 0. If the func-

tion h(δ) in Definition 2 satisfies limsupδ→0+
h(δ)/δ <

∞, then Sres(DF (x∗,y∗)) ⪰ 0.

Note that this condition does not require a restrictive non-
degeneracy condition on ∇2

yyf(x
∗,y∗), unlike that in (Jin

1Already in minimization, finding a local minimizer is NP-Hard
in the worst-case (Murty & Kabadi, 1987). So instead, a gradient
descent method is similarly shown to find a stationary point that
satisfies the second-order necessary condition of a local minimizer
(Lee et al., 2016; 2019).

et al., 2020), although it adds a mild condition on the func-
tion h(δ); see (Chae et al., 2024b, Remark 3.3) on this
matter.

Built upon their necessary condition, Chae et al. (2024b)
presented the concept of strict non-minimax point that one
hopes to escape, which is analogous to the strict saddle
point in minimization (Lee et al., 2016).

Definition 3 (Chae et al. (2024b, Definition 5)). For
f ∈ C2, a stationary point z∗ is said to be a strict
non-minimax point of f if λmin(Sres(DF (z∗))) < 0 or
λmin(−∇2

yyf(z
∗)) < 0. We denote the set of strict non-

minimax points by T ∗.

When necessary, we will impose the following Assump-
tion 3 (or its stronger version below) at stationary points
z∗ as (Chae et al., 2024b). This is weaker than the non-
degeneracy condition on ∇2

yyf(z
∗), which was crucial

in (Jin et al., 2020; Fiez & Ratliff, 2021; Li et al., 2022).

Assumption 3. Let f ∈ C2, and for a stationary point z∗

in consideration, at least one of the matrices Sres(DF (z∗))
and ∇2

yyf(z
∗) is non-degenerate.

Assumption 3′. Assumption 3 holds, and DF (z∗) is non-
degenerate.

To aid understanding, a simple example with a non-strict
local minimax point is provided in Section 8, accompanied
with numerical experiment.

3.4. Stability of Dynamical Systems

From a dynamical system perspective, this paper analyzes
the asymptotic (or exponential) stability and the instability
of the method in a form

zk+1 = wk(zk), (2)

at an equilibrium z∗, where k denotes the iteration number.

Definition 4. The equilibrium point z∗ of (2) is

• (Lyapunov) stable if, for each ϵ > 0, there is
δ = δ(ϵ, k0) > 0 such that ∥zk0 − z∗∥ < δ implies
∥zk − z∗∥ < ϵ, ∀k ≥ k0 ≥ 0,

• asymptotically stable if it is stable and there is a
positive constant c = c(k0) such that zk → z∗ as k →
∞, for all ∥zk0 − z∗∥ < c,

• exponentially stable if it is asymptotically stable and
there are constants β, c > 0 such that ∥zk − z∗∥ ≤
e−βk ∥z0 − z∗∥ , for all ∥z0 − z∗∥ < c, ∀k ≥ 1,

• unstable, if it is not stable.

If a dynamical system is autonomous, i.e., wk is invariant
with respect to the iteration number k, we can characterize
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its exponential stability and instability at an equilibrium
point z∗ by just examining the spectrum of the Jacobian of
wk at z∗ as below.

Proposition 3.1 (Galor (2007), Polyak (1987)). Let w ∈
C1, and z∗ be an equilibrium of zk+1 = w(zk). Then,

• z∗ is exponentially stable iff ρ(Dw(z∗)) < 1

• z∗ is unstable if ρ(Dw(z∗)) > 1.

This paper also analyzes a non-autonomous system, i.e., a
system wk that is not invariant with respect to k, in Sec-
tion 6. Proposition 3.1 cannot be applied here, so we directly
analyze the asymptotic stability and the convergence rate of
the considered method.

4. Stability and Limitations of the
Two-Timescale EG

In this section, we review the stability of the two-timescale
EG and its two limitations in (Chae et al., 2024b).

4.1. Stability of the Two-Timescale EG

Chae et al. (2024b) studied the two-timescale EG:

zk+1 = wτ (zk) := zk − ηΛτF (zk − ηΛτF (zk)), (3)

where η > 0 is a step size, τ ≥ 1 is a fixed timescale
separation parameter and Λτ := diag{(1/τ)I, I}. Based on
Proposition 3.1, the stability of the two-timescale EG (3) at
an equilibrium z∗ depends on whether or not the spectral
radius of its Jacobian matrix Dwτ at z∗ is smaller than 1.
However, since directly computing ρ(Dwτ ) is complicated,
Chae et al. (2024b) demonstrated that it is equivalent to
examine the relationship between the spectrum of

Hτ := ΛτDF =

[
1
τA

1
τC

−C⊤ −B

]
. (4)

and the set Pη := {(x, y) ∈ C
∣∣ (ηx− 1

2

)2
+ η2y2 + 3

4 <√
1 + 3η2y2} (see Figure 1) as below.

Proposition 4.1 (Chae et al. (2024b, Proposition 5.5)). Let
f ∈ C2. An equilibrium point z∗ is exponentially stable,
i.e., ρ(Dwτ (z

∗)) < 1, if and only if spec(Hτ (z
∗)) ⊂ Pη .

This does not necessarily imply that the two-timescale EG
is stable at the desired local minimax point, so Chae et al.
(2024b) next relate the stability condition and the second-
order necessary condition when τ is sufficiently large.

4.2. Eigenvalue Characteristics of Hτ and its Relation
to Second-Order Necessary Condition

Chae et al. (2024b) analyzed the behavior of the eigenvalues
of Hτ in terms of τ as below, under Assumption 3. This

reduces to (Jin et al., 2020, Lemma 40) when we strictly
impose the non-degeneracy condition on ∇2

yyf .
Theorem 4.2 (Chae et al. (2024b, Theorem 4.3)). Under
Assumption 3, for τ ≥ 1 and ϵ := 1/τ , it is possible to
construct continuous functions λj(ϵ), j = 1, . . . , d1 + d2
so that they are the d1 + d2 complex eigenvalues λj of Hτ

in (4) with the following asymptotics as ϵ → 0+:

(i) |λj − iσj
√
ϵ| = o(

√
ϵ), j = 1, . . . , q

|λj+d1 + iσj
√
ϵ| = o(

√
ϵ),

(ii) |λj+q − ϵµj | = o(ϵ), j = 1, . . . , d1 − q,

(iii) |λj+d1+q − νj | = o(1), j = 1, . . . , r,

where q := rank(C2), which are nonzero for all ϵ > 0,
while the (d2 − r − q) remaining λj’s are 0. Here, µj are
the eigenvalues of Sres(H)2, νj are the nonzero eigenvalues
of −B, and σj are the singular values of C2.

The key distinction between the spectral analysis of Hτ

in (Jin et al., 2020, Lemma 40) and Theorem 4.2 is the exis-
tence of additional type (i) eigenvalues (and the d2 − r − q
number of zero eigenvalues), which are irrelevant to the
second-order necessary condition. On the other hand, the
type (ii) and type (iii) eigenvalues are associated with
Sres(H) and −B, respectively, so they are directly con-
nected to the second-order necessary condition.

4.3. Stability of the Two-Timescale EG at Local
Minimax Points

When the point z∗ satisfies the second-order necessary con-
dition of local minimax points, by Theorem 4.2, the type (ii)
and type (iii) eigenvalues lie in the set Pη , for a sufficiently
large τ (or equivalently, for a sufficiently small ϵ), as desired.
On the other hand, consider the strict non-minimax point
z∗ that, by definition, does not satisfy the second-order nec-
essary condition. Then, at least one of the type (ii) and
type (iii) eigenvalues lie outside the closure of Pη, even
with a large τ , as one wishes.

Let us now focus particularly on the eigenvalues of type (i)
in Theorem 4.2. As they are irrelevant to the second-order
necessary condition, ideally we want these to be contained
in the set Pη, for a sufficiently large τ , and do not cause
instability of the two-timescale EG.

What we know from Theorem 4.2 is that the type (i) eigen-
value λj(ϵ) converges to 0 as ϵ → 0+, and asymptotically
approaches the imaginary axis. Since the target set Pη, il-
lustrated in Figure 1, has the imaginary axis as its tangential
line at the origin, Theorem 4.2 alone is not sufficient to
determine the stability of the two-timescale EG.

2Although Sres(H) is not unique due to its non-unique choice
of matrix U , its eigenvalues remain the same regardless of the
choice of U due to matrix similarity.
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λj(ϵ)

λj(ϵ)

1/η

i/η

−i/η

Pη

Dη

Figure 1. A target set Pη of the two-timescale EG, and two repre-
sentative scenarios of type (i) eigenvalues, approaching 0 from the
left-half plane, in Theorem 4.2. (As a comparison, we added a sim-
ilarly derived target set Dη := {(x, y) ∈ C

∣∣ (ηx− 1)2 + η2y2 <
1} of the two-timescale GDA zk+1 = zk − ηΛτF (zk).)

Figure 1 illustrates two representative examples of the
type (i) eigenvalue asymptotics, where the blue-colored
one converges to 0 from inside the set Pη, while the other
(colored red) converges to 0 from outside the set.3 This
observation necessitated Chae et al. (2024b) to further in-
vestigate the curvature of both the type (i) eigenvalue λj(ϵ)
and the target set Pη around the origin, for completing the
stability analysis of the two-timescale EG. This, however,
only revealed the fact that the two-timescale EG cannot
avoid the red-colored case, resulting in instability for such
corresponding non-strict local minimax points.

4.4. Two Limitations of the Two-Timescale EG

We summarize the two limitations of the two-timescale EG,
which we address in Sections 5 and 6, respectively.

1) There are type (i) eigenvalues λj(ϵ) that are not re-
lated to the second-order necessary condition but not
contained in the set Pη , even for a large τ , which con-
sequently leads to instability of the two-timescale EG
at certain non-strict local minimax points.

2) Type (ii) and (iii) eigenvalues become associated with
the second-order necessary condition for sufficiently
large τ , but its specific value is not available in practice.

3The GDA is unstable even for the blue-colored eigenvalue
asymptotic, as the target set Dη of GDA does not cover a region
nearby the imaginary axis as much as the set Pη of EG. This is
illustrated in Figure 1, which shows the superiority of EG over
GDA in this context (Chae et al., 2024b).

5. Addressing the First Limitation:
Double-Step Alternating Update

In this section, we investigate two stabilizing approaches,
namely explicit regularization and implicit regularization
(by alternating update), that shift the type (i) eigenvalues
towards the set Pη without affecting the eigenvalue asymp-
totics of the type (ii) and (iii). In specific, we look for ways
to shift the type (i) eigenvalues to the right in a complex
plane by the order of Ω(

√
ϵ), needed by Theorem 4.2.

5.1. Explicit Regularization for Two-Timescale EG

Since the type (i) eigenvalues are critically related to ∇2
yyf ,

we consider explicitly adding a regularization term − c
γ ∥y∥2

to an objective function f(x,y), where c and γ are positive
constants, while the latter depends on τ . The saddle gradient
operator of the resulting regularized function is

Freg,γ(x,y) :=
(
∇xf(x,y),−∇yf(x,y) +

2c

γ
y
)
.

Although this explicit regularization has a drawback that
the stationary points of the regularized function differ from
those of the original function f , we proceed as it is straight-
forward and provides an insight on how we should choose
γ in terms of τ .

We first consider the case “γ = τ”, where the Jacobian of
the timescaled ΛτFreg,τ at its stationary point is

Hreg1,τ := ΛτDFreg,τ =

[
ϵA ϵC

−C⊤ −B + 2cϵI

]
(5)

where ϵ = 1/τ . The eigenvalues of Hreg1,τ have the follow-
ing asymptotic behaviors.

Proposition 5.1. Under the same setting as Theorem 4.2,
the eigenvalues λj of Hreg1,τ behave the same as those of
Hτ in Theorem 4.2, which are nonzero for all but finitely
many ϵ > 0, except for the eigenvalues λj+d1+r+q being
2cϵ for j = 1, . . . , d2 − r− q (instead of 0 in Theorem 4.2).

The result is what we anticipated as we perturbed only in the
order of o(

√
ϵ). So, we next consider the choice “γ =

√
τ”,

where the eigenvalues of the corresponding Jacobian

Hreg2,τ := ΛτDFreg,
√
τ =

[
ϵA ϵC

−C⊤ −B + 2c
√
ϵI

]
have the following asymptotic behaviors.

Theorem 5.2. Under the same setting as Theorem 4.2, the
eigenvalues λj of Hreg2,τ behave the same as those of Hτ

in Theorem 4.2, except for the type (i) eigenvalues being

(i)
∣∣∣λj −

(
c+

√
c2 − σ2

j

)√
ϵ
∣∣∣ = o(

√
ϵ).

6



Double-Step Alternating Extragradient Method with Increasing Timescale Separation∣∣∣λj+d1
−
(
c−

√
c2 − σ2

j

)√
ϵ
∣∣∣ = o(

√
ϵ),

for j = 1, . . . , q, which are nonzero for all but finitely
many ϵ > 0, and the eigenvalues λj+d1+r+q being 2c

√
ϵ

for j = 1, . . . , d2 − r − q.

Here, regardless of the radicand of
√
c2 − σ2

j being positive
or negative, it is straightforward that the type (i) eigenvalues
converge to 0 as ϵ → 0+ from the right-half plane (but
not necessarily approaches the positive real axis asymptot-
ically). Therefore, they now lie in the set Pη, unlike the
previous results in Theorem 4.2 and Proposition 5.1. This
implies that when an appropriate explicit regularization of
the order Θ(

√
ϵ) is provided, we will not encounter the

eigenvalue examples in Figure 1, approaching 0 from the
left-half plane. Nevertheless, as mentioned before, station-
ary points of Freg2,

√
τ differ from those of F , which is not

usually desirable, so we next investigate an approach that
provides a similar regularization effect without changing
stationary points.

5.2. Double-Step Alternating Update in Two-Timescale
EG

Consider an operator for an alternating update:

Falt,γ(x,y) :=
(
∇xf(x,y),−∇yf

(
x−η

γ
∇xf(x,y),y

))
,

where ∇yf is computed after the update of x. Here, η > 0
is a step size and γ is a positive constant that depends on
τ . Note that Falt,γ reduces to F as γ → ∞. In addition, it
is obvious that F and Falt,γ share same stationary points,
unlike Freg,γ .

Before we proceed to analyze the eigenvalue asymptotics of
Falt,γ , we illustrate the corresponding alternating method:

zk+1 = walt,τk,γk
(zk)

:= zk − ηΛτkFalt,γk
(zk − ηΛτkFalt,γk

(zk)), (6)

which is constructed by replacing F by Falt,γ in (3). Here,
we use τk and γk, instead of τ and γ, so that they can
change over iteration, which will be useful in Section 6.
The proposed update (6) takes a stationary point of F as
its equilibrium, see Appendix B.4. We further write down
this method in terms of f , in Algorithm 1. Note that this
method reduces to the (simultaneous-update) two-timescale
EG in (Chae et al., 2024b) if we choose (τk, γk) = (τ,∞)
for all k.

We would like to emphasize here that Algorithm 1 deviates
from the usual alternating update scheme, as we allow τk
and γk to take different values. In alignment with the spec-
tral analysis in Section 5.1, we will soon show that allowing
τk ̸= γk is essential for our purpose. To highlight this devi-
ation, we name this method in Algorithm 1 as a double-step

Algorithm 1 Double-step alternating extragradient method
with timescale separation (Alt2-EG-TS)

Input: x0 ∈ Rd1 ,y0 ∈ Rd2 , τk ∈ (1,∞), γk ∈ (1,∞)
for k = 0, 1, . . . do

uk = xk −
η

τk
∇xf(xk,yk)

vk = yk + η∇yf

(
xk −

η

γk
∇xf(xk,yk),yk

)
xk+1 = xk −

η

τk
∇xf(uk,vk)

yk+1 = yk + η∇yf

(
uk −

η

γk
∇xf(uk,vk),vk

)
end for

alternating extragradient method with timescale separation
(Alt2-EG-TS). In the rest of this section, we consider fixed
constants (τk, γk) = (τ, γ) for all k, and we name the corre-
sponding method as a double-step alternating extragradient
method with fixed timescale separation (Alt2-EG-FTS).
Remark 5.1. A concurrent work by Lee et al. (2024) also
studied and improved the alternating GDA, especially by
adding extrapolation steps, which provided an accelerated
rate of convergence in a strongly-convex-strongly-concave
problem. Interestingly, our double-step alternating scheme
can be also viewed as taking an extrapolation step, like (Lee
et al., 2024), since we can rewrite our step as

xk −
η

γk
∇xf(xk,yk) =

(
1− τk

γk

)
xk +

τk
γk

uk,

where the choice of τk
γk

being larger than 1, in the next
subsection, yields extrapolation.

5.3. Implicit Regularization via Double-Step
Alternating Update

This section investigates an implicit regularization provided
by the double-step alternating update. Similar to Proposi-
tion 5.1, the choice “γ = τ” in Falt,γ does not lead to any
change in the eigenvalue asymptotics; see Appendix B.5.

We now focus on the choice “γ =
√
τ”, hoping for an

appropriate shift of the type (i) eigenvalues. The Jacobian
of the timescaled Halt2,τ := ΛτDFalt,

√
τ , at its stationary

point is, where ϵ = 1/τ ,

Halt2,τ =

[
ϵA ϵC

−C⊤ + η
√
ϵC⊤A −B + η

√
ϵC⊤C

]
,

whose eigenvalues have the following asymptotic behaviors.

Theorem 5.3. Under the same setting as Theorem 4.2, the
eigenvalues λj of Halt2,τ behave the same as those of Hτ

in Theorem 4.2, except for the type (i) eigenvalues being

7
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(i)
∣∣∣∣λj −

(
ησ2

j

2 +

√
η2σ4

j−4σ2
j

2

)
√
ϵ

∣∣∣∣ = o(
√
ϵ),∣∣∣∣λj+d1

−
(

ησ2
j

2 −
√

η2σ4
j−4σ2

j

2

)
√
ϵ

∣∣∣∣ = o(
√
ϵ),

for j = 1, . . . , q.

Similar to Theorem 5.2 for the explicit regularization with
γ =

√
τ , the type (i) eigenvalues here approach 0 from the

right-half plane and thus from inside the set Pη . This implies
that the double-step alternating update with γ =

√
τ implic-

itly induces a regularizing behavior similar to the explicit
regularization with γ =

√
τ . We would like to emphasize

again that a clear advantage of the double-step alternating,
over the explicit regularization, is that the resulting method
takes a stationary point of F as its equilibrium.

5.4. Stability Analysis of Alt2-EG-FTS

Built upon the previous spectral analysis, we show that,
under Assumption 3′, a stationary point that satisfies the
second-order necessary condition is exponentially stable for
the Alt2-EG-FTS with (τk, γk) = (τ,

√
τ), for a sufficiently

large τ , under mild conditions.

Theorem 5.4. Suppose Assumptions 1 and 3′ hold and
f ∈ C2. Then, an equilibrium point z∗ satisfies Sres ⪰ 0
and B ⪯ 0 if and only if there exists some τ∗ such that, for
any τ > τ∗, z∗ is an exponentially stable point of Alt2-EG-
FTS with (τk, γk) = (τ,

√
τ), for any step size 0 < η < 1/L.

In addition, we show that, under Assumption 3, the Alt2-
EG-FTS with (τk, γk) = (τ,

√
τ) almost surely escapes the

strict non-minimax points, which we hope to avoid.

Theorem 5.5. Let z∗ be a strict non-minimax point, i.e.,
z∗ ∈ T ∗. Under Assumptions 1, 3, and 0 < η <
(
√
5−1)/2

√
2L, there exists τ⋆ > 0 such that for any τ > τ⋆,

the set of initial points that converge to z∗ by Alt2-EG-FTS
with (τk, γk) = (τ,

√
τ) has measure zero. Moreover, if T ∗

is finite, then there exists τ⋆ > 0 such that for any τ > τ⋆,
µ({z0 : limk→∞ wk

alt,τ,
√
τ
(z0) ∈ T ∗}) = 0.

We ultimately want that there are no points, other than strict
non-minimax points, that the method escapes almost surely.
Fortunately, the stability results above imply that such can
be obtained if we choose step size 0 < η < (

√
5−1)/2

√
2L for

the Alt2-EG-FTS with (τk, γk) = (τ,
√
τ) and a sufficiently

large τ . This statement will be further generalized to a
global statement in Section 7.

6. Addressing the Second Limitation:
Increasing Timescale Separation

In this section, we consider increasing the timescale separa-
tion, and specifically, we analyze the stability of the double-

step alternating extragradient with increasing timescale sep-
aration (Alt2-EG-ITS) from a non-autonomous dynamical
system perspective.

6.1. Increasing Timescale Separation for Alt2-EG

Choosing a properly large value of τ is practically infeasible,
so we consider increasing the coefficients (τk, γk) of Alt2-
EG-ITS indefinitely as k increases. We first let γk =

√
τk,

based on the arguments in Section 5, and the only thing left
to determine is the rate at which we should increase τk.

Our global convergence analysis in Section 7 requires the
sequence τk to not increase faster than

√
k to warrant global

convergence; see Theorem 7.1. Therefore, we focused on
the choice τk = k1/(2+2c) ≈

√
k for any positive constant

c, and we leave further investigation on τk as future work.

6.2. Stability Analysis of Alt2-EG-ITS

Since Proposition 3.1 cannot be applied to the non-
autonomous Alt2-EG-ITS, we derive an analogous asymp-
totic stability result that is specifically designed for the Alt2-
EG-ITS (walt,τk,γk

), under Assumption 3′.

Theorem 6.1. Suppose Assumptions 1 and 3′ hold and
f ∈ C3. Let z∗ be an equilibrium point satisfies Sres ⪰ 0
and B ⪯ 0. Then, z∗ is an asymptotically stable point of
Alt2-EG-ITS with (k1/(2+2c), k1/(4+4c)) for any c > 0 and

0 < η < 1/L, with a rate O
(

1√
k
e−2

√
k
)

.

Note that, due to decreasing step sizes (as we iteratively in-
crease both τk and γk), we have a rate of convergence slower
than the exponential rate of Alt2-EG-FTS in Theorem 5.4,
while not requiring one to choose a properly large value of τ
as in Theorem 5.4. Moreover, we needed a slightly stronger
condition walt,τk,γk

∈ C2 (and thus f ∈ C3), compared
to w ∈ C1 in Proposition 3.1. We leave relaxing such
condition as a future work.

Our next step would be to investigate the instability of Alt2-
EG-ITS at strict non-minimax points that we would like
to avoid, as for the Alt2-EG-FTS in the previous section.
We, however, leave this as a future work. This is because
Theorem 5.5 for the Alt2-EG-FTS uses the stable manifold
theorem (Shub, 1987, Theorem III.7) for an autonomous
system, and to the best of our knowledge, how one can
generalize it to a non-autonomous system is not known yet.

7. Global Convergence of Alt2-EG-TS
So far, our convergence and avoidance results remained
local. To generalize these statements globally, we first show
that both Alt2-EG-FTS and Alt2-EG-ITS globally find first-
order stationary points, under Assumption 2.

Theorem 7.1. Under Assumptions 1 and 2, consider the

8
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Alt2-EG-TS methods with τk ≥ 1 and γk ≥ 1. Then,

• Alt2-EG-FTS with (τ, γ) and 0 < η <
√
γ√

2+γL
satisfies

limk→∞ ∥Falt,γ(xk,yk)∥ = 0,

• Alt2-EG-ITS with (τk, γk) and 0 < η < 1
L , for

any sequence τk satisfying
∑∞

k=0
1
τ2
k
= ∞, satisfies

liminfk→∞ ∥Falt,γk
(xk,yk)∥ = 0.

Although limk→∞ ∥Falt,γ(xk,yk)∥ = 0 only implies that
any accumulation point of the iterates {xk,yk} is a station-
ary point (see Appendix D.2), it is possible that the iterates
of Alt2-EG-FTS converge to a stationary point. For such
convergent case, based on Theorems 5.5 and 7.1 and under
their settings (such as Assumptions 1, 2 and 3), we have the
following global statement.

• The iterates of the Alt2-EG-FTS with sufficiently large
τ globally and almost surely converges to a stationary
point that satisfies the second-order necessary condi-
tion of local minimax point.

(Note that the invertibility of DF , in Assumption 3′,
is not needed here, which was needed in analyzing the
exponential stability in Theorem 5.4. This implies that
Alt2-EG-FTS can even converge to non-strict local
minimax points even with degenerate DF .)

The two-timescale EG (Chae et al., 2024b) does not achieve
this statement for some non-strict local minimax points,
as discussed in Section 4.2. Therefore, our result is a lot
closer to being analogous to the well-known result of (Lee
et al., 2016; 2019), in minimization, that the iterates of the
gradient descent method (if they converge) globally and
almost surely converges to a stationary point that satisfies
the second-order necessary condition of local minimizer.

On the other hand, since we do not have a result of avoiding
a strict non-minimax point for the Alt2-EG-ITS, unlike
Theorem 5.5 for Alt2-EG-FTS, we have a relatively weaker
global statement, based on Theorems 6.1 and 7.1 and under
their settings (such as Assumptions 1, 2, 3′ and f ∈ C3).

• Alt2-EG-ITS globally finds a stationary point, and it
also locally converges to a stationary point that satis-
fies the second-order necessary condition of the local
minimax point with non-degenerate DF .

8. Example and Experiment
We consider a simple example of a non-strict local minimax
point to verify our theory.

Example 1. Consider the function f(x, y) = −x2 + 2xy.
This has a unique stationary point (0, 0), which is a non-
strict local minimax point. Since this optimal point further

satisfies Assumption 3′, by Theorems 5.4 and 6.1, it is asymp-
totically stable for both Alt2-EG-FTS with (τ,

√
τ) and suffi-

ciently large τ , and Alt2-EG-ITS with (k1/(2+2c), k1/(4+4c))
for any c > 0, whereas it is unstable for the (vanilla) two-
timescale EG; see Section E.1 for the proof.

We ran our proposed Alt2-EG-FTS with (τ,
√
τ) and Alt2-

EG-ITS with (k1/(2+2c), k1/(4+4c)), and compared them
with existing two-timescale gradient methods (GDA-FTS
and EG-FTS). We also performed Alt2-EG-TS with (τ, τ),
named Alt1-EG-FTS here, which uses a standard alternating
scheme that differs from our double-step alternating scheme.
We consider two choices of τ = 2 and 20, where τ = 20
corresponds to a sufficiently large τ , whereas τ = 2 leads
to an insufficient timescale separation. As expected, our
Alt2-EG-FTS with τ = 20 and Alt2-EG-ITS converge to
the local minimax point, while the others do not.

Figure 2. Numerical results with f(x, y) = −x2 + 2xy.

9. Conclusion
We proposed to incorporate double-step alternating up-
date and increasing timescale separation schemes into two-
timescale extragradient method—the first method developed
for finding non-strict local minimax points—to address its
two limitations (summarized in Section 4.4). We have then
demonstrated that the proposed Alt2-EG-TS method is capa-
ble of finding non-strict local minimax points, which cannot
be found by existing methods. Therefore, our work, built
upon the initial step of (Chae et al., 2024b), is a step closer
to establishing a convergence theory in minimax optimiza-
tion, comparable to the well established theory of gradient
descent in minimization problems (Lee et al., 2016; 2019).

Yet, our analysis requires mild but somewhat restrictive
conditions, such as Assumption 3, and the escaping be-
havior around strict non-minimax points for the increasing
timescale separation scheme remains unknown. We leave
investigating these issues as an interesting future work.
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A. Proofs for Section 3
A.1. Proofs for Proposition 3.1

In proving Proposition 3.1, we need the following stable manifold theorem.

Lemma A.1 (Shub (1987, Theorem III.7)). Let z∗ be a fixed point for the Cr local diffeomorphism ϕ : U → E where
U is a neighborhood of z∗ in the Banach space E. Suppose that E = Ecs ⊕ Eu, where Ecs is the invariant subspace
corresponding to the eigenvalues of Dϕ(z∗) whose magnitude is less than or equal to 1, and Eu is the invariant subspace
corresponding to eigenvalues of Dϕ(z∗) whose magnitude is greater than 1. Then there exists a Cr embedded disc W u

loc

tangent to the Eu at z∗ called the local unstable center manifold. Additionally, there exists a neighborhood B of z∗ such
that W u

loc = {z ∈ B | ϕk(z) ∈ B for all k ≤ 0 and d(ϕk(z), z∗) tends to zero exponentially} where ϕ−1 : W u
loc → W u

loc

is a contraction mapping.

Proof of Proposition 3.1. The proof of the first statement can be found in both Galor (2007, Theorem 4.8) and Polyak (1987,
Theorem 2.1.2.1), and we are only left to prove the second statement.

Suppose that ρ(Dw(z∗)) > 1. Then, by Lemma A.1, there exists a disk W u
loc. Clearly, z∗ is contained in W u

loc, since
wk(z∗) = z∗ for any k ≤ 0. Take ϵ = 1

2 maxz∈Wu
loc

d(z, z∗). Then, there exists z ∈ W u
loc such that z ̸∈ Dϵ(z

∗), where
Dϵ(z

∗) is a disc centered at z∗ with radius ϵ.

For the sake of contradiction, suppose that z∗ of dynamics w(·) is (Lyapunov) stable. Then, for ϵ discussed above and any
given k0 ∈ N , there exists δ > 0 such that ∥zk0

− z∗∥ < δ implies ∥zk − z∗∥ < ϵ for all k ≥ k0. Then, by the definition
of W u

loc, there exists n0 ∈ N such that w−n(z) ∈ Dδ(z
∗) for all n ≥ n0. Then, for m := max{k0, n0} + 1, we have

z = wm(w−m(z)) ∈ wm(Dδ(z
∗)) ⊂ Dϵ(z

∗), which is absurd. Therefore, we conclude that ρ(Dw(z∗)) > 1 implies
that z∗ is not stable.

B. Proofs for Section 5
In proving theorems in Section 5, we need the following lemmas.

Lemma B.1. Under Assumption 1, the operator Falt,γ with γ > 0 satisfies, for all (u,v), (x,y) ∈ Rd1+d2 ,

∥Falt,γ(u,v)− Falt,γ(x,y)∥ ≤

√
L2
x + L2

y

(
1 +

1

γ

)(
1 + L2

x

η2

γ

)
∥(u,v)− (x,y)∥.

Proof. For simplicity, let us denote ū := u− η
γ∇xf(u,v) and x̄ := x− η

γ∇xf(x,y). Then, we have

∥Falt,γ(u,v)− Falt,γ(x,y)∥2 = ∥∇xf(u,v)−∇xf(x,y)∥2 + ∥∇yf(ū,v)−∇yf(x̄,y)∥2

≤ L2
x∥(u,v)− (x,y)∥2 + L2

y∥(ū,v)− (x̄,y)∥2

≤ L2
x∥(u,v)− (x,y)∥2 + L2

y∥ū− x̄∥2 + L2
y∥v − y∥2

Since ū− x̄ = u− η
γ∇xf(u,v)− x+ η

γ∇xf(x,y) holds, and using the Young’s inequality

∥a+ b∥2 ≤
(
1 +

1

γ

)
∥a∥2 + (1 + γ) ∥b∥2 ,

we have

∥ū− x̄∥2 ≤
(
1 +

1

γ

)
∥u− x∥2 + (1 + γ)

η2

γ2
∥∇xf(u,v)−∇xf(x,y)∥2

≤
(
1 +

1

γ

)
∥u− x∥2 + L2

x

η2

γ

(
1 +

1

γ

)
∥(u,v)− (x,y)∥2.

12
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Therefore, we have

∥Falt,γ(u,v)− Falt,γ(x,y)∥2

≤ L2
x∥(u,v)− (x,y)∥2 + L2

y

(
1 +

1

γ

)
∥u− x∥2 + L2

xL
2
y

η2

γ

(
1 +

1

γ

)
∥(u,v)− (x,y)∥2 + L2

y∥v − y∥2

=

(
L2
x + L2

y + L2
xL

2
y

η2

γ

(
1 +

1

γ

))
∥(u,v)− (x,y)∥2 +

L2
y

γ
∥u− x∥2

≤
(
L2
x + L2

y

(
1 +

1

γ

)(
1 + L2

x

η2

γ

))
∥(u,v)− (x,y)∥2,

and this completes the proof.

Lemma B.2 (Zedek (1965, Theorem 1)). Given a polynomial pn(z) :=
∑n

k=0 akz
k, an ̸= 0, an integer m ≥ n and a

number ϵ > 0, there exists a number δ > 0 such that whenever the m + 1 complex numbers bk, 0 ≤ k ≤ m, satisfy the
inequalities

|bk − ak| < δ for 0 ≤ k ≤ n, and |bk| < δ for n+ 1 ≤ k ≤ m,

then the roots βk, 1 ≤ k ≤ m, of the polynomial qm(z) :=
∑m

k=0 bkz
k can be labeled in such a way as to satisfy, with

respect to the zeros αk, 1 ≤ k ≤ n, of pn(z), the inequalities

|βk − αk| < ϵ for 1 ≤ k ≤ n, and |βk| >
1

ϵ
for n+ 1 ≤ k ≤ m.

Lemma B.3 (Chae et al. (2024b, Lemma E.1 and Corollary E.2)). A (possibly complex) number µ is an eigenvalue of the
restricted Schur complement Sres if and only if it is a root of the equation

det

µI −A −C1 −Lq

C⊤
1 −D 0

L⊤
q 0 0

 = 0, (7)

where the definitions of D and Lq are given in the proof of Proposition 5.1 below. Moreover, if Sres is invertible. the
equation (7) does not have µ = 0 as a solution.

Lemma B.4 (Jin et al. (2020, Lemma 40)). Let A, B and C respectively be d1 × d1 symmetric, d2 × d2 non-degenerate
symmetric, and d1 × d2 matrices. Then, the d1 + d2 complex eigenvalues of Hτ have the following asymptotics as
ϵ = 1

τ → 0+:

|λj − ϵµj | = o(ϵ), j = 1, . . . , d1, |λj+d1 − νj | = o(1), j = 1, . . . , d2,

where {µj}j=1,...,d1
and {νj}j=1,...,d2

are the eigenvalues of A−CB−1C⊤ and −B, respectively.

B.1. Proof of Proposition 5.1

Proof of Proposition 5.1. We first consider the case where Sres is non-degenerate in Assumption 3, and we begin with the
following observation. Consider a block matrix Q = diag(I,P⊤) where P is orthogonal matrix such that B = P∆P⊤

for some diagonal matrix ∆ = diag{δ1, . . . , δr, 0, . . . , 0}. Then, one can show that DFreg,τ is similar to

Greg1,τ :=

 A C1 C2

−C⊤
1 D + 2cϵI 0

−C⊤
2 0 2cϵI


where D = diag(−δ1, . . . ,−δr) and ϵ = 1

τ , since Greg1,τ = QDFreg,τQ
⊤. Here, the matrix C2 may not be of full

column rank matrix, and we further refine the similarity statement below.

Let q := rank(C2), and let C2 = UΣV ⊤ be the (full) singular value decomposition of C2, where for some invertible
diagonal matrix Σq , it holds that

Σ =

[
Σq 0
0 0

]
.

13
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Then, by defining Lq := U

[
Σq

0

]
, we have UΣ =

[
Lq 0

]
. Thus, for Q̃ = diag{I, I,V ⊤} we have

Q̃Greg1,τ Q̃
⊤ =

 A C1 C2V
−C⊤

1 D + 2cϵI 0
−V ⊤C⊤

2 0 2cϵI

 =


A C1 Lq 0

−C⊤
1 D + 2cϵI 0 0

−L⊤
q 0 2cϵI 0

0 0 0 2cϵI


and therefore

det(λI −DFreg,τ ) = det(λI − Q̃Greg,τ Q̃
⊤) = (λ− 2cϵ)d2−r−q det

λI −

 A C1 Lq

−C⊤
1 D + 2cϵI 0

−L⊤
q 0 2cϵI

 .

Hence, we notice that the eigenvalues of DFreg,τ are either 2cϵ or the eigenvalues of

Φreg,τ :=

 A C1 Lq

−C⊤
1 D + 2cϵI 0

−L⊤
q 0 2cϵI

 ,

and analogously the eigenvalues of Hreg1,τ = ΛτDFreg,τ (5) are either 2cϵ or the eigenvalues of Φreg1,τ := ΛτΦreg,τ .
Therefore, characterizing the eigenvalues of Φreg1,τ is equivalent to characterizing the nonzero eigenvalues of Hreg1,τ .

Since the eigenvalues of Φreg1,τ are the solutions of the equation

0 = pϵ(λ) := det

λI − ϵA −ϵC1 −ϵLq

C⊤
1 λI −D − 2cϵI 0

L⊤
q 0 (λ− 2cϵ)I

 = det(λI −Φreg1,τ ), (8)

we need to investigate the solutions of the equation. By Lemma B.2, constructing the functions λj(ϵ) so that they are
continuous is possible, and the eigenvalues converge to the solutions of the equation

p0(λ) = det

 λI 0 0
C⊤

1 λI −D 0
L⊤

q 0 λI

 = 0

as ϵ → 0. Hence, the r eigenvalues of Φreg1,τ converge to the r nonzero eigenvalues of −B, and the other d1+q eigenvalues
converge to zero, as ϵ → 0.

To investigate the order of eigenvalues that converges to zero further, we begin by observing that, whenever |λ| and ϵ are
small enough so that λI −D − 2cϵI is invertible, it holds that

det(λI −Φreg1,τ ) = det

λI − ϵA −ϵC1 −ϵLq

C⊤
1 λI −D − 2cϵI 0

L⊤
q 0 λI − 2cϵI


= det

λI − ϵA+ ϵC1(λI −D − 2cϵI)−1C⊤
1 0 −ϵLq

0 λI −D − 2cϵI 0
L⊤

q 0 λI − 2cϵI


= det(λI −D − 2cϵI) det

[
λI − ϵA+ ϵC1(λI −D − 2cϵI)−1C⊤

1 −ϵLq

L⊤
q λI − 2cϵI

]
.

This implies that the λj , which converges to zero as ϵ → 0, is a solution of the following equation

0 = det

[
λI − ϵA+ ϵC1(λI −D − 2cϵI)−1C⊤

1 −ϵLq

L⊤
q λI − 2cϵI

]
. (9)
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Now let us reparametrize (9) by λ = κ
√
ϵ to get

0 = det

[
κ
√
ϵI − ϵA+ ϵC1(λI −D − 2cϵI)−1C⊤

1 −ϵLq

L⊤
q κ

√
ϵI − 2cϵI

]
=

√
ϵ
d1

det

[
κI −

√
ϵA+

√
ϵC1(λI −D − 2cϵI)−1C⊤

1 −
√
ϵLq

L⊤
q κ

√
ϵI − 2cϵI

]
=

√
ϵ
d1+q

det

[
κI −

√
ϵA+

√
ϵC1(λI −D − 2c

√
ϵI)−1C⊤

1 −Lq

L⊤
q κI − 2c

√
ϵI

]
.

Since (λI −D − 2cϵI)−1 converges to D−1 as ϵ → 0, we have that if λj → 0 as ϵ → 0 then λj should be a solution of
the equation

0 = det

[
κI −

√
ϵA+

√
ϵC1(λI −D − 2cϵI)−1C⊤

1 −Lq

L⊤
q (κ− 2c

√
ϵ)I

]
(10)

By Lemma B.2, notice that eigenvalues divided by
√
ϵ converge to the solutions of

0 = det

[
κI −Lq

L⊤
q κI

]
. (11)

From the fact that Lq is of full column rank matrix, Lq has exactly q singular values. Therefore, solutions of (11) are
nonzero, and those are exactly iσk, k = 1, . . . , q where σk are the nonzero singular values of C2, or equivalently singular
values of Lq , and therefore there are 2q instances among λj such that each λj has order of

√
ϵ, and has asymptotic +iσk

√
ϵ

or −iσk
√
ϵ.

So far, we have shown that r eigenvalues have magnitude Θ(1), and 2q eigenvalues have magnitude Θ(
√
ϵ). On the other

hand, we have

det(Φreg1,τ ) = det

 ϵA ϵC1 ϵLq

−C⊤
1 D + 2cϵI 0

−L⊤
q 0 2cϵI


= ϵd1 det

 A C1 Lq

−C⊤
1 D + 2cϵI 0

−L⊤
q 0 2cϵI

 . (12)

Here, since we assumed that Sres is non-degenerate, by Lemma B.3, the RHS of (12) for ϵ = 0 is not zero. Moreover, RHS
of (12) is nonzero for sufficiently small ϵ by Lemma B.2. Therefore, the product of all λj of Φreg1,τ should be of order
Θ(ϵd1). From these two observations, we know that the product of the remaining d1 − q eigenvalues should be of order
Θ(ϵd1−q). And we claim that each of these d1 − q eigenvalues is exactly of order Θ(ϵ). To this end, let us examine what
properties would the eigenvalues of order O(ϵ) have. By reparametrizing λ = µϵ in (8), we have

0 = det

µϵI − ϵA −ϵC1 −ϵLq

C⊤
1 µϵI −D − 2cϵI 0

L⊤
q 0 µϵI − 2cϵI


= ϵd1 det

µI −A −C1 −Lq

C⊤
1 µϵI −D − 2cϵI 0

Lq 0 µϵI − 2cϵI

 .

Then, by Lemma B.2, µ converges to a root of the equation

0 = det

µI −A −C1 −Lq

C⊤
1 −D 0

Lq 0 0

 (13)

as ϵ → 0.
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Then, µ = 0 cannot be a root of (13) by Lemma B.3. This implies that there is no λj of order o(ϵ), or equivalently, all
eigenvalues of Φreg1,τ are of order Ω(ϵ). Therefore, from the fact that a product of d1 − q eigenvalues of Φreg1,τ is of order
Θ(ϵd1−q), each of those eigenvalues is exactly order of Θ(ϵ), then the claim follows.

Here, we summarize the following two facts implied by the previous discussions:

• If λ is an eigenvalue of order O(ϵ), then λ/ϵ converges to a solution of (13) as ϵ → 0.

• The right-hand side of (13) is a polynomial of degree d1 − q in µ, whose solutions are nonzero.

By Lemma B.3, it is now immediate that the d1 − q eigenvalues of Φreg1,τ that are of order Θ(ϵ) is of the form λ(ϵ) =
µϵ+ o(ϵ) for µ that is a solution of (13).

The final claim, asserting that λj(ϵ) ̸= 0 for any j can be deduced from the invertibility of Sres by Lemmas B.2 and B.3.
More precisely, we have det(Φreg1,τ ) = det(Λτ ) det(DΦreg,τ ). By Lemma B.2,

det(DΦreg,τ ) → det

 A C1 Lq

−C⊤
1 D 0

−L⊤
q 0 0

 as ϵ → 0.

Therefore, the invertibility of Sres and Lemma B.3 imply that the right-hand side is not zero. Then for sufficiently large τ ,
the assertion λj(ϵ) ̸= 0 follows.

For the case where ∇2
yyf is non-degenerate in Assumption 3, the following Lemma completes the proof.

Lemma B.5. Let A, B and C respectively be d1 × d1 symmetric, d2 × d2 non-degenerate symmetric, and d1 × d2 matrices.

Then, the d1 + d2 complex eigenvalues of
[

ϵA ϵC
−C⊤ −B + 2cϵI

]
have the following asymptotics as ϵ = 1

τ → 0+:

|λj − ϵµj | = o(ϵ), j = 1, . . . , d1, |λj+d1 − νj | = o(1), j = 1, . . . , d2,

where {µj}j=1,...,d1
and {νj}j=1,...,d2

are the eigenvalues of A−CB−1C⊤ and −B, respectively

Proof. Mimicking the proof of (Jin et al., 2020, Lemma 40), we can demonstrate the statement as follows. By definition of

eigenvalues, any eigenvalue λ of
[

ϵA ϵC
−C⊤ −B + 2cϵI

]
is the roots of the characteristic equation

pϵ(λ) := det

[
λI − ϵA −ϵC

C⊤ λI +B − 2cϵI

]
We can express the equation pϵ(λ) as follows.

pϵ(λ) = p0(λ) +

d1+d2∑
i=1

ϵipi(λ)

where p0(λ) = det

[
λI 0
C⊤ λI +B

]
= λd1 det(λI +B) and pi(λ) for i ≥ 1 are polynomials of order equal to or smaller

than d1 + d2. Then, by Lemma B.2, the roots of pϵ(λ) are

|λj | = o(1), 1 ≤ j ≤ d1,

|λj+d1
− νj | = o(1), 1 ≤ j ≤ d2,

Since B is non-degenerate, λj+d1 for 1 ≤ j ≤ d2 are of Ω(1), and therefore only λj for 1 ≤ j ≤ d1 converge to zero as
ϵ → 0. To investigate the eigenvalues that converge to zero further, we reparametrize λ = κϵ, then we have

pϵ(κϵ) = det

[
κϵI − ϵA −ϵC

C⊤ κϵI +B − 2cϵI

]
= ϵd1 det

[
κI −A −C
C⊤ κϵI +B − 2cϵI

]
.
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This implies that the λj , for 1 ≤ j ≤ d1, divided by ϵ is a solution of the following equation

0 = det

[
κI −A −C
C⊤ κϵI +B − 2cϵI

]
.

and by Lemma B.2, it converge to a root of

0 = det

[
κI −A −C
C⊤ B

]
as ϵ → 0,

which is an eigenvalue of A−CB−1C⊤ by Lemma B.3. These arguments complete the proof.

Therefore, there is no difference between the eigenvalues asymptotics of both the (vanilla) two-timescale EG (in Theorem 4.2)
and the two-timescale EG with the “γ = τ” explicit regularization.

B.2. Proof of Theorem 5.2

Proof of Theorem 5.2. We first consider the case where Sres is non-degenerate in Assumption 3. Analogous to the observa-
tions in proof of Proposition 5.1, by replacing ϵ with

√
ϵ, one can deduce that the eigenvalues of Hreg2,τ are either 2c

√
ϵ or

the nonzero eigenvalues of Φreg2,τ := ΛτΦreg,
√
τ where

Φreg,
√
τ :=

 A C1 Lq

−C⊤
1 D + 2c

√
ϵI 0

−L⊤
q 0 2c

√
ϵI

 .

Therefore, our next step is to characterize the eigenvalues of Φreg2,τ , and such eigenvalues are the solutions of the equation

0 = pϵ(λ) := det

λI − ϵA −ϵC1 −ϵLq

C⊤
1 λI −D − 2c

√
ϵI 0

L⊤
q 0 (λ− 2c

√
ϵ)I

 = det(λI −Φreg2,τ ). (14)

By Lemma B.2, constructing the functions λj(ϵ) so that they are continuous is possible, and the eigenvalues converge to the
solutions of the equation

p0(λ) = det

 λI 0 0
C⊤

1 λI −D 0
L⊤

q 0 λI

 = 0

as ϵ → 0. Hence, the r eigenvalues of Φreg2,τ converge to the r nonzero eigenvalues of −B, and the other d1+q eigenvalues
converge to zero, as ϵ → 0.

To investigate the order of eigenvalues that converges to zero further, we begin by observing that, whenever |λ| and ϵ are
small enough so that λI −D − 2c

√
ϵI is invertible, it holds that

det(λI −Φreg2,τ ) = det

λI − ϵA −ϵC1 −ϵLq

C⊤
1 λI −D − 2c

√
ϵI 0

L⊤
q 0 λI − 2c

√
ϵI


= det

λI − ϵA+ ϵC1(λI −D − 2c
√
ϵI)−1C⊤

1 0 −ϵLq

0 λI −D − 2c
√
ϵI 0

L⊤
q 0 λI − 2c

√
ϵI


= det(λI −D + 2c

√
ϵI) det

[
λI − ϵA+ ϵC1(λI −D + 2c

√
ϵI)−1C⊤

1 −ϵLq

L⊤
q λI − 2c

√
ϵI

]
.

This implies that the λj , which converges to zero as ϵ → 0, is a solution of the following equation

0 = det

[
λI − ϵA+ ϵC1(λI −D − 2c

√
ϵI)−1C⊤

1 −ϵLq

L⊤
q λI − 2c

√
ϵI

]
. (15)
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Now let us reparametrize (15) by λ = κ
√
ϵ to get

0 =

[
κ
√
ϵI − ϵA+ ϵC1(λI −D − 2c

√
ϵI)−1C⊤

1 −ϵLq

L⊤
q κ

√
ϵI − 2c

√
ϵI

]
=

√
ϵ
d1

det

[
κI −

√
ϵA+

√
ϵC1(λI −D − 2c

√
ϵI)−1C⊤

1 −
√
ϵLq

L⊤
q κ

√
ϵI − 2c

√
ϵI

]
=

√
ϵ
d1+q

det

[
κI −

√
ϵA+

√
ϵC1(λI −D − 2c

√
ϵI)−1C⊤

1 −Lq

L⊤
q κI − 2cI

]
.

Since (λI −D − 2c
√
ϵI)−1 converges to D−1 as ϵ → 0, we have that if λj → 0 as ϵ → 0 then λj should be a solution of

the equation

0 = det

[
κI −

√
ϵA+

√
ϵC1(λI −D − 2c

√
ϵI)−1C⊤

1 −Lq

L⊤
q (κ− 2c)I

]
(16)

By Lemma B.2, notice that eigenvalues divided by
√
ϵ converge to the solutions of

0 = det

[
κI −Lq

L⊤
q (κ− 2c)I

]
. (17)

From the fact that Lq is of full column rank matrix, Lq has exactly q singular values. Therefore, solutions of (17) are
nonzero, and those are exactly c±

√
c2 − σ2

k, k = 1, . . . , q where σk are the nonzero singular values of C2, or equivalently
singular values of Lq . Note that the c±

√
c2 − σ2

k can be written as c± i
√

σ2
k − c2 when σk > c, however, we will denote

it as c±
√

c2 − σ2
k, to cover both cases. Therefore, there are 2q instances among λj such that each λj has order of

√
ϵ, and

has asymptotic
√
ϵ(c+

√
c2 − σ2

k) or
√
ϵ(c−

√
c2 − σ2

k).

So far, we have shown that r eigenvalues have magnitude Θ(1), and 2q eigenvalues have magnitude Θ(
√
ϵ(c±

√
c2 − σ2

k)).
On the other hand, we have

det(Φreg2,τ ) = det

 ϵA ϵC1 ϵLq

−C⊤
1 −D + 2c

√
ϵI 0

−L⊤
q 0 2c

√
ϵI


= ϵd1 det

 A C1 Lq

−C⊤
1 −D + 2c

√
ϵI 0

−L⊤
q 0 2c

√
ϵI

 . (18)

Here, since we assumed that Sres is non-degenerate, by Lemma B.3, the RHS of (18) for ϵ = 0 is not zero. Moreover, RHS
of (18) is nonzero for sufficiently small ϵ by Lemma B.2. Therefore, the product of all λj of Φreg2,τ should be of order
Θ(ϵd1). From these two observations, we know that the product of the remaining d1 − q eigenvalues should be of order
Θ(ϵd1−q). And we claim that each of these d1 − q eigenvalues is exactly of order Θ(ϵ). To this end, let us examine what
properties would the eigenvalues of order O(ϵ) have. By reparametrizing λ = µϵ in (14), we have

0 = det

µϵI − ϵA −ϵC1 −ϵLq

C⊤
1 µϵI −D − 2c

√
ϵI 0

L⊤
q 0 µϵI − 2c

√
ϵI


= ϵd1 det

µI −A −C1 −Lq

C⊤
1 µϵI −D − 2c

√
ϵI 0

Lq 0 µϵI − 2c
√
ϵI

 .

Then, by Lemma B.2, µ converges to a root of the equation

0 = det

µI −A −C1 −Lq

C⊤
1 −D 0

Lq 0 0

 (19)

as ϵ → 0.
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Since the Sres is non-degenerate, the µ = 0 cannot be a root of (19) by Lemma B.3. This particularly showing that there is
no λj of order o(ϵ), or equivalently, all eigenvalues of Φreg2,τ are of order Ω(ϵ). Therefore, from the fact that a product
of d1 − q eigenvalues of Φreg2,τ is of order Θ(ϵd1−q), each of those eigenvalues is exactly order of Θ(ϵ), then the claim
follows.

Here, we want to summarize the following two facts implied by the previous discussions:

• If λ is an eigenvalue of order O(ϵ), then λ divided by ϵ converges to a solution of (19) as ϵ → 0.

• The right-hand side of (19) is a polynomial of degree d1 − q in µ, whose solutions are nonzero.

By Lemma B.3, it is now immediate that the d1 − q eigenvalues of Φreg2,τ that are of order Θ(ϵ) is of the form λ(ϵ) =
µϵ+ o(ϵ) for µ that is a solution of (19).

The final claim, asserting that λj(ϵ) ̸= 0 for any j, can be deduced from the invertibility of Sres with Lemmas B.2 and B.3.
More precisely, we have det(Φreg2,τ ) = det(Λτ ) det(DΦreg,

√
τ ). By Lemma B.2,

det(DΦreg,
√
τ ) → det

 A C1 Lq

−C⊤
1 D 0

−L⊤
q 0 0

 as ϵ → 0.

Therefore, the invertibility of Sres and Lemma B.3 imply that the RHS is not zero. Then, the assertion λj(ϵ) ̸= 0 follows.

For the case where ∇2
yyf is non-degenerate in Assumption 3, mimicking the proof of Lemma B.5 completes the proof.

B.3. Proof of Theorem 5.3

Proof of Theorem 5.3. We first consider the case where Sres is non-degenerate. Recall that, alternating saddle gradient
operator is as follow

Falt,γ(x,y) := (∇xf(x,y),−∇yf(x− η

γ
∇xf(x,y),y))

where the η is given step size.

Then the proposed alternating extragradient can be formulated as follows

zk+1 = zk − ηΛτkFalt,γk
(zk − ηΛτkFalt,γk

(zk)).

By the matrix version of chain rule, the Jacobian of the ΛτkFalt,γk
(z) at z∗ is

Halt,τk,γk
=

 ϵ1A ϵ1C[
−C⊤ −B

] [I − ηϵ2A
0

] [
−C⊤ −B

] [−ηϵ2C
I

]
=

[
ϵ1A ϵ1C

−C⊤ + ηϵ2C
⊤A −B + ηϵ2C

⊤C

]
.

where ϵ1 =
1

τk
, ϵ2 =

1

γk
and DF =

[
A C

−C⊤ −B

]
for saddle gradient F = (∇xf,−∇yf).

Analogous to the proof of Proposition 5.1, one can show that Halt,τk,γk
is similar to

Galt,τk,γk
=

 ϵ1A ϵ1C1 ϵ1C2

−C⊤
1 + ηϵ2C

⊤
1 A D + ηϵ2C

⊤
1 C1 ηϵ2C

⊤
1 C2

−C⊤
2 + ηϵ2C

⊤
2 A ηϵ2C

⊤
2 C1 ηϵ2C

⊤
2 C2

 ,

under the same settings and notations.
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Then, for Q̃ = diag{I, I,V ⊤} we have

Q̃Galt,τk,γk
Q̃⊤ =

 ϵ1A ϵ1C1 ϵ1C2V
−C⊤

1 + ηϵ2C
⊤
1 A D + ηϵ2C

⊤
1 C1 ηϵ2C

⊤
1 C2V

−V ⊤C⊤
2 + ηϵ2V

⊤C⊤
2 A ηϵ2V

⊤C⊤
2 C1 ηϵ2V

⊤C⊤
2 C2V



=


ϵ1A ϵ1C1 ϵ1Lq 0

−C⊤
1 + ηϵ2C

⊤
1 A D + ηϵ2C

⊤
1 C1 ηϵ2C

⊤
1 Lq 0

−L⊤
q + ηϵ2L

⊤
q A ηϵ2L

⊤
q C1 ηϵ2L

⊤
q Lq 0

0 0 0 0


and therefore

det(λI −Halt,τk,γk
) = det(λI − Q̃Galt,τk,γk

Q̃⊤)

= λd2−r−q det

λI −

 ϵ1A ϵ1C1 ϵ1Lq

−C⊤
1 + ηϵ2C

⊤
1 A D + ηϵ2C

⊤
1 C1 ηϵ2C

⊤
1 Lq

−L⊤
q + ηϵ2L

⊤
q A ηϵ2L

⊤
q C1 ηϵ2L

⊤
q Lq

 .

So, the eigenvalues of Halt,τk,γk
are either zero or the eigenvalues of

Φalt,τk,γk
:=

 ϵ1A ϵ1C1 ϵ1Lq

−C⊤
1 + ηϵ2C

⊤
1 A D + ηϵ2C

⊤
1 C1 ηϵ2C

⊤
1 Lq

−L⊤
q + ηϵ2L

⊤
q A ηϵ2L

⊤
q C1 ηϵ2L

⊤
q Lq

 .

Therefore, characterizing the eigenvalues of Φalt,τk,γk
is equivalent to characterizing the nonzero eigenvalues of Halt,τk,γk

.

From now on, let τk = τ and γk =
√
τ . Then, the eigenvalues of Φalt,τ,

√
τ are the solutions of the equation

0 = pϵ(λ) := det

 λI − ϵA −ϵC1 −ϵLq

C⊤
1 − η

√
ϵC⊤

1 A λI −D − η
√
ϵC⊤

1 C1 −η
√
ϵC⊤

1 Lq

L⊤
q − η

√
ϵL⊤

q A −η
√
ϵL⊤

q C1 λI − η
√
ϵL⊤

q Lq

 = det(λI −Φalt,τ,
√
τ ). (20)

By Lemma B.2, constructing the functions λj(ϵ) so that they are continuous is possible, and the eigenvalues converge to the
solutions of the equation

p0(λ) = det

 λI 0 0
C⊤

1 λI −D 0
Lq 0 λI

 = 0.

as ϵ → 0. Hence, the r eigenvalues of Φalt,τ,
√
τ converge to the r nonzero eigenvalues of −B, and the other d1 + q

eigenvalues converge to zero, as ϵ → 0.

To investigate the order of eigenvalues that converges to zero further, we begin by observing that, whenever |λ| and ϵ are
small enough so that λI −D − η

√
ϵC⊤

1 C1 is invertible, it holds that

det(λI −Φalt,τ,
√
τ ) = det

 λI − ϵA −ϵC1 −ϵLq

C⊤
1 − η

√
ϵC⊤

1 A λI −D − η
√
ϵC⊤

1 C1 −η
√
ϵC⊤

1 Lq

L⊤
q − η

√
ϵL⊤

q A −η
√
ϵL⊤

q C1 λI − η
√
ϵL⊤

q Lq


= det

 λI − ϵA −ϵC1 −ϵLq

(1− λη√
ϵ
)C⊤

1 λI −D 0

(1− λη√
ϵ
)L⊤

q 0 λI


= det

λI − ϵA+ ϵ(1− λη√
ϵ
)C1(λI −D)−1C⊤

1 0 −ϵLq

0 λI −D 0

(1− λη√
ϵ
)L⊤

q 0 λI


= det(λI −D) det

[
λI − ϵA+ ϵ(1− λη√

ϵ
)C1(λI −D)−1C⊤

1 −ϵLq

(1− λη√
ϵ
)L⊤

q λI

]
.
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This implies that the λj , which converges to zero as ϵ → 0, is a solution of the following equation

0 = det

[
λI − ϵA+ ϵ(1− λη√

ϵ
)C1(λI −D)−1C⊤

1 −ϵLq

(1− λη√
ϵ
)L⊤

q λI

]
. (21)

Now let us reparametrize (21) by λ = κ
√
ϵ to get

0 =

[
κ
√
ϵI − ϵA+ ϵ(1− κη)C1(λI −D)−1C⊤

1 −ϵLq

(1− κη)L⊤
q κ

√
ϵI

]
=

√
ϵ
d1

det

[
κI −

√
ϵA+

√
ϵ(1− κη)C1(λI −D)−1C⊤

1 −
√
ϵLq

(1− κη)L⊤
q κ

√
ϵI

]
=

√
ϵ
d1+q

det

[
κI −

√
ϵA+

√
ϵ(1− κη)C1(λI −D)−1C⊤

1 −Lq

(1− κη)L⊤
q κI

]
.

Since (λI −D)−1 converges as ϵ → 0, we have that if λj → 0 as ϵ → 0 then λj should be a solution of the equation

0 = det

[
κI −

√
ϵA+

√
ϵ(1− κη)C1(λI −D)−1C⊤

1 −Lq

(1− κη)L⊤
q κI

]
(22)

By Lemma B.2, notice that eigenvalues divided by
√
ϵ converge to the solutions of

0 = det

[
κI −Lq

(1− κη)L⊤
q κI

]
. (23)

From the fact that Lq is of full column rank matrix, Lq has exactly q singular values. Therefore, solutions of (23) are nonzero,

and those are exactly
ησ2

k

2
±

σk

√
η2σ2

k − 4

2
, k = 1, . . . , q where σk are the nonzero singular values of C2, or equivalently

singular values of Lq . Note that the
ησ2

k

2
±

σk

√
η2σ2

k − 4

2
can be written as

ησ2
k

2
± i

σk

√
4− η2σ2

k

2
when ησk < 2, however,

we will denote it as
ησ2

k

2
±

σk

√
η2σ2

k − 4

2
, to cover both cases. Therefore, there are 2q instances among λj such that each

λj has order of
√
ϵ, and has asymptotic, and has asymptotic

ησ2
k

2
+

σk

√
η2σ2

k − 4

2
or

ησ2
k

2
−

σk

√
η2σ2

k − 4

2
.

So far, we have shown that r eigenvalues have magnitude Θ(1), and 2q eigenvalues have magnitude Θ(
√
ϵ(
ησ2

k

2
±

σk

√
η2σ2

k − 4

2
)). On the other hand, we have

det(Φalt,τ,
√
τ ) = ϵd1 det

 A C1 Lq

−C⊤
1 + η

√
ϵC⊤

1 A D + η
√
ϵC⊤

1 C1 η
√
ϵC⊤

1 Lq

−L⊤
q + η

√
ϵL⊤

q A η
√
ϵL⊤

q C1 η
√
ϵL⊤

q Lq


= ϵd1 det

 A C1 Lq

−C⊤
1 D 0

−Lq 0 0

 . (24)

Here, since we assumed that Sres is non-degenerate, by Lemma B.3, the RHS of (24) is not zero, therefore, the product of
all λj of Φalt,τ,

√
τ should be of order Θ(ϵd1). From these two observations, we know that product of the remaining d1 − q

eigenvalues should be of order Θ(ϵd1−q). And we claim that each of these d1 − q eigenvalues is exactly of order Θ(ϵ). To
this end, let us examine what properties would the eigenvalues of order O(ϵ) have. By reparametrizing λ = µϵ in (20), we
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have

0 = det

 µϵI − ϵA −ϵC1 −ϵLq

C⊤
1 − η

√
ϵC⊤

1 A µϵI −D − η
√
ϵC⊤

1 C1 −η
√
ϵC⊤

1 Lq

L⊤
q − η

√
ϵL⊤

q A −η
√
ϵL⊤

q C1 µϵI − η
√
ϵC⊤

q Lq


= ϵd1 det

 µI −A −C1 −Lq

C⊤
1 − η

√
ϵC⊤

1 A µϵI −D − η
√
ϵC⊤

1 C1 −η
√
ϵLq

L⊤
q − η

√
ϵL⊤

q A −η
√
ϵL⊤

q C1 µϵI − η
√
ϵC⊤

q Lq

 .

Then, by Lemma B.2, µ converges to a root of the equation

0 = det

µI −A −C1 −Lq

C⊤
1 −D 0

L⊤
q 0 0

 . (25)

as ϵ → 0.

Then, again µ = 0 cannot be a root of (25) by Lemma B.3. This particularly showing that there is no λj of order o(ϵ), or
equivalently, all eigenvalues of Φalt,τ,

√
τ are of order Ω(ϵ). Therefore, from the fact that a product of d1 − q eigenvalues of

Φalt,τ,
√
τ is of order Θ(ϵd1−q), each of those eigenvalues is exactly order of Θ(ϵ), then the claim follows.

Here, we want to summarize the previous discussions imply the following two facts:

• If λ is an eigenvalue of order O(ϵ), then λ divided by ϵ converges to a solution of (25) as ϵ → 0.

• The right-hand side of (25) is a polynomial of degree d1 − q in µ, whose solutions are nonzero.

By Lemma B.3, it is now immediate that the d1 − q eigenvalues of Φalt,τ,
√
τ that are of order Θ(ϵ), and is of the form

λ(ϵ) = µϵ+ o(ϵ) for a µ which is solution of (25).

The final claim, asserting that λj(ϵ) ̸= 0 for any j, can be deduced from the invertibility of Sres with Lemmas B.2 and B.3.
More precisely, we have det(Φalt,τ,

√
τ ) = det(Λτ ) det(DΦalt,

√
τ ) where

DΦalt,
√
τ :=

 A C1 Lq

−C⊤
1 + η

√
ϵC⊤

1 A D + η
√
ϵC⊤

1 C1 η
√
ϵC⊤

1 Lq

−L⊤
q + η

√
ϵL⊤

q A η
√
ϵL⊤

q C1 η
√
ϵL⊤

q Lq

 .

Since

det(DΦalt,
√
τ ) = det

 A C1 Lq

−C⊤
1 D 0

−L⊤
q 0 0

 , (26)

the assumption and lemma B.3 implies that the RHS of (26) is not zero. Then, for any τ ≥ 1, the assertion λj(ϵ) ̸= 0
follows.

For the case where ∇2
yyf is non-degenerate in Assumption 3, following the proof of Lemma B.4 with the fact that

det(Halt,τ,
√
τ ) = det

[
ϵA ϵC

−C⊤ −B

]
= det(Hτ ) completes the proof.

B.4. Relationship between the equilibrium of Alt2-EG-TS and the stationary point of F

Proposition B.6. Under Assumption 1, a point z∗ is an equilibrium point of Alt2-EG-TS (6)

zk+1 = zk − ηΛτkFalt,γk
(zk − ηΛτkFalt,γk

(zk))

if and only if F (z∗) = 0, for 0 < η < 1√
2L

, τk ≥ 1 and γk ≥ 2.
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Proof. It is obvious that F (z∗) = 0 if and only if Falt,γk
(z∗) = 0. It is also straightforward that Falt,γk

(z∗) = 0 implies
z∗ − ηΛτkFalt,γk

(z∗ − ηΛτkFalt,γk
(z∗)) = z∗. We are now left to prove the “only if” statement.

Suppose that z∗ is an equilibrium point of Alt2-EG-TS. Then, we have

Falt,γk
(z∗ − ηΛτkFalt,γk

(z∗)) = 0.

For the sake of contradiction, suppose that Falt,γk
(z∗) ̸= 0 and let w∗ := z∗ − ηΛτkFalt,γk

(z∗). Note that, by the
assumption, w∗ ̸= z∗. Then, we have

z∗ − ηΛτkFalt,γk
(z∗) = z∗ − ηΛτkFalt,γk

(z∗ − ηΛτkFalt,γk
(z∗))− ηΛτkFalt,γk

(z∗)

= w∗ − ηΛτkFalt,γk
(w∗),

hence we have z∗ −w∗ = ηΛτk(Falt,γk
(z∗)− Falt,γk

(w∗)).

Meanwhile, under Assumption 1, one can deduce that Falt,γk
is
√
2L-Lipschitz for 0 < η < 1√

2L
and γk ≥ 2, since

∥Falt,γk
(u,v)− Falt,γk

(x,y)∥2 ≤
(
L2
x + L2

y

(
1 +

1

γk

)(
1 + L2

x

η2

γk

))
∥(u,v)− (x,y)∥2 (by Lemma B.1)

≤
(
L2
x + L2

y

(
1 +

1

2

)(
1 +

1

4

))
∥(u,v)− (x,y)∥2

≤ 2
(
L2
x + L2

y

)
∥(u,v)− (x,y)∥2. (27)

Therefore, for 0 < η < 1√
2L

, τk ≥ 1, and γk ≥ 2, we have

∥z∗ −w∗∥ = η ∥Λτk(Falt,γk
(z∗)− Falt,γk

(w∗))∥

≤
√
2ηL ∥Λτk∥ ∥z∗ −w∗∥

< ∥z∗ −w∗∥

which is absurd. Therefore, we can deduce that Falt,γk
(z∗) = 0.

B.5. Eigenvalue Asymptotic of ΛτFalt,γ

We present the eigenvalues asymptotic of ΛτFalt,γ . Following few statements in proof of Theorem 5.3, one can deduce that
the eigenvalues of order Θ(

√
ϵ), divided by

√
ϵ, are solutions of the equation

0 = det

[
κI −

√
ϵA+

√
ϵ(1− κ

√
ϵη)C1(λI −D)−1C⊤

1 −Lq

(1− κ
√
ϵη)L⊤

q κI

]
By Lemma B.2, notice that eigenvalues of order Θ(

√
ϵ), divided by

√
ϵ, converge to the solutions of

0 = det

[
κI −Lq

L⊤
q κI

]
,

as ϵ → 0. Therefore, these eigenvalues have asymptotics that are equivalent to those of the type (i) eigenvalues in
Theorem 4.2.

B.6. Proof of Theorem 5.4

Proof of Proposition 5.4. We first investigate the necessary and/or sufficient condition for each type of eigenvalues λj of
Halt2,τ = Halt,τ,

√
τ , which is categorized in Theorem 5.3, to lie in Pη .

(i) First, consider the type (i) eigenvalues λj =

(
ησ2

k

2 ±
√

η2σ4
k−4σ2

k

2

)
√
ϵ + o(

√
ϵ) for some k. The radicand of√

η2σ4
k − 4σ2

k is negative for 0 < η < 1
L , since ησk < 1

L · L = 1. Therefore, the type (i) eigenvalues is in a form

λj =

(
ησ2

k

2 ± i

√
4σ2

k−η2σ4
k

2

)
√
ϵ + o(

√
ϵ). Here, the leading term of real part of λj is ησ2

k

2

√
ϵ that is positive, so

λj(ϵ) ∈ Pη for sufficiently large τ .
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(ii) Secondly, consider the type (ii) eigenvalues, λj = ϵµk + o(ϵ) for some k. Since the coefficient of leading term is µk,
for sufficiently small ϵ, µk > 0 implies that λj(ϵ) ∈ Pη, and µk < 0 implies that λj(ϵ) ̸∈ Pη. Recall that the µk are
the eigenvalues of the restricted Schur complement Sres in Theorem 5.3, which are nonzero due to Assumption 3′.
Therefore, Sres ⪰ 0 if and only if there exists some τ⋆ such that τ > τ⋆ implies that every λj of order Θ(ϵ) satisfies
λj(ϵ) ∈ Pη .

(iii) Finally, consider the type (iii) eigenvalues, λj = νk + o(1) for some k. By the inequality

∥B∥ =

∥∥∥∥[0 0
0 B

]∥∥∥∥ =

∥∥∥∥[0 0
0 I

] [
A C

−C⊤ B

] [
0 0
0 I

]∥∥∥∥ ≤ ∥DF (z∗)∥ = L,

we have ∥νk∥ ≤ L for the eigenvalues of −B. Now, let 0 < η < 1
L , and suppose that B ⪯̸ 0. Then, there exists some

k such that −L ≤ νk < 0. Since the half-open interval [−L, 0) is contained in the complement of P̄η , for sufficiently
large τ , we have λj(ϵ) ̸∈ Pη clearly. On the other hand, suppose that B ⪯ 0. Then νk > 0 for all k, and it implies that
for 0 < η < 1

L and sufficiently large τ , we have λj(ϵ) ∈ Pη for all j such that λj(ϵ) = νk + o(1). Therefore, B ⪯ 0
if and only if there exists some 0 < η < 1

L such that τ being sufficiently large implies that every λj of order Θ(1)
satisfies λj(ϵ) ∈ Pη .

Combining all the previous discussions, we can conclude that Sres ⪰ 0 and B ⪯ 0 if and only if, for any η satisfying
0 < η < 1

L , there exists sufficiently large τ such that λj(ϵ) ∈ Pη for all j. The conclusion then follows from the
Proposition 4.1.

B.7. Proof of Theorem 5.5

In proving Theorem 5.5, we need the following results.

Proposition B.7. Under Assumption 1, f ∈ C2, 0 < η <
√
5−1

2
√
2L

and τ ≥ 4, we have det(Dwalt,τ,
√
τ (z)) ̸= 0 for all z.

Proof. We begin by observing that

Dwalt,τ,
√
τ (z) = I − ηΛτDFalt,

√
τ (z − ηΛτFalt,

√
τ (z))(I − ηΛτDFalt,

√
τ (z)).

Under Assumption 1 and by (27) with
√
5−1

2
√
2L

< 1√
2L

, we have
∥∥DFalt,

√
τ

∥∥ ≤
√
2L. Hence, whenever 0 < η <

√
5−1

2
√
2L

and
τ ≥ 4, we obtain the bound∥∥ηΛτDFalt,

√
τ (z − ηΛτFalt,

√
τ (z))(I − ηΛτDFalt,

√
τ (z))

∥∥
≤
∥∥ηΛτDFalt,

√
τ (z − ηΛτFalt,

√
τ (z))

∥∥∥∥I − ηΛτDFalt,
√
τ (z)

∥∥
≤

√
2ηL(1 +

√
2ηL)

< 1.

It follows that any eigenvalue of ηΛτDFalt,
√
τ (z − ηΛτFalt,

√
τ (z))(I − ηΛτDFalt,

√
τ (z)) has its magnitude strictly less

than 1, and hence, Dwalt,τ,
√
τ (z) cannot have zero eigenvalue. Therefore, det(Dwalt,τ,

√
τ (z)) ̸= 0 holds.

For convenience, let us define a subset of the complex plane, for a real negative constant a < 0,

O♯
a :=

{
z ∈ C : |z − a| < |a|

2

}
,

which an open disk centered at a with radius |a|
2 .

Lemma B.8. O♯
a ∩ Pη = ∅ for any real negative constant a < 0 and real positive constant η > 0.
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Proof. Noticing that Oa lies in the left half plane, the only region to care about is C◦
−. Thus, if the disk Oa and the

peanut-shaped Pη do not intersect on that region, then the assertion follows immediately.

Consider a circle centered at origin with radius R, denoted by O∗. Then, if the circle O∗ and the boundary of Oa intersects,
then it intersects at a point z1 with a real part Re z1 = R2

2a + 3a
8 . Similarly, if the circle O∗ and the boundary of Pη intersects,

then it intersects at a point z2 with a real part Re z2 = 1
4η + ηR2

4 −
√

1
16η2 − 3η2R4

16 + 3R2

8 . For Oa and Pη to have an
overlap, there must exist some R such that Re z1 = Re z2. We show that such R does not exist for any a < 0 and η > 0, by
proving the following statement

Re z2 − Re z1 =
1

4η
+

ηR2

4
− (

R2

2a
+

3a

8
)−

√
1

16η2
− 3η2R4

16
+

3R2

8
> 0

for any a < 0, η > 0 and R > 0. This is done by showing that the following(
1

4η
+

ηR2

4
− R2

2a
− 3a

8

)2

−
(

1

16η2
− 3η2R4

16
+

3R2

8

)
=

9a2

64
− 3a

16η
+R2

(
1

8
− 3aη

16
− 1

4aη

)
+R4

(
1

4a2
− η

4a
+

η2

4

)
> 0

holds for any negative a with positive η and R, and this concludes the proof.

Definition 5. Given a C1 mapping w, the set A∗(w) := {z∗ : z∗ = w(z∗), ρ(Dw(z∗)) > 1} is the set of strictly
unstable equilibrium points.

Theorem B.9 (Lee et al. (2019, Theorem 2)). Let w be a C1 mapping such that det(Dw(z)) ̸= 0 for all z. Then the set of
initial points that converge to a unstable equilibrium point has (Lebesgue) measure zero, i.e., µ({z0 : limk→∞ wk(z0) ∈
A∗(w)}) = 0.

Proposition B.10. Let z∗ be a strict non-minimax point i.e., z∗ ∈ T ∗. Under Assumptions 3, there exists a positive constant
τ⋆ > 0 such that z∗ ∈ A∗(walt,τ,

√
τ ) for any τ > τ⋆.

Proof. By Proposition 4.1, we have

A∗(walt,τ,
√
τ ) = {z∗ : z∗ = walt,τ,

√
τ (z

∗), ρ(Dwalt,τ,
√
τ (z

∗)) > 1}
= {z∗ : z∗ = walt,τ,

√
τ (z

∗), ∃λ ∈ spec(Halt2,τ (z
∗)) s.t. λ /∈ P̄η}.

For any strict non-minimax point z∗ ∈ T ∗, either Sres(z
∗) or −B(z∗) has at least one strictly negative eigenvalue. First,

suppose that Sres(z
∗) has a strictly negative eigenvalue µ < 0. By Theorem 5.3, there exists a constant τ⋆ such that at least

one eigenvalue of Halt2,τ (z
∗) lies in a disk O♯

µϵ for any τ > τ⋆. So by Lemma B.8, we would have O♯
µϵ ∩Pη = ∅. On the

other hand, suppose that −B(z∗) has a strictly negative eigenvalue ν < 0. Similarly, by Theorem 5.3, there exists a constant
τ⋆ such that at least one eigenvalue of Halt2,τ (z

∗) lies in a disk O♯
ν for any τ > τ⋆. So by Lemma B.8, we would have

O♯
ν ∩ Pη = ∅. Therefore, we can conclude that for any z∗ ∈ T ∗, there exists a constant τ⋆ such that z∗ ∈ A∗(walt,τ,

√
τ )

for any τ > τ⋆.

Proof of Theorem 5.5. Because z∗ ∈ A∗(walt,τ,
√
τ ) implies{

z0 : lim
k→∞

wk
alt,τ,

√
τ (z0) = z∗

}
⊂
{
z0 : lim

k→∞
wk

alt,τ,
√
τ (z0) ∈ A∗(walt,τ,

√
τ )

}
,

by Theorem B.9, there exists a positive constant τ⋆ > 0 such that

µ

({
z0 : lim

k→∞
wk

alt,τ,
√
τ (z0) = z∗

})
= 0

for any τ > τ⋆.
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Moreover, if T ∗ is finite, then a maximum of τ⋆ for all z∗ ∈ T ∗ is also finite. Let us denote such maximum by τ∗max. Then,
for any τ > τ⋆max we have T ∗ ⊂ A∗(walt,τ,

√
τ ). This implies that{

z0 : lim
k→∞

wk
alt,τ,

√
τ (z0) ∈ T ∗

}
⊂
{
z0 : lim

k→∞
wk

alt,τ,
√
τ (z0) ∈ A∗(walt,τ,

√
τ )

}
,

for any τ > τ⋆max, and by Theorem B.9, we can conclude that

µ

({
z0 : lim

k→∞
wk

alt,τ,
√
τ (z0) ∈ T ∗

})
= 0 .

C. Proofs for Section 6
C.1. Proof of Theorem 6.1

In proving the theorem, we begin with the following observations. Recall that, the dynamical system of the Alt2-EG-ITS
method at time k is as follows

walt,τk,
√
τk(z) = z − ηΛτkFalt,

√
τk(z − ηΛτkFalt,

√
τk(z)).

Then, by the Taylor expansion around z∗, we have

walt,τk,
√
τk(z) = walt,τk,

√
τk(z

∗) +Dwalt,τk,
√
τk(z

∗)(z − z∗) + o(z − z∗)

= z∗ +
(
I − ηΛτkDFalt,

√
τk(z

∗) + η2(ΛτkDFalt,
√
τk(z

∗))2
)
(z − z∗) + o(z − z∗) (28)

For convenience, let us denote xk := zk − z∗, yk := o(zk − z∗) and

Ak := I − ηΛτkDFalt,
√
τk(z

∗) + η2(ΛτkDFalt,
√
τk(z

∗))2. (29)

Then, for arbitrary k0 such that 0 ≤ k0 < k, we have

xk+1 = walt,τk,
√
τk(zk)− z∗

= Akxk + yk

= Ak(Ak−1xk−1 + yk−1) + yk

= · · ·

=

 k∏
j=k0

Aj

xk0 +

k∑
i=k0

 k∏
j=i+1

Aj

yi

which implies that

∥xk+1∥ ≤

 k∏
j=k0

∥Aj∥

 ∥xk0
∥+

k∑
i=k0

 k∏
j=i+1

∥Aj∥

 ∥yi∥ . (30)

Then, the rest of the proof is to show that, for a certain increasing sequence of τk, the RHS of (30) (and thus ∥xk∥) decreases
at a certain rate. Note that, for a simpler setting, where Ak is fixed for all k with ∥Ak∥ < 1, Polyak (1987, Theorem 2.1.2.1)
showed in a few lines that the RHS of (30) (and thus ∥xk∥) decreases at an exponential rate. However, our proof is not as
straightforward as that of (Polyak, 1987, Theorem 2.1.2.1), since here we not only consider Ak that varies over time k, but
also satisfies limk→∞ ∥Ak∥ = 1 as shown next.

Lemma C.1. Suppose Assumptions 1 and 3′ hold, and let z∗ be an equilibrium point that satisfies the second-order
necessary condition of local minimax points. Then, there exists K > 0 such that the matrix Ak (29) of the Alt2-EG-ITS with
(τk,

√
τk), where τk is increasing and limk→∞ τk = ∞, for any 0 < η < 1/L, satisfies

∥Ak∥ ≤ 1− 2

τ1+c
k

for all k ≥ K and for any c > 0.
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Proof. Recall that, under Assumption 3′, Theorem 5.3 implies that there are three types of eigenvalue asymptotics of
Halt2,τ := ΛτDFalt,

√
τ . This directly implies that the matrix Ak has the following three types of eigenvalue asymptotics

(i) 1− η

ησ2
j

2
± i

√
4σ2

j − η2σ4
j

2

 1
√
τk

+ o

(
1

√
τk

)+ η2

ησ2
j

2
± i

√
4σ2

j − η2σ4
j

2

 1
√
τk

+ o

(
1

√
τk

)2

= 1−
η2σ2

j

2
√
τk

+
η4σ4

j

4τk
− η2

4σ2
j − η2σ4

j

4τk
+ i

∓η

√
4σ2

j − η2σ4
j

2
√
τk

±
η3σ2

j

√
4σ2

j − η2σ4
j

2τk


− ηo

(
1

√
τk

)
+ η2o

(
1

τk

)
+ η3σ2

m

1
√
τk
o

(
1

√
τk

)
± i

η2
√

4σ2
m − η2σ4

m

2
√
τk

o

(
1

√
τk

)
,

(ii) 1− η

(
µj

τk
+ o

(
1

τk

))
+ η2

(
µj

τk
+ o

(
1

τk

))2

= 1−
1

τk
(ηµj + o(1)) +

1

τ2k
(η2µ2

j + o(1)),

(iii) 1− η(νj + o(1)) + η2(νj + o(1))2,

where µj are the eigenvalues of the restricted Schur complement Sres(H), νj are the nonzero eigenvalues of −B, and σj

are the singular values of C2. Note that, under Assumption 3′, Sres(H) is invertible.

Since the sequence τk is increasing and limk→∞ τk = ∞, for any c > 0, there exists sufficiently large K such that the
followings satisfy

∣∣∣∣o( 1
√
τk

)∣∣∣∣ ≤ min
j

 ησ2
j

8
√
τk

,

√
4σ2

j − η2σ4
j

8

 (31)

∣∣∣∣o( 1

τk

)∣∣∣∣ ≤ µj

4τk
, (32)

6.25ηµj ≤ τk, (33)

max
j

(
4

η2σ2
j

,
8

ηµj

)
≤ τ ck , (34)

max
j

6.5η2σ2
j + η3σ2

j + 1, 5η2σ2
j +

η3σ2
j

2
+

η
√

4σ2
j − η2σ4

j

8

 ≤
√
τk, (35)

1−
1

2
ηνj(1− ηνj) ≤ 1−

2

τ1+c
k

, (36)

|1− η(νj + o(1)) + η2(νj + o(1))2| ≤ 1−
ηνj(1− ηνj)

2
, (37)

for all k > K, and for all µj and σj . Using the above inequalities for any k > K, we characterize the type (i), (ii) and (iii)
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eigenvalues as follows. First, for the type (i) eigenvalue, we have

|λ| ≤

√√√√√(1− η2σ2
j

4
√
τk

)2

+

η

√
4σ2

j − η2σ4
j

4
√
τk

2

by (31) and (35)

=

√
1−

η2σ2
j

2
√
τk

+
η2σ2

j

4τk

≤

√
1−

η2σ2
j

4
√
τk

≤ 1−
η2σ2

j

2
√
τk

≤ 1− 2

τ
(1+c)/2
k

by (34).

Next, for the type (ii) eigenvalue, we have we have

|λ| ≤

√(
1− ηµj

2τk

)2

+

(
ηµj

4τk

)2

by (32) and (33)

=

√
1− ηµj

τk
+

5η2µ2
j

16τ2k

≤
√
1− ηµj

2τk

≤ 1− ηµj

4τk

≤ 1− 2

τ1+c
k

by (34).

Finally, for the type (iii) eigenvalue, we have

|λ| ≤ 1−
1

2
ηνj(1− ηνj) by (37)

≤ 1−
2

τ1+c
k

by (36).

Combining all the previous arguments, the assertion then follows.

From now on, let τk = k1/(2+2c). Then, by Lemma C.1, the upper bound of ∥Ak∥ is ∥Ak∥ ≤ 1−
2
√
k

. Our next step is to

find a bound of RHS in (30). To accomplish this, we require the following technical Lemma, which will be used later.

Lemma C.2. For any k and n ≥ k + 1, there exists a constant M1 such that
1
√
k

∏n
j=k

(
1−

1
√
j

)
≤ M1

1
√
n

.

Proof. We will find upper bound of
∏n

j=i+1

(
1−

1
√
j

)
via finding tight upper and lower bound of

∏n
j=2

(
1−

1
√
j

)
.
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From the fact that logarithm function is an increasing function on R+, we have∫ n+1

2

log

(
1−

1
√
x

)
dx

= −
√
n+ 1− 1

2
log(n+ 1) + n log

(
1−

1
√
n+ 1

)
+
√
2 + log 2 + sinh−1(1)

≥
n∑

j=2

log

(
1− 1√

j

)

≥
∫ n

1

log

(
1−

1
√
x

)
dx

= −
√
n− log(n)

2
+ (n− 1) log

(
1−

1
√
n

)
+ 1.

Therefore, for sufficiently large n, we have upper bound
n∏

j=2

(
1−

1
√
j

)
≤ C1e

−
√
n+1 ·

1
√
n+ 1

·

(
1−

1
√
n+ 1

)n

≤ C2

1
√
n+ 1

e−(
√
n+

√
n+1)

(From the fact that

(
1−

1
√
n+ 1

)n

× e
√
n converges to 1/

√
e)

≤ C2

1
√
n
e−(

√
n−1+

√
n) (38)

for some positive constant C1 and C2. Simiarly, we have lower bound
n∏

j=2

(
1−

1
√
j

)
≥ C3e

−
√
n ·

1
√
n
·

(
1−

1
√
n

)n

≥ C4

1
√
n
e−(

√
n−1+

√
n)

(From the fact that

(
1−

1
√
n

)n

× e
√
n−1 converges to 1/

√
e)

≥ C4

1
√
n+ 1

e−2
√
n+1 (39)

for some positive constant C3 and C4. Using (38) and (39), we can bound the product
1
√
k

∏n
i=k

(
1−

1
√
i

)
as follows.

1
√
k

n∏
i=k

(
1−

1
√
i

)
≤

1
√
k
·

C2√
n
e−(

√
n−1+

√
n)

C4√
k
e−2

√
k

≤
1
√
n
·
C2e

−(
√
n−1+

√
n)

C4e−2
√
k

Here, for any n ≥ k + 1, the e−(
√
n−1+

√
n−2

√
k) ≤ 1. Therefore,

1
√
k

∏n
i=k

(
1−

1
√
i

)
≤ M1

1
√
n

for M1 =
C2

C4
, and this

completes the proof.
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By utilizing the previous Lemma C.2, we can bound the RHS in (30) via mathematical induction. The precise statement is
as follows.

Proposition C.3. Let f ∈ C3 and (τk, γk) = (k1/(2+2c), k1/(4+4c)) for c > 0. Let z∗ be an equilibrium point that satisfies
the necessary condition of local minimax points. Then, under Assumptions 1 and 3′, z∗ is asymptotically stable point of
Alt2-EG-ITS.

Proof. Under the assumption f ∈ C3, the Lagrange’s form of the remainder (Apostol, 1991, §7.7) is o(z − z∗) =

w
(2)
k (ξ)

2!
(z − z∗)2 for some ξ lies in the closed interval between z and z∗. Moreover, w

(2)
k /2 can be bounded by some

positive constant M2 on small neighborhood Bδ1(z
∗). Let M := max(1,M1). Then, we will prove that, if for some k-th

step, the iterate lies in Bδk(z
∗) where δk := min

(
δ1,

1

M2 max(1,M1)
√
k

)
, the future step zn converge to z∗ as n goes

to infinity.

Under aforementioned settings, suppose that zk lies in Bδk(z
∗) for some k. Then

∥o(zk − z∗)∥ ≤ M2 ∥zk − z∗∥2

≤ M2δk ∥zk − z∗∥

≤
1

max(1,M1)
√
k
∥zk − z∗∥

=
1

M
√
k
∥zk − z∗∥ .

Hence, the first iterate satisfies the following iterates

∥xk+1∥ = ∥Akxk + o(xk)∥
≤ ∥Ak∥ ∥xk∥+ ∥o(xk)∥

≤

(
1−

2
√
k

)
∥xk∥+

1

M
√
k
∥xk∥ (By Lemma C.1)

≤

(
1−

1
√
k

)
∥xk∥ .

We use induction on n to prove that ∥xn∥ ≤
∏n−1

j=k

(
1−

1
√
j

)
∥xk∥. The n = k case is trivial. Suppose that ∥xn∥ ≤

∏n−1
j=k

(
1−

1
√
j

)
∥xk∥ for some n such that n ≥ k + 1. Then, we have

∥xn+1∥ ≤ ∥An∥ ∥xn∥+ ∥o(xn)∥

≤

(
1−

2
√
n

)
n−1∏
j=k

(
1−

1
√
j

)
∥xk∥+M2

n−1∏
j=k

(
1−

1
√
j

)2

∥xk∥2 (By Lemma C.1)

≤

(
1−

2
√
n

)
n−1∏
j=k

(
1−

1
√
j

)
∥xk∥+

n−1∏
j=k

(
1−

1
√
j

)2

1

M
√
k
∥xk∥

≤

(
1−

2
√
n

)
n−1∏
j=k

(
1−

1
√
j

)
∥xk∥+

n−1∏
j=k

(
1−

1
√
j

)2

1

M1

√
k
∥xk∥
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≤

(
1−

2
√
n

)
n−1∏
j=k

(
1−

1
√
j

)
∥xk∥+

1
√
n

n−1∏
j=k

(
1−

1
√
j

)
∥xk∥ (By Lemma C.2)

≤
n∏

j=k

(
1−

1
√
j

)
∥xk∥ .

Then the assertion follows from the fact that limn→∞
∏n

j=k

(
1−

1
√
j

)
= 0.

We are now ready to prove the asymptotic stability of the Alt2-EG-ITS.

Proof of Theorem 6.1. Suppose that the stationary point z∗ satisfies the second-order necessary condition of local minimax
points. Then, by Proposition C.3, Alt2-EG-ITS can converge to the z∗. Moreover, following a few statements in proof of

Proposition C.3, the convergence rate is upper bounded by
∏k

j=i

(
1−

1
√
j

)
∥xi∥, and the product has (tight) upper bound

O
(

1√
k
e−2

√
k
)

. These arguments complete the proof.

Intuitively, as the value of k increases, the neighborhood ensuring local convergence gradually shrinks. However, once it lies
inside of the neighborhood, the future iterates converge to the z∗.

D. Proof for Section 7
D.1. Proof of Theorem 7.1

We need the following lemma for proving Theorem 7.1.

Lemma D.1. Suppose Assumptions 1 and 2 hold. Then, there exists a stationary point (x∗,y∗) that satisfies

⟨∇xf(x,y),x− x∗⟩ − ⟨∇yf(x̄,y),y − y∗⟩ ≥ f(x,y)− f(x̄,y) ≥ η

γ

(
1− Lx

2

η

γ

)
∥∇xf(x,y)∥2, (40)

for all x ∈ Rd1 and y ∈ Rd2 , where we let x̄ := x− η
γ∇xf(x,y).

Proof. Assumption 2 implies that the following four inequalities hold, for any x ∈ Rd1 and y ∈ Rd2 :

f(x∗,y) ≥ f(x,y) + ⟨∇xf(x,y),x
∗ − x⟩ ,

f(x̄,y∗) ≥ f(x∗,y∗),

f(x̄,y∗) ≤ f(x̄,y) + ⟨∇yf(x̄,y),y
∗ − y⟩ ,

f(x∗,y) ≤ f(x∗,y∗).

By summing over the above four inequalities, we have the first inequality of (40). Moreover, the second inequality of (40)
can be shown as

f(x̄,y) ≤ f(x,y) + ⟨∇xf(x,y), x̄− x⟩+ Lx

2
∥x̄− x∥2

= f(x,y) +

〈
∇xf(x,y),−

η

γ
∇xf(x,y)

〉
+

Lx

2

∥∥∥∥ηγ∇xf(x,y)

∥∥∥∥2
= f(x,y)− η

γ

(
1− Lx

2

η

γ

)
∥∇xf(x,y)∥2.,

where the first inequality uses Assumption 1 and (Nesterov, 2018, Theorem 2.1.5).
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We are now ready to show that the Alt2-EG-TS
uk = xk − η

τk
∇xf(xk,yk),

vk = yk + η∇yf

(
xk − η

γk
∇xf(xk,yk),yk

)
,


xk+1 = xk − η

τk
∇xf(uk,vk),

yk+1 = yk + η∇yf

(
uk − η

γk
∇xf(uk,vk),vk

)
.

finds a stationary point under Assumptions 1 and 2, i.e., the smoothness and star-convex-star-concave assumptions on f .

Proof of Theorem 7.1. To prove Theorem 7.1, we begin with the following observation. For simplicity, let us denote
x̄k := xk − η

γk
∇xf(xk,yk) and ūk := uk − η

γk
∇xf(uk,vk). Then, we have the inequality

∥xk+1 − x∗∥2 + 1

τk
∥yk+1 − y∗∥2

=

∥∥∥∥xk − η

τk
∇xf(uk,vk)− x∗

∥∥∥∥2 + 1

τk
∥yk + η∇yf(ūk,vk)− y∗∥2

= ∥xk − x∗∥2 + 1

τk
∥yk − y∗∥2 − 2η

τk
(⟨∇xf(uk,vk),xk − x∗⟩ − ⟨∇yf(ūk,vk),yk − y∗⟩)

+
η2

τ2k
∥∇xf(uk,vk)∥2 +

η2

τk
∥∇yf(ūk,vk)∥2

≤ ∥xk − x∗∥2 + 1

τk
∥yk − y∗∥2 − 2η

τk
(⟨∇xf(uk,vk),xk − uk⟩ − ⟨∇yf(ūk,vk),yk − vk⟩)

− η

γk

(
1− ηLx

2γk

)
∥∇xf(uk,vk)∥2 +

η2

τ2k
∥∇xf(uk,vk)∥2 +

η2

τk
∥∇yf(ūk,vk)∥2

= ∥xk − x∗∥2 + 1

τk
∥yk − y∗∥2 − 2η

τk

(〈
∇xf(uk,vk),

η

τk
∇xf(xk,yk)

〉
− ⟨∇yf(ūk,vk),−η∇yf(x̄k,yk)⟩

)
− η

γk

(
1− ηLx

2γk

)
∥∇xf(uk,vk)∥2 +

η2

τ2k
∥∇xf(uk,vk)∥2 +

η2

τk
∥∇yf(ūk,vk)∥2

= ∥xk − x∗∥2 + 1

τk
∥yk − y∗∥2 + η2

τ2k
(∥∇xf(uk,vk)−∇xf(xk,yk)∥2 − ∥∇xf(xk,yk)∥2)

+
η2

τk
(∥∇yf(ūk,vk)−∇yf(x̄k,yk)∥2 − ∥∇yf(x̄k,yk)∥2)−

η

γk

(
1− ηLx

2γk

)
∥∇xf(uk,vk)∥2

≤ ∥xk − x∗∥2 + 1

τk
∥yk − y∗∥2 + η2

τk
(∥∇xf(uk,vk)−∇xf(xk,yk)∥2 + ∥∇yf(ūk,vk)−∇yf(x̄k,yk)∥2)

− η2

τ2k
∥∇xf(xk,yk)∥2 −

η2

τk
∥∇yf(x̄k,yk)∥2 −

η

γk

(
1− ηLx

2γk

)
∥∇xf(uk,vk)∥2

≤ ∥xk − x∗∥2 + 1

τk
∥yk − y∗∥2

+
η2

τk

(
L2
x + L2

y + L2
xL

2
y

η2

γk

(
1 +

1

γk

))
∥(uk,vk)− (xk,yk)∥2 +

η2

τk

L2
y

γk
∥uk − xk∥2

− η2

τ2k
∥∇xf(xk,yk)∥2 −

η2

τk
∥∇yf(x̄k,yk)∥2 −

η

γk

(
1− ηLx

2γk

)
∥∇xf(uk,vk)∥2

≤ ∥xk − x∗∥2 + 1

τk
∥yk − y∗∥2

− η2

τ2k

(
1− η2L2

τk
(1 +

1

2γk
(1 +

1

γk
))− η2L2

τkγk

)
∥∇xf(xk,yk)∥2

− η2

τk

(
1− η2L2(1 +

1

2γk
(1 +

1

γk
))

)
∥∇yf(x̄k,yk)∥2 −

η

γk

(
1− ηL

2γk

)
∥∇xf(uk,vk)∥2

≤ ∥xk − x∗∥2 + 1

τk
∥yk − y∗∥2
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− η2

τ2k

(
1− η2L2

τk
(1 +

1

2γk
(3 +

1

γk
))

)
∥∇xf(xk,yk)∥2 −

η2

τk

(
1− η2L2(1 +

1

2γk
(1 +

1

γk
))

)
∥∇yf(x̄k,yk)∥2

where the first inequality uses Lemma D.1, and the second inequality uses τk ≥ 1, and the fourth inequality uses the update
rules and Lemma B.1. These inequalities lead to the following lemma which is essential in proving the convergence of
∥Falt,γk

(xk,yk)∥.

Lemma D.2. Let τi ≥ 1. Then, the series

∑ η2

τ2i

(
1− η2L2

τi

(
1 +

1

2γi

(
3 +

1

γi

)))
∥∇xf(xi,yi)∥2 +

∑ η2

τi

(
1− η2L2(1 +

1

2γi
(1 +

1

γi
))

)
∥∇yf(x̄i,yi)∥2

(41)
is bounded.

Proof. By taking a telescoping summation, then we have

k∑
i=1

η2

τ2i

(
1− η2L2

τi
(1 +

1

2γi
(3 +

1

γi
))

)
∥∇xf(xi,yi)∥2 +

k∑
i=1

η2

τi

(
1− η2L2(1 +

1

2γi
(1 +

1

γi
))

)
∥∇yf(x̄i,yi)∥2

≤ ∥x1 − x∗∥2 + 1

τ1
∥y1 − y∗∥2 − ∥xi+1 − x∗∥2 − 1

τi+1
∥yi+1 − y∗∥2

≤ ∥x1 − x∗∥2 + 1

τ1
∥y1 − y∗∥2.

Therefore, the series is bounded.

We will then show that the series increases monotonically as k increases. Then combining monotonicity and boundedness,
one can deduce that both summands of (41) converge to zero as i → ∞.

Lemma D.3. Let τi ≥ 1 and γi ≥ 1. Then, the series

k∑
i=j

η2

τ2i

(
1− η2L2

τi
(1 +

1

2γi
(3 +

1

γi
))

)
∥∇xf(xi,yi)∥2 +

k∑
i=j

η2

τi

(
1− η2L2(1 +

1

2γi
(1 +

1

γi
))

)
∥∇yf(x̄i,yi)∥2

(42)
for some fixed j is monotonically increasing.

Proof. To verify the monotonicity of the series, we need to check the positivity of the summands. The coefficient of the
norms are positive, when γi >

2η2L2

(1−η2L2) satisfied, because

γi >
2η2L2

(1− η2L2)

⇒ γi >
2η2L2

(τi − η2L2)
(Since τi ≥ 1)

⇒ τi − η2L2

η2L2
>

1

2γi
(3 +

1

γi
)

⇒ 1

η2L2
>

1

τi
(1 +

1

2γi
(3 +

1

γi
))

⇒ 1− η2L2

τi
(1 +

1

2γi
(3 +

1

γi
)) > 0
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and

γi >
η2L2

(1− η2L2)

⇒ 1− η2L2

η2L2
>

1

2γi
(1 +

1

γi
)

⇒ 1− η2L2(1 +
1

2γi
(1 +

1

γi
)) > 0.

For fixed (τ, γ), since the 0 < η <
√
γ√

2+γL
implies the condition γ > 2η2L2

(1−η2L2) , the both summands are positive.
For increasing (τi, γi), since the γi increases without any upper bound, for sufficiently large (fixed) i, the condition
γi >

2η2L2

(1−η2L2) holds for any 0 < η < 1
L . Therefore, the summation is monotically increasing.

We are now ready to prove the convergence of each norms ∥∇xf(xk,yk)∥ and ∥∇yf(x̄k,yk)∥. For the case
of Alt2-EG-FTS, by Lemmas D.2 and D.3, for τ ≥ 1, γ ≥ 1 and η <

√
γ√

2+γL
, the both summands

η2

τ2

(
1− η2L2

τ (1 + 1
2γ (3 +

1
γ ))
)
∥∇xf(xi,yi)∥2 and η2

τ

(
1− η2L2(1 + 1

2γ (1 +
1
γ ))
)
∥∇yf(x̄i,yi)∥2 converge to zero

as i → ∞. Then the assertion follows from the fact that the coefficients of the both terms are invariant as i varies.

For the case of Alt2-EG-ITS, since the conditions τi ≥ 1, γ > 2η2L2

1−η2L2 for η < 1
L are satisfied as i → ∞, both summands

η2

τ2

(
1− η2L2

τ (1 + 1
2γ (3 +

1
γ ))
)
∥∇xf(xi,yi)∥2 and η2

τ

(
1− η2L2(1 + 1

2γ (1 +
1
γ ))
)
∥∇yf(x̄i,yi)∥2 converge to zero

as i → ∞ by Lemmas D.2 and D.3. However, the coefficient of the terms also diminishes as i → ∞, therefore, the only
thing we can say about the terms is the limit inferior of the both terms converge to zero.

Therefore, the rest of the proof is to demonstrate that, the summation of the coefficients in (42) are infinite. Since,
1− η2L2

τi
(1 + 1

2γi
(3 + 1

γi
)) → 1 as i → ∞, there exists i0 such that any i ≥ i0 implies the 1− η2L2

τi
(1 + 1

2γi
(3 + 1

γi
)) > 1

2 .
Therefore, we have

∞∑
i=i0

η2

τ2i

(
1− η2L2(1 +

1

2γi
(3 +

1

γi
))

)
≥

∞∑
i=i0

η2

2τ2i

=
η2

2

∞∑
i=i0

1

τ2i

= ∞

Therefore, liminfi→∞ ∥∇xf(xi,yi)∥ = 0 holds.

Similarly, we have

∞∑
i=i1

η2

τi

(
1− η2L2(1 +

1

2γi
(1 +

1

γi
))

)
≥

∞∑
i=i1

η2

2τi

=
η2

2

∞∑
i=i0

1

τi

= ∞

Therefore, liminfi→∞ ∥∇yf(x̄i,yi)∥ = 0 holds, and these arguments complete the proof.
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D.2. Accumulation Point of the Alt2-EG-FTS is a Stationary Point

Proof. Let z̃ be an accumulation point of the sequence {zk}k≥0. Then, there exists a subsequence {zkj}j≥0 of original
sequence such that zkj

→ z̃ as j → ∞ (Tao, 2016, Proposition 1.4.5). By triangle inequality and Lemma B.1, we have

0 ≤ ∥Falt,γ(z̃)∥
≤
∥∥Falt,γ(z̃)− Falt,γ(zkj

)
∥∥+ ∥∥Falt,γ(zkj

)
∥∥

≤

√
L2
x + L2

y

(
1 +

1

γ

)(
1 + L2

x

η2

γ

)∥∥z̃ − zkj

∥∥+ ∥∥Falt,γ(zkj
)
∥∥ .

From the fact that both
∥∥z̃ − zkj

∥∥ and
∥∥Falt,γ(zkj )

∥∥ converge to zero as j → ∞, we have ∥Falt,γ(z̃)∥ = 0, and this
completes the proof.

E. Proofs for Section 8
E.1. Proof of Example 1

Proof. Consider the function f(x, y) = −x2 +2xy. Its saddle-gradient is F (x, y) = (−2x+2y,−2x), and it has a unique

stationary point (0, 0). Moreover, f satisfies Assumption 1 with Lx = Ly = 2, so L :=
√

L2
x + L2

y = 2
√
2.

For any δ > 0 and any (x, y) satisfying |x− 0| ≤ δ and |y − 0| ≤ δ, the inequality

f(0, y) = 0 ≤ f(0, 0) = 0 ≤ max
y′ : |y′−0|≤δ

f(x, y′) = −x2 + 2|xδ|

holds, so the stationary point (0, 0) is a local minimax point. In addition, since ∇yyf(x, y) is degenerate, it is a non-strict
local minimax point.

Since

DF =

[
A C

−C⊤ −B

]
=

[
−2 2
−2 0

]
,

we have C2 = [2] ∈ R1×1 and q = rank(C2) = 1. Then, the matrix U is of size 0 × 0, and so is Sres(DF ) =
U⊤(A−CB†C⊤)U , which is vacuously positive definite. Therefore, Assumption 3′ is satisfied, and thus, by Theorems 5.4
and 6.1, both Alt2-EG-FTS and Alt2-EG-ITS are asymptotically stable at (0, 0), respectively.

Let us now show that the (vanilla) two-timescale EG is unstable at (0, 0) for any choice of timescale separation τ . In
particular, we show that the eigenvalues of its Jacobian

Hτ = ΛτDF =

[
1
τ 0
0 1

] [
−2 2
−2 0

]
=

[
−2ϵ 2ϵ
−2 0

]
,

which are −ϵ± i
√
4ϵ− ϵ2, are outside Pη for any choice of τ , based on Propositions 3.1 and 4.1. By the definition of Pη , it

is enough to show that all ϵ > 0 satisfy

(ηϵ+
1

2
)2 + η2(4ϵ− ϵ2) +

3

4
>
√

1 + 3η2(4ϵ− ϵ2)

⇔ 1 + ηϵ+ 4η2ϵ >
√

1 + 3η2(4ϵ− ϵ2)

⇔ 1 + η2ϵ2 + 16η4ϵ2 + 2ηϵ+ 8η2ϵ+ 8η3ϵ2 > 1 + 12η2ϵ− 3η2ϵ2

⇔ 4η2ϵ2 + 16η4ϵ2 + 2ηϵ− 4η2ϵ+ 8η3ϵ2 > 0

⇔ 4η2ϵ+ 16η4ϵ+ 2η − 4η2 + 8η3ϵ > 0

⇔ ϵ(4η2 + 16η4 + 8η3) > 4η2 − 2η

where the fifth equivalent comes from the ϵ > 0. Since 4η2 − 2η ≤ 0 for any 0 < η < 1
L = 1

2
√
2

, the above inequality
indeed holds for any ϵ > 0, which completes the proof.
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