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Abstract

Recently, various pre-training methods have been
introduced in vision-based Reinforcement Learn-
ing (RL). However, their generalization ability
remains unclear due to evaluations being limited
to in-distribution environments and non-unified
experimental setups. To address this, we intro-
duce the Atari Pre-training Benchmark (Atari-
PB), which pre-trains a ResNet-50 model on
10 million transitions from 50 Atari games and
evaluates it across diverse environment distribu-
tions. Our experiments show that pre-training
objectives focused on learning task-agnostic fea-
tures (e.g., identifying objects and understand-
ing temporal dynamics) enhance generalization
across different environments. In contrast, ob-
jectives focused on learning task-specific knowl-
edge (e.g., identifying agents and fitting reward
functions) improve performance in environments
similar to the pre-training dataset but not in
varied ones. We publicize our codes, datasets,
and model checkpoints at https://github.
com/dojeon-ai/Atari-PB.

1. Introduction
The pretrain-then-finetune approach has become a standard
practice in computer vision (CV) and natural language pro-
cessing (NLP), renowned for its robust generalization across
diverse tasks (He et al., 2022; Bubeck et al., 2023). In vision-
based Reinforcement Learning (RL), this approach is now
gaining attraction as well (Levine et al., 2020; Yang et al.,
2023), driven by the increasing availability of large-scale
offline datasets (Grauman et al., 2022; Padalkar et al., 2023).

In vision-based RL, various pre-training methods are de-
signed to capture unique features from different data types.
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Figure 1: Overview of Atari-PB. The ResNet-50-based
model is pre-trained from 10M interactions with a given
pre-training algorithm. The pre-trained model is then eval-
uated by fine-tuning to In-Distribution (ID), Near-Out-of-
Distribution (Near-OOD), and Far-Out-of-Distribution (Far-
OOD) environments.

Image-based methods, for instance, focus on extracting spa-
tial characteristics such as object sizes and shapes (Laskin
et al., 2020b; Seo et al., 2023a). In contrast, video-based ap-
proaches delve into the temporal dynamics of environments
like objects’ movement and direction (Schwarzer et al.,
2020b; Nair et al., 2022; Gupta et al., 2023). Those learn-
ing from demonstrations prioritize extracting task-relevant
features, distinguishing agents from irrelevant elements like
backgrounds (Pomerleau, 1991; Christiano et al., 2016; Is-
lam et al., 2022). Finally, trajectory-based methods further
concentrate on learning task-specific features by estimating
the rewards associated with different states and actions (Ku-
mar et al., 2020; Chen et al., 2021; Fujimoto et al., 2019).

Despite their advancements, the generalization capabilities
of these methods remain underexplored as evaluations are
typically confined to environments akin to their pre-training
datasets (Schwarzer et al., 2021b; Lee et al., 2023). Sev-
eral studies have probed the generalization ability of the
agents by changing visual and task attributes, such as ob-
ject colors (Hansen & Wang, 2021), shapes (Yuan et al.,
2023), and physics (Taiga et al., 2022). Yet, these varia-
tions are relatively minor and may not sufficiently mirror
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Figure 2: Results Overview. The pre-training methods
are evaluated by their performance after fine-tuning to en-
vironments in three groups: In-Distribution, Near-Out-of-
Distribution, and Far-Out-of-Distribution. Here, we report
the results of fine-tuning via behavior cloning (i.e., replicat-
ing expert behavior) and average the scores of each algo-
rithm category for a comprehensive analysis.

the complexities found in real-world scenarios. More recent
research has begun to investigate the pre-trained models’
generalization capabilities under larger distribution shifts
(Nair et al., 2022; Xiao et al., 2022; Parisi et al., 2022; Ma-
jumdar et al., 2023a). However, these studies use models
pre-trained on different data sources and with varying archi-
tectures, complicating the understanding of how learning
objectives affect generalization performance.

To address this gap, we introduce the Atari Pre-training
Benchmark (Atari-PB), which investigates the generaliza-
tion capability of various learning objectives using a unified
dataset and architecture. Our benchmark begins by pre-
training a ResNet-50 encoder (He et al., 2016) on a dataset
containing 10 million interactions from 50 different Atari
environments (Agarwal et al., 2020). The pre-trained mod-
els are then fine-tuned across three groups of environments:
In-Distribution (ID), Near-Out-of-Distribution (Near-OOD),
and Far-Out-of-Distribution (Far-OOD). The ID group in-
cludes environments identical to those in the pre-training
dataset. The Near-OOD group consists of similar tasks (e.g.,
shooting or tracking) but with different visual character-
istics (e.g., object shape or speed). The Far-OOD group
contains environments with entirely different tasks (e.g.,
solving math puzzles or color matching).

Our findings, illustrated in Figure 2, show that pre-training
methods aimed at learning task-agnostic features, such as
extracting spatial characteristics from images and tempo-
ral dynamics from videos, enhance generalization across
various distribution shifts. In contrast, methods that learn
task-specific knowledge, such as identifying agents from
demonstrations and fitting reward functions from trajecto-
ries, enhance performance in the same environments but
hinder generalization under distribution shifts.

Takeaways:
• Pre-training objectives that learn task-agnostic fea-

tures, such as identifying objects from images and
understanding temporal dynamics from videos, con-
sistently improve generalization across various dis-
tribution shifts.

• Pre-training objectives that learn task-specific fea-
tures, such as focusing on agents from demonstra-
tions and fitting the reward function from trajecto-
ries, improve performance in similar tasks but lose
effectiveness as task distribution shifts increase.

2. Related Work
2.1. Evaluating Generalization in Vision-Based RL

As Deep Reinforcement Learning has achieved notable
success in specific games or tasks (Hafner et al., 2023;
Schwarzer et al., 2023), research interest is moving towards
the agent’s ability to generalize on environments with visual
and/or task distribution shifts.

For visual generalization, researchers have focused on de-
veloping environments with controllable visual elements.
This includes changing the design of objects and walls
(Lomonaco et al., 2020), adding background noise (Hansen
& Wang, 2021; Stone et al., 2021), and applying realistic
disturbances such as changes in lighting and camera per-
spectives (Dosovitskiy et al., 2017; Yuan et al., 2023).

Regarding task distribution shifts, numerous studies aimed
to evaluate the agents on new tasks with similar dynamics
but varying reward functions. For instance, Farebrother et al.
(2018); Taiga et al. (2022) evaluated generalization abilities
using different game modes and difficulty levels, while other
works employed procedural generation (Cobbe et al., 2020;
Zhu et al., 2020).

Despite the importance of these studies, they have primarily
considered a single type of distribution shift, often minor in
nature. Thus, we propose evaluating agent performance in
environments with novel tasks and visual shifts (Far-OOD),
those with similar tasks and visual shifts (Near-OOD), and
those with same tasks (ID). This broader coverage of distri-
bution shifts enables a comprehensive assessment of agents’
generalization abilities under visual and task shifts.

2.2. Pre-training for Generalization in Vision-based RL

The pretrain-then-finetune approach is a well-established
framework in CV and NLP for improving generalization
ability. Similarly for visual RL, the development of large-
scale offline datasets (Grauman et al., 2022; Padalkar et al.,
2023) have spurred investigations into the efficacy of pre-
training methods for enhancing generalization capabilities.
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Studies by Parisi et al. (2022) and Hu et al. (2023) have
shown that the use of pre-trained models, such as ResNet
(He et al., 2016) and ViT (Dosovitskiy et al., 2020), en-
hances generalizability in various RL tasks. These models
were pre-trained on ImageNet (Deng et al., 2009) and em-
ployed diverse training objectives, ranging from supervised
(Radford et al., 2021) to self-supervised learning (He et al.,
2020; Nair et al., 2022). Furthermore, Majumdar et al.
(2023b) achieved improved generalization using a large,
realistic dataset that closely resembles the ego-centric per-
spective of agents (Grauman et al., 2022), to pre-train a
large ViT with masked image modeling (He et al., 2022).

Despite the advancements, these models were pre-trained
with different datasets and architectures, making it chal-
lenging to identify the effectiveness of individual learning
objectives for generalization. Our study addresses this gap
by systematically evaluating the generalization capabilities
of various pre-training objectives using a unified experimen-
tal setup, including an identical dataset, architecture, and
downstream environments.

3. Preliminaries
3.1. Reinforcement Learning

In Reinforcement Learning (RL), we adopt a Partially Ob-
servable Markov Decision Process (POMDP) framework,
which differs from standard MDP by limiting direct ac-
cess to the true state st. Instead, agents receive a partially
observable image ot, generated by an emission function:
ot ∼ q(·|st). At each timestep, t, an agent observes an ob-
servation ot and chooses an action at according to its policy
at ∼ π(·|ot). The agent then receives the next observation
ot+1 and a reward rt from the environment. Here, the goal
of the agent is to learn a policy that maximizes the expected
cumulative reward, E[

∑T
t=1 rt].

3.2. Pre-training for Reinforcement Learning

Drawing insights from the CV and NLP field, the pretrain-
then-finetune approach has emerged as a compelling method
to improve generalization, paving the way for models to
effectively adapt to diverse tasks and environments.

When pre-training for RL, the model learns from the transi-
tions made by humans or agents, using different objectives
such as Offline RL (Kumar et al., 2020) and self-supervised
loss (Laskin et al., 2020b). These learning objectives are
tightly related to the data type they leverage—image, video,
demonstration, and trajectory—each introducing unique
knowledge to the model. Based on this, we classify the
pre-training algorithms into the following four categories.
Here, N denotes the number of trajectories, T denotes the
length of the trajectories, and NT denotes the total number
of transitions in the dataset.

• Image: These methods learn the spatial characteristics

of individual states from a set of images,
NT⋃
i=1

{oi}.

• Video: These methods learn the temporal dynamics of

environments from a set of videos,
N⋃
i=1

T⋃
t=1

{oi,t}.

• Demonstration: These methods learn task-relevant in-
formation such as identifying agents and enemies from

a set of observation-action pairs,
N⋃
i=1

T⋃
t=1

{oi,t, ai,t}.

• Trajectory: These methods learn richer task-relevant
information such as the value of states and ac-
tions from a set of observation-action-reward triplets,
N⋃
i=1

T⋃
t=1

{oi,t, ai,t, ri,t}.

4. Algorithms
This section outlines the pre-training algorithms we study,
divided into four categories described in Section 3.2. Some
algorithms were simplified to fit into our framework; we an-
notate such algorithms with a dagger(†) to avoid confusion.
For further details, please refer to Appendix B.2.

4.1. No pre-training

Random: This approach involves fine-tuning a model that
has been randomly initialized, with its encoder kept frozen
throughout the fine-tuning process.

E2E: In contrast to the Random method, the End-to-End
approach involves fine-tuning a randomly initialized model
without any frozen components. In addition to ResNet-50,
we also evaluate a 3-layer-CNN based model (Mnih et al.,
2015), which is known to excel in many RL environments.

4.2. Learning from Image

CURL: Contrastive Unsupervised Reinforcement Learning
(Laskin et al., 2020b) learns the spatial feature of images
using augmentation functions and InfoNCE loss. It operates
by ensuring that two augmented instances of the same image
are encoded similarly in latent space.

MAE: Masked Autoencoder (He et al., 2022) learns the
spatial structure of images by reconstructing masked images
with transformer encoder-decoder architecture. Since we
employ a convolutional architecture in this study, we adapt
this approach by masking pixels in the convolutional feature
map, inspired by Seo et al. (2023a); Xiao et al. (2021).

4.3. Learning from Video

ATC: Augmented Temporal Contrast (Stooke et al., 2021)
learns the temporal dynamics of videos using InfoNCE loss.
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This involves closely aligning an image with its future image
in a latent space while maintaining distinctiveness from the
other unrelated images.

SiamMAE: Siamese Masked Autoencoder (Gupta et al.,
2023) is an extension of MAE to videos. This variant uses a
Siamese architecture and an asymmetric masking strategy
for temporal information extraction. In line with MAE, we
apply masking to convolutional features.

R3M†: Reusable Representations for Robot Manipulation
(Nair et al., 2022) uses multiple losses to learn from human
demonstration videos with diverse tasks. In our study, we fo-
cus on the time contrastive loss of R3M. While akin to ATC,
R3M gives an additional task of differentiating between
’near-future’ and ’far-future’ images.

4.4. Learning from Demonstration

BC: Behavioral Cloning (Pomerleau, 1991) learns to imitate
the demonstrations by predicting actions from observations.
This method acquires task-specific information from the
dataset, as noted by Islam et al. (2022).

SPR: Self-Predictive Representations (Schwarzer et al.,
2020b) learn the dynamics of environments by recursively
predicting future observations in a latent space. We em-
ploy a recurrent neural network for future prediction and a
momentum network for encoding target observations.

IDM: Inverse Dynamics Modeling (Christiano et al., 2016)
learns to predict the action between consecutive observa-
tions. Similar to BC, IDM focuses on learning task-relevant
information as it seeks to understand the cause-and-effect
dynamics within the environments (Islam et al., 2022).

SPR+IDM: Inspired by Schwarzer et al. (2021b), we inves-
tigate whether the combination of SPR and IDM can further
improve the agent’s performance.

4.5. Learning from Trajectory

CQL: Conservative Q-Learning (Kumar et al., 2020) inte-
grates temporal difference loss with conservative Q-learning
loss. Its main objective is to accurately approximate the Bell-
man target while minimizing the overestimation of actions
that are absent in the offline data. We consider two variants:
CQL-M, using mean squared loss, and CQL-D, applying
cross-entropy-based distributional backups (Bellemare et al.,
2017a) for minimizing temporal differences.

DT: Decision Transformer (Chen et al., 2021) redefines RL
as a sequence modeling problem. The network is trained to
predict actions based on given states and desired cumulative
rewards. During inference, the agent predicts the optimal
actions needed to achieve a specified cumulative reward.

5. Atari Pre-training Benchmark
We introduce the Atari Pre-training Benchmark (Atari-PB),
a benchmark designed to assess the generalization ability of
pre-training methods in vision-based RL.

5.1. Dataset

The dataset for Atari-PB is derived from the DQN-Replay-
Dataset (Agarwal et al., 2020). This dataset encompasses
training logs from a DQN agent’s experiences across 60
Atari games (Bellemare et al., 2013; Machado et al., 2018),
documented over five distinct runs. Each run is divided
into 50 evenly spaced checkpoints, ranging from the initial
state (checkpoint 1) to the final state (checkpoint 50). This
segmentation allows for precise control over the agent’s
performance level, thereby influencing the quality of the
pre-training data.

To construct a pre-training dataset that reflects real-world
complexities as a mixture of suboptimal and optimal be-
haviors, we selected the first 10 checkpoints from two sep-
arate runs. From each checkpoint, we sampled the first
10,000 transitions. Consequently, this process generated
200,000 transitions per game, culminating in a comprehen-
sive dataset of 10 million transitions across 50 games. For
more details, please refer to Appendix B.1.

5.2. Model

The network architecture of our model is composed of
three main components: a backbone for encoding images
into features, a neck for converting the features to a low-
dimensional latent vector, and a head for mapping the latent
vector into policy outputs.

Backbone, f(·): Our backbone utilizes a modified ver-
sion of the ResNet-50 architecture (He et al., 2016). It
is designed to process input images o ∈ RC×H×W and
encode them into spatial feature maps z = f(o), where
z ∈ RDz×Hz×Wz . Here, Dz represents the output dimen-
sion, while Hz and Wz are the dimensions of the feature
map’s height and width, respectively. We replaced the batch
normalization (Ioffe & Szegedy, 2015) with group normal-
ization (Wu & He, 2018), aiming to address discrepancies
in data distributions between pre-training and fine-tuning
phases, as discussed in Kumar et al. (2022a;b).

Neck, g(·): The neck module incorporates a game-specific
spatial pooling strategy to manage the variability of in-game
elements (Kumar et al., 2022a;b). It is followed by a 2-layer
Multi-Layer Perceptron (MLP) which transforms the spatial
features into a low-dimensional latent vector q = g(z), with
q ∈ RDq and Dq denoting the latent dimension.

Head, h(·): The head module employs a game-specific
linear layer, allowing diverse policy outputs across different

4



Investigating Pre-Training Objectives for Generalization in Vision-Based Reinforcement Learning

Pre-Training Fine-Tuning

Backbone

Neck

Head for
Atlantis

Head for
BaHeistHead for

Aeroids
Head for
Amidar

Head for
Air Raid

Backbone

Neck

Head for
Fine-Tuning 
Game

Figure 3: Experimental Setup. The model is pre-trained
with 50 Atari games in a multi-headed fashion (left), then
fine-tuned for each game individually (right). The snowflake
symbol indicates freezing the weights, whereas the fire sym-
bol represents re-initializing and fine-tuning the component.

games. This results in the final output y = h(q), where
y ∈ R|A| and A denotes the action space.

5.3. Pre-Training

Following standard training protocols in Atari games, we
pre-processed each image by down-sampling to 84 × 84
with grey-scaling, then stacked 4 consecutive frames (Mnih
et al., 2015; Hessel et al., 2018). We applied two image
augmentations: a random shift followed by intensity jitter-
ing (Schwarzer et al., 2020a; 2021a). Each model was
pre-trained for 100 epochs using an AdamW optimizer
(Loshchilov & Hutter, 2017) with a batch size of 512. We
experimented with various learning rates, selecting from the
range of {1e−3, 3e−4, ..., 3e−5, 1e−6}, and adjusted the
weight decay within the range of {1e− 4, 1e− 5, 1e− 6}.

5.4. Fine-tuning

For fine-tuning, we assessed the effectiveness of our pre-
trained models in three different categories of environments:

• In-Distribution (ID): This category includes the same
50 games used during the pre-training phase. This
assessment aims to evaluate model performance in
familiar settings. These games include the main task
genres of Atari games, such as maze-based, tracking,
vertical shooting, and horizontal shooting games.

• Near-Out-of-Distribution (Near-OOD): This group
consists of 10 games not used in pre-training but be-
longing to the same task genres as the ID games. While
these games present tasks similar to those in ID, they
assess the model’s generalization ability on new visual
elements and reward structures.

• Far-Out-of-Distribution (Far-OOD): This group ex-
tends beyond Near-OOD, featuring 5 games with en-
tirely novel task mechanics. For instance, HumanCan-
nonball introduces projectile motion against gravity,
while Klax focuses on color matching and stacking.
These games serve as the baselines to understand the
pre-trained models’ generalization ability in entirely
unfamiliar environments and tasks.

For these environments, we consider two common adapta-
tion scenarios:

• Offline BC: In this scenario, the model undergoes fine-
tuning through behavior cloning using 50,000 frames
from expert demonstrations. For ID and Near-OOD
games, expert demonstrations were sourced from the
final checkpoint of the DQN-Replay-Dataset. For Far-
OOD games, we used demonstrations from a Rain-
bow agent (Hessel et al., 2018) trained for 2 million
steps. During this process, as depicted in Figure 3,
we kept the backbone parameters frozen, while the
neck and head components were re-initialized and then
fine-tuned for 100 epochs.

• Online RL: In this scenario, the model is fine-tuned
using the Rainbow algorithm (Hessel et al., 2018), with
50,000 interactions in each respective environments.
Identical to the Offline BC approach, the backbone
of the pre-trained model remains unaltered, while the
neck and head are re-initialized and subsequently fine-
tuned.

To ensure a reliable evaluation, we report the normalized
game scores using the Inter Quantile Mean (IQM) methodol-
ogy (Agarwal et al., 2021). This method involves stratified
bootstrap sampling and is executed with three different ran-
dom seeds. For normalizing the scores in ID and Near-OOD
environments, we use the DQN scores as documented by
Castro et al. (2018). In the case of Far-OOD scenarios, the
normalization is based on the final scores of our Rainbow
agent, which was trained for 2 million steps to provide the
expert dataset for the Offline BC scenario.

6. Experimental Results
In this section, we present our main experimental results, as
illustrated in Figure 4 and 5. Instead of merely providing
a ranking of different pre-training methods, we focus on
discerning specific trends and patterns that manifest across
different downstream distributions and adaptation scenarios.

In summary, a distinctive pattern emerged between algo-
rithms that learn task-agnostic information (using images
or videos), and those that learn task-relevent information
(using demonstrations or trajectories). While task-agnostic
knowledge consistently improved performance across all
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Figure 4: Main Results. Performance of each pre-training method after fine-tuning, in different distributions (ID, Near-OOD,
Far-OOD) and adaptation scenarios (Offline BC, Online RL). We report the Inter Quantile Mean (IQM) of normalized
scores across three seeds, along with a 95% confidence interval. The bars are grouped and color-coded by their categories
described in Section 3.2 for ease of view.

distributions, task-specific knowledge showed limited ro-
bustness against task distribution shifts. We further elabo-
rate on our findings through several key observations.

O1: Learning task-agnostic information from images and
videos significantly enhance performance across ID, Near-
OOD, and Far-OOD environments.

Our findings, as depicted in Figure 4, reveal that image-
based pre-training methods like CURL and MAE consis-
tently surpassed the Random baseline (i.e., a frozen back-
bone with randomly initialized weights). This highlights
the importance of extracting spatial information (e.g., ob-
ject size, shape, location) for an effective adaptation to ID
environments and generalization to OOD environments.

Moreover, video-based pre-training methods (ATC,
SiamMAE, R3M†) showed enhanced performance over
image-based approaches, underscoring the significance of
capturing both spatial and temporal information (e.g., ob-
jects’ moving orientation and speed). Notably, these video-
pretrained models slightly surpassed end-to-end (E2E) fine-
tuning from scratch, despite having their backbone param-
eters frozen during fine-tuning. We believe that allowing
end-to-end fine-tuning of video-based models will further
enhance their performance, widening the performance gap
compared to the E2E approach.

These findings support the emerging trend of incorporating
images and videos in pre-training to achieve better general-
ization across various control tasks (Majumdar et al., 2023b;
Bhateja et al., 2023).

O2: Learning task-relevant information from demonstra-
tions further enhances ID and Near-OOD performance, but

provides marginal improvements in Far-OOD performance.

Incorporating actions into pre-training objectives (BC, SPR,
IDM, and SPR+IDM) led to mixed performance improve-
ments. While task-specific knowledge benefited perfor-
mance in ID and Near-OOD settings, a decline was noted in
Far-OOD environments. This variation likely arose from the
task similarities between ID and Near-OOD environments,
in contrast to the distinct differences in tasks between ID
and Far-OOD. Given that ID and Near-OOD games typi-
cally fall into the four main genres, it’s plausible that the
task knowledge from ID environments can be applied to
Near-OOD environments, but not Far-OOD.

For example, as illustrated in the first column of Figure 5, the
model pre-trained on SpaceInvaders (ID) learns task-specific
knowledge such as agent and enemy locations as well as
bullet movement direction, which are characteristic of the
vertical shooting genre. This knowledge helps the model
to quickly identify similar gameplay elements in Assault
(Near-OOD), despite not having been exposed to the game
during pre-training. Conversely, task-specific knowledge
is rendered ineffective in Surround (Far-OOD), with its
unique task of avoiding trails and distinct agent locations.
This difference shows the difficulty in applying pre-learned
task knowledge to environments with considerably different
mechanisms.

O3: Learning reward-specific information from trajectories
yields the best ID performance, while it shows limited gener-
alization gains in Near-OOD and Far-OOD environments.

Integrating reward-specific information from trajectories
(DT, CQL-M, CQL-D) led to superior success in ID envi-
ronments. Nonetheless, their effectiveness diminished in
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Figure 5: Qualitative analysis of methods. EigenCAM
visualization of the pre-trained backbones in 3 games:
SpaceInvaders (ID), Assault (Near-OOD), and Surround
(Far-OOD). The agents are marked in red circles for each
game (first column). We chose one representative method
for each algorithm class.

Near-OOD and Far-OOD environments, where they lagged
behind demonstration-based and video-based approaches.
This shows that extracting reward-specific knowledge (e.g.,
rewarded for shooting enemies) enhances performance in
familiar settings, but fails to generalize across environments
with different reward functions (e.g., rewarded for shooting
enemies but penalized for missing) or tasks (e.g., receiv-
ing rewards when surrounding the enemy), indicating their
limitations for broader generalization.

To further validate our observations, we conducted a quali-
tative analysis of the pre-trained models with Eigen-CAM
(Muhammad & Yeasin, 2020), which are illustrated in Fig-
ure 5. In ID games like SpaceInvaders, we found that unlike
video-based methods (ATC), the demonstration or trajectory-
based methods (BC, CQL-D) concentrated on capturing
the agent, a critical object of the task. Interestingly, an
identical pattern was observed in Near-OOD environments
like Assault, fortifying our conjecture that the task-specific
knowledge acquired during pre-training can be transferred
to visually distinct environments. For an extended discus-
sion and analysis, refer to Appendix C.3.

O4: Effective adaptation in one scenario correlates to effec-
tive adaptation in the other.

Figure 4 shows a strong correlation between performances in
offline behavioral cloning and online reinforcement learning,
with Pearson correlation coefficients of 0.85 in ID, 0.61 in
Near-OOD, and 0.63 in Far-OOD environments.

This suggests that a well-pre-trained model can yield versa-
tile representations applicable to a wide range of scenarios,
not limited to specific adaptation algorithms (Parisi et al.,
2022; Majumdar et al., 2023a).
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Figure 6: Effect of data optimality. Offline BC perfor-
mance of algorithms after pre-training with datasets of dif-
fering optimality. We control the dataset optimality via
the proficiency of the policy that created it, which in turn
can be controlled by choosing different checkpoints of the
DQN-Replay-Dataset (Agarwal et al., 2020).

O5: Miscellaneous Remarks

Inspired by Taiga et al. (2022), we have conducted an addi-
tional experiment to fine-tune our pre-trained models on ID
environments with different game modes (Machado et al.,
2018). Detailed protocol and results can be found in Ap-
pendix C.1. As shown in Figure 9, the results were similar
to that of ID in our main experiments. We believe that sim-
ply changing the game mode did not sufficiently alter the
reward functions and thus led to similar tendencies.

Additionally, we noticed that in end-to-end fine-tuning for
Online RL, the smaller 3-layer CNN agent (CNN3) often
outperforms the larger ResNet-50 agent (RN50). This find-
ing is consistent with prior research, which suggests that
deep and large models are prone to overfitting and are more
vulnerable to the non-stationary nature of Online RL (Lee
et al., 2024b). Many studies have proposed techniques to
mitigate this issue (Nikishin et al., 2022; Lee et al., 2024a;
Farebrother et al., 2024), suggesting that applying such
methods could make larger architectures more competitive.

Finally, we have found an interesting relationship between
object size and the performance of mask-based algorithms
(MAE, SiamMAE). Compared to other pre-training methods
like CURL and ATC, these methods excel in environments
with large objects but underperform in games with tiny
objects. For more details, please refer to Appendix C.2.

7. Ablation Studies
In our ablation studies, we assess the effects of variations in
data optimality, size, and model size on pre-training meth-
ods. We selected CURL (image), ATC (video), BC (demon-
stration), and CQL-D (trajectory) as representative methods
for comparison. Unless otherwise noted, the experimental
setup remains identical to our main experiments.
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Figure 7: Effect of Dataset Size. We measure the Offline
BC performance after pre-training with datasets of varying
sizes. All datasets were derived from the same DQN-Replay-
Dataset runs and checkpoints, with different numbers of
transitions sampled based on dataset size.

7.1. Data Optimality

A key factor in building pre-training datasets for RL is data
optimality. We investigated the impact of data optimality
using three distinct datasets from the DQN-Replay-Dataset:

• Suboptimal: Data from the first and second checkpoint
of each game, each with 50,000 interactions.

• Mixed: Data from the first ten checkpoints per game,
each with 10,000 interactions (same as our main setup).

• Expert: Data from the ninth and tenth checkpoint of
each game, each with 50,000 interactions.

O6: Using optimal data enhances ID adaptation but falters
generalization in Near-OOD and Far-OOD environments.

Figure 6 shows that using optimal data does not guarantee
improved performance in downstream environments. While
moving from a Mixed dataset to an Expert dataset enhances
performance in ID environments, its effectiveness was lim-
ited in Near-OOD and Far-OOD environments.

Optimal gameplay in Atari games usually follows repeti-
tive patterns, resulting in limited diversity in Expert dataset.
Such uniformity likely hindered the pre-trained model’s abil-
ity to generalize to unfamiliar objects, by making it overly
tailored to the objects encountered during pre-training. On
the other hand, models pre-trained on datasets that blend op-
timal and suboptimal transitions (Mixed) showed enhanced
generalization capabilities, particularly in Far-OOD envi-
ronments. This improvement underscores the significance
of dataset diversity for achieving effective generalization, a
principle supported by recent research (Taiga et al., 2022).

7.2. Data Size

The scalability of pre-training methods can be significantly
influenced by the size of the pre-training dataset. We ex-
plored this by using datasets of varying sizes: 1M, 10M,

R-18 R-50
-0.05

0.05

0.15

0.25

0.35

ID
R-18 R-50

0.00

0.05

0.10

0.15

0.20

0.25

Near-OOD
R-18 R-500.00

0.20

0.40

0.60

0.80

Far-OOD

No
rm

al
ize

d 
IQ

M

Random CURL ATC BC CQL-D

Figure 8: Effect of model size. Offline BC performance of
algorithms utilizing different-sized models. We scaled the
depth of models by the number of layers, and the width by
the number of channels. Here, we also provide the Random
performance of the modified models as a baseline.

and 100M transitions, each derived from the same runs and
checkpoints but adjusted to their respective sizes.

• 1M: Consists of 1,000 initial transitions, sampled from
the 10 initial checkpoints of each run.

• 10M: Our standard setup, with 10,000 initial transitions
from each checkpoint.

• 100M: The largest dataset, containing 100,000 initial
transitions from each checkpoint.

Models were pre-trained over 100 epochs for 1M and 10M
datasets. However, due to the substantial size of the 100M
dataset, pre-training was limited to 10 epochs.

O7: Larger dataset enhances ID adaptation but shows
mixed effects on Near-OOD and Far-OOD generalization.

Figure 7 shows that larger datasets improved performance
in ID settings, especially for methods involving demonstra-
tions or trajectories. However, the benefits were less pre-
dictable in Near-OOD and Far-OOD environments, possibly
because the model is relatively too small to fully encode all
the information within large datasets in 10 epochs.

Consistent with our earlier findings in O1, O2, and O3,
demonstration-based methods excelled in Near-OOD set-
tings, while video-based methods were more effective in
Far-OOD scenarios. This reiterates our findings that learn-
ing task-agnostic features improves generalization across
distributions, but the benefits of learning task-relevant fea-
tures diminish as task shifts increase.

7.3. Model Size

In the subsequent analysis, we explore how pre-training
methods scale with changes in model size:

• R-18: A scaled-down model with reduced depth (18
layers) and halved channel widths, compared to R-50.

• R-50: A standard model architecture used in our study.
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O8: Larger model provides consistent benefits in ID and
Near-OOD, while its improvement is unclear in Far-OOD.

When comparing ResNet-18 to ResNet-50, we found that
larger models improve results in ID and Near-OOD sce-
narios. While broader computer vision research suggests
larger models usually offer better generalization to out-of-
distribution (OOD) environments, this trend was not clearly
observed in our Far-OOD experiments.

Nevertheless, the experimental results aligned with our
prior observations (O1, O2, and O3), indicating that
demonstration-based methods perform better in Near-OOD
environments, and video-based methods excel in Far-OOD
environments, irrespective to their model size.

8. Conclusion and Future Work
In this study, we examined how different pre-training ob-
jectives affect agents’ generalization capabilities in vision-
based reinforcement learning (RL). Our findings indicate
that learning task-agnostic features, such as spatial features
(e.g., object locations and shapes) and temporal features
(e.g., speed and direction of moving objects), enhances
generalization across various visual and task distribution
shifts. In contrast, learning task-specific features, through
actions (e.g., locations of agents and related objects) or re-
ward structures (e.g., identifying beneficial or detrimental
actions), improves performance in similar tasks but offers
limited benefits in divergent task distributions.

Our results align with prior theoretical works demonstrating
the benefits of learning temporal structures in environments
for acquiring optimal feature representations (Bellemare
et al., 2019; Lan et al., 2022). In this work, we provide
empirical evidences supporting the notion that learning tem-
poral structures within environments can improve general-
ization across various types of task shifts.

The RL community has recently introduced diverse datasets
covering a wide range of human and robotic behaviors
(Padalkar et al., 2023; Grauman et al., 2022). Our results
suggest that pre-training with both task-agnostic and task-
specific knowledge offers distinct benefits: one enhances
generalization to different shifts, while the other excels in
similar environments. Therefore, a promising future direc-
tion is to develop architectures or learning objectives that
can decouple task-agnostic and task-specific features, allow-
ing their use based on specific purposes (Wang et al., 2022;
Bhateja et al., 2023). We hope our investigation provides
valuable insights for advancing vision-based RL.
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A. Extended Related Work
The availability of large-scale offline datasets tailored for robotics (Walke et al., 2023; Shah et al., 2023; Mendonca et al.,
2023) has significantly influenced reinforcement learning (RL) research. This influence is particularly notable in adopting a
pre-trained visual encoder for various downstream tasks (Ye et al., 2022; Ma et al., 2022; Lee et al., 2023).

A crucial aspect in the selection of pre-trained models is the type of data employed during pre-training. These algorithms
are typically categorized by the data they use: Images, Videos, Demonstrations, and Trajectories. Each category utilizes
different objectives to extract distinct features during the pre-training phase.

Image: Image-based learning encompasses two main strategies. The first focuses on augmentation-invariant representations,
achieved by ensuring consistency in the latent space for different augmentations of the same image (Chen et al., 2020a;
Laskin et al., 2020b; Chen & He, 2021; Chen et al., 2020b; Grill et al., 2020). The second strategy involves reconstructing
heavily masked images, leveraging transformer architectures (He et al., 2022; Seo et al., 2023a;b).

Video: Video-based algorithms extend image-based techniques by integrating temporality. Temporal contrastive learning,
for example, aims to closely encode temporally adjacent images to understand temporal dynamics (Nair et al., 2022; Ma
et al., 2022; Sermanet et al., 2018; Han et al., 2019; Stooke et al., 2021). Other approaches include reconstructing masked
images from temporally adjacent frames (Yu et al., 2022; Gupta et al., 2023; Tong et al., 2022; Feichtenhofer et al., 2022),
or autoregressively predicting future frames based on past observations (Hafner et al., 2019b; Seo et al., 2022).

Demonstration: Learning from demonstrations has a wide range of methods. Inverse dynamics learning focuses on
predicting actions, given consecutive states (Christiano et al., 2016; Islam et al., 2022; Brandfonbrener et al., 2023). Forward
dynamics learning targets predicting future states from current state-action pairs (Schwarzer et al., 2020b; Yu et al., 2021;
Lee et al., 2023; Zheng et al., 2023). Imitation learning, on the other hand, aims to replicate the behavior policy demonstrated
in the data (Pomerleau, 1991; Zang et al., 2022; Arora et al., 2020; Baker et al., 2022; Caluwaerts et al., 2023). Some
approaches combine multiple methods for enhanced robustness Yu et al. (2022); Zhang et al. (2022).

Trajectory: Trajectory-based methods maximize the use of reward information available in trajectories. These can be
broadly categorized into two settings: online, where data is collected through real-time interaction with the environment
(Mnih et al., 2015; Bellemare et al., 2017a; Hafner et al., 2019a; Laskin et al., 2020a), and offline, which involves learning
from pre-existing datasets (Fujimoto et al., 2019; Kumar et al., 2020; Lee et al., 2022a; Nakamoto et al., 2023; Wu et al.,
2023; Lee et al., 2022b).

Recent studies have evaluated the effectiveness of pre-trained visual representations in vision-based RL, employing a variety
of pre-training methods (Parisi et al., 2022; Majumdar et al., 2023b; Hu et al., 2023). These investigations have used different
models, including ResNet (He et al., 2016) and ViT (Dosovitskiy et al., 2020), which were pre-trained on a wide array of
datasets (Deng et al., 2009; Savva et al., 2019; Tassa et al., 2018; Grauman et al., 2022). The findings indicate that while
visual representations pre-trained on large and diverse datasets can enhance generalization in downstream tasks, no single
pre-trained model consistently excels in generalization across all types of tasks.
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B. Implementation Details for Atari-PB
B.1. Pre-training

In this section, we describe our pre-training stage in detail. We first depict the three components of our pre-training model
(backbone, neck, and head) and explain how our pre-training dataset was curated. Note that the model description is
our most fundamental form, and that adjustments are often made to align with each method’s requirements. For such
algorithm-specific elements, refer to Section B.2.

Backbone, f(·): A backbone network is a game-agnostic spatial feature extractor. We employ a widely used and sufficiently
large ResNet-50, but replace batch normalization with group normalization following Kumar et al. (2022a). Given an
(4, 84, 84) input o, the backbone encodes them into a (2048, 6, 6) feature map z = f(o).

Neck, g(·): The main goal of neck is to encode the feature map into a 512-dimensional vector q = g(z), while applying
learnable spatial embedding. Given the backbone output, each feature map is point-wise multiplied with its game-specific
spatial embedding. Spatial pooling and instance normalization is then applied to obtain a 2048-dimensional vector, which
is further encoded by a neural network. Unless stated otherwise, we use a 2-layer MLP with ReLU activation, hidden
dimension of 1024, and output dimension of 512.

Head, h(·): The head makes the prediction y = h(q), where y’s dimensionality depends on the task. We employ a
multi-head architecture, meaning that multiple neural networks of identical architecture are trained, each one devoted for
each game. Unless specified, we use a single linear layer that outputs the action prediction y ∈ RA.

Dataset: The DQN-Replay-Dataset (Agarwal et al., 2020), a collection of DQN agent’s training logs in 60 Atari games,
provides 50 million transitions for each game collected across five different runs. These runs are subdivided into 50
checkpoints, each containing 1 million transitions of differing optimality. To fulfill our desiderata of ”reflecting the diverse
nature of real-world datasets” while keeping it computationally accessible, we choose to compile small segments from
multiple runs and checkpoints. Our data creation procedure is thus the following: from the 50 games of our choice, we
choose the first 2 runs of each game and the first 10 checkpoints of each run. From each of the 1,000 checkpoints, the initial
10,000 interactions are sampled, resulting in a 10 million dataset. We found the initial 10 checkpoints to be sufficient for
covering both suboptimal and expert policies; as shown by the supplementary figures of Agarwal et al. (2020), 40 million
steps (end of 10th checkpoint) is enough for DQN agents to achieve reasonable score in all games.

Table 1: Games categorized by distribution.

Distribution Games

In-Distribution AirRaid, Amidar, Asteroids, Atlantis, BankHeist,
BattleZone, Berzerk, Bowling, Boxing, Breakout,
Carnival, Centipede, ChopperCommand, CrazyClimber, DemonAttack,
DoubleDunk, ElevatorAction, Enduro, FishingDerby, Freeway,
Frostbite, Gopher, Gravitar, Hero, IceHockey,
Jamesbond, Kangaroo, Krull, KungFuMaster, MontezumaRevenge,
MsPacman, NameThisGame, Phoenix, Pitfall, PrivateEye,
Qbert, RoadRunner, Robotank, Skiing, Solaris,
SpaceInvaders, StarGunner, Tennis, TimePilot, Tutankham,
UpNDown, VideoPinball, WizardOfWor, YarsRevenge, Zaxxon

Near-Out-of-Distribution Alien, Assault, Asterix, BeamRider, JourneyEscape,
Pong, Pooyan, Riverraid, Seaquest, Venture

Far-Out-of-Distribution BasicMath, HumanCannonball, Klax, Othello, Surround
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B.2. Baseline Implementations

We provide a more detailed description of each method in the following sections. Table 2 shows the universal hyperparameters
across all pre-training methods; any method-specific hyperparameters are individually listed in the following tables.

Table 2: Global pre-training hyperparameters.

Hyperparameter Value

Observation rendering (84,84), Grayscale
Frames stacked 4
Reward discount factor (γ) 1.0 (DT)

0.99 (Rest)
Action space size (|A|) 18

Augmentation [Random Shift, Intensity]
Random shift pad 4
Intensity scale 0.05

Learning rate scheduler Cosine annealing with warmup
Warmup ratio 0.1
Initial learning rate ratio 0.1

B.2.1. CURL

Contrastive Unsupervised Representations for Reinforcement Learning (Laskin et al., 2020b) learns augmentation invariant
representations using InfoNCE loss and momentum encoder. Given two augmented versions (two views) of an image
(denoted o1,o2), one is passed through an ’online’ encoder to get q = g(f(o1)) and the other is passed through a coupled
’momentum’ encoder to get a target q+ = g′(f ′(o2)). To predict the target, q is passed through a predictor network to get
y = h(q). The InfoNCE loss is then computed based on y and q+:

LCURL = −
∑
b∈B

log
exp(yb · qb

+)

exp(yb · qb
+) +

∑
b′∈B−{b} exp(y

b · qb′
+)

As implied in the notations, we use backbone and neck as the encoder and head as the predictor. The momentum networks
f ′, g′ are updated every iteration with a coefficient of τ = 0.99 that scales linearly up to 0.999. As for the similarity measure,
we use dot product instead of bilinear product (Chen et al., 2020b).

Table 3: Hyperparameters for pre-training CURL.

Hyperparameter Value

Epochs (early stop) 100 (20)
Base learning rate 3e-6
Weight decay 1e-5
Optimizer (β1, β2) AdamW (0.9, 0.999)
Batch size 512

Momentum update ratio (τ ) [0.9, 0.999]
Representation dimensions 512
Similarity measure Dot product

B.2.2. MAE

Masked Autoencoder (He et al., 2022) learns to reconstruct heavily masked images with transformer encoder-decoder
architecture. As we use a convolutional network for our backbone, we naturally turn from masking patches of images
to masking pixels of convolutional features, inspired by Seo et al. (2023a). The transformer encoder-decoder module is
added at the end of our neck, and the head is used to predict the target pixels. In the neck, we perform masking after
applying the game-wise spatial embedding, and pass the 2048-dimensional features through a 2 layer MLP into a sequence
of 512-dimensional tokens. These are then processed with a transformer encoder, appended with mask tokens for prediction,
and further processed with a transformer decoder. Finally, the head’s game-wise linear layer is used to predict the pixels
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of the target image. Because the backbone reduces an (84, 84) image into a (6, 6) spatial embedding (or 36 tokens), the
game-wise linear layer maps each token to a 784-dimensional vector to predict a (4, 14, 14) sized patch of the target image.

We follow the hyperparameters provided by He et al. (2022) but use a higher mask ratio ρ = 0.9. We use a 3-layer
transformer encoder and a 4-layer transformer decoder, following Seo et al. (2023a).

Table 4: Hyperparameters for pre-training MAE.

Hyperparameter Value

Epochs 100
Base learning rate 3e-4
Weight decay 5e-2
Optimizer (β1, β2) AdamW (0.9, 0.95)
Batch size 512

Mask ratio (ρ) 0.9
Transformer embedding dimensions 512
Transformer MLP ratio 4
Transformer heads 4
Transformer encoder layers 3
Transformer decoder layers 4
(Head) Linear output dimensions 768

B.2.3. ATC

Augmented Temporal Contrast (Stooke et al., 2021) learns temporally predictive representations by maximizing the similarity
between the representations of current states and their paired future states, using InfoNCE loss and momentum encoder.
This means that the input image ot is encoded by an ’online’ encoder into qt = g(f(ot)), and its near-future target image
ot+k is encoded by a ’momentum’ encoder into qt+k = g′(f ′(ot+k)). With the two representations in hand, the predictor
predicts the target qt+k via yt = h(qt) to minimize the InfoNCE loss:

LATC = −
∑
b∈B

log
exp(yb

t · qb
t+k)

exp(yb
t · qb

t+k) +
∑

b′∈B−{b} exp(y
b
t · qb′

t+k)

Same as CURL, we use the backbone and neck as our encoder and the head as our predictor. The momentum update is
performed every iteration with a coefficient of τ = 0.99 that scales linearly up to 0.999. We also use dot product instead of
bilinear product as a similarity measure.

Table 5: Hyperparameters for pre-training ATC.

Hyperparameter Value

Epochs 100
Base learning rate 3e-4
Weight decay 1e-5
Optimizer (β1, β2) AdamW (0.9, 0.999)
Batch size 512

Steps to future state (k) 3
Momentum update ratio (τ ) [0.9, 0.999]
Representation dimensions 512
Similarity measure Dot product

B.2.4. SIAMMAE

Siamese Masked Autoencoder (Gupta et al., 2023) extends MAE (He et al., 2022) to a temporal prediction task using siamese
architecture and asymmetric masking strategy. Concretely, both current image ot and future(target) image ot+k are passed
through the same network up until the transformer decoder. In our implementation, this includes the backbone, game-wise
spatial embedding, and the transformer encoder. In the process, ot+k is masked with an extremely high ratio(ρ = 0.95)
while ot remains untouched. In order to retrieve the lost information, the transformer decoder refers to the current frame’s
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information via cross attention. For image reconstruction, we use the same head as our MAE. Overall, we follow the training
procedure stated by Gupta et al. (2023) with some modifications. First, for the same reason as MAE, we use convolution
feature masking instead of patch masking. Second, we use the transformer architecture used to train our MAE. Third, we
reduce the future sampling window from [4, 48] to [1, 3].

Table 6: Hyperparameters for pre-training SiamMAE.

Hyperparameter Value

Epochs 100
Base learning rate 3e-4
Weight decay 5e-2
Optimizer (β1, β2) AdamW (0.9, 0.95)
Batch size 512

Steps to future state (k) [1,3]
Mask ratio (ρ) 0.95
Transformer embedding dimensions 512
Transformer MLP ratio 4
Transformer heads 4
Transformer encoder layers 3
Transformer decoder layers 4
(Head) Linear output dimensions 768

B.2.5. R3M†

Reusable Representations for Robot Manipulation (Nair et al., 2022) uses multiple losses to learn from human demonstration
videos with diverse tasks, but we focus our study on the time contrastive loss. Although similar to InfoNCE loss in
ATC (Stooke et al., 2021), the main difference is that in addition to the future(target) image ot+k, a further-future image
ot+k′(k < k′) is sampled as a ’hard’ negative. Unfortunately, we find pre-training with the original time contrastive loss to
be challenging. In order to preserve the aforementioned idea, we implement R3M as ’ATC with an additional hard negative’
and use the following loss function:

LR3M = −
∑
b∈B

log
exp(yb

t · qb
t+k)

exp(yb
t · qb

t+k) +
∑

b′∈B−{b} exp(y
b
t · qb′

t+k) + exp(yb
t · qb

t+k′)

Naturally, we use the same momentum networks as ATC; all future images are passed through momentum backbone and
neck, which are updated every iteration.

Table 7: Hyperparameters for pre-training R3M†.

Hyperparameter Value

Epochs 100
Base learning rate 3e-4
Weight decay 1e-5
Optimizer (β1, β2) AdamW (0.9, 0.999)
Batch size 512

Steps to future states (k, k′) 3, 6
Momentum update ratio (τ ) [0.9, 0.999]
Output representation dimensions 512
Similarity measure Dot product
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B.2.6. BC

Behavioral cloning learns to predict the action at from its observation ot. Predictions are made by a single pass through the
model yt = h(g(f(ot))), of which goal is to minimize the cross entropy loss between yt and at.

Table 8: Hyperparameters for pre-training BC.

Hyperparameter Value

Epochs 100
Base learning rate 3e-4
Weight decay 1e-5
Optimizer (β1, β2) AdamW (0.9, 0.999)
Batch size 512

B.2.7. SPR

Self Predictive Representations (Schwarzer et al., 2020b) learn to recursively predict future states from a starting state and
subsequent actions. Given an image ot and a sequence of actions at:t+K−1, the model’s goal is to predict the consequent
future images ot+1:t+K in the latent space. The current image is encoded using an ’online’ network to get qt = f(g(ot)),
which is used in tandem with the actions to predict future representations yt+1:t+K = h(qt,at:t+K−1). The target
representations are obtained by encoding the future images with a ’momentum’ encoder: qi = f ′(g′(oi)), i ∈ [t+1, t+K].
In our experiments, we make the following modifications. First, we use RNN instead of recursive CNN, which is put in front
of the linear layer in the head network. A game-wise action embedding for the RNN input, as each game uses a different set
of actions. Second, we use contrastive loss instead of cosine similarity loss. Third, we discard the Q-learning loss. As a
result, we use the following loss:

LSPR = −
∑
b∈B

K∑
k=1

log
exp(yb

t+k · qb
t+k)∑

b′∈B

∑K
k′=1 exp(y

b
t+k · qb′

t+k′)

Table 9: Hyperparameters for pre-training SPR.

Hyperparameter Value

Epochs 25
Base learning rate 3e-4
Weight decay 1e-4
Optimizer (β1, β2) AdamW (0.9, 0.999)
Batch size 128

Prediction sequence length (K) 4
Momentum update ratio (τ ) [0.9, 0.999]
Representation dimensions 512
Similarity measure Dot product

B.2.8. IDM

Inverse Dynamics Modeling (Christiano et al., 2016) learns to predict the action at taken between two successive observations
ot,ot+1. Both images are passed through the same backbone and neck to obtain qt = g(f(ot)) and qt+1 = g(f(ot+1)),
which are concatenated to make an action prediction via yt = h(qt,qt+1). Same as BC, we use the cross-entropy loss
between yt and at.

B.2.9. SPR+IDM

In combining the two algorithms, we do not make any modifications, and simply use the sum of two losses to pre-train the
model.
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Table 10: Hyperparameters for pre-training IDM.

Hyperparameter Value

Epochs (early stop) 100 (30)
Base learning rate 3e-4
Weight decay 1e-5
Optimizer (β1, β2) AdamW (0.9, 0.999)
Batch size 512

Table 11: Hyperparameters for pre-training SPR+IDM.

Hyperparameter Value

Epochs 25
Base learning rate 3e-5
Weight decay 1e-5
Optimizer (β1, β2) AdamW (0.9, 0.999)
Batch size 128

Prediction sequence length (K) 4
Momentum update ratio (τ ) [0.9, 0.999]
Representation dimensions 512
Similarity measure Dot product

B.2.10. CQL

Conservative Q-Learning (Kumar et al., 2020) is developed for learning Q values in an offline setting. We implement two
distinct Q learning methods: Mean Squared Error (MSE) learning and Cross-entropy (Distributional) learning, both based
on CQL. We choose ResNet50 as the backbone architecture, with a neck structure consistent with that in Behavioral Cloning
(BC) for both MSE and Distributional.

MSE: In MSE-based Q-learning, we employ a game-wise head that yields an output in the shape of RB×T×A, where B
denotes the batch size, T represents the number of time steps, and A signifies the size of the action space. We balance the
MSE loss and CQL loss using a coefficient of 0.1.

Table 12: Hyperparameters for pre-training CQL-M.

Hyperparameter Value

Epochs 100
Base learning rate 1e-4
Weight decay 1e-5
Optimizer (β1, β2) AdamW (0.9, 0.95)
Batch size 512

CQL coefficient 0.1

Distributional: For cross-entropy-based distributional Q-learning, we utilize a game-wise head designed to produce an
output dimension of RB×T×A×NA , with B, T,A having the same implications as in MSE, and NA representing the number
of atoms. We set a coefficient of 0.1 to balance cross-entropy loss and CQL loss, consistent with Kumar et al. (2022a).
Additionally, we adopted a support set of [-10, 10] following the methodology in Bellemare et al. (2017b).

B.2.11. DT

Decision Transformer (DT) (Chen et al., 2021) adopts a unique perspective by treating reinforcement learning as a sequence
modeling problem. It represents each transition within a trajectory as a triplet consisting of total return R̂t, observation ot,
and action at. DT is trained to autoregressively predict these sequences, given the transition history

⋃t−1
i=1{R̂i, oi, ai}. At

inference, this knowledge is leveraged to predict the optimal actions necessary for achieving a desired cumulative reward.

In our implementation, observations are encoded by the backbone and a 2-layer MLP with game-specific spatial embedding,
generating 512-dimensional tokens. Actions and returns are separately embedded into 512-dimensional tokens, resulting in
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Table 13: Hyperparameters for pre-training CQL-D.

Hyperparameter Value

Epochs 100
Base learning rate 1e-4
Weight decay 1e-5
Optimizer (β1, β2) AdamW (0.9, 0.95)
Batch size 512

Support Set [-10, 10]
CQL coefficient 0.1

a sequence of length K × 3. This sequence is processed through a causal transformer to produce K outputs. The outputs are
then utilized by the head layer to predict actions a1:K . We employ cross-entropy loss for training the model.

Table 14: Hyperparameters for pre-training DT.

Hyperparameter Value

Epochs 12
Base learning rate 1e-4
Weight decay 5e-2
Optimizer (β1, β2) AdamW (0.9, 0.95)
Batch size 64

Sequence length (in tokens) 8× 3
Reward scale 0.01
Transformer embedding dimensions 512
Transformer MLP ratio 4
Transformer heads 4
Transformer layers 4
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B.3. Fine-tuning

After pre-training, we assess the pre-trained models on two downstream adaptation scenarios: Offline Behavioral Cloning
(BC) and Online Reinforcement Learning (RL). Each task is conducted on three distinct sets of games (ID, Near-OOD,
Far-OOD), including two sets unseen during pre-training. Results are compiled from three independent runs (seeds).

The backbone network is kept frozen to focus on the quality of representations, while other components are re-initialized.
Any modifications revert to the standard architecture as detailed in Section 5.2 and Section B.1. This process is uniformly
applied across all games.

B.3.1. OFFLINE BC

In Offline BC, expert demonstrations are used for learning control. Specifically, the fine-tuning dataset for ID and Near-OOD
games are sampled from DQN-Replay-Dataset. From the five runs, we use the last checkpoints and sample the initial 10,000
interactions. For Far-OOD games, we train a Rainbow agent on each environment for 2M steps and record the last 50,000
interactions. As a result, each fine-tuning stage is performed over a 50k dataset for 100 epochs. The final performance is
evaluated by the average gameplay score of 100 trials.

Table 15: Hyperparameters for downstream Offline BC.

Hyperparameter Value

Augmentation [Random Shift, Intensity]
Random shift pad 4
Intensity scale 0.05

Learning rate scheduler Cosine annealing with warmup
Warmup ratio 0.1
Initial learning rate ratio 0.1
Base learning rate 1e-3
Weight decay 1e-4
Optimizer (β1, β2) AdamW (0.9, 0.999)
Batch size 512
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B.3.2. ONLINE RL

Following the standard experimental setup from sample-efficient Atari benchmark (Kaiser et al., 2019; Schwarzer et al.,
2021b), we train a Q-learning layer on top of the frozen encoder via the Rainbow algorithm (Hessel et al., 2018). For
the sake of simplicity, we do not use noisy layers and use epsilon greedy for exploration. Similar to the Offline BC, we
trained the model for 50k steps and the performance is measured by the average gameplay score over 100 attempts. Detailed
hyperparameters are listed in Table 16.

Table 16: Hyperparameters for downstream Online RL.

Hyperparameter Value

Augmentation [Random Shift, Intensity]
Random shift pad 4
Intensity scale 0.05

Training steps 50k
Update Distributional Q
Dueling True
Support of Q-distribution 51
Discount factor γ 0.99
Batch size 32
Optimizer (β1, β2, ϵ) Adam (0.9, 0.999, 0.000015)
Learning rate 0.0001
Max gradient norm 10
Priority exponent 0.5
Priority correction 0.4 → 1
Exploration Schedule (start, end, steps) Epsilon Greedy (50k, 1.0, 0.02)
Replay buffer size 50k
Min buffer size for sampling 2000
Replay per training step 1
Updates per replay step 2
Multi-step return length 10
Q-head hidden units 1024
Q-head non-linearity ReLU
Evaluation trajectories 100
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Figure 9: The results of offline BC and online RL in environments where only the mode is changed from the pre-training
game environments.

C. Extended Experimental Results
Here, we present additional experimental results that were not included in the Section 6.

C.1. Game-Mode Change

For Near-OOD in the main experiment (Figure 4), we fine-tuned with offline BC and online RL using games that were
different from the pre-training but belonged to the same task genre. However, some might think that simply changing
the modes of the games used in pre-training would be more suitable for Near-OOD (Machado et al., 2018). The reason
we chose the Near-OOD environment in the main experiment is that changing the mode results in slight changes, such
as alterations in the color or shape of objects. Therefore, we thought it was unrealistic because it is very similar to the
pre-training environment, indicating that the fine-tuning environment is almost the same as the pre-training environment. For
example, let’s assume we are training a house-cleaning robot using the pretrain-then-finetune method. In this case, changing
the mode is analogous to training the robot on different colored/shaped objects within the same house in the pre-training
stage. Assuming that the fine-tuning environment is the same as the pre-training environment is unrealistic.

To support our selection, we conducted offline BC and online RL fine-tuning experiments by changing the modes of the
games listed in Table 17. Additionally, to match the scale of the results for each game, we normalized with the final scores
of the Rainbow agent trained with 2 million steps as in the Far-OOD setting of the main experiment. The experimental
results are shown in Figure 9. Similar to Figure 4(a), learning reward-specific knowledge yields best performance even in
the Game-Mode Change environment. This means that the reward function in the Game-Mode Change environment is very
similar to the pre-training environment. In other words, simply changing the game mode is not significantly different from
the ID.

Table 17: Games used in the game mode change experiment.

Games(Mode) AirRaid(5), Asteroids(17), Atlantis(3), BankHeist(5), Berzerk(7),
Breakout(7), CrazyClimber(3), DemonAttack(3), DoubleDunk(9), Freeway(5),
Gravitar(3), Hero(3), Krull(3), MsPacman(3), PrivateEye(3),
Skiing(6), SpaceInvaders(9), StarGunner(3), Tutankham(3), YarsRevenge(3)
Zaxxon(3)

C.2. Relationship Between Object Size and Mask-Based Methods

One unique property of the Atari environments is the large variance of object sizes, ranging from few hundred pixels to
mere 1-2 pixels. This led us to hypothesize that mask-based reconstruction methods may struggle to deal with small objects,
as these objects can be entirely occluded by masking operation.

To investigate this, we categorized ID and Near-OOD environments by their object size (see Table 18) and compared the
mask-based methods (MAE, SiamMAE) against latent reconstruction methods in the same category (CURL, ATC). As
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illustrated in Figure 10, the results indeed support our proposition. Mask-based methods underperformed with small objects
and excelled with larger objects, implying that the object size in environments can play a crucial role in these models.
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Figure 10: Mask-based methods relative to object sizes. A comparative analysis of mask-based versus non-mask methods
in ID and Near-OOD games, classified by object size (small, medium, large). The results indicate that mask-based methods
tend to excel more in games with larger objects compared to smaller ones.

Table 18: Games categorized by object size. Far-OOD games are not included.

Object size Games

Small Amidar, BankHeist, Bowling, Breakout, Centipede,
Gravitar, Jamesbond, Krull, MsPacman, Phoenix,
Pitfall, Pong, Pooyan, Riverraid, Skiing,
StarGunner, TimePilot, Tutankham, Venture, VideoPinball

Medium Alien, Asterix, Asteroids, Atlantis, BeamRider,
Berzerk, Carnival, ChopperCommand, CrazyClimber, DemonAttack,
DoubleDunk, ElevatorAction, FishingDerby, Freeway, Frostbite,
Hero, IceHockey, JourneyEscape, Kangaroo, MontezumaRevenge,
NameThisGame, PrivateEye, Qbert, Robotank, Seaquest
Solaris, SpaceInvaders, Tennis, WizardOfWor, YarsRevenge

Large AirRaid, Assault, BattleZone, Boxing, Enduro,
Gopher, KungFuMaster, RoadRunner, UpNDown, Zaxxon
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C.3. Eigen-CAM Analysis

In this section, we analyze the pre-trained backbones based on what aspects of the observations they concentrate on. We
employed Eigen-CAM (Muhammad & Yeasin, 2020), a visualization method frequently used in computer vision and deep
learning. We randomly sampled an observation from two In-Distribution and two Near-Out-of-Distribution games, and
applied Eigen-CAM on our main models in Section 6.

C.3.1. IN-DISTRIBUTION ENVIRONMENT

For In-Distribution environments, we employ ’Space Invaders’ and ’Boxing’. The outcomes of this analysis are illustrated in
Figure 11. It was observed that when the encoder is pre-trained solely with images, it struggles to capture objects relevant
to the task. However, when pre-trained with data enriched with additional information such as temporal dynamics and
task-relevant information, and values of states and state-action pairs, the encoder effectively identifies meaningful objects.

Input MAE CURL ATC SiamMAE R3M

Image Video

Random

BC SPR IDM DT CQL-M CQL-D

Demonstration Trajectory

(a) SpaceInvaders

Input MAE CURL ATC SiamMAE R3M

BC SPR IDM DT CQL-M CQL-D

Image Video

Demonstration Trajectory

Random

(b) Boxing

Figure 11: Eigen-CAM analysis of ID games. (a) Space Invaders is a game in which players are required to evade
enemy attacks while eliminating as many adversaries as possible through vertical shooting. (b) Boxing is a game where
the player aims to score more points than their opponent by striking the opponent’s face as many as possible within a
set time limit. When looking at Eigen-CAM images, it’s evident that encoders pre-trained with temporal dynamics and
task-related information such as video, action, and reward, rather than just spatial information from images, are more
effective in identifying objects relevant to the task. Additionally, encoders trained using demonstration data, which includes
task-relevant information, show improved ability in capturing and understanding important features for the task.
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C.3.2. NEAR-OUT-OF-DISTRIBUTION ENVIRONMENT

We also analyze the pre-trained encoder in an out-of-distribution environment, which was not used during its pre-training
phase. Specifically, ’Assault’ and ’Pong’ are utilized for this purpose. The outcomes are shown in Figure 12. Similar to the
situation with an in-distribution environment, encoders pre-trained on images alone had difficulty in targeting significant
objects, while those pre-trained on a richer dataset demonstrated effective identification of important objects.
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(a) Assault
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Demonstration Trajectory

Random
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Figure 12: Eigen-CAM analysis of Near-OOD games. (a) Assault is a game where players must avoid enemy assaults and
eliminate as many opponents as possible through either vertical or horizontal shooting. (b) Pong is a game where the player
who reaches a specified score wins by scoring points while preventing the opponent from hitting the ball. Similar to what
we observe in ID, encoders that are trained on temporal dynamics, task-related information, and the value between states
and actions using videos, demonstrations, and trajectories demonstrate superior ability in recognizing task-related objects,
compared to those that only learn spatial aspects from images.

D. Full Results
We provide the individual game scores of all algorithms in our experiments. The scores are recorded at the end of fine-tuning
and averaged over 3 seeds. We also include the mean scores of a randomly behaving agent (aliased RndmAgnt) and the
DQN scores reported by Castro et al. (2018), which are used to compute the DQN normlized score with the formula:
sDNS = (sagent − smin)/(smax − smin) where smax = max(sDQN, sRndmAgnt), smin = min(sDQN, sRndmAgnt), and sagent is the
score to be normalized. For Far-OOD games, instead of DQN, we report the scores of Rainbow (Hessel et al., 2018) trained
for 2M steps and use them for normalization. In addition to IQM, we report the optimality gap of the normalized scores.
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D.1. Main Results
Table 19: Mean episodic scores of Offline BC on In-Distribution games.

Game RndmAgnt DQN Random MAE CURL ATC SiamMAE R3M† BC SPR IDM DT CQL-M CQL-D

AirRaid 579.2 7479.5 1262.2 973.8 970.1 1479.6 3106.9 1422.1 4290.6 1521.2 2743.8 3497.9 3189.5 3754.3
Amidar 5.8 1207.7 55.5 60.1 28.9 60.3 34.8 44.8 65.0 58.0 56.8 58.6 69.4 78.5

Asteroids 719.1 698.4 668.2 603.3 635.1 693.6 826.6 800.4 671.1 872.8 724.8 812.2 794.3 998.3
Atlantis 12850.0 853640.0 7607.7 18895.3 12785.7 13607.0 49505.7 29909.7 24181.3 472835.3 48420.7 25266.7 22112.7 16246.3

BankHeist 14.2 601.8 0.0 18.2 32.9 8.5 21.7 23.8 23.4 40.9 26.1 30.6 62.3 70.8
BattleZone 2360.0 17784.8 3830.0 3040.0 2810.0 8196.7 5150.0 8220.0 6393.3 3780.0 7850.0 5086.7 9323.3 7003.3

Berzerk 123.7 487.5 231.5 311.1 246.1 361.1 393.9 365.3 314.1 371.4 296.0 336.7 422.1 374.4
Bowling 23.1 30.1 0.0 42.9 28.9 29.7 38.8 27.6 28.7 29.1 36.0 33.4 40.9 34.6
Boxing 0.1 78.0 9.5 14.9 54.7 59.4 60.1 52.3 32.3 82.5 49.5 67.0 72.2 45.3

Breakout 1.7 96.2 1.1 1.3 3.4 7.0 2.3 7.8 22.5 25.1 16.8 22.2 41.2 31.1
Carnival 700.8 4784.8 389.7 494.7 759.3 882.0 563.7 683.1 872.9 979.3 1192.1 1536.7 1426.5 1118.7

Centipede 2090.9 2583.0 1700.3 1588.6 1759.7 1471.7 1451.6 1788.7 1815.9 2243.2 1657.5 1821.8 2180.6 1999.3
ChopperCommand 811.0 2690.6 438.3 914.0 1044.3 1130.3 1393.7 1066.3 1092.3 1053.0 1268.3 1526.3 1548.7 1360.0

CrazyClimber 10780.5 104568.8 3548.3 7762.0 3066.7 3892.0 25284.7 55393.3 16002.3 57875.0 55794.7 44730.3 49646.3 82641.3
DemonAttack 152.1 6361.6 44.2 110.4 143.1 126.1 241.3 226.0 269.0 175.6 193.0 533.8 1154.5 1489.3
DoubleDunk −18.6 −6.5 −15.3 −20.9 −19.1 −18.3 −19.6 −18.2 −19.8 −16.5 −17.7 −18.6 −16.9 −19.4

ElevatorAction 4387.0 439.8 0.3 303.7 378.3 617.3 523.7 538.7 870.0 1683.7 2978.0 3014.3 1005.7 1130.0
Enduro 0.0 628.9 5.1 5.4 0.0 15.0 48.0 182.0 152.6 150.9 61.6 141.3 100.3 274.0

FishingDerby −91.7 0.6 −90.4 −81.1 −86.7 −80.1 −53.0 −74.7 −62.3 −86.8 −43.4 −56.7 −74.5 −75.2
Freeway 0.0 26.3 13.0 15.6 20.3 22.0 24.9 20.1 24.1 21.0 22.5 25.9 19.3 22.4
Frostbite 65.2 367.1 95.9 252.1 109.5 213.6 214.6 256.4 396.4 130.9 393.7 185.1 507.5 273.2

Gopher 257.6 5479.9 85.1 323.7 327.3 983.5 709.7 1908.5 1050.3 466.9 749.0 1868.8 1232.4 1064.6
Gravitar 173.0 330.1 77.5 202.3 213.8 242.8 227.2 262.5 236.2 232.8 273.5 222.2 196.3 230.7

Hero 1027.0 17325.4 4282.8 10054.2 7929.6 6222.6 11861.3 4379.3 7053.6 13418.1 7768.3 7817.3 12239.7 10207.0
IceHockey −11.2 −5.8 −1.6 −10.8 −10.0 −8.6 −8.6 −8.1 −7.6 −9.3 −7.3 −8.3 −8.0 −8.5
Jamesbond 29.0 573.3 202.5 156.8 214.8 385.0 397.2 344.3 299.3 322.2 371.2 295.3 302.8 335.5

Kangaroo 52.0 11486.0 500.7 1012.0 954.7 1057.3 1697.0 868.3 1555.7 1147.3 1375.3 1255.0 951.3 1835.7
Krull 1598.0 6097.6 2404.5 2065.8 4232.7 2922.0 5806.2 3611.2 4684.5 6297.9 5915.6 5714.5 7356.0 7155.1

KungFuMaster 258.5 23435.4 1.0 1696.0 287.7 3970.7 9548.0 7484.3 10450.7 15001.3 4622.3 9729.3 10157.7 9852.7
MontezumaRevenge 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MsPacman 307.3 3402.4 273.8 861.4 648.4 629.5 1361.2 1132.8 1334.1 1496.5 1475.3 1374.1 2205.8 2027.4
NameThisGame 2292.3 7278.6 2367.4 4046.7 3745.6 4074.7 5624.4 5028.9 6083.7 4317.9 5688.0 5890.2 6059.5 6209.7

Phoenix 761.4 4996.6 193.6 582.8 749.0 1144.7 1314.6 1886.4 1764.5 1794.7 1686.4 2278.5 2498.5 2245.8
Pitfall −229.4 −73.8 −19.8 −131.8 −214.9 −77.8 −178.8 −56.3 −47.6 −36.2 −45.4 −88.8 −55.8 −88.8

PrivateEye 24.9 −16.0 −527.5 262.4 −924.8 −380.7 98.7 93.1 −703.8 −111.4 −635.1 −303.3 −138.7 −451.7
Qbert 163.9 10117.5 133.6 390.8 294.4 298.8 389.9 399.7 359.6 367.8 376.1 474.2 2110.8 2353.5

RoadRunner 11.5 36925.5 2456.7 2304.3 3373.0 6310.0 4098.3 3980.0 9162.7 5340.7 3706.3 3498.0 1104.0 4979.7
Robotank 2.2 59.8 11.5 5.4 6.2 9.6 13.0 12.3 11.5 9.3 10.9 15.2 11.7 10.2

Skiing −17098.1 −15824.6 −29970.8 −29970.8 −29793.3 −29332.6 −29970.8 −29970.6 −29897.7 −29970.1 −29704.3 −29934.4 −29491.2 −29970.8
Solaris 1236.3 1436.4 971.5 1916.9 2076.9 2003.8 2022.0 2046.4 1843.2 2166.9 2017.7 2314.7 1592.7 1567.8

SpaceInvaders 148.0 1794.2 190.8 190.6 198.4 179.4 296.2 215.6 266.0 169.5 250.2 209.8 168.4 263.8
StarGunner 664.0 42165.2 874.7 726.0 1248.7 3664.3 2472.3 2610.7 2765.0 2183.7 2973.0 2406.3 3543.7 2748.3

Tennis −23.8 −1.5 −17.9 −23.9 −5.7 −23.7 −18.1 −16.1 −11.8 −2.3 −18.2 −16.2 −8.3 −10.7
TimePilot 3568.0 3654.4 1851.3 3267.0 2805.0 3473.0 3240.3 2913.7 3112.0 2243.0 4027.7 2747.7 3633.0 3904.3

Tutankham 11.4 103.8 0.7 1.6 20.5 12.2 4.3 30.9 14.4 18.8 22.5 23.3 45.1 17.9
UpNDown 533.4 8488.3 27.3 2509.3 2151.1 3325.5 4018.2 3565.1 3120.2 5087.2 3478.9 3115.5 2549.3 4288.6

VideoPinball 16256.9 63406.1 1648.6 91.6 5.4 3158.2 1080.6 2512.5 1172.3 8900.4 678.6 1516.5 2120.1 298.2
WizardOfWor 563.5 2065.8 132.3 251.3 572.3 436.0 354.3 323.7 329.0 604.7 525.7 703.3 556.3 543.0
YarsRevenge 3092.9 23909.4 9073.7 8664.9 10317.8 10882.1 11535.6 9253.9 15613.9 8628.6 11851.9 12560.9 13291.8 15732.1

Zaxxon 32.5 4538.6 421.7 1870.3 2174.0 2774.3 3280.7 3386.3 2494.3 2262.0 2360.3 2460.7 3849.7 3291.0

IQM(DNS) 0.0 1.0 −0.0077 0.0554 0.0711 0.1389 0.2209 0.2201 0.2142 0.2655 0.2644 0.2830 0.3302 0.3160
Optimality Gap(DNS) 0.0 1.0 1.9248 1.2456 1.7360 1.2762 1.0006 1.1541 1.4445 1.2556 1.1981 1.2174 0.9126 1.0855

Table 20: Mean episodic scores of Offline BC on Near-Out-of-Distribution games.
Game RndmAgnt DQN Random MAE CURL ATC SiamMAE R3M† BC SPR IDM DT CQL-M CQL-D

Alien 227.8 2484.5 553.5 381.3 536.6 590.8 863.0 539.0 727.0 701.1 816.8 797.8 831.6 469.8
Assault 222.4 1525.2 414.6 134.0 396.8 623.0 726.7 618.4 758.5 550.0 751.1 795.0 738.2 702.7
Asterix 210.0 2711.4 281.5 236.8 294.8 365.3 349.5 392.8 432.7 347.5 487.7 470.0 421.7 521.2

BeamRider 363.9 5852.4 548.3 522.7 533.9 543.5 523.6 623.4 554.3 471.0 551.1 574.4 535.9 519.5
JourneyEscape −19977.0 −3671.1 −8998.0 −12759.3 −14779.0 −11430.0 −11594.0 −12088.7 −11677.3 −14696.3 −13380.0 −11251.3 −12415.3 −12341.3

Pong −20.7 16.6 −20.7 −19.9 −20.6 −6.9 −16.3 −3.2 −0.9 −2.3 3.0 4.2 −2.2 −4.7
Pooyan 371.2 3212.0 18.3 295.4 812.5 690.0 502.3 967.9 880.0 745.5 912.4 712.7 518.5 456.2

Riverraid 1338.5 11638.9 833.3 1638.8 2021.0 2877.5 2156.1 2579.3 2743.1 2667.6 2851.5 3002.0 2474.2 3181.3
Seaquest 68.4 1600.7 75.3 171.3 232.1 252.7 450.6 336.9 479.3 408.7 437.9 392.7 402.7 488.5
Venture 0.0 39.1 0.0 0.7 13.0 8.7 2.7 0.0 5.7 0.0 2.3 2.7 26.0 6.0

IQM(DNS) 0.0 1.0 0.0250 0.0274 0.0930 0.1643 0.1437 0.1608 0.2313 0.1575 0.2200 0.2090 0.2032 0.1915
Optimality Gap(DNS) 0.0 1.0 0.9141 0.9411 0.8682 0.7940 0.8172 0.7980 0.7476 0.8165 0.7510 0.7401 0.7529 0.7839

Table 21: Mean episodic scores of Offline BC on Far-Out-of-Distribution games.
Game RndmAgnt Rainbow Random MAE CURL ATC SiamMAE R3M† BC SPR IDM DT CQL-M CQL-D

BasicMath 0.1334 3.5700 0.6300 1.3700 2.4500 2.8633 3.4967 3.4000 2.7200 2.9467 3.5867 2.5167 2.8167 3.3300
HumanCannonball 1.0767 5.5600 0.7067 1.5033 1.1533 2.8133 1.0500 1.0267 1.8133 0.8167 1.1900 1.0600 1.1833 1.3433

Klax 0.3734 2124.7500 4.4000 3.4167 6.7667 12.8333 13.4333 66.8167 40.6667 23.1000 25.2667 47.8500 28.2833 21.4667
Othello −21.3233 −2.0100 −0.0067 0.0167 −0.0200 −0.1500 0.1167 0.0767 0.0067 0.0667 0.0867 0.0933 0.1933 0.1333

Surround −9.9833 −7.8100 −9.9967 −9.2533 −9.2800 −9.0533 −8.9067 −8.9833 −9.1100 −9.2300 −8.7600 −8.9567 −9.2400 −9.0233

IQM(RNS) 0.0 1.0 0.0524 0.2642 0.3547 0.5365 0.4955 0.4831 0.4396 0.3957 0.5322 0.4190 0.3896 0.4861
Optimality Gap(RNS) 0.0 1.0 0.7885 0.6415 0.5964 0.4769 0.5090 0.5138 0.5324 0.5766 0.4855 0.5631 0.5681 0.5117

29



Investigating Pre-Training Objectives for Generalization in Vision-Based Reinforcement Learning

Table 22: Mean episodic scores of Online RL on In-Distribution games.
Game RndmAgnt DQN Random MAE CURL ATC SiamMAE R3M† BC SPR IDM DT CQL-M CQL-D

AirRaid 579.2 7479.5 368.2 601.1 502.8 718.0 639.6 570.6 803.7 512.7 636.4 782.2 1087.8 848.9
Amidar 5.8 1207.7 131.0 110.3 105.3 109.0 105.8 95.7 165.3 83.1 111.2 105.5 116.5 128.3

Asteroids 719.1 698.4 1008.3 739.4 755.6 811.5 751.2 718.6 701.2 918.4 894.5 857.7 821.3 1061.6
Atlantis 12850.0 853640.0 10404.7 17912.0 29700.7 14236.7 18619.3 24911.0 19350.0 79626.0 18266.3 30214.7 31849.7 38407.3

BankHeist 14.2 601.8 9.7 40.9 37.3 39.9 54.8 56.1 357.1 57.7 63.9 47.8 300.3 569.5
BattleZone 2360.0 17784.8 2863.3 5056.7 2513.3 4493.3 7756.7 7810.0 8473.3 2593.3 4446.7 4583.3 5850.0 5446.7

Berzerk 123.7 487.5 503.5 419.9 468.3 468.9 340.6 438.7 478.3 410.0 391.6 353.4 484.6 420.1
Bowling 23.1 30.1 15.8 23.7 32.7 46.2 40.3 49.7 41.4 43.5 45.1 46.5 58.0 31.0
Boxing 0.1 78.0 −0.3 7.6 2.0 −2.4 −1.4 1.9 3.0 6.4 2.8 1.1 8.1 1.6

Breakout 1.7 96.2 2.1 3.4 3.7 6.5 3.3 7.0 13.2 18.5 8.9 9.8 33.4 26.5
Carnival 700.8 4784.8 453.2 515.0 660.5 690.0 667.1 692.1 857.8 662.9 716.6 648.7 869.1 856.3

Centipede 2090.9 2583.0 3196.4 2485.1 3060.6 3014.3 2409.1 2494.6 2519.1 2971.1 2216.9 2849.3 3087.5 2865.3
ChopperCommand 811.0 2690.6 697.7 799.3 459.7 425.7 711.0 909.3 822.3 1053.0 870.0 661.7 771.3 648.7

CrazyClimber 10780.5 104568.8 4764.3 6639.3 2468.3 2274.7 4712.7 6419.3 18996.7 29972.7 17333.0 18018.0 25023.7 40734.0
DemonAttack 152.1 6361.6 360.6 201.7 324.9 253.9 201.1 296.1 313.1 319.2 316.4 432.1 605.5 1930.4
DoubleDunk −18.6 −6.5 −17.6 −19.9 −14.7 −18.0 −17.6 −16.8 −18.1 −18.1 −17.1 −16.7 −15.4 −18.3

ElevatorAction 4387.0 439.8 0.0 0.0 0.0 81.0 4.3 0.0 0.0 11.3 137.0 1041.7 0.0 19.7
Enduro 0.0 628.9 30.9 20.1 13.0 17.0 27.3 93.4 52.7 47.8 23.8 53.3 56.3 82.6

FishingDerby −91.7 0.6 −94.4 −83.9 −93.5 −89.3 −87.8 −85.6 −86.7 −92.2 −86.7 −90.7 −88.0 −86.6
Freeway 0.0 26.3 21.9 24.9 21.8 25.0 24.7 23.7 24.0 21.5 24.2 22.4 22.0 22.4
Frostbite 65.2 367.1 458.8 595.8 291.3 219.9 329.6 231.5 583.1 203.6 234.4 226.1 1167.5 251.6

Gopher 257.6 5479.9 287.0 498.9 287.3 292.4 423.5 433.9 592.9 516.1 410.9 640.1 632.0 430.2
Gravitar 173.0 330.1 88.3 109.3 219.2 245.8 240.2 183.0 225.5 234.0 255.2 225.3 220.2 309.2

Hero 1027.0 17325.4 3064.9 3745.5 3079.1 4471.2 4502.6 4665.1 6241.9 4613.6 4021.9 5498.0 4622.4 6531.4
IceHockey −11.2 −5.8 −10.7 −13.1 −14.0 −12.5 −12.7 −10.1 −11.1 −12.7 −10.3 −11.1 −10.8 −11.1
Jamesbond 29.0 573.3 109.5 193.3 205.8 170.3 121.8 161.8 176.8 196.7 191.5 140.0 248.8 201.8

Kangaroo 52.0 11486.0 569.7 1064.3 478.0 553.7 843.7 391.3 656.7 611.7 382.7 567.3 3158.3 1363.7
Krull 1598.0 6097.6 2287.0 3424.7 4114.6 2609.5 3240.5 3556.4 3623.2 4155.2 3655.0 3625.4 4281.5 5052.2

KungFuMaster 258.5 23435.4 1583.7 4777.3 5173.7 2168.0 5183.3 4927.7 6800.7 11493.3 5513.3 7797.7 13286.0 10442.7
MontezumaRevenge 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MsPacman 307.3 3402.4 767.4 758.8 923.6 622.8 789.5 753.8 932.3 942.5 870.6 794.0 1080.6 946.2
NameThisGame 2292.3 7278.6 2603.1 2676.2 2580.8 2036.4 2420.6 2111.5 2978.6 3901.9 2166.0 2393.6 2765.5 2986.1

Phoenix 761.4 4996.6 659.6 566.1 733.6 673.0 748.7 1234.1 1447.0 1101.9 1282.9 1315.7 1818.7 1754.9
Pitfall −229.4 −73.8 −3.7 −17.6 −9.2 −259.9 −71.9 −352.5 −418.2 −235.7 −726.4 −93.3 −33.3 −87.0

PrivateEye 24.9 −16.0 47.2 96.3 94.7 2568.0 527.4 178.6 603.5 83.7 19.5 25.9 81.3 99.7
Qbert 163.9 10117.5 306.8 532.0 442.2 594.4 845.8 457.0 1664.8 404.2 577.4 515.2 1063.7 978.5

RoadRunner 11.5 36925.5 1913.7 4417.0 3797.7 3613.3 3092.7 2944.7 5389.0 9028.7 2936.0 2606.3 10322.7 3643.3
Robotank 2.2 59.8 7.3 5.1 4.3 5.3 5.4 4.6 5.8 4.2 4.5 4.2 5.8 4.5

Skiing −17098.1 −15824.6 −29970.8 −29970.8 −29859.5 −28785.2 −30028.2 −29970.8 −28532.4 −29970.1 −29633.2 −30059.1 −29970.8 −29970.8
Solaris 1236.3 1436.4 856.7 757.7 1138.9 1647.3 1222.3 2269.1 1423.9 2256.5 1888.7 1431.3 1661.9 1230.0

SpaceInvaders 148.0 1794.2 326.5 331.3 252.4 275.3 264.6 257.7 288.5 304.1 210.0 415.2 274.5 367.2
StarGunner 664.0 42165.2 812.0 873.3 1087.3 998.7 606.0 1124.0 930.3 1419.3 1095.0 935.7 1239.3 1744.7

Tennis −23.8 −1.5 −4.5 −7.6 −18.4 −7.7 −22.8 −12.5 −9.1 −11.4 −14.2 −16.8 −10.3 −10.0
TimePilot 3568.0 3654.4 2620.0 1796.3 2307.7 3196.0 3046.3 2711.3 3215.7 2730.0 3156.3 2409.0 2592.0 2772.7

Tutankham 11.4 103.8 73.6 34.0 46.1 4.5 58.2 90.9 48.7 56.6 33.7 36.8 75.1 49.8
UpNDown 533.4 8488.3 1964.3 2287.2 2447.2 2359.9 2654.8 3079.5 2530.7 4988.3 3067.3 3400.8 2625.3 2902.1

VideoPinball 16256.9 63406.1 15487.9 10895.1 11280.4 8283.4 11055.4 14538.1 14761.6 28978.4 17023.7 19717.4 14876.2 19314.0
WizardOfWor 563.5 2065.8 252.0 448.3 505.3 428.0 637.7 696.0 900.3 899.7 858.7 839.3 690.7 640.0
YarsRevenge 3092.9 23909.4 8204.7 7125.4 9463.7 9095.8 7382.7 7295.3 6853.2 7784.7 7976.2 6639.3 7665.6 7820.2

Zaxxon 32.5 4538.6 921.0 860.7 779.3 221.3 1693.7 905.3 1957.3 0.0 2060.7 434.3 707.3 282.7

IQM(DNS) 0.0 1.0 0.0453 0.0706 0.0799 0.0685 0.0902 0.1151 0.1480 0.1594 0.1080 0.1141 0.1941 0.1878
Optimality Gap(DNS) 0.0 1.0 1.3154 1.4812 1.3200 1.1852 1.1472 1.2228 1.0846 1.1394 1.2301 1.3125 1.1299 1.1950

Table 23: Mean episodic scores of Online RL on Near-Out-of-Distribution games.
Game RndmAgnt DQN Random MAE CURL ATC SiamMAE R3M† BC SPR IDM DT CQL-M CQL-D

Alien 227.8 2484.5 444.2 641.9 595.0 659.7 566.0 667.2 772.9 604.3 546.3 538.0 640.8 621.0
Assault 222.4 1525.2 607.7 572.8 439.8 453.9 564.7 379.3 371.4 510.3 334.9 351.3 545.9 461.1
Asterix 210.0 2711.4 536.2 476.0 533.8 485.2 573.8 496.7 499.2 571.8 608.0 396.5 615.2 545.2

BeamRider 363.9 5852.4 581.1 479.0 597.5 542.4 575.9 701.5 598.2 510.2 562.7 560.6 674.4 591.5
JourneyEscape −19977.0 −3671.1 −6439.0 −12185.3 −7828.3 −11409.0 −10866.3 −11459.3 −9623.0 −11564.3 −14326.0 −17966.0 −9327.0 −8893.0

Pong −20.7 16.6 −20.2 −20.4 −18.3 −11.8 −17.6 −11.7 2.8 0.6 −9.0 −1.0 −12.0 −5.4
Pooyan 371.2 3212.0 349.1 410.1 402.4 767.8 931.8 1171.9 743.6 1049.1 1027.9 917.8 954.3 1026.2

Riverraid 1338.5 11638.9 1855.6 2185.2 2174.7 2268.1 2477.1 2358.6 2416.7 2423.5 2728.5 1999.8 2448.6 2343.7
Seaquest 68.4 1600.7 273.3 280.1 214.7 228.9 214.3 259.9 230.3 278.5 250.6 198.9 376.7 298.7
Venture 0.0 39.1 0.0 0.0 16.0 35.3 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0

IQM(DNS) 0.0 1.0 0.0783 0.0950 0.1016 0.1332 0.1261 0.1466 0.1255 0.1657 0.1342 0.0948 0.1758 0.1595
Optimality Gap(DNS) 0.0 1.0 0.8418 0.8702 0.8168 0.8057 0.8360 0.8195 0.7909 0.7873 0.8432 0.8685 0.7950 0.7899

Table 24: Mean episodic scores of Online RL on Far-Out-of-Distribution games.
Game RndmAgnt Rainbow Random MAE CURL ATC SiamMAE R3M† BC SPR IDM DT CQL-M CQL-D

BasicMath 0.1334 3.5700 0.0000 0.2233 0.8700 0.0967 0.3367 0.2400 0.0900 0.2667 0.6533 0.9233 0.0700 0.0633
HumanCannonball 1.0767 5.5600 1.0833 1.0500 1.4633 1.6667 2.0400 1.6767 1.5033 1.3400 1.9767 1.4967 1.6667 1.4400

Klax 0.3734 2124.7500 5.1667 6.0500 10.8000 7.5000 10.1000 13.2667 11.5333 9.3167 9.5667 10.4500 10.0833 10.1500
Othello −21.3233 −2.0100 0.0000 0.3400 −0.5067 0.0667 −0.0667 −0.1000 −0.6933 −0.1067 0.0200 −0.0400 −0.7400 −0.0667

Surround −9.9833 −7.8100 −9.9433 −9.8633 −9.7933 −9.8067 −9.8800 −9.6867 −9.7200 −9.7467 −9.7400 −9.8133 −9.8167 −9.8333

IQM(RNS) 0.0 1.0 0.0074 0.0413 0.1353 0.0769 0.1080 0.1120 0.0739 0.0739 0.1595 0.1388 0.0730 0.0640
Optimality Gap(RNS) 0.0 1.0 0.8033 0.7844 0.7214 0.7589 0.7348 0.7385 0.7585 0.7579 0.7063 0.7187 0.7616 0.7731
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D.2. Ablation Results
Table 25: Offline BC scores on In-Distribution games, after pre-training with datasets of differing optimality.

Suboptimal Expert

Game RndmAgnt DQN CURL ATC BC CQL-D CURL ATC BC CQL-D

AirRaid 579.2 7479.5 1216.8 1699.8 2955.7 3120.6 1213.8 1393.0 4803.5 3953.7
Amidar 5.8 1207.7 44.1 37.5 68.6 63.2 47.7 44.6 67.1 92.5

Asteroids 719.1 698.4 767.5 725.5 614.5 833.9 735.8 742.2 593.4 849.4
Atlantis 12850.0 853640.0 24057.3 24262.3 16286.3 15749.3 15637.3 18773.7 22173.0 9151.0

BankHeist 14.2 601.8 18.2 22.1 12.4 20.9 18.0 18.1 15.8 49.3
BattleZone 2360.0 17784.8 3416.7 6936.7 3633.3 5323.3 4083.3 5783.3 5750.0 10216.7

Berzerk 123.7 487.5 285.9 402.9 354.6 349.3 297.7 423.9 367.2 366.2
Bowling 23.1 30.1 26.6 44.7 28.9 30.2 20.9 42.1 29.7 29.2
Boxing 0.1 78.0 44.1 35.4 39.9 50.8 45.9 61.9 27.6 57.3

Breakout 1.7 96.2 6.2 10.0 24.1 27.8 6.7 6.3 30.5 43.3
Carnival 700.8 4784.8 797.7 732.3 876.3 739.8 859.7 1082.3 1555.9 802.9

Centipede 2090.9 2583.0 1936.7 1779.4 2188.5 2279.9 2164.3 2053.9 1942.1 1989.8
ChopperCommand 811.0 2690.6 1169.7 1307.0 1163.3 1213.3 1228.3 1043.0 784.0 1678.7

CrazyClimber 10780.5 104568.8 11217.0 6319.3 29986.3 60791.0 14040.0 7754.7 40367.3 93106.7
DemonAttack 152.1 6361.6 193.0 167.0 269.8 332.5 156.3 146.1 347.6 480.2
DoubleDunk −18.6 −6.5 −18.7 −18.6 −19.2 −19.9 −18.7 −17.9 −20.1 −19.6

ElevatorAction 4387.0 439.8 202.3 937.7 810.0 1634.3 899.3 116.7 560.0 1107.0
Enduro 0.0 628.9 0.9 25.3 74.7 507.2 0.0 15.7 137.9 434.1

FishingDerby −91.7 0.6 −91.1 −79.1 −66.2 −71.3 −91.2 −79.8 −66.7 −59.0
Freeway 0.0 26.3 18.1 12.3 26.5 19.9 21.8 13.5 24.7 21.4
Frostbite 65.2 367.1 157.2 322.1 240.5 398.8 137.0 254.8 256.9 345.9

Gopher 257.6 5479.9 527.0 944.9 1065.7 433.8 681.7 736.8 985.3 1135.1
Gravitar 173.0 330.1 192.8 244.8 246.8 220.3 255.3 270.8 255.7 214.8

Hero 1027.0 17325.4 4787.0 6575.6 5147.0 8377.1 7361.9 5629.3 9667.0 13268.4
IceHockey −11.2 −5.8 −11.9 −9.5 −9.1 −9.1 −10.0 −9.7 −9.5 −7.6
Jamesbond 29.0 573.3 192.5 411.2 232.8 183.3 126.2 316.0 336.0 305.2

Kangaroo 52.0 11486.0 1002.0 1341.3 1349.0 1113.0 877.0 1044.3 1076.7 1164.0
Krull 1598.0 6097.6 5056.4 3480.2 4143.7 5825.2 5194.4 3332.6 5709.1 4750.2

KungFuMaster 258.5 23435.4 3423.7 4667.3 5678.7 5188.3 4144.0 3210.0 9304.7 12541.0
MontezumaRevenge 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MsPacman 307.3 3402.4 739.4 662.2 1105.1 1539.4 703.7 846.8 1363.7 1227.9
NameThisGame 2292.3 7278.6 4093.7 4330.7 5475.6 6598.1 4866.3 4784.4 6007.1 6486.4

Phoenix 761.4 4996.6 1179.9 1148.7 1281.0 2018.8 1078.0 1169.2 1910.4 1204.2
Pitfall −229.4 −73.8 −124.3 −158.4 −55.8 −97.5 −40.8 −68.2 −59.5 −46.3

PrivateEye 24.9 −16.0 −271.4 −348.5 −541.4 747.5 −749.4 1729.7 −581.5 −10.0
Qbert 163.9 10117.5 263.3 334.1 312.0 942.8 404.1 188.3 1144.2 706.3

RoadRunner 11.5 36925.5 2965.3 4571.3 6576.3 2367.3 4028.7 4733.7 4466.7 9201.7
Robotank 2.2 59.8 6.1 11.2 10.5 7.1 6.4 11.6 14.2 12.2

Skiing −17098.1 −15824.6 −29970.8 −29069.5 −29120.5 −29970.1 −29970.8 −29961.2 −29970.8 −29970.8
Solaris 1236.3 1436.4 2026.2 1795.9 1729.2 1676.6 2461.1 1795.5 1692.5 1583.8

SpaceInvaders 148.0 1794.2 184.7 168.9 205.6 309.6 218.3 160.5 283.0 215.0
StarGunner 664.0 42165.2 1254.7 2689.0 3698.3 2024.0 1190.7 4374.3 3532.0 2957.7

Tennis −23.8 −1.5 −14.5 −8.7 −16.4 −17.4 −11.4 −4.6 −5.5 −20.7
TimePilot 3568.0 3654.4 2645.0 3343.7 3633.0 2846.0 3341.0 3117.3 3517.7 3422.0

Tutankham 11.4 103.8 9.3 21.2 4.6 28.1 17.8 18.7 8.7 19.5
UpNDown 533.4 8488.3 2085.7 2400.8 3389.2 3365.7 2435.0 2306.2 3377.7 3677.9

VideoPinball 16256.9 63406.1 222.6 513.6 538.7 2211.7 106.1 731.0 627.1 715.3
WizardOfWor 563.5 2065.8 638.7 366.0 518.3 323.7 581.0 281.7 167.0 385.0
YarsRevenge 3092.9 23909.4 11853.3 10337.0 15739.8 12818.0 7919.2 9642.5 12798.3 15447.9

Zaxxon 32.5 4538.6 1469.3 3143.7 3054.3 3372.0 1706.7 3168.3 3186.0 3480.7

IQM(DNS) 0.0 1.0 0.0822 0.1567 0.1829 0.2527 0.1107 0.1550 0.2376 0.3421
Optimality Gap(DNS) 0.0 1.0 1.5000 1.3059 1.3171 1.1301 1.4567 1.0506 1.3595 0.9363

Table 26: Offline BC scores on Near-Out-of-Distribution games, after pre-training with datasets of differing optimality.
Suboptimal Expert

Game RndmAgnt DQN CURL ATC BC CQL-D CURL ATC BC CQL-D

Alien 227.8 2484.5 659.6 469.6 902.8 466.6 574.4 588.8 750.2 693.2
Assault 222.4 1525.2 485.7 698.3 680.1 578.0 501.4 656.0 801.7 680.7
Asterix 210.0 2711.4 409.2 346.7 510.8 542.5 384.2 404.5 487.0 455.7

BeamRider 363.9 5852.4 532.3 542.0 564.5 485.9 536.7 537.7 613.4 520.7
JourneyEscape −19977.0 −3671.1 −14311.0 −13381.3 −12507.0 −12048.0 −15092.0 −13598.0 −10461.3 −11805.0

Pong −20.7 16.6 −7.9 −6.3 0.2 −3.6 −2.7 −5.1 3.8 −0.9
Pooyan 371.2 3212.0 755.5 694.2 731.6 476.3 494.8 593.5 837.4 399.8

Riverraid 1338.5 11638.9 2137.9 2424.6 3493.0 2886.6 1982.1 2086.9 2350.0 3590.4
Seaquest 68.4 1600.7 217.7 224.5 378.0 313.8 216.4 187.7 368.9 348.3
Venture 0.0 39.1 7.3 4.7 18.0 2.3 10.7 5.0 12.0 2.3

IQM(DNS) 0.0 1.0 0.1392 0.1428 0.2423 0.1520 0.1169 0.1338 0.2257 0.1873
Optimality Gap(DNS) 0.0 1.0 0.8308 0.8210 0.7201 0.8113 0.8274 0.8231 0.7162 0.7812

Table 27: Offline BC scores on Far-Out-of-Distribution games, after pre-training with datasets of differing optimality.
Suboptimal Expert

Game RndmAgnt Rainbow CURL ATC BC CQL-D CURL ATC BC CQL-D

BasicMath 0.1334 3.5700 2.0433 3.3667 2.3867 2.8467 2.3200 3.1400 2.2800 2.3767
HumanCannonball 1.0767 5.5600 1.6767 1.5600 1.4800 1.3667 1.0800 1.4067 1.4100 1.1767

Klax 0.3734 2124.7500 16.0167 19.5167 73.9000 23.6333 13.7000 20.7000 24.4000 20.0667
Othello −21.3233 −2.0100 0.1000 0.0200 0.1267 0.1067 −0.0033 0.0267 0.1067 0.0467

Surround −9.9833 −7.8100 −9.2900 −9.1433 −8.9600 −9.1233 −9.1100 −8.9000 −9.3500 −8.9767

IQM(RNS) 0.0 1.0 0.3398 0.4802 0.4055 0.4179 0.3509 0.4919 0.3301 0.3825
Optimality Gap(RNS) 0.0 1.0 0.5968 0.5112 0.5498 0.5478 0.5910 0.5087 0.5997 0.5705
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Table 28: Offline BC scores on in-distribution games, across models pre-trained with datasets of different sizes.
1M 100M

Game RndmAgnt DQN CURL ATC BC CQL-D CURL ATC BC CQL-D

AirRaid 579.2 7479.5 1025.8 1398.0 2772.4 2799.7 1499.1 2232.8 3613.5 4359.5
Amidar 5.8 1207.7 14.5 46.7 43.8 45.1 35.6 39.5 77.9 130.2

Asteroids 719.1 698.4 607.3 730.3 817.8 747.6 801.9 732.3 873.8 994.1
Atlantis 12850.0 853640.0 16861.7 35155.3 9752.0 13624.0 20046.0 12788.0 41484.0 62210.7

BankHeist 14.2 601.8 17.4 29.1 28.9 10.3 21.7 27.9 78.5 20.9
BattleZone 2360.0 17784.8 2840.0 4193.3 3983.3 4683.3 2376.7 9906.7 5296.7 6690.0

Berzerk 123.7 487.5 260.6 317.6 308.4 295.3 310.2 403.1 389.3 403.8
Bowling 23.1 30.1 33.4 37.8 28.0 32.6 16.2 30.4 36.9 33.6
Boxing 0.1 78.0 58.8 32.0 37.4 45.3 25.1 62.6 66.2 65.5

Breakout 1.7 96.2 2.4 5.1 7.9 4.5 5.3 7.7 48.0 46.4
Carnival 700.8 4784.8 593.3 495.7 953.1 890.3 996.1 1043.3 1084.3 2121.8

Centipede 2090.9 2583.0 1919.5 1758.3 2037.0 2167.7 1932.5 1424.1 2277.2 2250.1
ChopperCommand 811.0 2690.6 873.3 1125.7 1138.7 798.3 1331.3 1281.0 1080.3 1271.7

CrazyClimber 10780.5 104568.8 3724.0 7310.7 6088.7 45641.0 11782.3 10822.7 40575.3 94226.7
DemonAttack 152.1 6361.6 116.7 138.0 143.9 177.2 211.0 152.0 902.4 1794.0
DoubleDunk −18.6 −6.5 −20.2 −18.5 −18.8 −19.5 −18.1 −18.6 −19.1 −19.3

ElevatorAction 4387.0 439.8 76.3 984.7 1101.3 566.0 984.0 224.7 593.7 797.3
Enduro 0.0 628.9 0.0 19.0 37.1 76.3 0.2 3.2 398.0 674.1

FishingDerby −91.7 0.6 −89.8 −78.3 −81.9 −82.4 −90.0 −80.8 −50.8 −45.9
Freeway 0.0 26.3 18.5 24.0 25.3 12.8 20.5 19.5 24.1 22.0
Frostbite 65.2 367.1 192.1 110.3 147.9 183.6 251.3 361.6 375.2 430.8

Gopher 257.6 5479.9 305.7 762.6 773.3 557.4 338.4 760.9 1025.6 619.3
Gravitar 173.0 330.1 164.8 255.3 201.0 183.7 269.3 253.7 216.7 200.3

Hero 1027.0 17325.4 8936.1 4842.0 4492.4 12995.9 5283.6 6461.2 6178.4 12951.6
IceHockey −11.2 −5.8 −14.0 −9.0 −8.9 −8.2 −7.8 −9.5 −7.6 −7.3
Jamesbond 29.0 573.3 138.8 340.7 238.5 290.5 200.2 328.0 386.7 310.3

Kangaroo 52.0 11486.0 820.3 1109.7 895.0 934.0 1020.7 1036.0 1844.3 2087.0
Krull 1598.0 6097.6 4906.6 3441.3 3761.7 4603.8 4721.2 3624.8 6278.9 5852.1

KungFuMaster 258.5 23435.4 93.7 4214.3 5342.3 3685.3 2812.3 5568.7 9100.3 10273.0
MontezumaRevenge 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MsPacman 307.3 3402.4 654.5 1141.8 1150.5 1047.0 828.7 782.2 1956.9 2043.5
NameThisGame 2292.3 7278.6 4146.3 4754.8 5508.2 5520.7 4453.8 4714.2 6042.8 6760.6

Phoenix 761.4 4996.6 1007.0 1299.9 1300.8 1030.0 1104.3 1564.4 2841.0 2607.2
Pitfall −229.4 −73.8 −94.7 −169.0 −66.6 −22.9 −11.9 −206.4 −24.3 −23.7

PrivateEye 24.9 −16.0 177.8 −211.7 −358.6 1801.2 −880.4 −407.8 353.4 −530.1
Qbert 163.9 10117.5 274.3 361.8 349.4 319.8 375.5 298.6 318.6 4175.1

RoadRunner 11.5 36925.5 1209.7 4501.3 3177.0 2327.3 3482.3 3730.3 3067.0 4678.0
Robotank 2.2 59.8 6.7 10.0 8.6 8.1 6.6 9.6 13.1 10.7

Skiing −17098.1 −15824.6 −29970.8 −29471.4 −27043.3 −29970.8 −29007.1 −28387.0 −29041.4 −29970.8
Solaris 1236.3 1436.4 1462.7 1992.1 2207.1 1994.1 2398.4 1835.3 1868.1 1338.5

SpaceInvaders 148.0 1794.2 180.1 270.5 169.5 278.0 153.2 167.5 280.9 582.4
StarGunner 664.0 42165.2 1598.0 2191.0 2034.0 2540.0 1349.0 5014.3 4431.0 3237.3

Tennis −23.8 −1.5 −5.0 −16.7 −18.7 −14.0 −17.7 −13.0 −19.4 −4.5
TimePilot 3568.0 3654.4 3123.3 2877.0 2729.0 3313.7 2826.7 2661.0 3201.7 2927.7

Tutankham 11.4 103.8 25.3 18.9 3.8 24.7 19.1 23.3 20.3 17.3
UpNDown 533.4 8488.3 3498.4 2263.2 3205.7 3221.5 1980.7 2807.9 3319.1 3530.5

VideoPinball 16256.9 63406.1 16.9 954.9 2125.9 950.2 142.6 74.3 1153.4 6997.2
WizardOfWor 563.5 2065.8 415.7 707.0 655.0 375.0 568.3 531.7 369.7 341.0
YarsRevenge 3092.9 23909.4 10913.3 10005.9 10029.0 9772.2 8952.1 10161.5 13605.0 11366.6

Zaxxon 32.5 4538.6 2961.0 3352.7 2909.7 3202.7 1801.3 3134.7 3213.0 3865.3

IQM(DNS) 0.0 1.0 0.0688 0.1312 0.1405 0.1805 0.1104 0.1590 0.3092 0.3942
Optimality Gap(DNS) 0.0 1.0 1.2978 1.2950 1.3461 1.1784 1.5977 1.3689 0.9819 1.2247

Table 29: Offline BC scores on Near-Out-of-Distribution games across models pre-trained with datasets of different sizes.
1M 100M

Game RndmAgnt DQN CURL ATC BC CQL-D CURL ATC BC CQL-D

Alien 227.8 2484.5 463.6 584.2 603.9 500.9 537.0 729.0 639.0 530.5
Assault 222.4 1525.2 414.0 663.5 551.3 674.7 575.8 696.1 818.8 635.6
Asterix 210.0 2711.4 275.8 349.0 451.8 412.7 399.8 395.8 550.0 355.7

BeamRider 363.9 5852.4 542.3 592.4 525.4 468.9 519.3 549.3 572.3 451.4
JourneyEscape −19977.0 −3671.1 −13211.3 −15709.7 −12576.7 −14429.0 −15281.0 −12775.0 −11893.7 −12395.7

Pong −20.7 16.6 −9.6 −0.2 3.0 −1.8 −9.8 −8.2 5.5 −19.3
Pooyan 371.2 3212.0 357.7 563.7 813.1 280.1 536.8 507.3 992.3 360.2

Riverraid 1338.5 11638.9 1762.4 2458.8 2585.8 2980.1 2520.4 2004.3 3874.0 3226.0
Seaquest 68.4 1600.7 196.7 263.1 349.4 503.3 161.5 212.8 350.3 383.7
Venture 0.0 39.1 0.7 1.3 1.3 13.0 18.7 0.0 11.7 52.0

IQM(DNS) 0.0 1.0 0.0771 0.1237 0.1643 0.1871 0.1262 0.1352 0.2439 0.1610
Optimality Gap(DNS) 0.0 1.0 0.8840 0.8258 0.7870 0.7842 0.8290 0.8323 0.7042 0.7809

Table 30: Offline BC scores on Far-Out-of-Distribution games, across models pre-trained with datasets of different sizes.
1M 100M

Game RndmAgnt Rainbow CURL ATC BC CQL-D CURL ATC BC CQL-D

BasicMath 0.1334 3.5700 1.9300 3.4233 2.6400 2.5633 3.2167 3.3333 2.0967 3.3600
HumanCannonball 1.0767 5.5600 0.9200 2.8300 1.3667 1.4100 1.5367 1.6533 1.3833 1.4867

Klax 0.3734 2124.7500 5.0167 16.4667 23.0667 12.2667 12.5667 23.2167 51.0667 23.6833
Othello −21.3233 −2.0100 0.0000 0.1667 −0.1000 −0.0533 −0.2800 0.3867 −0.0800 0.1867

Surround −9.9833 −7.8100 −9.4967 −9.1200 −8.9233 −9.1800 −9.1967 −8.9833 −8.8833 −8.9367

IQM(RNS) 0.0 1.0 0.2498 0.5819 0.4273 0.3837 0.4539 0.5093 0.3819 0.5040
Optimality Gap(RNS) 0.0 1.0 0.6572 0.4494 0.5415 0.5687 0.5265 0.4958 0.5661 0.4981
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Table 31: Offline BC scores of a smaller backbone(ResNet-18) on In-Distribution games.
ResNet-18

Game RndmAgnt DQN Random E2E CURL ATC BC CQL-D

AirRaid 579.2 7479.5 1550.9 4671.4 1100.7 1305.3 3180.2 3306.7
Amidar 5.8 1207.7 21.3 70.5 18.8 34.1 68.3 56.1

Asteroids 719.1 698.4 872.3 792.7 612.5 670.8 777.7 731.1
Atlantis 12850.0 853640.0 10249.0 133756.0 16177.0 17939.3 12289.7 16609.7

BankHeist 14.2 601.8 11.7 67.9 13.9 27.5 29.3 34.1
BattleZone 2360.0 17784.8 4216.7 930.0 5183.3 5280.0 4543.3 5643.3

Berzerk 123.7 487.5 251.9 364.5 291.8 373.5 340.1 348.5
Bowling 23.1 30.1 0.0 0.0 23.7 23.9 27.9 28.4
Boxing 0.1 78.0 24.7 54.3 39.8 31.6 63.4 65.5

Breakout 1.7 96.2 0.9 38.8 4.3 6.3 14.4 15.2
Carnival 700.8 4784.8 616.8 3077.2 735.3 1172.6 954.7 1081.6

Centipede 2090.9 2583.0 1808.4 2038.9 1833.0 1809.4 2243.5 2235.3
ChopperCommand 811.0 2690.6 867.0 1085.0 1161.7 1181.0 1163.7 1021.3

CrazyClimber 10780.5 104568.8 3715.0 68936.7 1226.7 16585.0 2238.0 3030.7
DemonAttack 152.1 6361.6 122.4 633.8 113.6 141.6 224.6 255.4
DoubleDunk −18.6 −6.5 −20.3 −16.5 −19.2 −19.0 −19.2 −18.6

ElevatorAction 4387.0 439.8 79.7 230.0 1397.7 697.7 341.7 216.7
Enduro 0.0 628.9 1.4 230.7 0.0 10.6 107.4 113.9

FishingDerby −91.7 0.6 −86.3 −66.7 −87.2 −80.2 −78.6 −74.9
Freeway 0.0 26.3 21.4 21.0 18.8 13.8 24.6 23.9
Frostbite 65.2 367.1 100.8 85.4 197.6 110.1 459.1 454.0

Gopher 257.6 5479.9 23.1 2166.1 329.5 413.3 487.7 602.1
Gravitar 173.0 330.1 89.2 195.8 187.8 229.0 211.3 165.5

Hero 1027.0 17325.4 3551.2 9714.4 8684.1 4570.2 6966.6 6800.8
IceHockey −11.2 −5.8 −7.0 −3.3 −9.7 −8.7 −9.8 −9.2
Jamesbond 29.0 573.3 286.7 258.3 97.3 334.2 244.7 237.8

Kangaroo 52.0 11486.0 599.0 1327.0 793.7 1146.0 905.3 897.7
Krull 1598.0 6097.6 3162.1 5491.9 2033.4 3889.0 4994.1 4620.7

KungFuMaster 258.5 23435.4 146.0 7363.7 1433.7 1938.7 3357.7 3525.3
MontezumaRevenge 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MsPacman 307.3 3402.4 294.5 683.3 563.9 691.7 1132.6 1108.3
NameThisGame 2292.3 7278.6 2713.0 6102.3 4173.7 3792.7 5193.2 5632.0

Phoenix 761.4 4996.6 440.9 1275.8 892.9 1163.2 1665.1 1504.0
Pitfall −229.4 −73.8 −64.3 −89.5 −50.2 −190.6 −316.0 −93.1

PrivateEye 24.9 −16.0 −383.7 −347.4 342.3 −459.5 544.8 917.2
Qbert 163.9 10117.5 194.8 1506.0 214.4 449.4 390.8 347.2

RoadRunner 11.5 36925.5 3222.3 5673.7 1644.7 3784.3 5600.3 6063.7
Robotank 2.2 59.8 11.1 8.4 6.8 8.5 10.2 10.3

Skiing −17098.1 −15824.6 −29732.9 −29812.3 −29970.8 −29838.1 −29953.4 −29875.5
Solaris 1236.3 1436.4 1195.2 1865.3 1955.7 2194.7 2014.3 1932.9

SpaceInvaders 148.0 1794.2 234.9 306.1 231.0 177.1 167.4 254.9
StarGunner 664.0 42165.2 901.0 7849.0 1062.0 2009.0 2460.7 2302.0

Tennis −23.8 −1.5 −0.4 −14.3 −21.3 −14.1 −14.0 −7.1
TimePilot 3568.0 3654.4 2888.3 3301.0 3498.3 2679.3 3311.3 2590.7

Tutankham 11.4 103.8 28.2 24.8 13.5 15.9 9.5 10.3
UpNDown 533.4 8488.3 1050.1 3957.1 1962.5 2040.4 2987.8 2785.0

VideoPinball 16256.9 63406.1 634.1 1193.7 17.4 822.9 1498.8 786.8
WizardOfWor 563.5 2065.8 227.7 437.7 635.7 472.3 479.0 565.3
YarsRevenge 3092.9 23909.4 8732.5 13978.4 9780.6 10600.0 11365.6 10441.5

Zaxxon 32.5 4538.6 1454.3 3646.0 2314.7 2266.7 2672.7 3345.7

IQM(DNS) 0.0 1.0 0.0316 0.2514 0.0702 0.1061 0.1671 0.1837
Optimality Gap(DNS) 0.0 1.0 1.4950 1.2427 1.2298 1.5015 1.0698 1.1814

Table 32: Offline BC scores of a smaller backbone(ResNet-18) on Near-Out-of-Distribution games.
ResNet-18

Game RndmAgnt DQN Random E2E CURL ATC BC CQL-D

Alien 227.8 2484.5 542.8 618.0 402.0 739.7 777.9 711.6
Assault 222.4 1525.2 405.7 1004.2 410.1 641.8 677.4 668.7
Asterix 210.0 2711.4 352.3 436.2 293.3 414.8 443.2 406.7

BeamRider 363.9 5852.4 594.5 730.8 542.7 487.9 468.0 467.1
JourneyEscape −19977.0 −3671.1 −8892.3 −5435.0 −15142.3 −16542.3 −13947.7 −12616.0

Pong −20.7 16.6 −20.9 −21.0 −19.1 −2.1 4.1 2.6
Pooyan 371.2 3212.0 55.9 381.7 733.4 946.5 293.1 634.6

Riverraid 1338.5 11638.9 575.5 2437.1 1859.3 2276.7 2633.3 2649.2
Seaquest 68.4 1600.7 209.0 641.1 193.4 176.6 299.5 226.1
Venture 0.0 39.1 30.7 13.3 2.0 20.0 0.7 0.0

IQM(DNS) 0.0 1.0 0.0565 0.1557 0.0647 0.1590 0.1655 0.1532
Optimality Gap(DNS) 0.0 1.0 0.8707 0.7368 0.9063 0.7923 0.7994 0.7946

Table 33: Offline BC scores of a smaller backbone(ResNet-18) on Far-Out-of-Distribution games.
ResNet-18

Game RndmAgnt Rainbow Random CURL ATC BC CQL-D

BasicMath 0.1334 3.5700 1.1500 2.7667 3.6667 2.9133 3.3833
HumanCannonball 1.0767 5.5600 0.9900 1.1367 2.6800 1.1400 1.6867

Klax 0.3734 2124.7500 3.6667 6.9833 27.1667 20.0667 23.3167
Othello −21.3233 −2.0100 0.0000 0.5667 0.0333 0.0600 0.2733

Surround −9.9833 −7.8100 −9.8967 −9.0700 −9.0000 −8.7333 −8.8700

IQM(RNS) 0.0 1.0 0.1134 0.4029 0.6110 0.4790 0.5313
Optimality Gap(RNS) 0.0 1.0 0.7364 0.5594 0.4409 0.5185 0.4790
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