
Environment Design for Inverse Reinforcement Learning

Thomas Kleine Buening 1 * Victor Villin 2 * Christos Dimitrakakis 2

Abstract
Learning a reward function from demonstra-
tions suffers from low sample-efficiency. Even
with abundant data, current inverse reinforcement
learning methods that focus on learning from a sin-
gle environment can fail to handle slight changes
in the environment dynamics. We tackle these
challenges through adaptive environment design.
In our framework, the learner repeatedly interacts
with the expert, with the former selecting environ-
ments to identify the reward function as quickly
as possible from the expert’s demonstrations in
said environments. This results in improvements
in both sample-efficiency and robustness, as we
show experimentally, for both exact and approxi-
mate inference.

1. Introduction
Reinforcement Learning (RL) is a powerful framework for
autonomous decision-making in games (Mnih et al., 2015),
continuous control problems (Lillicrap et al., 2015), and
robotics (Levine et al., 2016). However, specifying suitable
reward functions remains one of the main barriers to the
wider application of RL in real-world settings and methods
that allow us to communicate tasks without manually defin-
ing reward functions could be of great practical value. One
such approach is Inverse Reinforcement Learning (IRL),
which aims to find a reward function that explains observed
(human) behaviour (Russell, 1998; Ng & Russell, 2000).

Much of recent effort in IRL has been devoted to making
existing methods more sample-efficient as well as robust
to changes in the environment dynamics (Arora & Doshi,
2021). Sample-efficiency is crucial, as data requires expen-
sive human input. We also need robust estimates of the
unknown reward function, so that the resulting policies re-
main near-optimal, even when the deployed environment

*Equal contribution 1The Alan Turing Institute, London, UK
2Université de Neuchâtel, Neuchâtel, Switzerland. Correspon-
dence to: Thomas Kleine Buening <tbuening@turing.ac.uk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

dynamics differ from the ones we learned from.

However, recent work has found that IRL methods tend
to heavily specialise (“overfit”) to the specific transition
dynamics under which the demonstrations were provided,
thereby failing to generalise even across minor changes in
the environment (Toyer et al., 2020). More generally, even
with unlimited access to expert demonstrations, we may still
fail to learn suitable reward functions from a fixed environ-
ment. In particular, prior work has explored the identifia-
bility problem in IRL (Cao et al., 2021; Kim et al., 2021),
illustrating the inherent limitations of IRL when learning
from expert demonstrations in a single, fixed environment.

In our study, we consider the situation where we can de-
sign a sequence of environments, in which the expert will
demonstrate the task. This can either mean slightly modify-
ing a base environment, or selecting an environment from
a finite set. Crafting new environments can involve simple
adjustments such as relocating objects or adding obstacles,
which can be done with little effort and cost. In open-world
settings, simply having different task conditions (e.g., dif-
ferent cars, locations, or time-of-day in a vehicle scenario)
amounts to a different environment.

Contributions. We propose algorithms for designing envi-
ronments in order to infer human goals from demonstrations.
This requires two key components: firstly, an environment
design algorithm and secondly, an inference algorithm for
data from multiple environment dynamics. Our hypothe-
sis is that intelligent environment design can significantly
improve both sample-efficiency of IRL methods and the
robustness of learned rewards against variations in the en-
vironment dynamics. An example where our approach is
applicable is given in Figure 1, where we need to learn
the reward function (i.e., the location of the goal and lava
squares). In summary, our contributions are:

1. An environment design framework that selects informa-
tive demo environments for the experts (Section 3).

2. An objective based on maximin Bayesian regret to
choose environments in a way that compels the expert
to provide useful information about the unknown reward
function (Section 4).

3. An extension of Bayesian IRL and Maximum Entropy
IRL to multiple environments (Section 5). We provide

1

Environment Design for Inverse Reinforcement Learning

(a) 1st round (b) 2nd round (c) 3rd round

Figure 1: The expert navigates to the closest of the three possible goal squares while avoiding lava in adaptively elected
maze environments. For three consecutive rounds (a)-(c), we display the mazes chosen by ED-BIRL (Algorithm 2 in
Section 5) as well as the current reward estimate after observing an expert trajectory in the current and past mazes. By
adaptively designing environments and combining the expert demonstrations, we can recover the locations of all goal and
most lava squares. In contrast, from observations in a fixed environment, e.g., repeatedly observing the expert in maze (a), it
would be impossible to recover all relevant aspects of the reward function, i.e., the location of the goal squares, as only the
nearest goal square would be visited by the expert (repeatedly). Observing the human expert in new and carefully curated
environments can lead to a more precise and robust estimate of the unknown reward function.

concrete implementations for the extensions of MCMC
Bayesian IRL (Ramachandran & Amir, 2007) and Ad-
versarial IRL (AIRL) (Fu et al., 2018).

4. We conduct extensive experiments to evaluate our ap-
proaches (Section 6). We test learned reward functions
in unknown transition dynamics across various environ-
ments, including continuous mazes and MuJoCo bench-
marks (Todorov et al., 2012). We compare against sev-
eral other IRL and imitation learning algorithms, such
as Robust Imitation learning with Multiple perturbed
Environments (RIME) (Chae et al., 2022).

5. Our results illustrate the superior robustness of our algo-
rithms and the effectiveness of the environment design
framework. This shows that active environment selection
significantly improves both the sample-efficiency of IRL
and the robustness of learned rewards (generalisability).

2. Related Work
Inverse Reinforcement Learning. The goal of IRL (Rus-
sell, 1998; Ng & Russell, 2000) is to find a reward function
that explains observed behaviour, which is assumed to be ap-
proximately optimal. Two of the most popular approaches
to the IRL problem are Bayesian IRL (Ramachandran &
Amir, 2007; Rothkopf & Dimitrakakis, 2011; Choi & Kim,
2011) and Maximum Entropy IRL (Ziebart et al., 2008; Ho
& Ermon, 2016; Finn et al., 2016). In this work, we extend
both IRL formulations to demonstrations under varying envi-
ronment dynamics. Note that this differs from the situation,
where we observe demonstrations by experts of varying
quality (Castro et al., 2019), or demonstrations by experts
that optimise different rewards (Ramponi et al., 2020; Lik-
meta et al., 2021), in a fixed environment. Moreover, Cao
et al. (2021) and Rolland et al. (2022) study the identifiabil-
ity of the true reward function in IRL and showed that when
observing experts under different environment dynamics

the true reward function can be identified up to a constant
under certain conditions. However, it is important to note
that in all of these cases, the learner is passive and does
not actively seek information about the reward function by
choosing specific experts or environments.

Active Inverse Reinforcement Learning. The environ-
ment design problem that we consider in this paper can
be viewed as one of active reward elicitation (Lopes et al.,
2009). Prior work on active reward learning has focused
on querying the expert for additional demonstrations in spe-
cific states (Lopes et al., 2009; Brown et al., 2018; Lindner
et al., 2021; 2022), mainly with the goal of resolving the
uncertainty that is due to the expert’s policy not being speci-
fied accurately in these states. In contrast, we consider the
situation where we cannot directly query the expert for addi-
tional information in specific states, but instead sequentially
choose environments for the expert to act in. Importantly,
this means that the same state can be visited under different
transition dynamics, which can be crucial to distinguish the
true reward function among multiple plausible candidates
(Cao et al., 2021; Rolland et al., 2022).

In other related work, Amin et al. (2017) consider a repeated
IRL setting in which the learner can choose any task for
the expert to complete (with full information of the expert
policy). He & Dragan (2021) study an iterative reward de-
sign setup where a human provides the learner with a proxy
reward function, upon which the learner tries to choose
an edge-case environment in which the proxy fails so that
the human revises their proxy. In a similar vein, Buening
et al. (2022) introduced Interactive IRL, where the learner
interacts with a human in a collaborative Stackelberg game
without knowledge of the joint reward function. This setting
is similar to the framework presented in this paper in that
the leader in a Stackelberg game can be viewed as designing
environments by committing to specific policies.

2

Environment Design for Inverse Reinforcement Learning

Environment Design for Reinforcement Learning. En-
vironment design and curriculum learning for RL aim to
design a sequence of environments with increasing difficulty
to improve the training of an autonomous agent (Narvekar
et al., 2020). However, in contrast to our problem setup,
observations in generated training environments are cheap,
since this only involves actions from an autonomous agent,
not a human expert. As such, approaches like domain ran-
domisation (Tobin et al., 2017; Akkaya et al., 2019) can
be practical for RL, whereas they can be extremely inef-
ficient and wasteful in an IRL setting. Moreover, in IRL
we typically work with a handful of rounds only, so that
slowly improving the environment generation process over
thousands of training episodes (i.e., rounds) is impracti-
cal (Dennis et al., 2020; Gur et al., 2021). As a result, most
methods, which are viable for the RL, can be expected to be
unsuitable for the IRL problem.

3. Problem Formulation
We now formally introduce the Environment Design for
Inverse Reinforcement Learning framework. A Markov De-
cision Process (MDP) is a tuple (S,A, T,R, γ, ω), where S
is a set of states,A is a set of actions, T : S×A×S → [0, 1]
is a transition function, R : S → R is a reward function,
γ a discount factor, and ω an initial state distribution. We
assume that there is a set transition functions T from which
T can be selected. Similar models have been considered for
the RL problem under the name of Underspecified MDPs
(Dennis et al., 2020) or Configurable MDPs (Metelli et al.,
2018; Ramponi et al., 2021).

We assume that the true reward function, denoted R, is un-
known to the learner and consider the situation where the
learner gets to interact with the human expert in a sequence
of m rounds.1 More precisely, every round k ∈ [m], the
learner gets to select a demo environment Tk ∈ T for which
an expert trajectory τk is observed. Our objective is to adap-
tively select a sequence of demo environments T1, . . . , Tm

so as to recover a robust estimate of the unknown reward
function. We describe the general framework for this inter-
action between learner and human expert in Framework 1.
To summarise, a problem-instance in our setting is given by
(S,A, T ,R, γ, ω,m), where T is a set of environments, R
is the unknown reward function, and m the learner’s budget.

From Framework 1 we see that the Environment Design for
IRL problem has two main ingredients: a) choosing useful
demo environments for the human to demonstrate the task
in (Section 4), and b) inferring the reward function from
expert demonstrations in multiple environments (Section 5).

1Typically, expert demonstrations are a limited resource as they
involve expensive human input. We thus consider a limited budget
of m expert trajectories that the learner is able to obtain.

Framework 1 Environment Design for IRL

1: input set of environments T , resources m ∈ N
2: for k = 1, . . . , m do
3: Choose an environment Tk ∈ T
4: Observe expert trajectory τk in environment Tk

5: Estimate rewards from observations up to round k

3.1. Preliminaries and Notation

Throughout the paper, R denotes a generic reward function,
whereas R refers to the true (unknown) reward function.
We let Π denote a generic policy space. Now, Vπ

R,T (s) :=

E[
∑∞

t=0 γ
tR(st) | π, T, s0 = s] is the expected discounted

return, i.e., value function, of a policy π under some reward
function R and transition function T in state s. For the
value under the initial state distribution ω, we then merely
write Vπ

R,T := Es∼ω[Vπ
R,T (s)] and denote its maximum by

V∗
R,T := maxπ Vπ

R,T . We accordingly refer to the Q-values
under a policy π by Qπ

R,T (s, a) and their optimal values by
Q∗

R,T (s, a). In the following, we let π∗
R,T always denote the

optimal policy w.r.t. R and T , i.e., the policy maximising the
expected discounted return in the MDP (S,A, T,R, γ, ω).

In the following, we let τ denote expert trajectories. Note
that in Framework 1 every such trajectory is generated w.r.t.
some transition dynamics T . In round k, we thus observe
Dk = (τk, Tk), i.e., the expert trajectory τk in environment
Tk. We then write D1:k = (D1, . . . ,Dk) for all observa-
tions up to (and including) the k-th round. Moreover, we
let P(· | D1:k) denote the posterior over reward functions
given observations D1:k. For the prior P(·), we introduce
the convention that P(·) = P(· | D1:0).

4. Environment Design via Maximin Regret
Our goal is to adaptively select demo environments for the
expert based on our current belief about the reward function.

In Section 4.1, we introduce a maximin Bayesian regret
objective for the environment design process which aims to
select demo environments so as to ensure that our reward
estimate is robust. Section 4.2 then deals with the selection
of such environments when the set of environments exhibits
a useful decomposable structure. We additionally provide a
way to approximate the process when the set has an arbitrary
structure or is challenging to construct.

4.1. Maximin Bayesian Regret

We begin by reflecting on the potential loss of an agent when
deploying a policy π under transition function T and the
true reward function R, given by the difference

ℓR(T, π) := V∗
R,T − Vπ

R,T .

3

Environment Design for Inverse Reinforcement Learning

The reward function R is unknown to us so that we can
instead use our belief P over reward functions2 and consider
the Bayesian regret (i.e., loss) of a policy π under T and P
given by

BRP(T, π) := ER∼P
[
ℓR(T, π)

]
.

The concept of Bayesian regret is well-known from, e.g.,
online optimisation and online learning (Russo & Van Roy,
2014) and has been utilised for IRL in a slightly different
form by Brown et al. (2018). The idea is that given a (prior)
belief about some parameter, we evaluate our policy against
an oracle that knows the true parameter. Typically, under
such uncertainty about the true parameter (in our case, re-
ward function) we are interested in policies minimising the
Bayesian regret:

min
π∈Π

BRP(T, π).

To derive an objective for the environment design prob-
lem, we then consider the maximin problem given by the
worst-case environment T for our current belief over reward
functions P: 3

max
T∈T

min
π∈Π

BRP(T, π). (1)

What this means is that we search for an environment T ∈ T
such that the regret-minimising policy w.r.t. P performs the
worst compared to the optimal policies w.r.t. the reward can-
didates R ∼ P. In other words, the maximin environment
T from (1) can be viewed as the environment in which we
expect our current reward estimate to perform the worst.

Choosing environments for the expert according to (1) also
has the advantage that maximin environments are in gen-
eral solvable for the expert, since the regret in degenerate
or purely adversarial environments will be close to zero.
Moreover, the regret objective is performance-based and not
only uncertainty-based, such as entropy-based objectives
(Lopes et al., 2009)). This is typically desired as reducing
our uncertainty about the rewards in states that are not rel-
evant under any transition function in T (e.g., states that
are not being visited by any optimal policy) is unnecessary
and generally a wasteful use of our budget. Finally, we also
see that if the Bayesian regret objective becomes zero, the
posterior mean is guaranteed to be optimal in every demo
environment.
Lemma 4.1. If for some posterior P(· | D) we have
maxT∈T minπ∈Π BRP(T, π) = 0, then the posterior mean
R̄ = EP[R] is optimal for every T ∈ T , i.e., R̄ induces an
optimal policy in every environment contained in T .

2When we do not have a posterior over rewards, it is still possi-
ble to build a pseudo-belief upon point estimates. This approach is
later explained in Section 5.2.

3We consider maxT minπ and not the reverse, as we are inter-
ested in the maximin environment (and not minimax policy).

It is worth noting that our maximin Bayesian regret objec-
tive resembles several approaches to robust reinforcement
learning, e.g., (Roy et al., 2017; Zhou et al., 2021; Buening
et al., 2023; Zhou et al., 2024). However, it differs in that
we are interested in the maximin environment (not mini-
max policy) and the Bayesian regret is defined w.r.t. a set of
environments T and a distribution over reward functions.

4.2. Finding Maximin Environments

Structured Environments. Often the set of environments
has a useful structure that can be exploited to search the
space of environments efficiently. We here consider the
special case where each environment T ∈ T is build from a
collection of transition matrices Ts. Similar setups can be
found in the robust dynamic programming literature (e.g.,
(Iyengar, 2005; Nilim & El Ghaoui, 2005; Xu & Mannor,
2010; Mannor et al., 2016)).

Let Ts ∈ RS×A denote a state-transition matrix dictating
the transition probabilities in state s. We can identify any
transition function T with a family of state-transition ma-
trices {Ts}s∈S . We then say that an environment set T
allows us to make state-individual transition choices if there
exist sets Ts such that T = {{Ts}s∈S : Ts ∈ Ts}. In other
words, we can choose a new environment T by arbitrarily
combining transition matrices for each state. Note that this
of course allows for the case where the transitions in some
state s are fixed, i.e., Ts = {Ts}. When we can make such
state-individual transition choices, we can use an extended
value iteration approach to approximate the maximin envi-
ronment efficiently. The extended value iteration algorithm
is specified in Appendix B, Algorithm 4.

Arbitrary Environments. In some situations, the set of
environments T may not exhibit any useful structure. More-
over, we may not even have explicit knowledge of the transi-
tion functions in T , but can only access a set of correspond-
ing simulators. In this case, we are left with approximating
the maximin environment (1) by sampling simulators from
T and performing policy rollouts. We describe the complete
procedure in Appendix B, Algorithm 5.

Flexible Environment Set Construction. Although our
assumption initially considers the simplest scenario where
any environment within T is accessible at any time, this may
become impractical when the process of building environ-
ments is labour-intensive. Instead of probing the entire set
T at each environment design step, our framework allows
some flexibility. With little approximation in Framework 1
Line 3, we can select the next environment from a new sub-
set T⊂ ⊂ T . This allows users to progressively build new
environments with every additionally desired round.

4

Environment Design for Inverse Reinforcement Learning

Algorithm 2 ED-BIRL: Environment Design for BIRL

1: input environments T , prior P, budget m ∈ N
2: for k = 1, . . . ,m do
3: Sample rewards from P(· | D1:k−1) using BIRL
4: Construct empirical distribution P̂k−1 from samples
5: Find Tk ∈ argmaxT minπ BRP̂k−1

(T, π)
6: Observe trajectory τk in Tk, i.e., Dk = (τk, Tk)
7: return BIRL(D1:m)

5. Inverse Reinforcement Learning with
Multiple Environments

We now explain how to learn about the reward function from
demonstrations that were provided under multiple environ-
ment dynamics. To do so, we will extend Bayesian and Max-
Ent IRL methods to this setting, and combine them with en-
vironment design to obtain the ED-BIRL and ED-AIRL al-
gorithm, respectively. While ED-BIRL is designed for sim-
ple tabular problems due to its high complexity, ED-AIRL
can be applied to environments with large or continuous
action/observation spaces.

5.1. The Bayesian Setting: ED-BIRL

The Bayesian perspective to the IRL problem provides a
principled way to reason about reward uncertainty (Ra-
machandran & Amir, 2007). Typically, the human is mod-
elled by a Boltzmann-rational policy (Jeon et al., 2020).
This means that for a given reward function R and transition
function T the expert is acting according to a softmax policy
πsoftmax
R,T (a | s) =

exp(cQ∗
R,T (s,a))∑

a′ exp(cQ∗
R,T (s,a′)) , where the parame-

ter c relates to our judgement of the expert’s optimality.4

Given a prior distribution P(·), the goal of Bayesian IRL is
to recover the posterior distribution P(· | D) and to either
sample from the posterior using MCMC (Ramachandran &
Amir, 2007; Rothkopf & Dimitrakakis, 2011) or perform
MAP estimation (Choi & Kim, 2011).

In our case, the data is given by the sequence D1:k =
(D1, . . . ,Dk) with Di = (τi, Ti). We see that this is no
obstacle as the likelihood factorises as P(D1:k | R) =∏

i≤k P(τi | R, Ti), since the expert trajectories (i.e., ex-
pert policies) are conditionally independent given the re-
ward function and transition function. The likelihood of
each expert demonstration is then given by P(τi | R, Ti) =∏

(s,a)∈τi
πsoftmax
R,Ti

(a | s). Hence, the reward posterior can
be expressed as

P(R | D1:k) ∝
∏
i≤k

∏
(s,a)∈τi

πsoftmax
R,Ti

(a | s) · P(R). (2)

4Note that when using MCMC Bayesian IRL methods we can
also perform inference over the parameter c and must not assume
knowledge of the expert’s optimality.

Algorithm 3 ED-AIRL: Environment Design for AIRL

1: input environments T , budget m ∈ N
2: for k = 1, . . . ,m do
3: if k = 1 then
4: Choose Tk arbitrarily from T
5: else
6: Let P̂k−1 ≡ U({R1, . . . , Rk−1})
7: Find Tk ∈ argmaxT BRP̂k−1

(T, π∗
R1:k−1,T

)

8: Observe trajectory τk in T , i.e., Dk = (τk, Tk)
9: Compute point estimate Rk = AIRL(Dk)

10: Compute best guess R1:k = AIRL-ME(D1:k)
11: return AIRL-ME(D1:m)

As a result, we can, for instance, sample from the posterior
using the Policy-Walk algorithm from (Ramachandran &
Amir, 2007) with minor modifications or the Metropolis-
Hastings Simplex-Walk algorithm from (Buening et al.,
2022). We generally denote any Bayesian IRL algorithm
that is capable of sampling from the posterior by BIRL.

Plugging BIRL into our environment design framework,
we get the ED-BIRL procedure detailed in Algorithm 2.
Note that, in practice, we approximate the posterior P(· |
D1:k) by sampling rewards and constructing an empirical
distribution P̂k.

5.2. The MaxEnt Setting: AIRL-ME and ED-AIRL

In the following, we describe how to extend MaxEnt IRL
methods to demonstrations from multiple environments, and
use them in combination with environment design for IRL.

Reward Inference with Multiple Environments. In
MaxEnt IRL, the reward function is assumed to be pa-
rameterised by some parameter θ. Given observations
D1:k = (D1, . . . ,Dk) with Di = (τi, Ti), our goal for
multiple environments is to solve the maximum likelihood
problem

argmax
θ

∑
(τ,T)∈D1:k

logP(τ | θ, T), (3)

where we again used that trajectories are independent condi-
tional on the reward parameter θ and the dynamics T . Con-
sequently, the only difference to the original MaxEnt IRL
formulation is that we now sum over pairs (τ, T) instead of
just trajectories τ . The specific algorithm we consider here
is Adversarial IRL (AIRL) (Fu et al., 2018), which frames
the optimisation of (3) as a generative adversarial network.

To extend AIRL to multiple environments, we can consider
k distinct policies π1, . . . , πk used to generate trajectories in
environments T1, . . . , Tk, respectively, and discriminators

5

Environment Design for Inverse Reinforcement Learning

D1,θ,ϕ1
, . . . , Dk,θ,ϕk

given by

Di,θ,ϕi
(s, a, s′) =

exp(fθ,ϕi(s, s
′))

exp(fθ,ϕi
(s, s′)) + πi(a | s)

,

with fθ,ϕi
(s, s′) = gθ(s) + γhϕi

(s′) − hϕi
(s). Here, gθ

is the state-only reward approximator, and hϕi a shaping
term specific to each environment Ti. We refer to this algo-
rithm as AIRL-ME and defer for a detailed description to
Algorithm 6 in Appendix B.

Environment Design for AIRL: ED-AIRL. This algo-
rithm also relies on Bayesian regret, even though we do
not have an analytical posterior as in the Bayesian set-
ting. We substitute the posterior with a uniform distribution
U({R1, . . . , Rk}) over point estimates Ri, each separately
calculated with standard AIRL from demonstration Di. We
then also replace the posterior mean R̄ with the multi-
environment estimate obtained from AIRL-ME(D1:k), de-
noted R1:k.5 Here, R1:k represents our best guess about
the reward function after round k. In particular, for a given
environment T , the optimal policy π∗

R1:k,T
w.r.t. R1:k and T

is the policy we expect to perform best in environment T . In
round k+1, we then choose the environment T in which the
reward function R1:k performs the worst compared to the
reward functions R1, . . . , Rk. This environment is given by
argmaxT∈T BRU({R1,...,Rk})(T, π

∗
R1:k,T

). The ED-AIRL
procedure is detailed in Algorithm 3.
Remark 5.1. Note that, in every round k, we can of course let
ED-BIRL and ED-AIRL query a batch of several demon-
strations from the environment Tk. In the case of ED-AIRL,
our experiments showed that this imporves the stability of
the reward inference.

6. Experiments
The primary goal of our experiments is to address the fol-
lowing two questions: (1) Can we recover the true reward
function by adaptively designing environments? (2) Are the
reward estimates more robust by doing so?

To answer the first question, Section 6.1 considers the maze
task already introduced in Figure 1 of the introduction, as it
allows us to nicely visualise the learned reward functions.
To answer the second question, we evaluate our environment
design approach on continuous control tasks in Section 6.2,
where we slightly perturb environment dynamics to test the
robustness of learned rewards. We also include an ablation
study by replacing our maximin Bayesian regret environ-
ment design with domain randomisation. This allows us to
separate the effect of active environment design from the
effect of learning a reward function from multiple (possibly
randomly chosen) environments. Additional experimental

5Note that R1:k is generally not equal to the mean of
U({R1, . . . , Rk}).

results and details are provided in Appendix C and Ap-
pendix D.

6.1. Recovering the True Reward Function

In this experiment, we consider a discrete maze task inspired
by minigrid (Chevalier-Boisvert et al., 2023), in which the
learner has the ability to add obstacles to a base layout of
the maze. We visualise the selected mazes and estimated
rewards, and evaluate whether our approach can recover the
true reward function.

Experimental Setup. In the maze task, the objective is to
reach one of three goal squares while avoiding lava. Here,
any maze from the set of environments is obtained by adding,
removing, or moving gray obstacles. Note that the goal and
lava squares cannot be moved. The learner gets to select
mazes from this set and observes two expert trajectories
for every chosen maze.6 The true reward function, which
is unknown to the learner, yields reward 1 in goal squares
and reward −1 in lava squares. We discount the problem by
γ = 0.9, so that the expert tries to reach a goal square as
quickly as possible.

We compare our approach, ED-BIRL, with learning from
a single, fixed maze as well as learning from mazes that
were randomly generated. We randomly generate these
mazes by adding an obstacle to a tile with probability 0.3.7

The inference for all three approaches is done using BIRL
and the computed reward estimates are scaled to [0, 1] and
rounded to one decimal.

Results. In Figure 2, we observe that ED-BIRL recovers
the location of all three goal squares after three rounds.
Moreover, the learner is able to identify the location of all
lava strips in Figure 2c, i.e., squares with negative reward.
Hence, by adaptively designing a sequence of environments,
ED-BIRL is capable of recovering all performance-relevant
aspects of the unknown reward function.

In contrast, learning from a fixed environment (Figure 2a)
as well as domain randomisation (Figure 2b) both fail to re-
cover the location of all goal squares, let alone lava squares.
In a fixed maze, any near-optimal policy will visit the closest
goal state only, which in this case is in the top right corner
of the maze. We also see that using domain randomisa-
tion is impractical for IRL, as we require carefully curated
mazes to recover the true reward function. Even worse, by
obliviously randomising the maze layout, we may create

6We give the learner two trajectories per chosen environment
to provide a stronger learning signal to BIRL.

7Naturally, such randomly generated mazes can be very differ-
ent every iteration, and we can only display exemplary mazes for
domain randomisation in Figure 2. Nevertheless, the presented
examples shall serve as an illustration of the disadvantages of using
domain randomisation in IRL, where demonstrations are costly.

6

Environment Design for Inverse Reinforcement Learning

Selected Mazes Final Reward Estimate

(a) Fixed Environment BIRL

Selected Mazes Final Reward Estimate

(b) Domain Randomisation BIRL

Selected Mazes Final Reward Estimate

(c) ED-BIRL

Figure 2: The discrete maze task from Figure 1. The goal in the discrete maze environment is to reach one of the three green
goal squares while avoiding lava squares. For each approach, we show on the left the chosen mazes and visualise on the
right the posterior mean reward after three rounds. In (a), the expert always acts in the same, fixed maze. In (b), the maze
is randomly generated by adding obstacles, i.e., gray squares, uniformly at random. The proposed ED-BIRL approach,
which adaptively chooses maze layouts based on past reward estimates, is shown in (c). We use the same colour scale as in
Figure 1, which ranges from black (0.0) to red (0.5) to white (1.0).

unsolvable environments for the human expert, which yield
no information at all (see Figure 2b). Additional results on
the tabular maze task can be found in Appendix C.

6.2. Learning Robust Reward Functions in Continuous
Control Problems

In this set of experiments, we evaluate ED-AIRL on con-
tinuous control tasks. We consider a continuous maze task
(Fu et al., 2018) as well as MuJoCo environments (Todorov
et al., 2012). For these test suites, we no longer have direct
access to the transition function but can only access their cor-
responding simulators. We here compare ED-AIRL with
Domain Randomisation AIRL (DR-AIRL) and standard
AIRL (Fu et al., 2018). Moreover, we also benchmark
against imitations learning approaches, including Behav-
ioral Cloning (BC), Generative Adversarial Imitation Learn-
ing (GAIL) (Ho & Ermon, 2016) and RIME (Chae et al.,
2022). Notably, RIME is an imitation learning algorithm
that tries to find a robust policy based on demonstrations
from multiple environments.

Experimental Setup. We treat the continuous maze prob-
lem without additional walls as well as the original MuJoCo
environments in their default settings as base environments.
For each task, we then build a disjoint set of demo envi-
ronments (i.e., environments in which we could potentially
observe the expert) and test environments by altering their
respective base environments.

In the continuous maze, this is done by adding walls to the
maze. For the MuJoCo environments, we tweak the envi-
ronment dynamics by changing parameters of the physics
engine, which include body features of the agent as well as
gravity parameters (see Appendix D for details). In total,
we create 20 demo environments and 10 test environments
for each task, where we want to emphasize that these sets
are disjoint so that we never observe the expert in any test

environments. We include the base environment by default
in the set of demo environments. Exemplary demo and test
environments are illustrated in Figure 3.

For the approaches that learn from multiple environments
(ED-AIRL, DR-AIRL, RIME), the learner has access to the
set of demo environments out of which it can sequentially
choose 5 (10 for the continuous maze) demo environments
for the expert to act in. The learner always chooses the base
environment first, serving as the initialisation for ED-AIRL
and ensuring a fair comparison. Subsequently, DR-AIRL
chooses environments from the demo set uniformly at ran-
dom without replacement, and then uses AIRL-ME to com-
pute a reward estimate from all observed trajectories. As
RIME does not estimate the reward function, we cannot
plug-in our environment design approach. Instead, we select
environments from the demo set analogously to DR-AIRL.

In total, every approach observes a total of m = 50 expert
trajectories. Specifically, ED-AIRL, DR-AIRL, and RIME
observe 10 trajectories (5 for the continuous maze) in each
environment they select. In contrast AIRL, GAIL, and BC
observe 50 trajectories in the base environment.

For the IRL approaches (ED-AIRL, DR-AIRL, AIRL), we
evaluate the final reward estimates after observing all 50
expert trajectories. We do this by optimising a fresh policy
in each of the demo and test environments using the learned
reward function. We then evaluate this policy under the true
reward function in each environment before reporting the
average return across the demo and test sets. For the imita-
tion learning algorithms (RIME, GAIL, BC) we report the
average return the imitating policy achieves when deployed
on the demo and test set environments.

Results. In Table 1, we see that ED-AIRL overall
achieves the highest performance on the demo and test
sets. In most cases, ED-AIRL outperforms DR-AIRL,
sometimes significantly (Swimmer), with the exception of

7

Environment Design for Inverse Reinforcement Learning

Continuous maze Hopper HalfCheetah Swimmer

Demo Test Demo Test Demo Test Demo Test

ED-AIRL 68±04 71±02 63±07 52±04 40±11 35±13 80±19 69±12

DR-AIRL 52±07 53±12 59±06 56±04 40±13 40±11 45±04 53±05

AIRL 33±09 52±07 38±03 34±04 29±09 16±07 40±09 44±08

RIME -105±12 -52±03 61±01 53±02 -21±08 -11±09 -05±01 -04±01

GAIL 20±05 17±01 40±02 34±01 -12±02 -06±01 111±00 110±01

BC 11±00 22±00 -12±02 -06±01 -23±01 -14±01 124±01 130±01

Table 1: Performance on the continuous control tasks. Average normalised returns and their standard error over the demo
and test sets (averaged over 10 runs for MuJoCo and 5 runs for the continuous maze). 100 indicates expert performance,
whereas 0 indicates the performance of a random policy.

Demo Test

(a) Continuous maze

Demo Test

(b) HalfCheetah

Figure 3: Examples of demo and test environments.

HalfCheetah, where both approaches perform similarly. No-
tably, ED-AIRL consistently outperforms AIRL by a large
margin in all test suites.

As expected, the imitating policies from GAIL and BC fail to
transfer across variations of the base environment (Table 1).
An exemption is the Swimmer environment, in which the
imitating policies of GAIL and BC were extremely robust
to any changes in the environment dynamics (gravity and
body features). Lastly, in our experimental setup, RIME
struggles to learn a reasonable policy with the exception of
Hopper where RIME performs similarly to ED-AIRL and
DR-AIRL. The reason for its bad performance could be
that in our case the environments in the demo and test set
are much more different from one another compared to the
study done in Chae et al. (2022).

In Figure 4, we also analyse the improvement of ED-AIRL
versus AIRL as we increase the total number of expert tra-
jectories in the continuous maze task. Whereas AIRL does
not significantly improve with more trajectories, we observe
that ED-AIRL shows steady improvement until plateau-
ing at around 65% expert level performance when given
a budget of 25 trajectories. More generally, even though
AIRL is designed to learn a robust reward function, it ap-
pears that learning from a single environment is insufficient
to generalise to slight variations of a base environments,
independently of the number of trajectories.

We provide several additional experimental results for

Figure 4: Average normalised performance on the demo set
in the continuous maze as we increase the number of expert
trajectories (averaged over 5 runs). The standard error is
shown in shaded colour. Every 5 trajectories, ED-AIRL
chooses a new environment for the expert to act in. In
contrast, AIRL always observes the expert act in the same
base environment.

ED-BIRL and ED-AIRL in Appendix C, including insights
into the environments that are being selected by ED-AIRL
in the continuous maze task.

7. Conclusion
We introduced Environment Design for Inverse Reinforce-
ment Learning, which concerns how to optimally design a
sequence of environments to acquire expert demonstrations.
We proposed a general methodology for doing so, based
on a maximin Bayesian regret objective. This idea can be
directly combined with Bayesian IRL methods to obtain
the ED-BIRL algorithm. We also propose an approximate
method, ED-AIRL, based on an ensemble of point estimates
from the AIRL procedure. Experimentally, we show that our

8

Environment Design for Inverse Reinforcement Learning

approach is able to recover almost all performance-relevant
aspects of the unknown reward function, and improves the
robustness of learned reward functions.

Limitations. The computational load of ED-AIRL can
become heavy since the number of policy optimisations
grows quadratically with the number of rounds. We can
reduce the computational load by sampling a subset T⊂ of
environments for the environment design process. In this
case, ED-AIRL requires O(|T⊂|m2) policy optimisations,
where m is the number of times we select an environment.

Future directions. In our experiments, we found the infer-
ence of AIRL, as well as other MaxEnt IRL methods, to be
unstable. In future work, we could use a Gaussian process
model for the reward function (Levine et al., 2011). This
can be made scalable, for instance, through a variational
inference approach (Chan & van der Schaar, 2021).

Acknowledgements
Thomas Kleine Buening acknowledges the support of the
Norwegian Research Council (Grant 302203) and the UKRI
Prosperity Partnership Scheme (FAIR).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,

McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Amin, K., Jiang, N., and Singh, S. Repeated inverse re-
inforcement learning. Advances in neural information
processing systems, 30, 2017.

Arora, S. and Doshi, P. A survey of inverse reinforcement
learning: Challenges, methods and progress. Artificial
Intelligence, 297:103500, 2021.

Brown, D. S., Cui, Y., and Niekum, S. Risk-aware active
inverse reinforcement learning. In Conference on Robot
Learning, pp. 362–372. PMLR, 2018.

Buening, T. K., George, A.-M., and Dimitrakakis, C. In-
teractive inverse reinforcement learning for cooperative
games. In International Conference on Machine Learn-
ing, pp. 2393–2413. PMLR, 2022.

Buening, T. K., Dimitrakakis, C., Eriksson, H., Grover, D.,
and Jorge, E. Minimax-bayes reinforcement learning. In
International Conference on Artificial Intelligence and
Statistics, pp. 7511–7527. PMLR, 2023.

Cao, H., Cohen, S., and Szpruch, L. Identifiability in inverse
reinforcement learning. Advances in Neural Information
Processing Systems, 34:12362–12373, 2021.

Castro, P. S., Li, S., and Zhang, D. Inverse reinforcement
learning with multiple ranked experts. arXiv preprint
arXiv:1907.13411, 2019.

Chae, J., Han, S., Jung, W., Cho, M., Choi, S., and Sung, Y.
Robust imitation learning against variations in environ-
ment dynamics. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 2828–2852.
PMLR, 17–23 Jul 2022.

Chan, A. J. and van der Schaar, M. Scalable Bayesian
inverse reinforcement learning. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=4qR3coiNaIv.

Chevalier-Boisvert, M., Dai, B., Towers, M., de Lazcano,
R., Willems, L., Lahlou, S., Pal, S., Castro, P. S., and
Terry, J. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented
tasks. CoRR, abs/2306.13831, 2023.

Choi, J. and Kim, K.-e. Map inference for bayesian
inverse reinforcement learning. In Advances in Neural
Information Processing Systems, volume 24. Curran As-
sociates, Inc., 2011. URL https://proceedings.
neurips.cc/paper/2011/file/
3a15c7d0bbe60300a39f76f8a5ba6896-Paper.
pdf.

Dennis, M., Jaques, N., Vinitsky, E., Bayen, A., Russell,
S., Critch, A., and Levine, S. Emergent complexity and
zero-shot transfer via unsupervised environment design.
Advances in Neural Information Processing Systems, 33:
13049–13061, 2020.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:
Deep inverse optimal control via policy optimization. In
International conference on machine learning, pp. 49–58.
PMLR, 2016.

Fu, J., Luo, K., and Levine, S. Learning robust rewards
with adversarial inverse reinforcement learning. In In-
ternational Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rkHywl-A-.

9

https://openreview.net/forum?id=4qR3coiNaIv
https://openreview.net/forum?id=4qR3coiNaIv
https://proceedings.neurips.cc/paper/2011/file/3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-

Environment Design for Inverse Reinforcement Learning

Gleave, A., Taufeeque, M., Rocamonde, J., Jenner, E.,
Wang, S. H., Toyer, S., Ernestus, M., Belrose, N., Em-
mons, S., and Russell, S. imitation: Clean imitation learn-
ing implementations. arXiv preprint arXiv:2211.11972,
2022.

Gur, I., Jaques, N., Miao, Y., Choi, J., Tiwari, M., Lee, H.,
and Faust, A. Environment generation for zero-shot com-
positional reinforcement learning. Advances in Neural
Information Processing Systems, 34:4157–4169, 2021.

He, J. Z.-Y. and Dragan, A. D. Assisted robust reward
design. arXiv preprint arXiv:2111.09884, 2021.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. Advances in neural information processing systems,
29, 2016.

Iyengar, G. N. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257–280, 2005.

Jeon, H. J., Milli, S., and Dragan, A. Reward-rational (im-
plicit) choice: A unifying formalism for reward learning.
Advances in Neural Information Processing Systems, 33:
4415–4426, 2020.

Kim, K., Garg, S., Shiragur, K., and Ermon, S. Reward iden-
tification in inverse reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 5496–5505.
PMLR, 2021.

Levine, S., Popovic, Z., and Koltun, V. Nonlinear inverse re-
inforcement learning with gaussian processes. Advances
in neural information processing systems, 24, 2011.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-
end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

Likmeta, A., Metelli, A. M., Ramponi, G., Tirinzoni, A.,
Giuliani, M., and Restelli, M. Dealing with multiple ex-
perts and non-stationarity in inverse reinforcement learn-
ing: an application to real-life problems. Machine Learn-
ing, 110:2541–2576, 2021.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lindner, D., Turchetta, M., Tschiatschek, S., Ciosek, K.,
and Krause, A. Information directed reward learning for
reinforcement learning. Advances in Neural Information
Processing Systems, 34:3850–3862, 2021.

Lindner, D., Krause, A., and Ramponi, G. Active explo-
ration for inverse reinforcement learning. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and

Oh, A. (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 5843–5853. Curran Associates,
Inc., 2022.

Lopes, M., Melo, F., and Montesano, L. Active learning
for reward estimation in inverse reinforcement learning.
In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 31–46. Springer,
2009.

Mannor, S., Mebel, O., and Xu, H. Robust mdps with
k-rectangular uncertainty. Mathematics of Operations
Research, 41(4):1484–1509, 2016. ISSN 0364765X,
15265471.

Metelli, A. M., Mutti, M., and Restelli, M. Configurable
markov decision processes. In International Conference
on Machine Learning, pp. 3491–3500. PMLR, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor,
M. E., and Stone, P. Curriculum learning for reinforce-
ment learning domains: A framework and survey. arXiv
preprint arXiv:2003.04960, 2020.

Ng, A. Y. and Russell, S. J. Algorithms for inverse rein-
forcement learning. In Proceedings of the Seventeenth
International Conference on Machine Learning, pp. 2,
2000.

Nilim, A. and El Ghaoui, L. Robust control of markov
decision processes with uncertain transition matrices. Op-
erations Research, 53(5):780–798, 2005.

Ramachandran, D. and Amir, E. Bayesian inverse reinforce-
ment learning. In Proceedings of the 20th International
Joint Conference on Artifical Intelligence, pp. 2586–2591,
2007.

Ramponi, G., Likmeta, A., Metelli, A. M., Tirinzoni, A.,
and Restelli, M. Truly batch model-free inverse reinforce-
ment learning about multiple intentions. In International
conference on artificial intelligence and statistics, pp.
2359–2369. PMLR, 2020.

Ramponi, G., Metelli, A. M., Concetti, A., and Restelli,
M. Learning in non-cooperative configurable markov
decision processes. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

Rolland, P., Viano, L., Schürhoff, N., Nikolov, B., and
Cevher, V. Identifiability and generalizability from multi-
ple experts in inverse reinforcement learning. In Koyejo,

10

Environment Design for Inverse Reinforcement Learning

S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and
Oh, A. (eds.), Advances in Neural Information Process-
ing Systems, volume 35, pp. 550–564. Curran Associates,
Inc., 2022.

Rothkopf, C. A. and Dimitrakakis, C. Preference elicitation
and inverse reinforcement learning. In Joint European
conference on machine learning and knowledge discovery
in databases, pp. 34–48, 2011.

Roy, A., Xu, H., and Pokutta, S. Reinforcement learning
under model mismatch. Advances in neural information
processing systems, 30, 2017.

Russell, S. Learning agents for uncertain environments. In
Proceedings of the eleventh annual conference on compu-
tational learning theory, pp. 101–103, 1998.

Russo, D. and Van Roy, B. Learning to optimize via
information-directed sampling. Advances in Neural In-
formation Processing Systems, 27, 2014.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms,
2017.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W.,
and Abbeel, P. Domain randomization for transferring
deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 23–30. IEEE, 2017.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp.
5026–5033. IEEE, 2012.

Toyer, S., Shah, R., Critch, A., and Russell, S. The magical
benchmark for robust imitation. Advances in Neural
Information Processing Systems, 33:18284–18295, 2020.

Xu, H. and Mannor, S. Distributionally robust markov
decision processes. Advances in Neural Information Pro-
cessing Systems, 23, 2010.

Zhou, R., Liu, T., Cheng, M., Kalathil, D., Kumar, P., and
Tian, C. Natural actor-critic for robust reinforcement
learning with function approximation. Advances in neural
information processing systems, 36, 2024.

Zhou, Z., Zhou, Z., Bai, Q., Qiu, L., Blanchet, J., and Glynn,
P. Finite-sample regret bound for distributionally robust
offline tabular reinforcement learning. In International
Conference on Artificial Intelligence and Statistics, pp.
3331–3339. PMLR, 2021.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al.
Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

11

Environment Design for Inverse Reinforcement Learning

Appendix

A. Proofs
Proof of Lemma 4.1. For simplicity of exposition, we assume here that the posterior P is discrete. Now, as the value function
is linear in rewards, we have

min
π

BRP(T, π) = BRP(T, πR̄,T),

where πR̄,T is the optimal policy w.r.t. the posterior mean R̄ = ER∼P[R] and the transition function T . If
maxT∈T minπ∈Π BRP(T, π) = 0, it then follows that maxT∈T BRP(T, πR̄,T) = 0, i.e. V∗

R,T = VπR̄,T

R,T for all R ∈ supp(P)
and T ∈ T . This must imply that V∗

R,T = VπR̄,T

R,T for all T ∈ T . In other words, R̄ is optimal for all T ∈ T (under the
initial state distribution ω).

B. Algorithms
B.1. Finding Maximin Environments

Structured Environments. In the structured environment setting, we can independently choose a transition distribution
for each state-action pair. Extended Value Iteration for Structured Environments, provided in Algorithm 4, estimates the
maximin environment by iteratively making state-individual transition choices. At each stage, and for each state in the
state space, we determine the state-transition matrix that maximises the regret for this given state. At the end, we return the
environment corresponding to the transition matrices selected in the final stage.

Arbitrary Environments. The algorithm, Environment Design with Arbitrary Environments, is provided in Algorithm 5.
It determines an estimate of the maximin environment by computing another approximation of the Bayesian regret. This
approximation is done by running full policy optimisation steps in order to recover the policy values for each environment-
reward combination. To obtain the Bayesian regret of an environment, we take the sum of the reward losses for each
point estimate rewards: the difference between the value of a policy trained with a point estimate reward function and the
value of a policy trained with the best guess. We return the environment with the highest Bayesian regret. To alleviate the
computation burden brought by this method, it is possible to sample a subset of environments for selection, rather than the
full set of possible environments.

ED-AIRL with Arbitrary Environments. Note that in the special situation running ED-AIRL, when estimating the
minimax environment at the second expert-learner round (Algorithm 3 line 7 when k = 2) we end up with two possibly
different estimations of the same reward function : R1:1 and R1. In this case, it makes sense to consider the absolute reward
loss when running environment design (Algorithm 5 line 8) as it let us discard environments that exhibit no information at
all, while only having a single point estimate. Additionally, point estimates learned by AIRL must all be normalised with
their minimum and maximum when computing the reward losses.

B.2. MaxEnt IRL with Multiple Environments

AIRL-ME, given in Algorithm 6, is the extension of AIRL to multiple environments. To learn a common reward to k chosen
environments, we maintain k generating policies, where policy i only interacts with environment i, and k discriminators,
where each discriminator i has its own shaping parameters ϕi but has shared reward approximator parameters θ. Expert data
for all k considered environments are supposedly already collected. After generating trajectories with each policy, we train
for a few steps discriminators 1, . . . , k to classify expert and generated data from environments 1, . . . , k. Each policy i is
then trained for one policy optimisation step with their respective reward function Ri,θ,ϕi . We repeat this procedure for
a fitting number of iterations and then extract the learned common reward function. Remark that AIRL has to be run in
”state-only” mode, meaning that we learn a reward function that only depends on the current state. Since action meanings
change with the transition dynamics, it does not make sense to include an action dependence to a reward that has to be
common to multiple transition functions (Fu et al., 2018).

12

Environment Design for Inverse Reinforcement Learning

Algorithm 4 Extended Value Iteration for Structured Environments

1: input environments T = {Ts}s∈S , empirical distribution P̂, best guess R̄
2: repeat until VR̄ and VR converge:
3: for s ∈ S do
4: Ts = argmax

Ts∈Ts

{
ER∼P̂

[
max
a∈A

T⊤
s,aVR

]
−max

b∈A
T⊤
s,bVR̄

}
5: VR(s) = max

a∈A
R(s) + γT⊤

s,aVR for every R ∼ P̂

6: VR̄(s) = max
b∈A

R̄(s) + γT⊤
s,bVR̄

7: return environment T = {Ts}s∈S

Algorithm 5 Environment Design with Arbitrary Environments

1: input set of environments T , point estimates {R1, . . . , Rk}, best guess R̄
2: // if necessary, sample a subset T⊂ from T
3: for T ∈ T do
4: calculate π̄ ∈ argmaxπ Vπ

R̄,T
(policy optimisation)

5: for R ∈ {R1, . . . , Rk} do
6: evaluate V π̄

R,T (policy evaluation)
7: calculate V∗

R,T = maxπ Vπ
R,T (policy optimisation)

8: ℓ(R) = V∗
R,T − V π̄

R,T

9: BR(T) =
∑

R∈{R1,...,Rk} ℓ(R)

10: return T ∗ = argmaxT∈T BR(T)

Algorithm 6 AIRL-ME (AIRL with Multiple Environments)

1: input Observations D = (D1, . . . ,Dk) with Di = (τi, Ti)
2: Initialise policies π1, . . . , πk and discriminators D1,θ,ϕ1

, . . . , Dk,θ,ϕk

3: for t = 0, 1, . . . do
4: Collect trajectories τGi,j = (s0, a0, . . . , sH , aH) by executing πi in Ti for i ∈ [k].
5: Train discriminators D1,θ,ϕ1 . . . , Dk,θ,ϕk

to classify expert data τ1, . . . , τk from samples {τG1,j}j , . . . , {τGk,j}j , re-
spectively, via logistic regression with shared parameter θ.

6: Update reward Ri,θ,ϕi
(s, a, s′)← logDi,θ,ϕi

(s, a, s′)− log(1−Di,θ,ϕi
(s, a, s′)) for i ∈ [k].

7: Update π1, . . . , πk with respect to R1,θ,ϕ1
, . . . , Rk,θ,ϕk

using any policy optimisation method.
8: return gθ (extract the reward approximator)

C. Additional Experimental Results
C.1. Learning Robust Reward Functions on Randomly Generated MDPs

The learner is provided with a set of demo environments they can select for a demonstration. Afterwards, the agent is
evaluated on a set of test environments. The performance on the test set captures the generalisation ability of the learned
rewards to new dynamics.

Experimental Setup. We first randomly generate a base MDP (S,A, Tbase,R, γ, ω) with base transition function Tbase.
We then construct the set of possible demo environments, here denoted Tdemo instead of T to clearly distinguish between
demo and test environments, by sampling state-transition functions that differ from the base transitions Tbase by at most
some value ρdemo in terms of ℓ∞-distance. In our experiments, we set the maximum amount of variation in the demo
environments to ρdemo = 0.5. Similarly, we create a set of test environments Ttest with a maximum amount of perturbation
ρtest on which we evaluate the learned reward functions. For all three approaches, we evaluate the posterior mean, which is
computed using BIRL. For all T ∈ Ttest, we optimise a policy w.r.t. the posterior mean and T and evaluate the computed
policy under the true reward function R and transition function T . Finally, we average the results over all environments in
Ttest. We want to emphasise that the way we construct Tdemo and Ttest, these sets are completely disjunct except for the

13

Environment Design for Inverse Reinforcement Learning

(a) Average utility loss of ED-BIRL, Domain
Randomisation, and Fixed EnvironmentIRL
over 10 rounds. The learned rewards are evaluated on a set of
test environments that differ from the base environment by at
most ρtest = 0.5.

(b) Along the x-axis we increase ρtest, i.e. the amount of
variation in the test environments. We evaluate the learned
reward functions after 10 rounds of interaction with the expert,
i.e. the final reward estimate from Figure 5a.

Figure 5: On a randomly generated MDP task, we evaluate the robustness of reward estimates learned by ED-BIRL,
Domain Randomisation, and Fixed EnvironmentIRL, respectively.

base transition function, i.e. Tdemo ∩ Ttest = {Tbase}. We therefore do not observe the expert in the environments that we
evaluate our approaches on.

Results. In Figure 5a, we observe that ED-BIRL outperforms domain randomisation and learning from a fixed envi-
ronments over the course of all rounds. As expected, the loss of all three approaches increases the more diverse the test
environments are and the more they differ from the base environment, which can be seen in Figure 5b. Interestingly, even
for ρtest = 0, i.e. evaluation on the base environment only, ED-BIRL slightly outperforms learning directly from the fixed
base environment suggesting a superior sample-efficiency of ED-BIRL.

C.2. Recovering the True Reward Function

We provide an additional visualisation of the learned rewards on another maze problem considered in the experiments from
Section 6.1 in Figure 9. Results on this version of the maze comforts our past observations. ED-BIRL, Figure 6c, recovers
the location of all three goal states and some lava states, after three round. We see that each round, the environment generated
by ED-BIRL forces the expert to visit a goal state which is yet unknown to the reward function. In contrast, Fixed
EnvironmentIRL and Domain Randomisation, Figures 6a,6b, only retrieve the location of one goal state. Even
when increasing the number of rounds (see Figure 10), Domain Randomisation does not manage to recover all three
goals, pointing out clearly the lower sample efficiency of the method. For the initial maze and the randomly generated
mazes, the (optimal) expert trajectory always corresponds to reaching the top right goal state. For this reason, those random
environment designs never lead to discovering additional performance-relevant aspects of the reward function.

C.3. Learning Robust Reward Functions for Continuous Control

With Figure 7, we provide a more interpretable visualisation of how ED-AIRL selects environments. After observing the
expert on the base environment, DR-AIRL selects environments at uniform, while ED-AIRL performs a curated selection.
Figure 7b shows how often each environment is selected by each approach, on the continuous maze task. We observe that on
the 5 times we ran ED-AIRL, it consistently avoided environments similar to the base environment (12) and uninformative
environments (15 and 20). This is a direct improvement from DR-AIRL. We also provide a visualisation of the rewards
learned by ED-AIRL and DR-AIRL on the continuous maze.

We provide more detailed results in Table 3. Experiments on the MuJoCo Ant environment are also included. Based on the
quantiles on both continuous maze and Swimmer, ED-AIRL reliably finds a reward function that solves at least 25% of the

14

Environment Design for Inverse Reinforcement Learning

Chosen Maze

1

Estimated Rewards

2

3

(a) Fixed EnvironmentIRL

Chosen Maze Estimated Rewards

(b) Domain Randomisation

Chosen Maze Estimated Rewards

(c) ED-BIRL

Figure 6: Comparison of ED-BIRL, Fixed EnvironmentIRL, and Domain Randomisation on the first three
rounds of another version of the maze problem seen in Section 6.1.

mazes on both sets, which is not ensured by AIRL. More importantly, this manifests that it is in general safer to learn from a
reward function estimated by ED-AIRL as its 25%-quantile is consistently higher.

D. Additional Experimental Details
Recovering the True Reward Function. For the experiments in Section 6.1, we let the learner observe two trajectories
for each maze. This was done in order to speed up the inference of BIRL and reduce the computational cost. The expert
was modeled by a Boltzmann-rational policy and thus uniformly selected an optimal action when there were several optimal
ones in a given state.

Learning Robust Reward Functions for Continuous Control. For the experiments in Section 6.2, We allow each
approach to learn with unlimited interaction with their environments, but evaluate their learned rewards by optimising
policies for a fixed amount of environment steps. This is justified by the fact that we want to compare the best reward
estimation offered by each approach, only constrained by the amount of expert data m. Besides, because increasing the
amount of observable environment on ED-AIRL quadratically rises the amount of policy optimisation required, we limited
the selection size to n = 10 for the continuous maze task and n = 5 for the remaining tasks. Each time we select a new
environment in ED-AIRL with Algorithm 5, we sample a subset T⊂ of size 10 and 5, for the continuous maze task and
other tasks respectively. For all AIRL-based algorithms, we used a two-layer ReLU network with 32 units for the state-only
reward approximator and shaping functions. We also smoothed the estimated rewards outputted by AIRL and AIRL-ME by
taking the average of the estimated reward functions from the last 10 discriminator-generator rounds.

We chose to limit ourselves to the default MuJoCo environment settings as much as possible. This meant excluding robot
positions from observations, except in Swimmer where it was deemed necessary. We utilised the implementations from
(Gleave et al., 2022) for GAIL and BC, initially tuned with the inclusion of the position in the observation, explaining some
variations in our results. Regarding RIME, we attempted to tune the original implementation from (Chae et al., 2022) and
used their weight-shared discriminator approach. Lastly, AIRL is known to not perform on Ant. (Fu et al., 2018) and
(Gleave et al., 2022) both considered modified versions of the environments, we in contrast kept the default settings in order
to observe whether multi-environment approaches could improve the results or not.

All of our policies were optimised with Proximal Policy Optimisation (Schulman et al., 2017). Within the scope of each
task, demo and test environment experts were trained with identical hyperparameters and for an equal amount of timesteps.

15

Environment Design for Inverse Reinforcement Learning

(a) Continuous maze demo environments.
(b) Frequency at which each continuous maze environment was picked for
expert demonstrations.

Figure 7: For the continuous maze task, the learner can observe experts in n = 10 different environments. AIRL, GAIL
and BC only observe the expert on the base environment, while ED-AIRL and DR-AIRL can observe the expert on any
environments in the demo set. For a fair comparison, we force multi-environment approaches to always include the base
environment in their selection. Environment labeled 20 is designed to be uninformative: the agent is disabled and can not
move around, an expert policy is thus indistinguishable from any other policy under this setting.

Figure 8: Continuous maze test environments.

For better hindsight, average values of random and expert policies on base environments are given in Table 2.

Continuous maze. The task consists in reaching all accessible green targets in whichever order. The agent observes its
current position and whether each goal was already reached or not. While rewarded with 1 point for collecting a target,
the agent is incurred with an action cost to motivate optimal path making. The environment is considered solved when all
reachable targets were collected before the episode of fixed length ends. We provide a visual of the continuous maze demo
and test set in Figure 7a and Figure 8.

Learning Robust Reward Functions on Randomly Generated MDPs. We randomly generated an MDP with 50 states
and 4 actions using a Dirichlet distribution for the transitions and a Beta distribution for the reward function. For each state
we let the demo set of environments contain 15 choices. The size of the test environments was set to be |Ttest| = 500.
Every round, the learner got to select a demo environment and observe a single expert trajectory in that environment. We
limited the amount of deviation from the base transitions in our experiments according to ρdemo and ρtest. In particular, note
that any choice of ρdemo implies that ∥Tbase − T∥∞ = maxs,a∥Tbase(· | s, a)− T (· | s, a)∥1 ≤ ρdemo for all T ∈ Tdemo.
The results were averaged over 5 complete runs, i.e. for 5 randomly generated problem instances.

Implementation. The code used for all of our experiments is available at github.com/Ojig/Environment-Design-for-IRL.

16

https://github.com/Ojig/Environment-Design-for-IRL

Environment Design for Inverse Reinforcement Learning

Continous Maze Swimmer HalfCheetah Hopper Ant

Random 1.14±0.80 9±12 -246±76 16±16 -34±23

Expert 2.83±0.01 174±9 3728±447 2723±275 2331±725

Table 2: Average scores and their standard deviation, for random and expert policies on the base environments. Experts
for base, demo and test environments for a given task were trained with the same hyperparameters for the same number of
iterations.

Chosen Mazes (ED)

1

Estimated Rewards

2

3

4

(a) Run 1.

Chosen Mazes (ED)

1

Estimated Rewards

2

3

4

(b) Run 2.

Chosen Mazes (ED)

1

Estimated Rewards

2

3

4

(c) Run 3.

Figure 9: Selected mazes and reward estimates of ED-AIRL over the course of 4 environment selections (two trajectories
per environment), for 3 separate runs.

Compute. Three AMD EPYC 7302P machines were used. Most of the computation time was spent running ED-AIRL,
which requires a large amount of full policy optimisation steps. With 5 expert-learner rounds and depending on the MuJoCo
environment ED-AIRL requires from half to a full day of wall-clock computation time on one machine.

17

Environment Design for Inverse Reinforcement Learning

Sampled mazes (DR)

1

DR-BIRL Coordinate-wise avg Coordinate-wise max

2

3

4

5

6

7

8

Figure 10: Selected mazes and reward estimates of DR-BIRL over the course of 8 environment selections (with
two trajectories per environment). We here restrict the set of environments to those that do not block off the
expert, i.e., no obstacles can be placed in the top left 4x4 squares. We additionally plot the estimated rewards
when running BIRL in each environment separately and taking a coordinate-wise max or coordinate-wise
average.

18

Environment Design for Inverse Reinforcement Learning

Continuous Demo Test
Maze Average 25%-quantile 75%-quantile Average 25%-quantile 75%-quantile

ED-AIRL 68±04 55±05 97±00 71±02 52±06 99±00
DR-AIRL 52±07 29±11 90±04 53±12 30±15 81±17
AIRL 33±09 08±11 69±09 52±07 30±09 76±09
RIME -105±12 -115±05 -45±02 -52±03 -57±03 -39±02
GAIL 20±05 -10±06 79±06 17±01 -19±02 47±13
BC 11±00 -23±00 71±01 22±00 -18±00 49±00

Hopper Demo Test
Average 25%-quantile 75%-quantile Average 25%-quantile 75%-quantile

ED-AIRL 63±07 37±05 76±08 52±04 31±03 69±08
DR-AIRL 59±06 35±04 69±08 56±04 37±04 60±06
AIRL 38±03 20±02 51±05 34±04 19±02 44±07
RIME 61±01 47±01 80±03 53±02 42±02 66±02
GAIL 40±02 26±01 44±03 34±01 27±01 40±01
BC 32±01 23±01 33±01 27±01 22±00 30±01

HalfCheetah Demo Test
Average 25%-quantile 75%-quantile Average 25%-quantile 75%-quantile

ED-AIRL 40±11 17±10 61±14 35±13 20±13 46±16
DR-AIRL 40±13 16±11 63±14 40±11 23±10 54±12
AIRL 29±09 06±12 45±09 16±07 00±07 25±08
RIME -21±08 -29±05 -12±10 -10±09 -11±08 -06±09
GAIL -12±02 -28±02 01±02 -06±01 -14±01 -06±01
BC -23±01 -30±01 -16±01 -14±01 -17±01 -12±02

Swimmer Demo Test
Average 25%-quantile 75%-quantile Average 25%-quantile 75%-quantile

ED-AIRL 80±16 51±15 110±20 69±12 53±11 90±15
DR-AIRL 45±04 22±04 62±06 53±05 36±05 71±07
AIRL 40±10 11±07 66±13 44±08 19±08 68±10
RIME -05±01 -08±01 -03±01 -04±01 -07±01 -02±00
GAIL 111±00 86±01 132±00 110±01 108±00 121±00
BC 124±01 100±01 156±00 130±01 116±00 160±00

Ant Demo Test
Average 25%-quantile 75%-quantile Average 25%-quantile 75%-quantile

ED-AIRL -71±03 -79±03 -46±03 -86±05 -98±05 -55±04
DR-AIRL -73±03 -88±03 -47±03 -95±03 -114±05 -61±03
AIRL -73±03 -89±05 -47±03 -97±05 -113±08 -62±03
RIME -43±09 -64±11 -23±06 -45±08 -59±10 -27±05
GAIL 69±03 45±03 89±05 75±04 44±03 96±04
BC 62±01 49±01 72±01 69±01 47±02 84±02

Table 3: Normalised scores for the continuous experiments. The quantiles are calculated by taking the average of the
quantiles of each individual run.

19

Environment Design for Inverse Reinforcement Learning

Figure 11: Reward function learned by AIRL on the continuous maze task. The reward function assigns large reward to the
trajectories that gather targets in the same order as the expert, i.e., right-middle-left, which corresponds to the right side of
the tree. It does not capture that the order in which the green states are reached does not matter. Hence, the learned reward
function ”overfits” to the expert trajectory. This function may yield undesired behaviors if the agent is forced to gather
targets in a different order, or if a target is blocked off. For instance, if the right target is inaccessible, the reward function
penalizes the agent for collecting the left target and/or the middle target.

20

Environment Design for Inverse Reinforcement Learning

Figure 12: Reward function learned by ED-AIRL on the continuous maze task. The reward function does not favor a path
more than another. It furthermore encourages the agent to collect targets even if some are blocked off.

21

