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Abstract
In this paper, we prove the universal consistency
of wide and deep ReLU neural network classi-
fiers. We also give sufficient conditions for a
class of probability measures for which classifiers
based on neural networks achieve minimax opti-
mal rates of convergence. The result applies to a
wide range of known function classes. In partic-
ular, while most previous works impose explicit
smoothness assumptions on the regression func-
tion, our framework encompasses more general
settings. The proposed neural networks are ei-
ther the minimizers of the 0-1 loss that exhibit a
benign overfitting behavior.

While the development of statistical theory for binary classi-
fication dates back to the 1970s and is well-summarized
in (Devroye et al., 2013) and (Boucheron et al., 2005),
a general theory explaining the generalizability of clas-
sifiers based on neural networks is far from complete.
The problem can be roughly formulated as follows. The
random vector (X,Y ) takes values in Rd × {0, 1}, and
we have n independent, identically distributed samples
{(X1, Y1), . . . , (Xn, Yn)}. The goal is to build a function
g : Rd → {0, 1} based on n samples such that the classifi-
cation risk of g, E[g(X) ̸= Y ], is minimal. The function
η(x) = E[Y |X = x] is called the regression function. It is
well-known that the Bayes classifier defined by

g∗(x) :=

{
1 if η(x) ≥ 1

2 ;

0 otherwise

achieves the minimal classification risk, L∗ := E[g∗(X) ̸=
Y ]. Thus, it is natural to study the non-negative excess risk
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E[g(X) ̸= Y ] − L∗ of a classifier g as a measure of its
performance.

The first classical result on classifiers based on neural net-
works is the paper (Faragó & Lugosi, 1993), which estab-
lishes two results. First, it shows that there exists a sequence
of 1-hidden layer sigmoidal neural network classifiers whose
widths grow in the order o

(
n

logn

)
such that their excess

risks converge to 0 uniformly over all possible distributions,
i.e., they are universally consistent. Second, for distribu-
tions whose regression function belongs to the Barron space
(Barron, 1993), a wide class of functions for which shallow
neural networks enjoy dimension-free approximation rate,
it is shown that there exist neural network classifiers whose
excess risks converge at a uniform rate O(n−

1
4 ).

However, the first result has room for improvement because
it does not apply to deep or wide neural networks, and
the proposed classifier is computationally infeasible. The
second result on rates of convergence may be tightened in
that there is no indication of whether the rate is tight in such
a regime.

In practice, state-of-the-art neural networks have become
increasingly more complex with number of parameters em-
ployed scaling to the order of hundreds of trillions. A very
recent work (Radhakrishnan et al., 2023) studied the weak
consistency of infinitely wide and deep neural networks
using polynomial and sinusoidal activation functions, inter-
preting them as the neural tangent kernel (NTK) machines.
However, they leave the question of weak consistency, let
alone strong consistency, of finitely wide and deep neural
networks as an open problem (see Section 3 in their paper).
Our result answers this question and provides a theo-
retical guarantee that for an arbitrary distribution, a
computationally feasible sequence of classifiers based on
deep and wide neural networks is strongly consistent.

A number of recent results study classification problems
with overparametrized deep neural networks. (Kim et al.,
2021) shows that in the classical regimes characterized by
Hölder-smoothness, neural networks that minimize the em-
pirical risk of the hinge loss or logistic loss achieve compet-
itive rates of convergence. (Bos & Schmidt-Hieber, 2022)
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considers multi-class classification under the smooth com-
positional structural assumption on the regression function.
Others derive convergence rates of convolutional neural net-
works optimizing the square loss (Kohler et al., 2022) and
the logistic loss (Kohler & Langer, 2020).

A common assumption employed above and in the classi-
cal statistics literature including (Mammen & Tsybakov,
1999), (Tsybakov, 2004), (Audibert & Tsybakov, 2007),
(Kerkyacharian et al., 2014), is to impose a smoothness
assumption on the regression function (see Section 2.3 of
(Suh & Cheng, 2024) for details). Then, they derive upper
bounds on the convergence rate and in some regimes, prove
minimax optimality by deriving a matching minimax lower
bound.

We take a somewhat different view and ask in what distri-
butional regimes neural network classifiers are capable
of achieving minimax optimal rates. In doing so, we re-
lax the smoothness assumption on the regression function
and allow for a study of much more general classes of L2

functions.

Specifically, we consider a family of L2 functions with a
finite Kolmogorov-Donoho optimal exponent, which is an
information-theoretic number that quantifies the number of
bits needed to construct an encoder-decoder pair that can ap-
proximate a given function class to a target accuracy (details
in Section 1.3). The significance of this characteriza-
tion is that it applies to a much wider class of functions
without explicit smoothness constraints, allowing for
more realistic distributional settings. A series of works
from the past two decades ((Donoho et al., 1998),(Grohs
et al., 2023),(Hinrichs et al., 2008),(Petersen & Voigtlaender,
2018)) have provided optimal exponents for many general
classes of functions including Lp-Sobolev spaces, Besov
spaces, bounded variation spaces, modulation spaces, and
cartoon functions. Moreover, (Elbrächter et al., 2021) shows
that most of these spaces are well-approximated by neural
networks from the perspective of distortion theory (details
in Section 1.3).

To put our work into context, we discuss some related works
on the performance of neural network classifiers. A se-
ries of papers (Kohler et al., 2020), (Kohler & Langer,
2020), (Kohler et al., 2022), (Kohler & Walter, 2023), (Wal-
ter, 2023) study performance guarantee of empirical-risk-
minimizing convolutional neural network classifiers under
structural and smoothness assumptions on the regression
function. Note that in these works, the optimization aspect
of how the classifier is obtained is not considered which is
also true of this paper. Some works do consider optimization
procedures, albeit under stronger distributional assumptions.
For example, (Frei et al., 2022) showed that two-layer neu-
ral networks with smoothed leaky ReLU activations trained
with gradient descent exhibit exponentially fast convergence

rates for distributions (roughly) with strongly log-concave
covariate distribution and regression function whose norm
is bounded by 1. (Cao et al., 2022) also derived exponential
rates for convolutional neural networks under assumptions
that imply the regression function is binary-valued. (Kou
et al., 2023) obtained similar results for a slightly more gen-
eral setting with ReLU convolutional neural networks. We
emphasize that the distributional assumptions in these works
are quite restrictive compared to our flexible distributional
setting.

To summarize, we first show the universal consistency of
wide and deep ReLU neural networks and second, give a
characterization of some general classes of distributions for
which neural network classifiers achieve minimax optimal
rates of convergence.

0.1. Organization

In Section 1, we give a rigorous formulation of binary clas-
sification problems, provide definitions involving neural
networks, and introduce basic concepts from Kolmogorov-
Donoho approximation theory. In Section 2, we establish
our first main result on the universal consistency of wide
and deep ReLU neural networks. In Section 3, we give
our second main result on rates of convergence for neural
network classifiers for functions with Kolmogorov-Donoho
optimal exponents and demonstrate with examples how the
theorems may be applied to specific function spaces.

1. Preliminaries
We first give a rigorous formulation of the classification
problem. Suppose we have Z = (X,Y ) and Zi =
(Xi, Yi), i = 1, 2, . . . countably infinite, independent, iden-
tically distributed random vectors that map from a common
probability space (Ω,Σ, P ) to [0, 1]d × {0, 1}.

Fix a positive integer n. By a classifier, we mean a measur-
able function gn : [0, 1]d × {[0, 1]d × {0, 1}}n → {0, 1}
where [0, 1]d is endowed with the usual Borel σ-algebra it
inherits from Rd. Then, we can define

L(gn) := P (gn(X,Z1, . . . , Zn) ̸= Y |Z1, . . . , Zn)

which is the conditional probability with respect to the σ-
algebra generated by Z1, . . . , Zn. Note that L(gn) is well-
defined up to P -null set and is σ(Z1, . . . , Zn)-measurable
by the Radon-Nikodym theorem. For n = 0, we let L0 =
L(g) = P (g(X) ̸= Y ) in the obvious way. We will be
interested in E[L(gn)], the classification risk, as a measure
of the performance of a classifier gn.

Given a real-valued function f : [0, 1]d × {[0, 1]d ×
{0, 1}}n → R, the plug-in classifier corresponding to f
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will be defined as:

pf (x) := 1{x:f(x)≥1/2}(x), (1)

where for any subset A ⊂ Rd, 1A is the indicator function
defined by

1A(x) :=

{
1, if x ∈ A;

0, otherwise.
(2)

When clear from context, we will also write L(f) := L(pf ).

Denote by N the set of natural numbers {1, 2, . . . }. Any se-
quence of classifiers {gn}n∈N will be called a classification
rule. A classification rule will be called weakly consistent if
L(gn) → L∗ in probability (equivalently, E[L(gn)] → L∗)
and strongly consistent if L(gn) → L∗ almost surely. Note
these notions depend on the underlying probability mea-
sure P . We will call a classification rule universally weakly
(strongly) consistent if for all probability measures P , the
rule is weakly (strongly) consistent.

1.1. Notations

The symbols Z,R denote the set of integers and real num-
bers respectively, and R>0 denotes the positive real numbers.
For any x ∈ R, we define ⌊x⌋ := max{m ∈ Z : m ≤ x}.
We write Lp([0, 1]d, µ) or Lp(µ) to denote the Lp space
with respect to a positive Borel measure µ. This metric
space has the usual Lp(µ)-norm and has the corresponding
metric topology. We write C([0, 1]d) to denote the space
of all continuous functions on [0, 1]d equipped with the uni-
form norm, ∥f∥u := supx∈[0,1] |f(x)|, and the usual norm
topology. For an integer k ≥ 0 and 0 < β ≤ 1, we de-
fine the Hölder space Ck,β = Ck,β([0, 1]d) as the space of
all k-times continuously differentiable functions on [0, 1]d

equipped with the norm:

∥f∥Ck,β =max

{
max

k:|k|≤k
max

x∈[0,1]d
|Dkf(x)|,

max
k:|k|=k

sup
x,y∈[0,1]d

x̸=y

∥∥Dkf(x)−Dkf(y)
∥∥
2

∥x− y∥β2

}
.

For either a matrix A ∈ Rm×n or a vector v ∈ Rn,
∥A∥max := maxi=1,...,m maxj=1,...,n |Aij | and ∥v∥max :=
maxi=1,...,n |vi| where the subscript notation refers to the in-
dexed component of the matrix and vector. For a real-valued
measurable function f whose domain is a measurable space
(Ω,Σ, P ), we write P (f) to denote the integral of f with
respect to P . For a probability measure P , we will write Pn

to mean the empirical measure corresponding to n i.i.d. ran-
dom variables with distribution P , 1

n

∑n
i=1 δXi

(B) where
δX(B) = 1B(X) for any measurable set B. For a metric
space S, B(S) denotes the Borel σ-algebra associated with
S.

1.2. Neural networks

In this section, we rigorously define neural networks and
their realization functions and equip the space with the right
topology to obtain an adequate compactification of the space
of neural networks.

Fix L,N0, . . . , NL ∈ N. We define a neural network as
the ordered set of matrix-vector tuples Φ = {(Al, bl)}Ll=1

where Al ∈ RNl×Nl−1 and bl ∈ RNl . We call the ordered
tuple S = (L,N0, . . . , NL) the architecture of Φ. We
define NN (S) to be the set of all neural networks with
architecture S. We sometimes write NN d,1(S) to make
explicit the restriction that the N0 = d,NL = 1. That is
two neural networks Φ1,Φ2 belong to the same NN (S) if
and only if the dimensions of all the matrices and vectors
defining them match. When a neural network Φ is given, we
write S(Φ) to denote its architecture. In the rest of the paper,
we will only be concerned with the case N0 = d,NL = 1.

Now let ϱ : R → R be the ReLU activation function
ϱ(x) := max{x, 0}. For a vector v = (v1, . . . , vn) ∈ Rn,
with a slight abuse of notation, we write ϱ(v) to mean
ϱ(v) := (ϱ(v1), . . . , ϱ(vn)) ∈ Rn. Also, let NN :=⋃

S NN (S) where the union runs over all choices of valid
architectures S. For a given set Ω ⊂ RN0 , we can de-
fine the realization map of a neural network Φ as the map
RΩ

ϱ : NN → C(Ω) where Rϱ(Φ) : Ω → R is defined in
the following recursive fashion:

Rϱ(Φ)(x) = xL where
x0 := x

xl := ϱ(Alxl−1 + bl), l = 1, . . . , L− 1

xL := ALxL−1 + bL.

For a given architecture S, We will define the total number
of neurons as N(S) :=

∑L
i=1Ni, and the number of layers

as L(S) := |S| where |S| is the cardinality of S. Further-
more for a given Φ ∈ NN (S), we define the following
quantities that specify the complexity of Φ:

• the connectivity M(Φ) denotes the total number of
nonzero entries in the matrices Aℓ, ℓ ∈ {1, 2, . . . , L},
and the vectors bℓ, ℓ ∈ {1, 2, . . . , L},

• width W(Φ) := maxℓ:0≤ℓ≤LNℓ,

• L(Φ) is the total number of hidden layers in the archi-
tecture defining Φ,

• weight magnitude
B(Φ) := maxℓ:0≤ℓ≤L max

{
∥Aℓ∥max , ∥bℓ∥max

}
.

We also make NN (S) a finite-dimensional normed space
by equipping it with the norm

∥Φ∥NN := max
ℓ:0≤ℓ≤L

∥Al∥max + max
ℓ:0≤ℓ≤L

∥bl∥max .
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For a fixed architecture S and a fixed choice of function
π : N → R>0, we define NN π,S

d,1 (M) to be the class of
neural networks with architecture S and whose weights are
bounded by π(M):

NN π,S
d,1 (M) := {Φ ∈ NN d,1(S) : M(Φ) ≤M, (3)

B(Φ) ≤ π(M)}.

for any M > 0.

It is possible to give a partial-order ≤ to the set of archi-
tectures by stipulating S1 ≤ S2 for S1 = (L,N1, . . . , NL)
and S2 = (L′,M1, . . . ,ML′) if and only if L ≤ L′ and
Ni ≤Mi for all i = 1, · · · , L.

For the purposes of proving universal consistency in Section
2, we want to consider a method of sieves where we choose
an estimator θ̂n from NN π,Sn

d,1 (Mn) for a suitable choice
of increasing sequence of architectures {Sn}n∈N and real
numbers {Mn}n∈N. Therefore, our neural networks will
come from the set of a countable union:

∞⋃
n=1

NN π,Sn

d,1 (Mn).

We want to give this set a topology so that we have a com-
pact space: this is necessary to apply Wald’s method for
proving consistency. Thus, we consider the following con-
struction in the next two paragraphs.

For each n ∈ N, let dn(·, ·) be the metric on NN π,Sn

d,1 (Mn)
induced by the norm ∥·∥NN . Then, define the disjoint union
space:

Θ̃ :=

∞⊔
n=1

NN π,Sn

d,1 (Mn) (4)

with the disjoint union topology. This space is also metriz-
able and so normal. We can give an explicit metric that
metrizes this topology: if we let Dn be the diameter of the
space NN π,Sn

d,1 (Mn) for all n ∈ N,

d(x, y) =


dn(x, y), if x, y ∈ NN π,Sn

d,1 (Mn);

max{Dn, Dm}, if x ∈ NN π,Sn

d,1 (Mn),

y ∈ NN π,Sm

d,1 (Mm), n ̸= m

(5)

is such a metric (c.f. Example 2.6, Theorem 2.12 of (Sharma
et al., 2020)). It is a second-countable, complete metric
space. Since it is the disjoint union of countably many com-
pact Hausdorff spaces, it is also a locally compact Hausdorff
space.

The above construction ensures the existence of the Stone-
Čech compactification of Θ̃, which we denote by Θ. Recall
that the Stone-Čech compactification is characterized by

the fact that Θ is a compact Hausdorff space containing
Θ̃ as a dense subspace and that any continuous function
f : Θ̃ → C for any compact Hausdorff space C can be
uniquely extended to a continuous function f̄ : Θ → C.
This compactification is unique up to equivalence that identi-
fies two compactifications Y1, Y2 of Θ̃ such that there exists
a homeomorphism h : Y1 → Y2 that is an identity when
restricted to Θ̃. In fact, Θ is not metrizable because Θ̃ is
non-compact. One point of caution is that while all points of
Θ\Θ̃ are limit points of Θ̃ by definition of compactification,
none of them are a (sequential) limit of any sequence of
points from Θ̃.

It is not difficult to check that the realization mapping Rϱ :

Θ̃ → C(Ω) is continuous when C(Ω) is equipped with
the uniform norm (for e.g., Proposition 4.1 of (Petersen
et al., 2021)). For our analysis, we may assume without
loss of generality that the realization mapping is followed
by a projection to the unit ball in C(Ω), which we denote
by U(C(Ω)). This map is also continuous because the
projection is achieved by mere scaling. Furthermore, we
extend the domain of the realization mapping to Θ, which
is possible by the characterizing property of Stone-Cech
compactification.

1.3. Kolmogorov-Donoho approximation theory

In this subsection, we introduce the concepts from the
Kolomogorov-Donoho approximation theory that appear
in Section 3. In particular, we assume that the regression
function belongs to a function class with an information-
theoretic constraint.

Let l ∈ N, d ∈ N, Ω ⊂ Rd such that Ω is Lebesgue
measurable. In all that follows, we equip Ω with the Borel
σ-algebra and the d-dimensional Lebesgue measure on it.
Let C be a class of functions C ⊂ L2(Ω). First, define the
set of encoders and the set of decoders as follows:

E l := {E : C → {0, 1}l},
Dl := {D : {0, 1}l → C}.

Definition 1.1 (Kolmogorov-Donoho optimal exponent).
For each ϵ > 0, let the minimax code length be defined as:

L(ϵ, C) := min{ℓ ∈ N : ∃(E,D) ∈ Eℓ ×Dℓ : .

sup
f∈C

∥D(E(f))− f∥L2(Ω) ≤ ϵ}.

We define the (Kolmogorov-Donoho) optimal exponent of
C as the real number

γ∗(C) := sup{γ ∈ R : L(ϵ, C) ∈ O(ϵ−
1
γ )}.

The optimal exponent is known for Lp-Sobolev spaces,
Besov spaces, modulation spaces, and Cartoon function
classes as summarized in Table 1 of (Elbrächter et al., 2021).
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There is a rich literature on the class of basis functions
whose linear combinations can be used as approximators
for these function spaces. That is, given a Hilbert space
H = L2(Ω) for some bounded set Ω ⊂ Rd, we consider
a countable family of functions in H, called a dictionary
and denoted D = {ψi}i∈N, with which we approximate any
function from C ⊂ H. We may measure the performance of
D with respect to C with the following quantity:

επC,D(M) := sup
f∈C

inf
If,M⊂{1,2,...,π(M)}
|If,M |=M,|ci|≤π(M)

∥∥∥∥∥∥f −
∑

i∈If,M

ciψi

∥∥∥∥∥∥
L2(Ω)

(6)

where π denotes some given real polynomial. Then, one
defines the effective best M -term approximation rate of C
with dictionary D as:

Definition 1.2 (Effective best M -term approximation rate).

γ∗(C,D) := sup{γ ≥ 0 : ∃ polynomial π such that

επC,D(M) ∈ O(M−γ)}.

A notable relationship between γ∗(C) and γ∗(C,D) is
γ∗(C,D) ≤ γ∗(C). Then, we say that C is optimally repre-
sentable by D if γ∗(C,D) = γ∗(C). Many function spaces
usually studied in the approximation theory literature are,
in fact, optimally representable by well-known dictionaries
such as those based on the Fourier/wavelet basis and the
Haar basis.

There is a natural corresponding concept for the class of
neural networks as a replacement for dictionaries. Recalling
the definition (3), we will define the union of all neural
networks whose architecture has depth bounded by π(M)
for a given function π. Specifically,

NN π
d,1(M) :=

⋃
S:L(S)≤π(logM)

NN π,S
d,1 (M).

Note for this definition, we don’t care about the topology on
this set at this point.

Similar to the effective best approximation error επC,D(M),
defined with respect to the dictionary D, we define the ef-
fective best approximation with neural networks as follows:

επN (M) := sup
f∈C

inf
Φ∈NNπ

d,1(M)
∥f −Rϱ(Φ)∥L2(Ω) . (7)

Just as we did for the dictionary D, we define the best
effective M -term approximation rate as follows:

Definition 1.3 (Effective best M -weight approximation
rate).

γ∗N (C) := sup{γ ≥ 0 : ∃ polynomial π such that

επN (M) ∈ O(M−γ),M → ∞}.

This means if γ∗N (C) > 0, the L2 approximation error de-
cays at least polynomially in the connectivity of the approx-
imating neural networks. Furthermore, it is shown in Theo-
rem VI.4 of (Elbrächter et al., 2021) that γ∗N (C) ≤ γ∗(C),
which makes the following definition natural:

Definition 1.4. We say that C ⊂ L2(Ω) is optimally repre-
sentable by neural networks if

γ∗N (C) = γ∗(C).

Quite general classes of functions are optimally repre-
sentable by neural networks including the Besov spaces and
the modulation spaces. These results follow from the “trans-
ference principle” which shows that γ∗(C,D) ≤ γ∗N (C) for
most useful dictionaries that optimally represent classical
function spaces.

2. Universal consistency
In this section, we state our first result on the universal con-
sistency of wide and deep ReLU neural network classifiers.

We will need the following lemma to establish that the
empirical risk minimizer is well-defined as a classifier. Its
proof is relegated to Appendix B.1.

Lemma 2.1. Let (A,A) be a measurable space and B a
compact, metrizable topological space. Assume m(·, ·) :
A × B → R is measurable in the first argument and
continuous in the second argument. Then, there exists
a Borel measurable mapping f̂ : A → B that satisfies
m(a, f̂(a)) = supb∈B m(a, b) is Borel measurable.

Now, we state our main theorem on the universal consis-
tency of wide and deep ReLU neural networks. Its proof is
relegated to Appendix B.2.

Theorem 2.2. Let {Sn}n∈N be an increasing sequence of
architectures such that W (Sn) ≥ n or L(Sn) ≥ n for
all n ∈ N. There exists some increasing function π and
constant cd only depending on d such that the empirical risk
minimizer of the logistic loss on NN π,Sn

d,1 (cdn) for each
n ∈ N defined as:

θ̂n := argmin
θ∈NNπ,Sn

d,1 (n)

1

n

n∑
i=1

l(Rϱ(θ)(Xi), Yi) (8)

is universally strongly consistent:

lim
n→∞

L(Rϱ(θ̂n) + 1/2) → L∗ with probability 1.

Remark 2.3. As can be seen from the proof, the only prop-
erty that we require of the surrogate loss is that its empirical
minimizer in NN π,Sn

d,1 (cdn) achieves 0 classification loss.
The same conclusion holds for any other continuous loss
function with such property.
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As noted in the Introduction, this result answers the open
problem mentioned in (Radhakrishnan et al., 2023). In fact,
the classifiers in Theorem 2.2 are interpolating classifiers,
i.e., they correctly classify all training points, and are also
feasible as they are the minimizers of a convex surrogate
loss.

3. Rates of convergence
The second question of interest, which is more practically
relevant, is what upper bounds we can establish on the
excess risk of the empirical risk minimizer (8) as a function
of n that is independent of any individual choice of the
underlying distribution, i.e., we want to establish a uniform
(in the set of probability measures) rate of convergence.
It is well known that no universal rates that hold for all
probability distributions are possible (c.f. Theorem 7.2 of
(Devroye et al., 2013)).

This means that we must have some restrictions on the set of
possible P . Observing that the joint distribution of (X,Y )
on [0, 1]d × {0, 1} is fully determined by the specification
of E[Y |X] and the marginal measure µX on [0, 1]d, we
take the view of considering all P such that the regression
function belongs to some given model class of functions and
the marginal law of X satisfies certain regularity conditions.

What model classes are suitable and interesting for practical
relevance is in itself an important question. As noted in the
Introduction, smoothness assumptions are most widely used.
We generalize the landscape of classification theory by tak-
ing advantage of how well neural networks can approximate
the most useful dictionaries.

Our program will work with the usual decomposition of the
excess risk in terms of estimation and approximation error:

E(f̂n) = E[Ln]− inf
f∈Fn

E[L(f)]︸ ︷︷ ︸
1

+ inf
f∈Fn

E[L(f)]− L∗︸ ︷︷ ︸
2

where term 1 comprises the estimation error, and we will
rely on empirical risk minimization and more fundamen-
tally, empirical process theory to control this error. Term
2 comprises the approximation error, and we control it
by proposing suitable classes of neural networks that well-
approximate the regression function n Lp (c.f. Section A).

3.1. Distributional assumptions

For our results on uniform convergence rates, we will make
the following three assumptions:

Assumption 3.1. (Tsybakov noise condition) We assume

there exist constants C0 > 0 and α ≥ 0 such that

PX(0 < |η(x)− 1/2| ≤ t) ≤ C0t
α, ∀t > 0. (9)

Remark 3.2. This assumption is used widely in the literature
and controls the concentration of measure near the optimal
decision boundary. The assumption becomes vacuous for
α = 0 and the case α = ∞ corresponds to a strict margin
condition.

Assumption 3.3. We assume that the distribution of X
admits an L2 density with respect to the n-dimensional
Lebesgue measure restricted to [0, 1]d that is uniformly
bounded by some constant.

Remark 3.4. While we have adopted the Lebesgue measure
as the dominating measure of P to take advantage of the
known approximation results, we believe the approximation
theory can be generalized to arbitrary σ-finite measures.

Assumption 3.5. We assume that the regression function
belongs to some class of functions F ⊂ L2([0, 1]d) with a
finite Kolmogorov-Donoho optimal exponent γ∗(F) > 0.

3.2. Convergence rates

In this section, we give our second main results that charac-
terize sufficient conditions for a set of probability measures
under which neural network classifiers achieve minimax
optimality.

There is a somewhat subtle relationship between regression
and classification, and we relegate a detailed discussion
on this relationship to Appendix A. For now, we remark
that while Lp consistency is a sufficient but not a necessary
condition for the consistency of the corresponding plug-in
classification rule (pointwise regime), the convergence rate
for the pth power of Lp norm in the minimax sense for some
classical function spaces may agree with the minimax rate
of convergence for the classification risk.

We also remark that the observation of (Audibert & Tsy-
bakov, 2007) in the paragraph after Lemma 5.2 is somewhat
misleading: the paper claims that deriving convergence rates
for classification risk based on L2 risk is not the right tool
in the presence of Tsybakov noise condition. Specifically,
under a suitable regime, for some constant c > 0,

lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

Ef

[
n

2β
2β+d ∥Tn − f∥22

]
≥ c,

where the infimum is over all possible estimators and
Σ(β, L) is the L-Hölder ball of functions, which then im-
plies that inequality (11) (in Appendix A) only leads to
suboptimal rates for the classification risk. However, while
n−

2β
2β+d is certainly the best possible rate for the square of

L2 risk in the above sense, it is only so when the infimum is
taken over an estimator sequence (Tn’s), not deterministic
functions.
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The approach using estimation and approximation error
decomposition, on the other hand, allows us to fully use the
approximation power of realizations of neural networks that
lead to minimax optimal rates even in the presence of the
Tsybakov noise condition.

Now, we state our result on the convergence rates of neural
network classifiers in the framework of function classes
with finite Kolmogorov-Donoho optimal exponents. For the
following result, the empirical risk minimization is taken
with respect to the classification loss. Its proof is relegated
to Appendix B.3.

Theorem 3.6. Let F be a compact subset of L2([0, 1]d)
with Kolomogorov-Donoho optimal exponent γ∗ > 0 that
is optimally representable by neural networks with polyno-
mial π. Let PF be a given class of distributions satisfying
Assumption 3.1, Assumption 3.3, and Assumption 3.5 (with
above F). Define the optimal minimax rate of convergence
for PF as follows:

m∗ := inf

{
m ∈ R+ :m satisfies inf

gn
sup

P∈PF

E[L(gn)]− L∗

= Ω(n−m)

}
.

Additionally, assume that α, γ∗,m∗ satisfy

2(1 + α)γ∗(1−m∗) ≥ (2 + α)m∗. (10)

Define

NNn := NN π
d,1(Cd,α,m∗,γ∗n

(2+α)m∗
2(1+α)γ∗ ).

where Cd,α,m∗,γ∗ is a constant that only depends on
d, α,m∗, γ∗ (see Definition 1.1). Let θ̂n be the empirical
risk minimizer of the classification loss:

θ̂n := argmin
θ∈NNn

1

n

n∑
i=1

P (pRϱ(θ)(Xi) ̸= Yi)

Then the plug-in classification rule based on {Rϱ(θ̂n)}n∈N
achieves minimax optimal (up to polylogarithmic factor)
rate of convergence for the excess classification risk.

Remark 3.7. Note m∗ may depend on α and F . Condition
(10) is not very stringent for many classical function spaces:
Examples of classical regimes in which (10) holds will be
provided in Section 3.3. In fact, the condition turns out to
be vacuous for the space of Besov functions.
Remark 3.8. Suppose PF is such that the minimax rate of
L2-risk matches that of classification risk in the sense of
(12) and the rate is given by n−m∗

. Theorem 3.6 shows that
this optimal rate is still achieved if the infimum on the right-
hand side of (12) is taken over all fn ∈ Fn instead. Does
this mean that we also get the same rate if we replace the

left-hand side of (12) by fn ∈ Fn? Because F is optimally
representable by neural networks with exponent γ∗, for
any constant C > 0 and any m > (2+α)m∗

2(1+α) (in particular,
m = m∗),

Cn−m < sup
P∈P

inf
f∈Fn

(En[∥f − η∥22])
1
2

happens infinitely often as n→ ∞. Because we have

sup
P∈PF

inf
f∈Fn

(En[∥f − η∥22])
1
2

≤ inf
fn∈Fn

sup
P∈PF

(En[∥fn − η∥22])
1
2 ,

we conclude that the answer is no.

3.3. Two examples

We demonstrate two applications of Theorem 3.6 to clas-
sical function spaces whose Kolmogorov-Donoho optimal
exponents are known and are optimally representable by
neural networks.

3.3.1. HÖLDER FUNCTIONS

For a real number β ≥ 1, let m = ⌊β⌋. We define Hölder
class Cβ([0, 1]) := Cm,β−m([0, 1]) following the defini-
tion in Section 1.1. We take F to be the unit ball of Hölder
functions. The Kolomogrov-Donoho optimal exponent is
given by γ∗ = β and it is optimally representable by neural
networks (Elbrächter et al., 2021). Under certain regular-
ity conditions (Definition 2.2 of (Audibert & Tsybakov,
2007)) on the marginal distribution of X that is stronger
than Assumption 3.3, the minimax optimal rate is given by
m∗ = β(1+α)

2β+d . Then, it suffices to check assumptions (10)
which translates to

β − 1 ≥ α

2
(1 + 2β).

This shows that for “difficult” problems (α < 1, β > 1), the
proposed neural network classification rules from Theorem
3.6 achieves minimax optimal rate of convergence.

3.3.2. BESOV FUNCTIONS

We take F to be the unit ball of the Besov class
Bm

2,q([0, 1]
d) ⊂ L2([0, 1]d) of Besov functions (see Chap-

ter 4.3 of (Giné & Nickl, 2021) for a definition and basic
properties). Then, γ∗ = m

d as shown in Theorem 1.3 of
(Grohs et al., 2023). Under the assumption that the density
of marginal distribution ofX is upper bounded by a constant
larger than 1, which is clearly implied by Assumption 3.3,
we havem∗ = m

2m+d as long as α = 0 (making Assumption
3.1 null), m

d > 1
q − 1

2 and 1 ≤ q ≤ ∞ (see page 2278 of
(Yang, 1999)). Assumption (10) translates to

2(m+ d) ≥ 2d.

7
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Note Assumption (10) is vacuous in this case. This implies
that the conclusion of Theorem 3.6 holds for all choices of
α, d, q satisfying m

d > 1
q − 1

2 .
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A. Discussion on the relationship between regression and classification
Here we review some well-known results on the connection between regression and classification and discuss some subtleties
in the minimax regime. In this discussion, the domain of X will be Rd instead of [0, 1]d.

Denote by En the expectation with respect to the distribution of Z1, . . . , Zn and µX the distribution on Rd induced by P and
X . In the following, assume that {gn}n∈N is a plug-in classification rule based on real-valued function sequence {fn}n∈N.
We can appeal to Fubini’s theorem since all measures are finite and functions are bounded and deduce the following:

E[L(gn)]− L∗ = En[L(gn)− L(g∗)]

= En[E[1gn(X,Z1,...,Zn )̸=Y − 1g∗(X )̸=Y |Z1, . . . , Zn]]

= En

[∫
Rd

η(x)
(
1gn(·,Z1,...,Zn)=0(x)− 1g∗(·)=0(x)

)
µX(dx)

]
+ En

[∫
Rd

(1− η(x))
(
1gn(·,Z1,...,Zn)=1(x)− 1g∗(·)=1(x)µX(dx)

)]
= En

[∫
Rd

|2η(x)− 1|1gn(·,Z1,...,Zn )̸=g∗(·)(x)µX(dx)

]
≤ En

[∫
Rd

2|η(x)− fn(x, Z1, . . . , Zn)|µX(dx)

]
≤ 2En

[
p

√∫
Rd

|η(x)− fn(x, Z1, . . . , Zn)|pµX(dx)

]

for any p ≥ 1 where the second to last inequality follows from the observation that for x such that gn(x,X1, . . . , Xn) ̸=
g∗(x), we must have either fn(x,X1, . . . , Xn) <

1
2 ≤ η(x) or η(x) < 1

2 ≤ fn(x,X1, . . . , Xn) so that |η(x) − 1
2 | ≤

|η(x) − fn(x,X1, . . . , Xn)|, and the last inequality follows from Hölder’s inequality. In view of the above inequal-
ity, fixing z1, . . . , zn, we may consider f̂n := fn(·, z1, . . . , zn) : Rd → R as an approximating function of true
η corresponding to some unknown P in the Lp sense, and obtain a convergence rate for the excess risk from that
of En[∥η − fn(·, Z1, . . . , Zn)∥Lp(Rd,µ)] for some integer p ≥ 1. By abuse of notation, we will write this also as
En[∥η − fn∥p] := En[∥η − fn∥Lp(Rd,µ)], omitting the dependence of fn on Z1, . . . , Zn.

More can be said if p > 1. For a fixed P , if ∥η − fn∥p → 0 in probability, we have ρn(P ) :=
E[L(gn)]−L∗

En[∥η−fn∥p]
→ 0 as n→ ∞,

which means the excess risk converges to 0 faster than the Lp-risk (Theorem 6.5 of (Devroye et al., 2013)). In this sense,
classification is easier than regression. Then, a natural question to ask is what can be said about the convergence rate of this
ratio. One answer is that no universal (in both P and estimator sequence) bound is possible on this ratio: precisely, given
any sequence of numbers converging to 0 arbitrarily slowly, one can construct some P , and a rule gn based on fn such that
∥η − fn∥p → 0 in probability holds, but the ratio E[L(gn)]−L∗

En[∥η−fn∥p]
approaches 0 as slow as the given sequence (see Chapter 6 of

(Devroye et al., 2013)).

On the other hand, if one assumes that either η is bounded away from 1
2 or L∗ = 0, which is a favorable situation for

classification, the excess risk can be shown to converge to 0 at least as fast the pth power of the Lp-risk (which is smaller
than the Lp-risk):

E[L(gn)]− L∗

En[∥η − fn∥pp]
= O(1).

Under a less stringent condition than requiring η be bounded away from 1/2, known as the Tsybakov noise condition
parametrized by C0, α (see (9)), we have for 1 ≤ p <∞,

E[L(gn)]− L∗

En

[
∥η − fn∥

p(1+α)
p+α

p

] ≤ C (11)

where C only depends on C0, α, p. See Lemma 5.2 of(Audibert & Tsybakov, 2007) for a proof.

The discussion in the previous paragraph allows one to derive uniform convergence rates from the approximation properties
of fn for η. While it is well-known that no universal convergence rates are possible, if we restrict η to belong to some
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known family of functions that can be uniformly approximated by a certain class of functions, uniform convergence rates
are attainable. This is the view we worked with when deriving convergence rate results in Section 3.

There is one sense in which the convergence rate of E[L(gn)] − L∗ matches that of (En[∥η − fn∥pp])
1
p . It is shown in

(Yang, 1999) that the minimax rates of L2 risk for a certain class of distributions (characterized by nonparametric classes of
functions and regularity conditions on the marginal distribution of X) decay to 0 at the same rate as the minimax rate of the
excess risk. Precisely, for some class of probability measures, denoted P ,

inf
fn

sup
P∈P

(En[∥fn − η∥22])
1
2 ≈ inf

gn
sup
P∈P

E[L(gn)]− L∗. (12)

where the infimum on the left-hand side is taken over all measurable real-valued functions and the infimum on the right-hand
side is taken over all plug-in classifiers.

It is important to observe a key difference from the discussion of the preceding paragraph where we compared the L2-risk
associated with a real-valued function f with the classification risk of the plug-in rule associated with the same f (pointwise
comparison): in contrast, the classifier that achieves (or nearly so) the infimum of the right-hand side of (12) is not necessarily
that formed as a plug-in rule of the function that achieves (or nearly so) the infimum of the left-hand side of (12).

The lesson is that in this uniform regime of minimax risk, we observe a different asymptotic connection between classification
and regression than in the pointwise regime: while in the pointwise regime, E[L(gn)] − L∗ converges at least as fast as
En[∥fn − η∥22], which implies faster rate than (En[∥fn − η∥22])

1
2 since fn, η can be assumed to be bounded by 1, in the

minimax sense, E[L(gn)]− L∗ converges at the same speed as (En[∥fn − η∥22])
1
2 .

B. Proofs
B.1. Proof of Lemma 2.1

Proof. Under the axiom of countable choice, B is second-countable. Furthermore, it is normal as it is metrizable. Then, we
use the fact that a regular, second-countable space can be embedded as a subspace of RN with the product topology. The
image of this embedding is compact since B is. From now on, we make this identification up to homeomorphism.

Let {f1, f2, . . . } be a dense set in B and fix a ∈ A. Define m̃ : B → R as m̃(f) := inf{m(a, f) −m(a, fn), n ∈ N},
which is upper-semicontinuous. Then, any f̃ satisfies m(a, f̃) = supf∈B m(a, f) if and only if m̃(f̃) = 0. This shows that
for each fixed a, the set of maximizers of m(a, ·) is given by B0 := m̃−1(0) = m̃−1([0,∞)), which is closed and hence
compact in RN. Now let πn : RN → R be the projection onto the nth coordinate. Then, π1(B0) is compact in R so it has a
maximum element, say v1. Let B1 := π−1

1 (v1) ∩B0, which is clearly non-empty and compact. Then proceed inductively,
so that we obtain we obtain a sequence of decreasing sets B1 ⊃ B2 ⊃ . . . Then, the set ∩∞

n=1Bn is non-empty since each
finite intersection is non-empty. Now, if any two elements are in this set, by construction they agree on all the coordinates so
they are equal. This shows there is a maximum element f̂(a) ∈ B0 in the dictionary order over RN. Thus, for each a ∈ A,
we can assign such f̂(a) to obtain a well-defined mapping from A to B. It only remains to show this map is measurable.

It suffices to show that each a 7→ πi(f̂(a)) is measurable for all i ∈ N. Fix a closed interval [u, v] ⊂ R for this. We can
consider the function g[u,v] : A→ R defined by g[u,v](a) = sup{m(a, fn) : n ∈ N}−sup{m(a, fn) : πi(fn) ∈ [u, v], n ∈
N}. This function is Borel measurable as both infimums are taken only over countably many measurable functions. Then,
from the observation that (πi ◦ f̂)−1([u, v]) = g−1

[u,v](0) we can conclude that indeed πi ◦ f̂ is Borel measurable.

B.2. Proof of Theorem 2.2

Proof. First, we check there are no existence and measurability issues in (8). Suppose some π, cd are given (for now). If we
regard zn = {Xi, Yi}i=1,...,n as fixed numbers, clearly there is some θ ∈ NN π,Sn

d,1 (cdn) achieving the minimum in (8) by
continuity of the associated maps and compactness of NN π,Sn

d,1 (cdn). Denote any choice of such θ for zn as θzn . Moreover,

for Z = [0, 1]d×{0, 1}, Lemma 2.1 gives the existence of a Borel-measurable function θ̂n : (Zn,B(Zn)) → NN π,Sn

d,1 (cdn)

such that θ̂n(zn) = θzn .

We now claim that there are some π, cd such that PnMθ̂n
= 0 so that PnMθ̂n

≥ PnMθ for all θ ∈ NN π,Sn

d,1 (cdn). In other
words, for each n, the empirical risk minimizer of the logistic loss achieves perfect classification accuracy for the n points.
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This follows from the fact that there exists some π, which may be assumed to be increasing, such that there is a realization
of some θ̃ ∈ NN π,Sn

d,1 (cdn) such that

l(Rϱ(θ̃)(Xi), Yi) ≤
log 2

n
, i = 1, . . . , n. (13)

Such θ̃ can be taken to be either a 1 hidden-layer ReLU neural network with width n (see Theorem 5.1 of (Pinkus, 1999))
or a ReLU neural network with width 3 and n − 1 hidden-layers (see Proposition 3.10 of (DeVore et al., 2021)). This
observation and the definition of θ̂n implies the claim PnMθ̂n

= 0.
Fix any ϵ > 0. Let

F0 := {f : [0, 1]d → R :f is measurable and f(X) is a
version of E[Y |X]}.

Let M∗ := −L∗, be the negative of the Bayes optimal classification risk. Choose any f0 ∈ F0. We may assume ∥f0∥u ≤ 1.
By Lusin’s theorem, there exists a continuous function f̃0 and a measurable set E with P (E) < ϵ

2 such that on Ec, f̃0 = f0

and
∥∥∥f̃0∥∥∥

u
≤ ∥f0∥u. This guarantees that

F̃0 := {f̃ ∈ U(C([0, 1]d)) : ∃f ∈ F0 such that outside a set of measure less than
ϵ

2
, f = f̃}

is non-empty, and the classification risk associated with functions in this class differs from L∗ by at most ϵ
2 . Fix any f̃0 ∈ F̃0.

Define the set A := {θ ∈ Θ :M∗ − PMθ ≥ ϵ}. Because the mapping Rϱ : Θ → U(C([0, 1]d)) is surjective (by for e.g.,
Theorem 3.1 of (Pinkus, 1999)), there exists θ0 ∈ Θ such that Rϱ(θ0) = f̃0 and so PMθ0 > PMθ′ for all θ′ ∈ A. Then,

lim sup
n→∞

{θ̂n ∈ A} ⊆
{
lim sup
n→∞

sup
θ∈A

PnMθ ≥ PMθ0

}
. (14)

Note the lim sup on the left-hand side of (14) is for a sequence of sets while the lim sup on the right-hand side is for a
sequence of real numbers. (14) follows from the fact that θ̂n ∈ A infinitely often implies supθ∈A PnMθ ≥ PnMθ̂n

≥
PnMθ0 infinitely often. But, PnMθ0 → PMθ0 almost surely by the strong law of large numbers.

Before moving further, we show that the map θ → PMθ is upper-semicontinuous. We use the following convention for the
sign function, which is upper-semicontinuous:

sgn(x) =

{
−1, if x < 0;

1, if x ≥ 0.

The map defined by t 7→ −1(∞,0)(t) is also upper-semicontinuous. Let Z := [0, 1]d × {0, 1}. Then, the mapping defined
by the following sequence of compositions is seen to be upper-semicontinuous:

M : Z ×Θ → {−1, 0},
(z, θ) 7→ (z,Rϱ(θ)) 7→ (Rρ(θ)(x), y) 7→ (sgn(Rϱ(θ)(x)), y)

7→ sgn(Rϱ(θ)(x))(2y − 1) 7→ −1(−∞,0)(sgn(Rρ(θ)(x))(2y − 1)).

The claimed upper-semicontinuity follows from the fact that the composition f ◦ g is upper-semicontinuous if either f is
upper-semicontinuous and g is continuous or both f, g are upper-semicontinuous with f non-decreasing. In what follows,
we will use the notation Mθ(z) :=M(z, θ).

Denote Θ0 := {θ ∈ Θ : P (Mθ) = supθ′∈Θ P (Mθ′)}. Here P (Mθ) denotes the integral of Mθ as a function of z when z is
distributed according to P , and from the construction of Mθ, it follows that P (Mθ) = −P (sgn(Rϱ(θ)(X)) ̸= 2Y − 1).
Note this is the negative of the classification risk associated with the plug-in classifier based on Rϱ(θ) + 1/2. We also note
this set is non-empty because Θ is compact and the map θ → PMθ is upper-semicontinuous, essentially by Fatou’s lemma.

Now returning to the proof, Denote by MU (z) := supθ∈U Mθ(z) for any set U ⊆ Θ. In our case, MU (·) is also measurable
because Rϱ(U) is contained in U(C(Ω)), which is separable. For each θ ∈ A, there exists some small enough open
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neighborhood Uθ of θ, such that PMUθ < PMθ0 by upper-semicontinuity of the map θ → PMθ (checked at the beginning
of Section 2) and the definition of θ0 and A. Consider the open cover of A by the open sets {Uθ : θ ∈ A} with the
aforementioned property. Since A is a compact subset of Θ, we have a finite subcover, which we denote by {Uθ1 , . . . , Uθm}
for some θ1, . . . , θm ∈ A, m ∈ N. With this construction,

sup
θ∈A

PnMθ ≤ max
i:1≤i≤m

PnMUθi

n→∞−−−−→
a.s.

max
i:1≤i≤m

PMUθi < PMθ0 .

from which we conclude

P

(
lim sup
n→∞

sup
θ∈A

PnMθ < PMθ0

)
= 1 (15)

Thus, the right-hand side of (14) has probability 0 because of (15), which implies θ̂n ∈ Ac eventually with probability 1.
Since ϵ was arbitrary, we conclude that

lim
n→∞

L(Rϱ(θ̂n) + 1/2) → L∗ with probability 1.

B.3. Proof of Theorem 3.6

Proof. In the definition of NNn, we may assume without loss of generality that all architectures have bounded widths,
which ensures that NNn may be viewed as a compact, completely metrizable space. A similar argument as in the proof of
Theorem 2.2 shows that θ̂n is well-defined as a measurable mapping from Zn → NNn. Take the standard estimation and
approximation error decomposition:

E[L(Rϱ(θ̂n))]− inf
f∈Rϱ(NNn)

E[L(f)]︸ ︷︷ ︸
1

+ inf
f∈Rϱ(NNn)

E[L(f)]− L∗︸ ︷︷ ︸
2

.

Because F is optimally representable by neural networks, we have

sup
f∈F

inf
Φ∈NNn

∥f −Rϱ(Φ)∥L2([0,1]]) ≤ Cdn
− (2+α)m∗

2(1+α) .

Comparison inequality (11) and Assumption 3.3 then implies that

inf
Φ∈NNn

E[L(Rϱ(Φ))]− L∗ ≤ Cα,dn
−m∗

where Cα,d only depends on α, d. This bounds 2 . For 1 , we directly appeal to a suitable modification of Theorem 5.8 of

(Koltchinskii, 2011) using the fact that the VC-dimension of Rϱ(NNn) is bounded by Cdn
(2+α)m∗
2(1+α)γ∗ logp(n+ 1) where p is

the degree of π ((Bartlett et al., 2019)). Then assumption (10) ensures that 1 ≤ Cdn
−m∗

logp(n+ 1) where p is the degree
of π. Therefore, we conclude that the plug-in classification rule corresponding to {Rϱ(θ̂n)}n∈N achieves minimax optimal
rate of convergence for PF up to a polylogarithmic factor.
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