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Abstract
Semantic image synthesis (SIS) is a task to gen-
erate realistic images corresponding to seman-
tic maps (labels). However, in real-world ap-
plications, SIS often encounters noisy user in-
puts. To address this, we propose Stochastic Con-
ditional Diffusion Model (SCDM), which is a
robust conditional diffusion model that features
novel forward and generation processes tailored
for SIS with noisy labels. It enhances robustness
by stochastically perturbing the semantic label
maps through Label Diffusion, which diffuses the
labels with discrete diffusion. Through the diffu-
sion of labels, the noisy and clean semantic maps
become similar as the timestep increases, eventu-
ally becoming identical at t = T . This facilitates
the generation of an image close to a clean image,
enabling robust generation. Furthermore, we pro-
pose a class-wise noise schedule to differentially
diffuse the labels depending on the class. We
demonstrate that the proposed method generates
high-quality samples through extensive experi-
ments and analyses on benchmark datasets, in-
cluding a novel experimental setup simulating hu-
man errors during real-world applications. Code
is available at https://github.com/mlvlab/SCDM.

1. Introduction
Semantic image synthesis (SIS) is a type of image trans-
lation that converts a given semantic map (label) into a
photo-realistic image, which is the inverse of semantic seg-
mentation. It is also one of the conditional image generation
tasks with semantic label maps serving as the input condi-
tions. The problem is formulated as approximating the con-
ditional distribution q(X|Y ) whereX and Y are the random
variables denoting the image and the semantic map, respec-
tively. SIS is addressed by adopting conditional generative
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models (Yang et al., 2019; Tang et al., 2020a; Ntavelis et al.,
2020; Tan et al., 2021a) such as conditional GANs (Goodfel-
low et al., 2014; Mirza & Osindero, 2014). Given a semantic
label map y, these works sample a new image x̂ from the
learned conditional distribution pθ(X|Y = y). As diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021) have gained significant attention on various
generation tasks (Ramesh et al., 2021; Dhariwal & Nichol,
2021; Couairon et al., 2023), diffusion models for SIS have
been recently studied by a few works (Wang et al., 2022a;
Xue et al., 2023). Specifically, SDM (Wang et al., 2022b)
embeds the input conditions similarly to SPADE (Park et al.,
2019) and integrates diffusion models into the context of
SIS. LDM (Rombach et al., 2022) learns a diffusion model
on latent vectors with condition encoders.

SIS has a wide range of real-world applications such as
photo editing or content creation (Chen & Koltun, 2017;
Park et al., 2019; Zhu et al., 2020a; Tang et al., 2020b).
In practice, SIS often involves noisy input ỹ from users.
For instance, users mark specific areas as the classes they
wish to synthesize, and the marks come with errors such as
jagged edges and incompletely marked areas. Even labels by
professional annotators in benchmark datasets occasionally
contain mistakes and show inconsistency between annota-
tors, and the input from end users would inevitably entail
noise. This poses the gap between the label distributions
for training and inference. Usually, models are trained with
clean labels y in benchmark datasets, whereas generation
is performed with noisy labels ỹ. In the case of diffusion
models, the model is exposed to the erroneous guidance
throughout T timesteps, i.e., t = T to t = 1, generating the
corresponding noisy image.

To minimize the gap, we generate samples with stochasti-
cally perturbed labels for both training and inference. Specif-
ically, we propose to diffuse the semantic label map y0 to
y1, . . ., yT and use them throughout the generation process.
Assume there exists a clean semantic map y corresponding
to the noisy one ỹ. Then, utilizing discrete diffusion with
an absorbing state allows us to make the intermediate noisy
map ỹt and clean map yt gradually become similar, as they
are masked and eventually become identical at t = T . Since
the trajectories y1:T and ỹ1:T provided to the model during
the generation process are similar, i.e., yt and ỹt get closer
than y and ỹ, the generated image is close to the clean
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Figure 1. Visualization of conditional generation. Each colored trajectory represents a sampling trajectory conditioned on a noisy
semantic map ỹ0 (Red) and the corresponding clean semantic map y0 (Blue). They are projected onto the (1) semantic map space and the
(2) image space, sharing the same xT . (a) Existing conditional diffusion models (baseline) use a fixed condition y0 over the generation
process, and the gap between ỹt and yt yields erroneous conditional score estimation at each timestep t. (b) In contrast, our method
stochastically perturbs the condition with masking, resulting in a trajectory y1:T following a probability distribution q(y1:T |y0), as
depicted with blue shaded areas around the yt trajectory. This makes the intermediate trajectories, i.e., y1:T |y0 and ỹ1:T |ỹ0, close to
each other, enhancing the robustness against the noisy labels.

image, as illustrated in Figure 1.

In this paper, we introduce Stochastic Conditional Diffu-
sion Model (SCDM), a novel conditional diffusion model
specifically designed to enhance robustness on noisy labels.
Our SCDM stochastically perturbs the semantic maps with
Label Diffusion and conditions image generation on the
diffused labels. We also incorporate label statistics and de-
velop a new class-wise noise schedule for labels to enhance
the generation quality of small and rare classes. Moreover,
the generation process of SCDM entails two heterogeneous
diffusion processes: a discrete forward process for labels
and a continuous reverse process for images. We empir-
ically demonstrate that SCDM can approximate q(X|Y )
and present theoretical analysis. Additionally, we introduce
a new noisy SIS benchmark and prove the robustness of
SCDM under noisy conditions.

To summarize, our contributions are as follows:

• We propose Stochastic Conditional Diffusion Model
(SCDM), a robust conditional diffusion model for SIS
that incorporates Label Diffusion, a discrete diffusion
process for labels that enables differential conditioning
on semantic labels.

• We provide theoretical analyses of our class-wise
schedule and the relationship between the class guid-
ances (implicit classifier gradients) induced by fixed
labels and label diffusion.

• We introduce a new SIS benchmark designed to assess

generation performance under noisy conditions, simu-
lating human errors that can occur during real-world
applications.

• We conduct extensive experiments and analyses on
benchmark datasets and achieve competitive results.

2. Related Works
Semantic Image Synthesis. Since Pix2pix (Isola et al.,
2017) have established a general framework for SIS, condi-
tional Generative Adversarial Networks (GANs) are widely
used in SIS (Yang et al., 2019; Zhu et al., 2017; Ntavelis
et al., 2020; Tang et al., 2020b; Tan et al., 2021a;b; Shi
et al., 2022). SPADE (Park et al., 2019) proposes spatially-
adaptive normalization and successfully preserves semantic
information. Since SPADE, many normalization-based ap-
proaches have been presented (Tan et al., 2021a; Lv et al.,
2022). For instance, CLADE (Tan et al., 2021b) adopts
class-adaptive normalization and RESAIL (Shi et al., 2022)
proposes retrieval-based spatially adaptive normalization,
and OASIS (Sushko et al., 2020) designs the discrimina-
tor as a semantic segmentation network. INADE (Tan
et al., 2021a) utilizes class-level conditional modulation,
and SAFM (Lv et al., 2022) proposes shape-aware position
descriptors to modulate the features.

Recently, diffusion models (DMs) also have been proposed
for SIS. SDM (Wang et al., 2022b) encodes the semantic
label map with SPADE. LDM (Rombach et al., 2022) lever-
ages a latent space for the conditions including the semantic
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maps. PITI (Wang et al., 2022a) pre-trains the semantic
latent space and finetunes it with the RGB-preprocessed se-
mantic mask images, rather than using the maps with class
indexes like most studies including ours. FLIS (Xue et al.,
2023) incorporates not only semantic label maps but also
additional text inputs. Most of these works have recognized
the applicability of SIS in real-world scenarios. However, to
the best of our knowledge, our method is the first DM-based
model to address the issue of noisy user inputs in SIS.

Conditional Diffusion Models. By modifying the U-Net
(Ronneberger et al., 2015) architecture to incorporate the
conditions into the network, conditional diffusion mod-
els are prevalently leveraged for conditional generations.
ADM (Dhariwal & Nichol, 2021), for example, encodes
the class embedding into the network with AdaGN and
utilizes classifier guidance. LDM (Rombach et al., 2022) ex-
tracts features from the various conditions and encodes them
into the network through concatenation or cross-attention.
DDMI (Park et al., 2024) also generates data with latent
diffusion but in a domain-agnostic manner, by linking data
to a continuous function within a shared latent space. Mean-
while, SDM (Wang et al., 2022b) replaces GroupNorm of
U-Net decoder with SPADE to embed the labels into the net-
work in a spatially adaptive manner. UNIT-DDPM (Sasaki
et al., 2021) uses two different diffusion models and a do-
main translation function for the training and sampling of an
image-to-image translation model. Recently, T2I diffusion
models such as FLIS (Xue et al., 2023), ControlNet (Zhang
et al., 2023), and GLIGEN (Li et al., 2023) have paved the
way for adding spatial controls to large pretrained diffu-
sion models. Our method diffuses labels with a carefully
designed discrete diffusion process and generates images
conditioned on the diffused labels, formulating a novel con-
ditional diffusion model.

3. Preliminaries
In this work, we consider conditional diffusion model (DM)
pθ(x0|y0) for SIS task. We briefly introduce existing DM-
based models that learn the conditional distribution q(x0|y0)
by estimating a reverse process given a fixed label y0 that
approximates an unconditional forward process q(x1:T |x0).
Then, as our method perturbs labels y0 using a discrete
diffusion, we summarize basic concepts of a discrete state
space diffusion process.

Semantic Image Synthesis with Diffusion Models. In
previous methods, the forward process is defined as an un-
conditional diffusion model that adds Gaussian noise to the
image as follows:

q(xt|xt−1) := N
(
xt;

√
αt
αt−1

xt−1,

(
1− αt

αt−1

)
I

)
,

(1)

where the decreasing sequence α1:T defines the noise level
with strictly positive αt. For the forward process, we have
a closed-form sampling step of xt at an arbitrary timestep
t, q(xt|x0) = N (xt;

√
αtx0, (1− αt)I), as it is defined as

a Markov chain. The reverse process pθ(x0:T |y0) is also
defined as a Markov chain with learned transitions starting
from p(xT ) = N (xT ;0, I) given as:

pθ(x0:T |y0) := p(xT )

T∏

t=1

pθ(xt−1|xt,y0). (2)

It is usually learned by a deep neural network parameterized
by θ that represents Gaussian transitions given as:

pθ(xt−1|xt,y0) := N (xt−1;µθ(xt,y0, t),Σθ(xt,y0, t)).
(3)

The conditional DM can be trained with the hybrid loss
from (Nichol & Dhariwal, 2021) as:

Lhybrid = Lsimple + λLvlb, (4)

Lsimple = Et,x0,y0,ϵ

[
||ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ,y0, t)||22

]
,

Lvlb = DKL (pθ(xt−1|xt,y0)||q(xt−1|xt,x0)) ,

where λ is a balancing hyperparamer and ϵθ is a noise pre-
diction model.

Discrete State Space Diffusion Process. For a discrete
categorical random variable z ∈ {1, ..., C} with C cate-
gories, DMs for discrete state spaces (Hoogeboom et al.,
2021; Austin et al., 2021) are defined with transition matri-
ces where [Qt]ij = q(zt = i|zt−1 = j) and Qt ∈ RC×C .
The forward process is then defined as follows:

q(zt|zt−1) := Cat(zt;p = Qtzt−1), (5)

where z is the one-hot column vector (ez) and Cat(z;p) is a
categorical distribution parameterized by p. We can sample
zt at an arbitrary timestep t from the following marginal
starting from z0 in closed form, due to the Markov property:

q(zt|z0) := Cat(zt;p = Qtz0),

where Qt = QtQt−1...Q1.
(6)

As the design choice of the transition matrix Qt determines
the diffusion process, one has to choose the matrix carefully.
For instance, D3PM (Austin et al., 2021) controlled the data
corruption by designing the matrix with domain knowledge
or structure such as text token embedding distance.

4. Stochastic Conditional Diffusion Model
We propose Stochastic Conditional Diffusion Model
(SCDM), a robust and novel conditional diffusion model for
semantic image synthesis. In this section, we introduce our
forward and generation processes of SCDM (Section 4.1),
discrete label diffusion process (Section 4.2), and the train-
ing and sampling schemes of our method (Section 4.3).
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Figure 2. Generation process of SCDM. The Stochastic Conditional Diffusion Model (SCDM) is a robust conditional diffusion model
for semantic image synthesis. SCDM consists of a discrete forward process for labels and a continuous reverse process for images. It
improves the robustness to noisy semantic labels as well as generation performance on clean semantic labels. z0 denotes the i-th pixel of
the semantic map, i.e., z0 = yi

0 where y0 = {y1
0, ...,y

H×W
0 }.

4.1. Definitions

Stochastic Conditional Diffusion Model (SCDM) is a class
of conditional diffusion models approximating the condi-
tional distribution q(x0|y0). It conditions on diffused labels,
i.e., y1:T , given y0.

Our SCDM is defined as follows:

pθ(x0|y0) :=

∫ ∫
pθ(x0:T ,y1:T |y0)dx1:Tdy1:T , (7)

where x1:T and y1:T are latents with the same dimensional-
ity as x0 and y0 respectively, and (x0,y0) ∼ q(x0,y0).

Forward process. SCDM consists of two diffusion pro-
cesses: a continuous diffusion process q(xt|xt−1) for im-
ages as in Eq. (1) and a discrete diffusion process q(yt|yt−1)
for categorical semantic labels as in Eq. (5). We name the
discrete diffusion process Label Diffusion. Then, the for-
ward process of SCDM is defined as follows:

q(x1:T ,y1:T |x0,y0) :=
T∏

t=1

q(xt,yt|xt−1,yt−1), (8)

q(xt,yt|xt−1,yt−1) := q(xt|xt−1)q(yt|yt−1). (9)

For simplicity, we employed the same t for both the image x
and the label y, but the noise levels are separately controlled.
We manually designed a different noise schedule for the
labels, referred to as the class-wise noise schedule, which
will be discussed in the following section. Consequently,
the diffusion processes for x and y are not synchronized
regarding noise levels, and the synchronization between
them is not necessary.

Note that although we diffuse images and labels indepen-
dently, xt and yt are still correlated as x0 and y0 are depen-
dent (i.e., y0 is deterministically decided given x0).

Generation process. We define the joint distribution for
our generation process as:

pθ(x0:T ,y1:T |y0) := p(xT )q(y1:T |y0)

T∏

t=1

pθ(xt−1|xt,yt),

(10)

pθ(xt−1|xt,yt) := N (xt−1;µθ(xt,yt, t),Σθ(xt,yt, t)),
(11)

where q(y1:T |y0) is the discrete Label Diffusion forward
process and pθ(xt−1|xt,yt) is the continuous reverse pro-
cess. As y0 is given in SIS, we only have to sample the
image x̂0 and we do not need a reverse process for the la-
bel. Therefore, we define our generation process with the
forward process q(y1:T |y0) and the intermediate y1:T are
obtained from y0 without any neural network evaluations.

4.2. Label Diffusion

We introduce our Label Diffusion, a new discrete diffusion
with label masking and class-wise noise scheduling.

4.2.1. TRANSITION MATRIX FOR LABEL MASKING

To gradually erase the information of the semantic map and
increase similarity among different maps as t = 0→ t = T ,
we designed our Label Diffusion process by progressively
masking labels. In other words, the original semantic labels
are converted into the absorbing state (i.e., [mask]) with
some probability at each timestep. Consequently, all seman-
tic maps eventually become identical at t = T , each filled
with [mask] at every pixel. In addition, as the semantic
labels are discrete variables, i.e., classes, it is natural to
adopt the discrete diffusion.

Given semantic classes C and absorbing state [mask],
we define the transition matrix Qt ∈ R(C+1)×(C+1) at a
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timestep t as:

[Qt]ij =





1− βt,c if i = j = c,

βt,c if i = C + 1, j = c,

1 if i = j = C + 1,

0 otherwise,

(12)

where the absorbing state is added as (C + 1)-th class and
βt,c is the probability of a label of class c to be masked.
Note that class-wise defined probability βt,c enables class-
wise noise scheduling, which will be further discussed in
the following section. We assume that Qt is applied to each
pixel of the semantic map independently. Since [mask] is
the absorbing state, once the state is in C + 1 then the next
state is always C + 1.

In addition, the probability q(zt|z0) at t starting from z0,
which is one-hot vector with 1 at c-th entry as in Eq. (6), is:
q(zt|z0) = Cat

(
zt;p = Qtz0 = (1− γt,c)z0 + γt,ceC+1

)
,

(13)
where γt,c = 1 −∏t

i=1(1 − βi,c) denotes the probability
that a semantic label c has been assigned to the absorbing
state until timestep t and eC+1 is the one-hot column vector
where (C+1)-th entry is 1. Utilizing γt,c not only simplifies
the implementation of the transition kernel but also reduces
memory consumption in the generation process. The en-
tire trajectory y1:T |y0 can be efficiently represented with a
single RH×W matrix. For more details, see Appendix C.4.

4.2.2. NOISE SCHEDULING

We observe that the semantic information of small objects
in an image is prone to be lost at a relatively early stage of
diffusion compared to larger objects. Moreover, for a rare
class of objects in the dataset, it would be hard to learn their
semantics if their labels are masked quickly. Thus, we pro-
pose a class-wise noise schedule to differentially transform
semantic labels depending on the class. We designed γt,c to
ensure that labels occupying smaller areas and rarely appear-
ing in the dataset are transitioned into the absorbing state
more slowly and at a later time. The class-wise schedule
improves generation quality for small and rare objects. For
more details, see Section 6.2 and Appendix G.4.

For a given class c, we introduce ψc as defined in Eq. (15)
and ϕc in Eq. (16). These terms take into account the area
(≈ object size) and frequency of the class c, respectively,
for noise scheduling. We estimated ψ and ϕ with training
data. Using ψ and ϕ, we define γt,c for the class-wise noise
schedule as:

γt,c :=
(ψcϕc)

η t
T − 1

(ψcϕc)η − 1
, (14)

ψc = Ex∈Xc

[
Pr(yij = c|x)

]−1

, (15)

ϕc = log
(
Pr(x ∈ Xc)−1

)
, (16)

where Xc is the set of images containing class c, yij is the
class label of the semantic map y at (i, j), and η is a hyper-
parameter. This properly slows down the label diffusion of
small and rare objects. We provide a visual aid for γt,c with
different ψcϕc values in Appendix D.

Proposition 1. For γt,c in Eq. (14) with ψcϕc > 1 for all c
and t < T ,

lim
η→0

γt,c =
t

T
and lim

η→∞
γt,c = 0.

Interestingly, our class-wise schedule generalizes the linear
and uniform schedule, and no Label Diffusion. As η → 0,
the class-wise schedule defined in (14) converges to a linear
and uniform noise schedule, i.e., tT . Labels across all classes
have the same probability to be masked, and the marginal
probability (13) linearly increases. This schedule is the
same as the one leveraged in absorbing-state D3PM (Austin
et al., 2021). Also, as η → ∞, the masking probability
approaches zero. Formally, this property is summarized in
Proposition 1, and its proof is provided in Appendix A.2.

4.3. Training and Sampling

We train our network with the following loss function:

L = Lsimple + λLvlb, (17)

Lsimple = Et,x0,yt,ϵ

[
||ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ,yt, t)||22

]
,

(18)
Lvlb = DKL (pθ(xt−1|xt,yt)||q(xt−1|xt,x0)) , (19)

where αt determines the noise level for input image x at
timestep t, ϵ ∼ N (0, I) is a Gaussian noise, and λ is a
balancing hyperparameter. This is similar to the hybrid
loss (Nichol & Dhariwal, 2021), with a slight adaptation
of using yt. See Appendix A.1 for a detailed derivation of
the objective function. Note that Label Diffusion does not
significantly impact the training cost of the main diffusion.

To generate a sample, by the definition of the generation
process, we first sample y1:T from the semantic map y0 and
feed them sequentially to the process. In addition, we for-
mulate the classifier-free guidance (Ho & Salimans, 2021)
in our model:

ϵ̃θ(xt|yt) = ϵθ(xt|yt) + s(ϵθ(xt|yt)− ϵθ(xt|∅)), (20)

where s is the guidance scale. This is similar to a line of
works (Nichol et al., 2022; Rombach et al., 2022; Wang
et al., 2022b) adopting the guidance, but we use the per-
turbed labels yt by our discrete forward process instead of
the clean and fixed label y0 for all steps.

Extrapolation. Inspired by (Lu et al., 2022), we give
additional guidance in x0 space, as opposed to directly
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sampling xt−1. We first compute x
(t)
0 through ϵ̃θ(xt|yt).

This value is then extrapolated from the preceding time-step
prediction, x̃(t+1)

0 , using the formula:

x̃
(t)
0 = x

(t)
0 + w

(
x
(t)
0 − x̃

(t+1)
0

)
, (21)

where the constant extrapolation scale is denoted by w. Fol-
lowing extrapolation, we apply dynamic thresholding (Sa-
haria et al., 2022) and subsequently randomly sample xt−1

utilizing xt and x̃
(t)
0 .

The complete training and sampling algorithm is in Ap-
pendix B. Note that the overall algorithms remain mostly
unchanged and the only modification involves incorporating
[mask] into labels through Label Diffusion. This intro-
duces minimal computational overhead.

4.4. Discussion

We here theoretically analyze the generative processes of
SCDM to discuss an interesting relationship with the fixed
conditional diffusion model (baseline). SCDM approxi-
mates the following conditional score:

∇xt
log q(xt|yt) = ∇xt

log q(xt) +∇xt
log q(yt|xt),

(22)
while the baseline approximates the following:

∇xt
log q(xt|y0) = ∇xt

log q(xt) +∇xt
log q(y0|xt).

(23)
As the unconditional score ∇xt log q(xt) is identical for
both models, we analyze the relationship between class
guidance (gradients of implicit classifiers (Ho & Salimans,
2021; Dhariwal & Nichol, 2021)), i.e.,∇xt

log q(yt|xt) and
∇xt

log q(y0|xt) in the following proposition.

Proposition 2. Suppose there exists a differentiable func-
tion fi such that q(yi0|xt) = Cat(yi0; p = fi(xt))
and y1

0|xt, ...,yH×W
0 |xt are independent, where i ∈

{1, ...,H × W} denotes the index of a pixel in semantic
map and yi0 ∈ RC+1 is a one-hot vector. With q(yit|yi0)
from Eq. (13) and γt,c = γt for any c, we have the follow-
ing relationship;

Eq(yt|y0)[∇xt
log q(yt|xt)] = (1− γt)∇xt

log q(y0|xt).

The proof is available in Appendix G.5. Proposition 2 im-
plies that the expectation of implicit classifier gradients in
our method over all possible yt given y0 is equivalent to
∇xt log q(y0|xt) after time-dependent scaling. First, the
scaling factor (1 − γt) starts from 0 when t = T and is
set to 1 when t = 0. In other words, our method acts
like an unconditional generation at the beginning of the
reverse process and gets stronger guidance as t goes to 0.
Second, the expectation of the classifier gradient in our
method is the same direction as the one in the baseline with

fixed class labels. Note that this does not mean that our
method has the same guidance as the baseline with fixed
labels and time-dependent scaling. For more discussion, see
Appendix G.5.

5. Experiments
5.1. Noisy SIS benchmark

We evaluate our method based on ADE20K (Zhou et al.,
2017) dataset. ADE20K contains 20K images for training
and 2K images for test annotated with 151 classes including
the ‘unlabeled’ class. Additionally, we introduce three new
experimental setups to assess generation performance under
noisy conditions using the ADE20K dataset as follows:

[DS] This setup employs downsampled semantic maps that
are resized by nearest-neighbor interpolation. This setup
simulates human errors such as jagged edges and coarse/low-
resolution user inputs. We downsample the semantic maps
to 64×64 and then upsample them to 256×256. Conse-
quently, the label maps contain jagged edges.

[Edge] This setup masks the edges of instances with an
unlabeled class. This setup imitates incomplete annotations
around edges, especially between instances. We observed
that human annotators occasionally leave the pixels on the
boundaries of instances as ‘unlabeled’ due to their inherent
ambiguity, see Appendix F for examples. Assuming a pixel
with a different class compared to its neighbor is the edge
of the instance, we detect edges using the label map. Then,
we fill the semantic map pixels with a distance of 2 or less
from the edges with the unlabeled class.

[Random] This setup randomly adds an unlabeled class to
the semantic maps (10%). This setup mimics unintended
user errors and extreme random noise.

More experimental results with other benchmark datasets
(e.g., CelebAMask-HQ (Lee et al., 2020) and COCO-
Stuff (Caesar et al., 2018)) are in Appendix G.

5.2. Experimental Setup

We adopt Fréchet Inception Distance (FID) (Heusel et al.,
2017) to evaluate generation quality and mean Intersection-
over-Union (mIoU) to assess the alignment of the synthesis
results with ground truth semantic maps. We compare our
model with GAN-based methods and DM-based methods.
All the baselines and ours are trained with clean benchmark
datasets, and tested on the noisy SIS benchmark. We present
our results on noisy labels sampled over 25 steps in Sec-
tion 5.3. More information on baselines and implementation
details are provided in Appendix C.2 and C.3, respectively.
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Table 1. SIS with noisy labels. F is FID and lower is better. M is
mIoU and higher is better. The bottom three rows are DM-based,
and the others are GAN-based methods. The best results among
the diffusion-based approaches are boldfaced, and the best results
overall are underlined.

Category Methods DS Edge Random
F(↓) M(↑) F(↓) M(↑) F(↓) M(↑)

GAN

SPADE 36.6 41.0 40.2 39.7 92.7 18.5
CC-FPSE 42.0 40.4 38.7 41.7 141.3 16.2
DAGAN 37.6 41.3 42.2 39.0 109.1 16.4
GroupDNet 45.9 28.9 49.9 28.0 76.0 21.2
OASIS 34.5 48.1 37.6 47.4 54.2 42.1
CLADE 37.4 41.8 41.9 40.1 71.8 29.9
INADE 36.1 38.3 40.3 35.6 61.3 30.2
SCGAN 38.1 44.0 63.9 43.3 40.9 38.6
SAFM* 36.7 50.1 40.0 44.9 80.6 34.1

DM
SDM 35.5 43.8 39.4 39.4 141.9 11.8
LDM 38.9 28.1 39.5 26.0 36.3 27.1
Ours 32.4 44.7 31.2 40.1 28.1 45.2

5.3. SIS with Noisy Labels

Table 1 shows the performances of our method and baselines
under the three settings. SCDM demonstrates its superior
robustness to all three types of noise in generation quality
measured by FID, compared to other baselines. Notably,
in the three setups, the performance gaps between the best
baseline scores and our method are +2.1, +6.4, and +8.2,
respectively. We also evaluate the semantic correspondence
between the clean ground-truth label maps and the genera-
tion results and report mIoU scores. Our method achieved
the best mIoU performance among DM-based models in
all three settings. Compared to strong GAN-based base-
lines, including SAFM (Lv et al., 2022) (denoted with ‘*’
in Table 1) that leverages extra ground truth instance maps
during sampling, our results show comparable results in
correspondence.

We present the qualitative comparisons in Figure 3. While
the baselines synthesized the jagged or unnatural crib im-
ages given the low-resolution semantic label, ours produced
clean edges and generated a realistic image, as shown in
Figure 3(a). In Figure 3(b), our approach naturally fills in
the unlabeled edge areas, whereas the baselines fail to gen-
erate realistic images, especially on the ‘unlabeled’ edges.
As shown in Figure 3(c), ours successfully generates when
conditioned on randomly corrupted masks, while others fail
and synthesize artifacts.

5.4. SIS with Clean Labels (Standard SIS)

We also evaluate our method in a standard SIS setting with
clean labels. In this experiment, we additionally adopt
LPIPS (Zhang et al., 2018) as a diversity metric. Table 2
shows that SCDM achieves the best performance in all three

Label OASIS SAFM SDM OursLDM

(a) Masks with jagged edges (DS)

Label OASIS SAFM SDM LDM Ours

(b) Incomplete masks (Edge), limegreen areas denote ‘unlabeled’.

Label OASIS SAFM SDM OursLDM

(c) Corrupted masks (Random)

Figure 3. Generation results on noisy labels.

metrics (e.g., FID, LPIPS, mIoU) compared to recent DM-
based baselines in all datasets. Also, including GAN-based
models, the proposed method shows comparable perfor-
mances. Specifically, our method surpasses all baselines
on CelebAMask-HQ in all three metrics with a significant
gain of +1.1 (FID) compared to the state-of-the-art method.
Qualitative comparisons and more detailed analysis are in
Appendix G.1.

6. Analysis
In this section, we analyze our method to understand (1)
the efficacy of Label diffusion and extrapolation and (2) the
effect of the class-wise noise schedule.

6.1. Ablation Study

To further demonstrate SCDM’s enhanced robustness
against noisy labels, we first show the effect of our compo-
nents in the original (clean) benchmark. Subsequently, we
show that our samples generated with noisy labels closely
resemble the results obtained with clean labels, supporting
our motivation in Figure 1.

7



Stochastic Conditional Diffusion Models for Robust Semantic Image Synthesis

Table 2. Quantitative performance comparison on generation quality. The baseline methods are categorized into Generative Adversarial
Networks (GAN) and Diffusion Models (DM). For FID, lower is better. For LPIPS and mIoU, higher is better. The best results among the
diffusion-based approaches are boldfaced, and the best results overall are underlined. ‘-’ indicates that the method did not report the
metric or train the dataset, or the checkpoint or samples are not publicly available. ‘Seg’ denotes that the method leverages a pre-trained
segmentation network during training. ‘†’ denotes a one-shot method.

Methods Seg CelebAMask-HQ ADE20K COCO-Stuff
FID(↓) LPIPS(↑) mIoU(↑) FID(↓) LPIPS(↑) mIoU(↑) FID(↓) LPIPS(↑) mIoU(↑)

GAN

RESAIL (Shi et al., 2022) ✓ - - - 30.2 - 49.3* 18.3 - 44.7
SAFM (Lv et al., 2022) ✓ - - - 32.8 - 52.6 24.6 - 43.3
ECGAN (Tang et al., 2023a) ✓ - - - 25.8 0.52 50.6* 15.7 - 46.3
ECGAN++ (Tang et al., 2023b) ✓ - - - 24.7 0.54 52.7* 14.9 - 47.9

pix2pixHD (Wang et al., 2018) ✗ 38.5 0 76.1 81.8 0 20.3* 111.5 0 14.6
SPADE (Park et al., 2019) ✗ 29.2 0 75.2 33.9 0 44.5 33.9 0 36.9
CC-FPSE (Liu et al., 2019) ✗ - - - 31.7 0.078 47.3 19.2 0.098 40.8
DAGAN (Tang et al., 2020a) ✗ 29.1 0 76.6 31.9 0 45.5 - - -
GroupDNet (Zhu et al., 2020b) ✗ 25.9 0.365 76.1 41.7 0.230 33.7 - - -
OASIS (Sushko et al., 2020) ✗ - - - 28.3 0.286 50.9 17.0 0.328 44.2
INADE (Tan et al., 2021a) ✗ 21.5 0.415 74.1 35.2 0.459 41.4 - - -
SCGAN (Wang et al., 2021) ✗ 20.8 0 75.5 29.3 0 50.0 18.1 0 41.7
CLADE (Tan et al., 2021b) ✗ 30.6 0 75.4 35.4 0 44.7 29.2 0 36.9
Unconditional Generator† (Chae et al., 2024) ✗ 18.5 - 53.1 - - - - - -

DM

SDM (Wang et al., 2022b) ✗ 18.8 0.404 77.0 27.5 0.524 48.7 15.9 0.518 34.9
LDM (Rombach et al., 2022) ✗ 21.5 0.315 74.6 36.5 0.417 23.2 - - -
PITI (Wang et al., 2022a) ✗ - - - 27.3 - - 15.8 0.489 32.2
Ours ✗ 17.4 0.418 77.2 26.9 0.530 49.4 15.3 0.519 38.1

Table 3. Ablation study on ADE20K. For FID (F), lower is better. For LPIPS (L) and mIoU (M), higher is better.

Method 25 steps 50 steps 100 steps 250 steps 1000 steps
F(↓) L(↑) M(↑) F(↓) L(↑) M(↑) F(↓) L(↑) M(↑) F(↓) L(↑) M(↑) F(↓) L(↑) M(↑)

(a) Base 44.6 0.471 33.8 35.8 0.489 47.1 31.9 0.500 48.2 29.3 0.506 48.6 28.1 0.508 48.6
(b) + Label Diffusion 39.5 0.492 45.5 33.6 0.513 47.3 29.8 0.522 48.6 27.7 0.528 48.7 26.9 0.530 48.8
(c) + Extrapolation 27.7 0.518 48.7 27.0 0.525 48.7 26.7 0.522 49.8 26.7 0.530 49.6 26.8 0.531 49.9

6.1.1. DOES SCDM SUCCESSFULLY ESTIMATE q(X|Y )?

The effect of two components of SCDM (Label Diffusion
and extrapolation) is analyzed by an ablation study in Ta-
ble 3. In this analysis, we adopt LPIPS (Zhang et al., 2018)
to additionally compare the generation diversity and mea-
sure the average distance between multi-modal synthesis
results. We compare the following; (a) Base generates im-
ages conditioned on original fixed semantic maps y0, (b)
+Label Diffusion generates images conditioned on perturbed
labels by our Label Diffusion, and (c) +Extrapolation uses
Eq. (21) instead of direct sampling of xt−1 on top of (b).
The results are reported for the few-step (25, 50, 100, and
250 steps) and the full-step (1000 steps) settings.

By eliminating all of our components, (c)→ (a), the per-
formance of all three metrics significantly declined for all
sampling steps. This empirically shows that our SCDM
successfully estimates the conditional distribution q(X|Y ).
The degradation became more substantial when omitting

extrapolation, (b) → (a), in fewer steps, highlighting its
significance in the few-step generation. Surprisingly, full
SCDM (c) with only 25 steps (FID of 27.7) outperforms the
baseline (a) with 1000 steps (FID of 28.1). This supports
the effectiveness of the proposed method.

6.1.2. DOES LABEL DIFFUSION CONTRIBUTE TO
ROBUSTNESS?

Furthermore, we examine the effect of Label Diffusion in
the noisy SIS setting to verify the robustness of our method,
as depicted in Figure 1. Specifically, we demonstrate that the
generation results given clean and noisy labels are similar.
To rigorously analyze the effects, we fix the random seeds
and use the same xT . Then we compare the generation
results of our method and the baseline, conditioned on clean
(original dataset) semantic maps with results of noisy (DS,
Edge, and Random) semantic maps, respectively. For a
quantitative comparison, we adopt the following metrics:

8



Stochastic Conditional Diffusion Models for Robust Semantic Image Synthesis

Table 4. Ablation study on noisy SIS. Generation results with and
without Label Diffusion are compared, where samples generated
from each noisy dataset are compared with those from the clean
dataset. For LPIPS and FID, lower is better. For SSIM and PSNR,
higher is better.

Dataset Method Metric
LPIPS(↓) SSIM(↑) PSNR(↑) FID(↓)

DS Baseline 0.221 0.823 30.4 24.2
Ours 0.180 0.865 31.3 19.0

Edge Baseline 0.248 0.771 29.7 32.7
Ours 0.223 0.825 30.2 20.0

Random Baseline 0.560 0.427 28.1 145.6
Ours 0.076 0.944 32.9 10.0

Label OursBaseline

(a)

(b)

(c)

(d)

Figure 4. Generation results with and without Label Diffusion.
The results are sampled with the fixed random seeds and the same
xT , and generated with (a) clean labels, (b) DS, (c) Edge, and (d)
Random setup noisy labels, respectively.

LPIPS (perceptual similarity), SSIM (structural similarity),
PSNR (peak signal-to-noise ratio), and FID, and details are
in Appendix C.1. LPIPS, SSIM, and PSNR are calculated
sample-wise, comparing each pair of generated samples of
the clean and noisy semantic maps, while FID compares the

Table 5. mIoU per each group on ADE20K. The classes are
grouped based on their ψcϕc scores.

Noise Schedule All Frequent Common Rare

Linear & uniform 43.0 56.1 40.8 32.2

Class-wise 49.4 (+6.4) 60.3 (+4.2) 47.7 (+6.9) 38.4 (+8.1)

distribution of the generated set of images.

Results in Table 4 indicate that Label Diffusion significantly
contributes to robust generation, with our samples exhibit-
ing better similarity in all four metrics. Particularly, ours
resulted in +0.041, +0.025, and +0.484 of LPIPS gain over
baseline in DS, Edge, and Random settings, respectively.
Figure 4 presents a qualitative comparison supporting our
intuition behind SCDM. Without Label Diffusion (Base-
line in Figure 4), the generated results show inconsistency,
whereas samples conform to the result of clean labels when
Label Diffusion is employed (Ours in Figure 4).

6.2. Effect of Class-wise Noise Schedule

In this section, we elucidate the effect of our class-wise
noise schedule by comparing the generation results of two
different models using the class-wise schedule and linear
and uniform schedule, i.e., η → 0. We observe that the
class-wise schedule clearly improves the image quality, es-
pecially in terms of semantic correspondence (mIoU (↑)
of 49.4 (class-wise) > 43.0 (uniform) on ADE20K). The
quantitative and qualitative results are presented in the Ap-
pendix G.4. Furthermore, the class-wise schedule exhibits
superiority in small and rare class synthesis. By organizing
the classes into three groups - frequent, common, and rare
- based on their ψcϕc scores, we compare mIoU per each
group on ADE20K and report the performance in Table 5.
Notably, our class-wise schedule exhibited mIoU gain in all
the groups, with the highest performance improvement of
+8.1 in the rare group.

7. Conclusion
This paper introduces SCDM, a novel and robust conditional
diffusion model for semantic image synthesis. The discrete
diffusion for labels, which we name Label Diffusion, is
designed with label masking. Label Diffusion ensures that
the intermediate labels along the generation process become
similar and eventually identical at t = T . Additionally,
the class-wise noise schedule improves the generation qual-
ity for small and rare objects. We define the generation
process with a discrete forward process of labels and a con-
tinuous reverse process of images, as the labels are given in
SIS. SCDM demonstrates its robustness in noisy SIS setups
which we designed to simulate human errors in real-world
applications.
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The appendix is organized into the following sections.

• Appendix A: Derivations

– A.1 Variational Lower Bound for Stochastic Conditional Diffusion Model
– A.2 Proof of Proposition 1
– A.3 Proof of Proposition 2

• Appendix B: Algorithms

• Appendix C: Experimental Setup

– C.1 Metrics
– C.2 Baselines
– C.3 Implementation Details
– C.4 Efficient Trajectory Representation

• Appendix D: Detailed Explanations on ψc and ϕc

• Appendix F: ADE20K Dataset Annotation Examples

• Appendix E: Limitations

• Appendix G: Additional Experimental Results

– G.1 Standard SIS Setting
– G.2 Extrapolation Hyperparameter Search
– G.3 Visualization of Label Diffusion
– G.4 Effect of Class-wise Noise Schedule
– G.5 Further Discussion and Analysis on Class Guidance
– G.6 Validation of SCDM Generation Process
– G.7 More Qualitative Results - Multimodal Generation
– G.8 More Qualitative Results - SIS with Noisy Labels
– G.9 More Qualitative Results - Standard SIS Setting

A. Derivations
A.1. Variational Lower Bound for Stochastic Conditional Diffusion Model

In this section, we provide a detailed derivation of the objective function (Eq. (17)) discussed in Section 4.3 of the main
paper. We start by defining our Stochastic Conditional Diffusion Model as:

pθ(x0|y0) :=

∫ ∫
pθ(x0:T ,y1:T |y0)dx1:Tdy1:T , (24)

where the generation process is defined as follows:

pθ(x0:T ,y1:T |y0) := p(xT )q(y1:T |y0)

T∏

t=1

pθ(xt−1|xt,yt), (25)

pθ(xt−1|xt,yt) := N (xt−1;µθ(xt,yt, t),Σθ(xt,yt, t)). (26)

The diffusion forward process in which SCDM approximates is:

q(x1:T ,y1:T |x0,y0) :=

T∏

t=1

q(xt,yt|xt−1,yt−1), (27)

q(xt,yt|xt−1,yt−1) := q(xt|xt−1)q(yt|yt−1). (28)
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Variational bound on negative log-likelihood of SCDM can be derived as follows:

Eq(x1:T ,y1:T |x0,y0) [− log pθ(x0|y0)] (29)

= Eq
[
− log

pθ(x0:T ,y1:T |y0)

pθ(x1:T ,y1:T |y0)

]
(30)

= Eq
[
− log

pθ(x0:T ,y1:T |y0)

pθ(x1:T ,y1:T |y0)

q(x1:T ,y1:T |x0,y0)

q(x1:T ,y1:T |x0,y0)

]
(31)

= Eq
[
− log

pθ(x0:T ,y1:T |y0)

q(x1:T ,y1:T |x0,y0)

q(x1:T ,y1:T |x0,y0)

pθ(x1:T ,y1:T |y0)

]
(32)

= Eq
[
− log

pθ(x0:T ,y1:T |y0)

q(x1:T ,y1:T |x0,y0)

]
+ Eq

[
− log

q(x1:T ,y1:T |x0,y0)

pθ(x1:T ,y1:T |y0)

]
(33)

= Eq
[
− log

pθ(x0:T ,y1:T |y0)

q(x1:T ,y1:T |x0,y0)

]
−DKL (q(x1:T ,y1:T |x0,y0)||pθ(x1:T ,y1:T |y0))︸ ︷︷ ︸

DKL≥0

(34)

≤ Eq
[
− log

pθ(x0:T ,y1:T |y0)

q(x1:T ,y1:T |x0,y0)

]
, (35)

Eq
[
− log

pθ(x0:T ,y1:T |y0)

q(x1:T ,y1:T |x0,y0)

]
(36)

= Eq

[
− log

p(xT )q(y1:T |y0)
∏T
t=1 pθ(xt−1|xt,yt)∏T

t=1 q(xt,yt|xt−1,yt−1)

]
(37)

= Eq

[
− log

p(xT )q(y1:T |y0)
∏T
t=1 pθ(xt−1|xt,yt)∏T

t=1 q(xt|xt−1)q(yt|yt−1)

]
(38)

= Eq

[
− log

p(xT )q(y1:T |y0)
∏T
t=1 pθ(xt−1|xt,yt)∏T

t=1 q(xt|xt−1)
∏T
t=1 q(yt|yt−1)

]
(39)

= Eq

[
− log

p(xT )
∏T
t=1 pθ(xt−1|xt,yt)∏T
t=1 q(xt|xt−1)

]
(40)

= Eq

[
− log p(xT )−

T∑

t=1

log
pθ(xt−1|xt,yt)
q(xt|xt−1)

]
=: L (41)

Also, we can derive the reduced variance variational bound for SCDM as follows:

L = Eq

[
− log p(xT )−

T∑

t=1

log
pθ(xt−1|xt,yt)
q(xt|xt−1)

]
(42)

= Eq

[
− log p(xT )−

T∑

t=2

log
pθ(xt−1|xt,yt)
q(xt|xt−1)

− log
pθ(x0|x1,y1)

q(x1|x0)

]
(43)

= Eq

[
− log p(xT )−

T∑

t=2

log
pθ(xt−1|xt,yt)
q(xt−1|xt,x0)

q(xt−1|x0)

q(xt|x0)
− log

pθ(x0|x1,y1)

q(x1|x0)

]
(44)

= Eq

[
− log

p(xT )

q(xT |x0)
−

T∑

t=2

log
pθ(xt−1|xt,yt)
q(xt−1|xt,x0)

− log pθ(x0|x1,y1)

]
(45)

= Eq

[
DKL(q(xT |x0)||p(xT )) +

T∑

t=2

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt,yt))− log pθ(x0|x1,y1)

]
. (46)
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The only difference between the typical bound of a conditional DM and our bound is the substitution of y0 for yt in
pθ(xt−1|xt,yt). Therefore, we can use the DDPM simple loss (Lsimple) (Ho et al., 2020) or the hybrid loss (Lsimple +
λLvlb) (Nichol & Dhariwal, 2021) for training our Stochastic Conditional Diffusion Model.

A.2. Proof of Proposition 1

We provide the proof of Proposition 1, which shows that our class-wise noise schedule generalizes the linear and uniform
schedule and no Label Diffusion, i.e., a typical conditional DM described in Section 3. Proposition 1 and the following
proof hold under two assumptions of ψcϕc > 1 for all c and t < T .

Proposition 1. For γt,c in Eq. (14) with ψcϕc > 1 for all c and t < T ,

lim
η→0

γt,c =
t

T
and lim

η→∞
γt,c = 0.

Proof. First, when η converges to 0, the linear and uniform noise schedule can be derived as follows:

lim
η→0

γt,c = lim
η→0

(ψcϕc)
η t

T − 1

(ψcϕc)η − 1
(47)

= lim
η→0

(ψcϕc)
η t

T − (ψcϕc)
0 t

T

(ψcϕc)η − (ψcϕc)0
(48)

= lim
η→0

(ψcϕc)
η t

T −(ψcϕc)
0 t
T

η

(ψcϕc)η−(ψcϕc)0

η

(49)

= lim
η→0

ln(ψcϕc)
t
T (ψcϕc)

η t
T

ln(ψcϕc)(ψcϕc)η
(50)

= lim
η→0

t

T
(ψcϕc)

η( t
T −1) (51)

=
t

T
. (52)

When η explodes to +∞, the noise schedule without Label Diffusion can be derived as follows:

lim
η→+∞

γt,c = lim
η→+∞

(ψcϕc)
η t

T − 1

(ψcϕc)η − 1
(53)

= lim
η→+∞

(ψcϕc)
η( t

T −1) − (ψcϕc)
−η

1− (ψcϕc)−η
(54)

= 0. ∵
t

T
− 1 < 0 (55)

These two derivations show that our class-wise noise schedule generalizes previous works. Although we set η = 1 for our
experiments, different η can be searched and employed for controlling the noise schedules, which we leave as future work.

A.3. Proof of Proposition 2

We provide the proof of Proposition 2.

Proposition 2. Suppose there exists a differentiable function fi such that q(yi0|xt) = Cat(yi0; p = fi(xt)) and
y1
0|xt, ...,yH×W

0 |xt are independent, where i ∈ {1, ...,H × W} denotes the index of a pixel in semantic map and
yi0 ∈ RC+1 is a one-hot vector. With q(yit|yi0) from Eq. (13) and γt,c = γt for any c, we have the following relationship;

Eq(yt|y0)[∇xt log q(yt|xt)] = (1− γt)∇xt log q(y0|xt).
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Proof.

q(y0|xt) = q(y1
0,y

2
0, ...,y

H×W
0 |xt) (56)

=

H×W∏

i=1

q(yi0|xt), (57)

∇xt log q(y0|xt) = ∇xt log

H×W∏

i=1

q(yi0|xt) (58)

=

H×W∑

i=1

∇xt log q(y
i
0|xt). (59)

Since yi0|xt are independent and our Label Diffusion forward process is applied to each pixel of y0 independently, yit|xt are
independent. Therefore,

q(yt|xt) = q(y1
t ,y

2
t , ...,y

H×W
t |xt) (60)

=

H×W∏

i=1

q(yit|xt), (61)

∇xt log q(yt|xt) = ∇xt log

H×W∏

i=1

q(yit|xt) (62)

=

H×W∑

i=1

∇xt log q(y
i
t|xt), (63)

Eq(yt|y0)[∇xt log q(yt|xt)] =
H×W∑

i=1

Eq(yt|y0)[∇xt log q(y
i
t|xt)] (64)

=

H×W∑

i=1

Eq(yi
t|y0)[∇xt log q(y

i
t|xt)] (65)

=

H×W∑

i=1

Eq(yi
t|yi

0)
[∇xt log q(y

i
t|xt)]. (66)

Thus, our proof can be substituted for proving the following statement:

Eq(yi
t|yi

0)
[∇xt

log q(yit|xt)] = (1− γt)∇xt
log q(yi0|xt). (67)

With a slight abuse of notation, we use y0 to denote yi0, yt to denote yit, and f(xt) to denote fi(xt) for the rest of the proof.
Then, ∇xt log q(y0|xt) can be derived as follows:

q(y0|xt) = yT0 f(xt), (68)

∇xt log q(y0|xt) =
1

q(y0|xt)
∂f(xt)

∂xt
y0 (69)

=
1

yT0 f(xt)

∂f(xt)

∂xt
y0. (70)

16



Stochastic Conditional Diffusion Models for Robust Semantic Image Synthesis

Also,∇xt
log q(yt|xt) can be derived as follows:

q(yt|xt) =
∑

y0

q(yt,y0|xt) =
∑

y0

q(yt|y0,xt)q(y0|xt) (71)

=
∑

y0

q(yt|y0)q(y0|xt) =
C+1∑

c=1

yTt Qtece
T
c f(xt) (72)

= yTt Qt(

C+1∑

c=1

ece
T
c )f(xt) (73)

= yTt Qtf(xt), (74)

∇xt
log q(yt|xt) =

1

q(yt|xt)
∂f(xt)

∂xt
Q
T

t yt (75)

=
1

yTt Qtf(xt)

∂f(xt)

∂xt
Q
T

t yt. (76)

Therefore, Eq(yt|y0)[∇xt
log q(yt|xt)] can be derived as follows:

Eq(yt|y0)[∇xt log q(yt|xt)] =
∑
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where D is a diagonal matrix. Since the class corresponding to the absorbing state, i.e., class C + 1 does not exist in
the original dataset, we have q(y0 = eC+1) = 0 ⇔ [f(xt)]C+1 = 0. Therefore, [D]cc = ((1 − γt)[f(xt)]c)−1 when
c ̸= C + 1, otherwise, γ−1

t . As y0 is a one-hot vector,

Eq(yt|y0)[∇xt
log q(yt|xt)] =

∂f(xt)

∂xt

(
(1− γt)

1

yT0 f(xt)
y0 + γt(1+

1− γt
γt

eC+1)

)
(84)

= (1− γt)
1

yT0 f(xt)

∂f(xt)

∂xt
y0 + γt

∂f(xt)

∂xt
(1+

1− γt
γt

eC+1) (85)

= (1− γt)∇xt log q(y0|xt) + γt∇xt(1+
1− γt
γt

eC+1)
T f(xt) (86)

= (1− γt)∇xt
log q(y0|xt) + γt∇xt

1 (87)
= (1− γt)∇xt

log q(y0|xt). (88)
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B. Algorithms
Algorithm 1 and 2 summarize the general training and sampling process of our SCDM, respectively. While m has to be
eC+1 ∈ RC+1, we implemented the absorbing vector with a zero vector 0 ∈ RC to minimize the modification of the
pretrained SIS model.

Algorithm 1 Training
Require: image x0 ∈ RH×W×3, label y0 ∈ RH×W×C , noise schedule α1:T , γ1:T , absorbing vector m ∈ RC

1: while not converged do
2: ϵx ∼ N (0, I) {// ϵx ∈ RH×W×3}
3: ∀i,j [ϵy]ij ∼ Uniform(0, 1) {// ϵy ∈ RH×W }
4: t ∼ Uniform({1, ..., T})
5: xt ←

√
αtx0 +

√
1− αtϵx

6: ∀i,j [yt]ij ← [y0]ij if [ϵy]ij ≥ γt else m
7: Take a gradient descent step on Lhybrid (ϵx, ϵθ(xt,yt, t),Σθ(xt,yt, t))
8: end while

Algorithm 2 Sampling
Require: label y0 ∈ RH×W×C , noise schedule α1:T , γ1:T , guidance scale s, absorbing vector m ∈ RC ,

extrapolation scale w
1: xT ∼ N (0, I)
2: for t← T, ..., 1 do
3: ∀i,j [ϵy]ij ∼ Uniform(0, 1) {// ϵy ∈ RH×W }
4: ∀i,j [yt]ij ← [y0]ij if [ϵy]ij ≥ γt else m
5: ϵx ∼ N (0, I) if t ̸= 1 else 0 {// ϵx ∈ RH×W×3}
6: ϵ̃θ ← ϵθ(xt,yt, t) + s(ϵθ(xt,yt, t)− ϵθ(xt,0, t)) {// Classifier-free guidance}
7: x

(t)
0 ← xt−

√
1−αt ϵ̃θ√
αt

{// Reparameterize ϵ-pred model to predict x0}
8: x

(t)
0 ← dynamic thresholding(x(t)

0 ) {// Dynamic thresholding}
9: x̃

(t)
0 ← x

(t)
0 + w

(
x
(t)
0 − x̃

(t+1)
0

)
if t ̸= T else x

(t)
0 {// Extrapolation}

10: µt =
1√

1−αt

(√
αt−1(1− αt

αt−1
)x̃

(t)
0 +

√
αt

αt−1
(1− αt−1)xt

)

11: xt−1 ← µt +Σθ(xt,yt, t)
1
2 ϵx {// Sample xt−1}

12: end for
13: Return x0

C. Experimental Setup
C.1. Metrics

C.1.1. EXPERIMENTS IN SECTION 5 AND 6.1.1

FID (fidelity). To quantitatively measure generation quality, we adopt Fréchet Inception Distance (FID) (Heusel et al.,
2017) as our evaluation metrics. FID captures the image’s visual quality by comparing the distribution between real and
generated images on the inception network’s (Szegedy et al., 2017) feature space.

mIoU (semantic correspondence). Additionally, following previous works, we assess the alignment of the synthesis results
with ground truth semantic maps by using off-the-shelf pretrained segmentation networks and report mean Intersection-over-
Union (mIoU). We feed the sampled images to the pre-trained, off-the-shelf semantic segmentation networks: U-Net (Lee
et al., 2020; Ronneberger et al., 2015) for CelebAMask-HQ, ViT-Adapter-S (Chen et al., 2022) with UperNet (Xiao et al.,
2018) for ADE20K, and DeepLabV2 (Chen et al., 2015) for COCO-Stuff. For a fair comparison, we tried to measure and
reproduce the mIoU of all baseline samples. For the standard SIS setting, when samples or checkpoints were not publicly
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available, we report the results from (Tang et al., 2023a) and denote them with ‘*’ in the table.

LPIPS (diversity). In addition to FID and mIoU, we adopt Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018) as our generation diversity metrics in Section G.1 and compare the average distance between multi-modal
synthesis results. Specifically, following (Tan et al., 2021a), we sample 10 different images for each semantic map, compute
the pairwise LPIPS distance, and average over the label maps.

C.1.2. EXPERIMENTS IN SECTION 6.1.2

LPIPS. In Section 6.1.2, we adopt LPIPS to compare similarity, as LPIPS essentially measures the similarity of two
different images. Therefore, lower LPIPS is better in our experimental setting. We calculate LPIPS by comparing images
generated with clean and noisy labels, and averaging the results.

PSNR. Peak Signal-to-Noise Ratio (PSNR) is a metric that evaluates the reconstruction quality, i.e., higher PSNR is better.
We calculate PSNR by comparing images generated with clean and noisy labels, and averaging the results.

SSIM. Structural Similarity Index Measure (SSIM) (Wang et al., 2004) is a metric to evaluate the similarity of a pair of
images, i.e., higher SSIM is better. We calculate SSIM by comparing images generated with clean and noisy labels, and
averaging the results.

FID. In Section 6.1.2, we use FID to compare the distribution between the set of generated images conditioned on clean
labels and the set of generated images conditioned on noisy labels. In our experimental setting, lower FID indicates that the
two distributions are closer, which is better.

C.2. Baselines

We compare our model with GAN-based methods such as pix2pixHD (Wang et al., 2018), SPADE (Park et al., 2019),
DAGAN (Tang et al., 2020a), SCGAN (Wang et al., 2021), CLADE (Tan et al., 2021b), CC-FPSE (Liu et al., 2019),
GroupDNet (Zhu et al., 2020b), INADE (Tan et al., 2021a), OASIS (Sushko et al., 2020), RESAIL (Shi et al., 2022),
SAFM (Lv et al., 2022), ECGAN (Tang et al., 2023a), ECGAN++ (Tang et al., 2023b), and Unconditional Generator
with Semantic Mapper (Chae et al., 2024). We also evaluate our method with diffusion-based approaches, SDM (Wang
et al., 2022b), LDM (Rombach et al., 2022), and PITI (Wang et al., 2022a). Although FLIS (Xue et al., 2023) and
ControlNet (Zhang et al., 2023) do tackle SIS with diffusion models, they utilize extra text inputs (captions) with the
semantic maps. For a fair comparison, we did not include FLIS and ControlNet as baselines.

As the pretrained weights of pix2pixHD and PITI on ADE20K are not publicly available, we excluded them from our
noisy SIS experiments on ADE20K. Additionally, the pretrained weights and the full code of RESAIL, ECGAN, and
Unconditional Generator are not available in public, therefore we did not include them in our noisy SIS experiments
baselines as well.

For the standard SIS setting, we report all the results evaluated with the uploaded samples or checkpoints except when
they are unavailable. For PITI, as the COCO-Stuff pretrained weights were only available, we sampled images with the
weights and reported the LPIPS and mIoU scores. For CelebAMask-HQ results of SDM, we report the reproduced results.
Although LDM did not include SIS experiments on benchmark datasets in their official paper, we trained their model with
their SIS training configurations and reported the results in both noisy and standard SIS experiments, for more comparison
with DM-based approaches.

C.3. Implementation Details

We followed the overall architecture of SDM (Wang et al., 2022b), a diffusion model for semantic image synthesis.
Specifically, we embed the condition into the U-Net decoder with SPADE (Park et al., 2019) and constructed a similar
U-Net structure, where the architecture details are publicly available in their GitHub repository. SDM trained their model
with two stages: (1) pre-trained their conditional diffusion model and (2) fine-tuned the pre-trained model by randomly
dropping out the semantic label maps in order to use classifier-free guidance in sampling. We trained our SCDM starting
from their pre-trained weights to reduce the training time. We trained our model with 4 NVIDIA RTX A6000 GPUs for 1-2
days. Image sampling and evaluations are conducted on a server with 8 NVIDIA RTX 3090 GPUs.
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Figure 5. Visualization of γt,c throughout diffusion in the baseline, linear and uniform, and class-wise noise schedule. γt,c indicates
the probability of a label c has transitioned to the absorbing state until timestep t. In our class-wise schedule, small and rare objects tend
to be intact relatively longer in the diffusion process, e.g., clock.

For the hyperparameters, we used λ = 0.001 for our hybrid loss (Nichol & Dhariwal, 2021), classifier-free guidance (Ho &
Salimans, 2021) scale s = 0.5, 20% of drop rate for the SIS experiments on three datasets, noise schedule hyperparameter
η = 1, dynamic thresholding (Saharia et al., 2022) percentile of 0.95, and the extrapolation scale of w = 0.8. Except for
the ablation study (in Table 3), we didn’t use extrapolation for experiments with 1000 sampling steps, as extrapolation is
designed to enhance small-step generation. We also utilized exponential moving average (EMA) with 0.9999 decay, and
AdamW (Loshchilov & Hutter, 2019) optimizer. We employed instance labels of CelebAMask-HQ and COCO-Stuff to
produce instance edge maps and used them as additional input following SDM.

Furthermore, for the class-wise noise schedule, we clamped ϕc to be at least 1, to down the diffusion of rare classes without
speeding up the transition of frequent classes. We set the class-wise noise schedules of the ‘unlabeled’ class of ADE20K and
COCO-Stuff to be the uniform schedule, i.e., γt,c = t/T for c =‘unlabeled’. In addition, we implemented the calculation of
γt,c using t− 1 instead of t in the code to ensure that the assumption of Lemma 1 is satisfied.

For our experiments on ADE20K, we modified the calculation of ψcϕc values of the class-wise noise schedule with an
empirically chosen scale factor. This is because ADE20K has numerous classes and high diversity in the dataset compared
to the number of training data, while CelebAMask-HQ has relatively low diversity and COCO-Stuff has a large number of
training data. Specifically, we modified ψcϕc as:

ψcϕc := λ Pr(yij = c)−1 log
(
Pr(x ∈ Xc)−1

)
, (89)

where λ is the scale factor (≈ 0.278) making the smallest value of ψcϕc converge to 1, i.e., γt,c = t/T .

C.4. Efficient Trajectory Representation

The generation process of SCDM utilizes yT , ...,y1 at each timestep t = T, ..., 1. As we have not defined the reverse process
of the labels, we use the label forward process q(y1:T |y0), which sequentially constructs y1, ...,yT from y0. Consequently,
y1:T needs to be cached during sampling in order to be accessed from t = T to t = 1. However, this results in a significant
memory consumption, posing a challenge to our sampling process. To address this issue, we leverage γt,c from Eq (13).
Specifically, we represent the entire trajectory y1:T with a single matrix U ∈ RH×W , where Uij denotes the ‘timestep’
that (i, j)-th pixel is masked. Suppose that (i, j)-th pixel corresponds to class c. Since γt,c can be expressed as a strictly
monotonic function γc(t), we can easily sample Uij using the inverse CDF method on γ−1

c (u), where u ∼ Uniform(0, 1).
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D. Detailed Explanations on ψc and ϕc

In this section, we elaborate on ψc and ϕc as introduced in Section 4.2 and provide some visual aid for γt,c. ψc accounts
for the area (≈ object size) of class c. Eq. (15) defines ψc, which we estimated with training data. ψc ensures that classes
with smaller average areas transition to the masked state later. Specifically, the term is defined as the inverse of the ratio of
average total image pixels to the average class pixels. As the average area of class c decreases, the ψc value increases. On
the other hand, ϕc ensures a slow diffusion (to the masked state) of classes that rarely appear in the dataset. It is defined in
Eq. (16), and it can be regarded as the inverse frequency of the class in training images. A larger ϕc value corresponds to a
class that rarely appears in the dataset. In Figure 5, we visualize γt,c with different noise schedules. The class-wise schedule
of class ‘clock’ ensures that the class is diffused at a relatively later time, as its ψcϕc value is large.

E. Limitations
One possible limitation of this work is that as the method aims to generate clean images from the noisy labels, the user’s
intention might be ignored, i.e., the user might actually want to generate noisy images. Controlling faithfulness to the
semantic maps could be one possible future direction, which we leave as future work. Another limitation could be that our
method cannot dynamically learn the optimal noise schedules for labels. If the proposed method can learn the optimal noise
schedule, it will improve the flexibility and power of semantic image synthesis.

F. ADE20K Dataset Annotation Examples
In this section, we provide examples of erroneous/inconsistent annotations.

Jagged edges (DS). We observe that some images have jagged edges as label maps given in Figure 12. This could be the
result of erroneous annotations but also could occur due to the coarse and low resolution of the images. ADE20K dataset
contains images of various sizes. Similarly, the size of user inputs can be diverse in real-world applications.

Incomplete masks (Edge). Figure 13 shows some examples of incomplete masks, where the pixels on the boundaries of
instances were left as ‘unlabeled’. This usually occurs due to their inherent ambiguity.

Inconsistent annotation (e.g., umbrella). Similar to Figure 9, Figure 11 shows training images (first row) and their
annotations (second row). Some umbrellas are correctly annotated with the shafts (Figure 11(a)), while others are annotated
without the shafts and handles (Figure 11(b)). Trained with these inconsistent labels, baselines did not synthesize the shaft
for the parasol (class ‘umbrella’) in Figure 9, whereas our SCDM successfully generated the shafts leveraging our Label
Diffusion.

G. Additional Experimental Results
G.1. Standard SIS Setting

G.1.1. GENERATION QUALITY COMPARISON.

Figure 6 presents the qualitative comparison with other SIS models and our method on CelebAMask-HQ. Remarkably, our
method generates realistic images even for an intricate semantic map with fluttering hair over the face, while others struggle
with generating the occluded eye naturally.

As Figure 7 illustrates the qualitative results on ADE20K, our method demonstrates its advantage over previous methods in
generating details, and convincing images within the given semantics. Especially, our SCDM generates a more realistic and
clear image of the waterfall than the baselines. In addition, our approach more naturally depicts the rocks visible through the
water, compared to the baselines. For ADE20K, we used slightly modified ψcϕc with some scale factors, and the details are
in Appendix C.3.

Lastly, on COCO-Stuff our method outperforms the state-of-the-art methods in FID and LPIPS. The qualitative comparison
with others and ours is given in Figure 8. Ours synthesized a more realistic and clearer image of a clock tower, by successfully
generating the numbers and hands of the clock. Furthermore, ours generated a more natural image of the tree branches over
the clock tower.
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Original DAGAN INADE SDM LDMLabel SCGAN Ours

Figure 6. Qualitative results on CelebAMask-HQ. Ours successfully catches the fine-grained details and generates realistic images
conditioning on challenging semantic labels with highly occluded objects (e.g., eye covered by hairs).

Label OASIS SAFM SDM LDMSCGAN Ours

Figure 7. Qualitative results on ADE20K. Ours is capable of synthesizing realistic and clear images, as our generated images show
more depth and clearer results of the waterfall.

Label CC-FPSE OASIS SDM OursSCGAN PITI

Figure 8. Qualitative results on COCO. Our SCDM clearly captures the details (e.g., the hands on the clock) and naturally depicts the
branches over the clock tower.

G.1.2. ANALYSIS ON SEMANTIC CORRESPONDENCE.

We evaluate the semantic correspondence using pre-trained segmentation networks and compare our method with baselines
on mIoU, and the results are in Table 2. SCDM shows better performance than the state-of-the-art on CelebAMask-HQ,
while for the other two datasets, diffusion-based approaches including ours show comparatively weaker performance than
adversarial methods such as SAFM or ECGAN. We believe that one of the reasons for this could be the erroneous annotation
of images. For example, ‘umbrella’ is often annotated without a shaft and a handle (examples are given in Appendix F). In
Figure 9, baselines trained with these images did not synthesize the shaft for the given semantic map of a parasol (class
‘umbrella’) without a shaft, while ours did. Although ours is more realistic, this can result in lower mIoU scores. We also
suspect that the performance of the off-the-shelf segmentation models used for mIoU evaluation is not very robust. We ran
the segmentation model on ground-truth (i.e., real and clean) images and it shows a poor mIoU with semantic labels (43.1
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OASIS SDM OursLabel Original

Figure 9. Robustness to inconsistent semantic labels. Our SCDM exhibits robustness to inconsistent semantic labels. Although
the parasol (class ‘umbrella’) in the original image has a shaft, it is not accurately annotated in the semantic map. Interestingly, ours
synthesized a natural image with the missing shaft whereas all baselines failed to generate it.

Table 6. Extrapolation hyperparameter search on ADE20K. The samples are generated with 25 sampling steps.

w FID (↓)

0.4 33.0
0.5 31.6
0.6 30.3
0.7 29.2
0.8 27.7
0.9 30.9

on ADE20K and 34.7 on COCO). Additionally, it is noteworthy that baselines with high mIoU scores such as RESAIL,
SAFM, and ECGAN leverage ‘pretrained’ segmentation models in their semantic alignment losses (denoted by ‘Seg’ in
Table 2). In contrast, ours does not rely on such explicit guidance for correspondence.

G.2. Extrapolation Hyperparameter Search

For the extrapolation hyperparameter w, we searched for values in [0.4, 0.5, 0.6, 0.7, 0.8, 0.9], following a similar protocol
of (Ho & Salimans, 2021). The search results are in Table 6, and we chose the value w = 0.8 in terms of the generation
quality (FID).

G.3. Visualization of Label Diffusion

We show the intermediate steps of our Label Diffusion as a visual aid for understanding the two different noise schedules.
Figure 15(a) and 15(b) illustrate the intermediate results of the diffused labels in the Label Diffusion process using the linear
and uniform noise schedule and the class-wise schedule, respectively. The first row of each subfigure shows the diffused
semantic map given to the model during the discrete diffusion process, while the second row magnifies and displays the
label of a clock on a cabinet from the first row. The ψcϕc values of the ‘clock’ and ‘cabinet’ classes are 651.3 and 17.3,
respectively. As the class ‘clock’ occupies relatively small areas in the dataset, the class-wise schedule makes the clock
diffused slowly, and denoised fastly during the generation process. Meanwhile, in the uniform noise schedule, the ‘clock’
class is perturbed faster than in the class-wise schedule (Figure 15(b)), because the uniform schedule evenly diffuses all
class labels in the label map.
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Table 7. Quantitative noise schedule comparison on semantic correspondence (mIoU (↑)). The results are sampled over 1000 sampling
steps.

Noise Schedule CelebAMask-HQ ADE20K COCO-Stuff

Linear & Uniform 76.8 43.0 36.8

Class-wise 77.2 49.4 38.1

Table 8. Sampling results with different noise schedules for generation process on ADE20K. The results are sampled from (a) SCDM
trained with a class-wise noise schedule (η = 1), and (b) baseline (trained without Label Diffusion, i.e., η = +∞).

Model Sampling noise schedule η FID mIoU

(a) Ours
No Label Diffusion +∞ 30.6 47.8
Linear and uniform 0 34.5 28.9
Class-wise 1 27.7 48.7

(b) Base
No Label Diffusion +∞ 28.1 48.6
Linear and uniform 0 76.2 15.7
Class-wise 1 44.0 43.1

G.4. Effect of Class-wise Noise Schedule

In this section, we show the quantitative comparison of the class-wise schedule and the linear and uniform schedule,
continuing the discussion from Section 6.2 of the main paper. The results are given in Table 7, on three (original) benchmark
datasets. The results are sampled with 1000 sampling steps, without extrapolation. As demonstrated by the mIoU gains, the
class-wise noise schedule increases the semantic correspondence of the generated images. Additionally, we provide the
qualitative comparison on COCO-Stuff in Figure 14.

G.5. Further Discussion and Analysis on Class Guidance

In Section 4.4, we analyzed Label Diffusion regarding the conditional score that our method approximates. Although our
method does not have the same guidance as the baseline with fixed labels and time-dependent scaling, we further assess the
effect of scaling and compare it with our method. Specifically, we modify the fixed classifier-free guidance scale through
scheduling, i.e., s to s(1− γt) in Eq. (20), resulting in comparable fidelity with the baseline using fixed guidance (FID (↓)
of 28.6 (CFG scale scheduling) and 28.1 (baseline)). Nevertheless, it still yields suboptimal results compared to ours (FID
of 26.9). What further distinguishes our method from CFG scale scheduling is that our absorbing state explicitly informs the
model that the pixel is unconditional, facilitating the natural generation of the ambiguous parts in an image. Some concrete
examples of the ambiguous parts are given in Figure 6 and 8, where the eye is occluded by hairs and the tree branches are
over the clock tower.

G.6. Validation of SCDM Generation Process

In this section, we validate the SCDM generation process by showing the effect of our Label Diffusion during sampling.
Although our forward process diffuses images and labels independently (Eq. (9) of the main paper), our model successfully
learns the joint distribution of the images and labels, and therefore generates the images dependent on the given perturbed
labels.

To show this empirically, we first trained our model with the class-wise noise schedule (i.e., η = 1). Then we sampled
images with three different Label Diffusion noise schedules by controlling η: (1) η = +∞, i.e., no Label Diffusion and
using fixed y0 for the entire generation process, (2) η = 0, i.e., the linear and uniform noise schedule, and (3) η = 1, i.e., the
class-wise noise schedule that was leveraged during training. The results are reported in Table 8(a) and we used 25 sampling
steps. As the FID scores show that the quality of the samples not generated with the trained noise schedule is worse than the
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(a) CelebAMask-HQ. (b) ADE20K. (c) COCO-Stuff.

Figure 10. Multimodal generation results.

images sampled with η = 1, we can observe that Label Diffusion affects the generation process.

Additionally, we sampled images using the baseline model with the same noise schedules, i.e., η = +∞, η = 0, and
η = 1. The results are reported in Table 8(b) and we used 1000 sampling steps (without extrapolation). The performance
deteriorates when Label Diffusion is applied to the baseline (i.e., trained without Label Diffusion). This also indicates that
Label Diffusion contributes to the generation process, validating the SCDM generation process.

G.7. More Qualitative Results - Multimodal Generation

We provide additional generation results of our method, showing SCDM’s capability of generating diverse samples. Figure 10
shows multimodal generation results on CelebAMask-HQ, ADE20K, and COCO-Stuff (standard SIS setting).

G.8. More Qualitative Results - SIS with Noisy Labels

We provide additional generation results of our method and baselines on SIS with noisy labels. The results of [DS], [Edge],
and [Random] are illustrated in Figure 16, 17, and 18, respectively, and the experiments are on the ADE20K dataset.

G.9. More Qualitative Results - Standard SIS Setting

We present additional generation results of our SCDM and other baselines on the standard SIS setting. Figure 19 shows the
results of our method and qualitative comparisons on CelebAMask-HQ. Figure 20 and 21 show the results and qualitative
comparisons on ADE20K and COCO-Stuff, respectively.
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(a) Training data examples with shaft annotated. (b) Training data examples with shaft not annotated.

Figure 11. Examples of inconsistent semantic labels (class ‘umbrella’) in the training set.

Figure 12. Examples of jagged edges in the ADE20K dataset.

26



Stochastic Conditional Diffusion Models for Robust Semantic Image Synthesis

‘unlabeled’ class

Figure 13. Examples of incomplete masks in the ADE20K dataset.

Class-wiseLabel Uniform

Figure 14. Qualitative noise schedule comparison on COCO-Stuff.
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t = 0

(a) Uniform and linear noise schedule.

(b) Class-wise noise schedule.

Figure 15. Visualization of Label Diffusion intermediate steps.

Label OASIS SAFM SDM OursSCGAN LDM

Figure 16. More qualitative comparisons on SIS with noisy labels (DS). The generation results are conditioned with semantic masks
with jagged edges.
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Label OASIS SAFM SDM OursSCGAN LDM

Figure 17. More qualitative comparisons on SIS with noisy labels (Edge). The generation results are conditioned with incomplete
masks on the edges of instances.

Label OASIS SAFM SDM OursSCGAN LDM

Figure 18. More qualitative comparisons on SIS with noisy labels (Random). The generation results are conditioned with corrupted
masks.
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Label Ours DAGAN SCGAN INADE SDM LDM

Figure 19. More qualitative results and comparisons on CelebAMask-HQ. The first two rows are the result of our model, while the
other rows depict qualitative comparisons in terms of generation quality.
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Label Ours SCGAN OASIS SAFM SDM LDM

Figure 20. More qualitative results and comparisons on ADE20K. The first two rows show the result of our model, while the other
rows depict qualitative comparisons in terms of generation quality.
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Label Ours CC-FPSE OASIS SCGAN SDM PITI

Figure 21. More qualitative results and comparisons on COCO-Stuff. The first two rows show the result of our model, while the other
rows depict qualitative comparisons in terms of generation quality.
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